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Abstract

Convolutional neural network (CNN), a class of artificial neural networks that has become dominant in various computer vision

tasks, is attracting interest across a variety of domains, including radiology. CNN is designed to automatically and adaptively

learn spatial hierarchies of features through backpropagation by using multiple building blocks, such as convolution layers,

pooling layers, and fully connected layers. This review article offers a perspective on the basic concepts of CNN and its

application to various radiological tasks, and discusses its challenges and future directions in the field of radiology. Two

challenges in applying CNN to radiological tasks, small dataset and overfitting, will also be covered in this article, as well as

techniques to minimize them. Being familiar with the concepts and advantages, as well as limitations, of CNN is essential to

leverage its potential in diagnostic radiology, with the goal of augmenting the performance of radiologists and improving patient

care.

Key Points

•Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks

and is attracting interest across a variety of domains, including radiology.

• Convolutional neural network is composed of multiple building blocks, such as convolution layers, pooling layers, and fully

connected layers, and is designed to automatically and adaptively learn spatial hierarchies of features through a

backpropagation algorithm.

• Familiarity with the concepts and advantages, as well as limitations, of convolutional neural network is essential to leverage its

potential to improve radiologist performance and, eventually, patient care.
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CAD Computer-aided diagnosis
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CAM Class activation map
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MRI Magnetic resonance imaging

PET Positron emission tomography

ReLU Rectified linear unit

RI Radio isotope

RGB Red, green, and blue

SDG Stochastic gradient descent

Introduction

A tremendous interest in deep learning has emerged in recent

years [1]. The most established algorithm among various deep

learning models is convolutional neural network (CNN), a

class of artificial neural networks that has been a dominant

method in computer vision tasks since the astonishing results

were shared on the object recognition competition known as

the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) in 2012 [2, 3]. Medical research is no exception,

as CNN has achieved expert-level performances in various

fields. Gulshan et al. [4], Esteva et al. [5], and Ehteshami

Bejnordi et al. [6] demonstrated the potential of deep learning

for diabetic retinopathy screening, skin lesion classification,

and lymph node metastasis detection, respectively. Needless

to say, there has been a surge of interest in the potential of

CNN among radiology researchers, and several studies have

already been published in areas such as lesion detection [7],

classification [8], segmentation [9], image reconstruction [10,

11], and natural language processing [12]. Familiarity with

this state-of-the-art methodology would help not only re-

searchers who apply CNN to their tasks in radiology and med-

ical imaging, but also clinical radiologists, as deep learning

may influence their practice in the near future. This article

focuses on the basic concepts of CNN and their application

to various radiology tasks, and discusses its challenges and

future directions. Other deep learning models, such as recur-

rent neural networks for sequence models, are beyond the

scope of this article.

Terminology

The following terms are consistently employed throughout

this article so as to avoid confusion. A Bparameter^ in this

article stands for a variable that is automatically learned during

the training process. A Bhyperparameter^ refers to a variable

that needs to be set before the training process starts. A

Bkernel^ refers to the sets of learnable parameters applied in

convolution operations. A Bweight^ is generally used inter-

changeably with Bparameter^; however, we tried to employ

this term when referring to a parameter outside of convolution

layers, i.e., a kernel, for example in fully connected layers.

What is CNN: the big picture (Fig. 1)

CNN is a type of deep learning model for processing data that

has a grid pattern, such as images, which is inspired by the

organization of animal visual cortex [13, 14] and designed to

automatically and adaptively learn spatial hierarchies of fea-

tures, from low- to high-level patterns. CNN is a mathematical

construct that is typically composed of three types of layers (or

building blocks): convolution, pooling, and fully connected

layers. The first two, convolution and pooling layers, perform

feature extraction, whereas the third, a fully connected layer,

maps the extracted features into final output, such as classifi-

cation. A convolution layer plays a key role in CNN, which

is composed of a stack of mathematical operations, such as

convolution, a specialized type of linear operation. In dig-

ital images, pixel values are stored in a two-dimensional

(2D) grid, i.e., an array of numbers (Fig. 2), and a small

grid of parameters called kernel, an optimizable feature ex-

tractor, is applied at each image position, which makes

CNNs highly efficient for image processing, since a feature

may occur anywhere in the image. As one layer feeds its

output into the next layer, extracted features can hierarchi-

cally and progressively become more complex. The process

of optimizing parameters such as kernels is called training,

which is performed so as to minimize the difference be-

tween outputs and ground truth labels through an optimiza-

tion algorithm called backpropagation and gradient de-

scent, among others.

How is CNN different from other methods
employed in radiomics?

Most recent radiomics studies use hand-crafted feature extrac-

tion techniques, such as texture analysis, followed by conven-

tional machine learning classifiers, such as random forests and

support vector machines [15, 16]. There are several differ-

ences to note between such methods and CNN. First, CNN

does not require hand-crafted feature extraction. Second,

CNN architectures do not necessarily require segmentation

of tumors or organs by human experts. Third, CNN is far more

data hungry because of its millions of learnable parameters to

estimate, and, thus, is more computationally expensive,

resulting in requiring graphical processing units (GPUs) for

model training.

Building blocks of CNN architecture

The CNN architecture includes several building blocks, such

as convolution layers, pooling layers, and fully connected

layers. A typical architecture consists of repetitions of a stack

of several convolution layers and a pooling layer, followed by
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one or more fully connected layers. The step where input data

are transformed into output through these layers is called for-

ward propagation (Fig. 1). Although convolution and pooling

operations described in this section are for 2D-CNN, similar

operations can also be performed for three-dimensional

(3D)-CNN.

Convolution layer

A convolution layer is a fundamental component of the CNN

architecture that performs feature extraction, which typically

Convolution

Convolution is a specialized type of linear operation used for

feature extraction, where a small array of numbers, called a

kernel, is applied across the input, which is an array of num-

bers, called a tensor. An element-wise product between each

element of the kernel and the input tensor is calculated at each

location of the tensor and summed to obtain the output value

in the corresponding position of the output tensor, called a

Fig. 2 A computer sees an image as an array of numbers. The matrix on the right contains numbers between 0 and 255, each of which corresponds to the

pixel brightness in the left image. Both are overlaid in the middle image. The source image was downloaded via http://yann.lecun.com/exdb/mnist

Fig. 1 An overview of a convolutional neural network (CNN)

architecture and the training process. A CNN is composed of a stacking

of several building blocks: convolution layers, pooling layers (e.g., max

pooling), and fully connected (FC) layers. A model’s performance under

particular kernels and weights is calculated with a loss function through

forward propagation on a training dataset, and learnable parameters, i.e.,

kernels and weights, are updated according to the loss value through

backpropagation with gradient descent optimization algorithm. ReLU,

rectified linear unit
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feature map (Fig. 3a–c). This procedure is repeated applying

multiple kernels to form an arbitrary number of feature maps,

which represent different characteristics of the input tensors;

different kernels can, thus, be considered as different feature

extractors (Fig. 3d). Two key hyperparameters that define the

convolution operation are size and number of kernels. The

former is typically 3 × 3, but sometimes 5 × 5 or 7 × 7. The

latter is arbitrary, and determines the depth of output feature

maps.

The convolution operation described above does not allow

the center of each kernel to overlap the outermost element of

the input tensor, and reduces the height and width of the output

feature map compared to the input tensor. Padding, typically

zero padding, is a technique to address this issue, where rows

and columns of zeros are added on each side of the input tensor,

so as to fit the center of a kernel on the outermost element and

keep the same in-plane dimension through the convolution

operation (Fig. 4). Modern CNN architectures usually employ

zero padding to retain in-plane dimensions in order to apply

more layers. Without zero padding, each successive feature

map would get smaller after the convolution operation.

The distance between two successive kernel positions

is called a stride, which also defines the convolution op-

eration. The common choice of a stride is 1; however, a

stride larger than 1 is sometimes used in order to achieve

downsampling of the feature maps. An alternative tech-

nique to perform downsampling is a pooling operation, as

described below.

The key feature of a convolution operation is weight shar-

ing: kernels are shared across all the image positions. Weight

sharing creates the following characteristics of convolution

operations: (1) letting the local feature patterns extracted by

kernels translation b invariant as kernels travel across all the

image positions and detect learned local patterns, (2) learning

spatial hierarchies of feature patterns by downsampling in

conjunction with a pooling operation, resulting in capturing

an increasingly larger field of view, and (3) increasing model

efficiency by reducing the number of parameters to learn in

comparison with fully connected neural networks.

As described later, the process of training a CNN model

with regard to the convolution layer is to identify the kernels

that work best for a given task based on a given training

dataset. Kernels are the only parameters automatically learned

during the training process in the convolution layer; on the

other hand, the size of the kernels, number of kernels, pad-

ding, and stride are hyperparameters that need to be set before

the training process starts (Table 1).

Nonlinear activation function

The outputs of a linear operation such as convolution are then

passed through a nonlinear activation function. Although

smooth nonlinear functions, such as sigmoid or hyperbolic

b

c

Fig. 3 a–cAn example of convolution operation with a kernel size of 3 ×

3, no padding, and a stride of 1. A kernel is applied across the input tensor,

and an element-wise product between each element of the kernel and the

input tensor is calculated at each location and summed to obtain the

output value in the corresponding position of the output tensor, called a

feature map. d Examples of how kernels in convolution layers extract

features from an input tensor are shown. Multiple kernels work as differ-

ent feature extractors, such as a horizontal edge detector (top), a vertical

edge detector (middle), and an outline detector (bottom). Note that the left

image is an input, those in the middle are kernels, and those in the right

are output feature maps
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tangent (tanh) function, were used previously because they are

mathematical representations of a biological neuron behavior,

the most common nonlinear activation function used presently

is the rectified linear unit (ReLU), which simply computes the

function: f(x) = max(0, x) (Fig. 5) [1, 3, 17–19].

Pooling layer

A pooling layer provides a typical downsampling operation

which reduces the in-plane dimensionality of the feature maps

in order to introduce a translation invariance to small shifts

and distortions, and decrease the number of subsequent learn-

able parameters. It is of note that there is no learnable param-

eter in any of the pooling layers, whereas filter size, stride, and

padding are hyperparameters in pooling operations, similar to

convolution operations.

Max pooling

The most popular form of pooling operation is max pooling,

which extracts patches from the input feature maps, outputs

the maximum value in each patch, and discards all the other
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Fig. 3 (continued)
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values (Fig. 6). A max pooling with a filter of size 2 × 2 with a

stride of 2 is commonly used in practice. This downsamples

the in-plane dimension of feature maps by a factor of 2. Unlike

height and width, the depth dimension of feature maps re-

mains unchanged.

Global average pooling

Another pooling operation worth noting is a global aver-

age pooling [20]. A global average pooling performs an

extreme type of downsampling, where a feature map with

size of height × width is downsampled into a 1 × 1 array

by simply taking the average of all the elements in each

feature map, whereas the depth of feature maps is

retained. This operation is typically applied only once be-

fore the fully connected layers. The advantages of apply-

ing global average pooling are as follows: (1) reduces the

number of learnable parameters and (2) enables the CNN

to accept inputs of variable size.

Fully connected layer

The output feature maps of the final convolution or

pooling layer is typically flattened, i.e., transformed into

a one-dimensional (1D) array of numbers (or vector), and

connected to one or more fully connected layers, also

known as dense layers, in which every input is connected

to every output by a learnable weight. Once the features

extracted by the convolution layers and downsampled by

the pooling layers are created, they are mapped by a sub-

set of fully connected layers to the final outputs of the

network, such as the probabilities for each class in classi-

fication tasks. The final fully connected layer typically

has the same number of output nodes as the number of

classes. Each fully connected layer is followed by a non-

linear function, such as ReLU, as described above.

Last layer activation function

The activation function applied to the last fully connected

layer is usually different from the others. An appropriate

activation function needs to be selected according to each

task. An activation function applied to the multiclass clas-

sification task is a softmax function which normalizes out-

put real values from the last fully connected layer to target

class probabilities, where each value ranges between 0 and

1 and all values sum to 1. Typical choices of the last layer

Fig. 4 A convolution operation

with zero padding so as to retain

in-plane dimensions. Note that an

input dimension of 5 × 5 is kept in

the output feature map. In this

example, a kernel size and a stride

are set as 3 × 3 and 1, respectively

Table 1 A list of parameters and

hyperparameters in a

convolutional neural network

(CNN)

Parameters Hyperparameters

Convolution layer Kernels Kernel size, number of kernels, stride, padding, activation function

Pooling layer None Pooling method, filter size, stride, padding

Fully connected layer Weights Number of weights, activation function

Others Model architecture, optimizer, learning rate, loss function, mini-batch

size, epochs, regularization, weight initialization, dataset splitting

Note that a parameter is a variable that is automatically optimized during the training process and a

hyperparameter is a variable that needs to be set beforehand
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activation function for various types of tasks are summa-

rized in Table 2.

Training a network

Training a network is a process of finding kernels in convolu-

tion layers and weights in fully connected layers which min-

imize differences between output predictions and given

ground truth labels on a training dataset. Backpropagation

algorithm is the method commonly used for training neural

networks where loss function and gradient descent optimiza-

tion algorithm play essential roles. A model performance un-

der particular kernels and weights is calculated by a loss func-

tion through forward propagation on a training dataset, and

learnable parameters, namely kernels and weights, are up-

dated according to the loss value through an optimization

algorithm called backpropagation and gradient descent,

among others (Fig. 1).

Loss function

A loss function, also referred to as a cost function, measures

the compatibility between output predictions of the network

through forward propagation and given ground truth labels.

Commonly used loss function for multiclass classification is

cross entropy, whereas mean squared error is typically applied

to regression to continuous values. A type of loss function is

one of the hyperparameters and needs to be determined ac-

cording to the given tasks.

Gradient descent

Gradient descent is commonly used as an optimization algo-

rithm that iteratively updates the learnable parameters, i.e.,

kernels and weights, of the network so as to minimize the loss.

The gradient of the loss function provides us the direction in

which the function has the steepest rate of increase, and each

learnable parameter is updated in the negative direction of the

gradient with an arbitrary step size determined based on a

hyperparameter called learning rate (Fig. 7). The gradient is,

mathematically, a partial derivative of the loss with respect to

each learnable parameter, and a single update of a parameter is

formulated as follows:

w∶ ¼ w−α*
∂L

∂w

where w stands for each learnable parameter, α stands for a

learning rate, and L stands for a loss function. It is of note that,

in practice, a learning rate is one of the most important

hyperparameters to be set before the training starts. In practice,

for reasons such as memory limitations, the gradients of the

loss function with regard to the parameters are computed by

using a subset of the training dataset called mini-batch, and

applied to the parameter updates. This method is called

mini-batch gradient descent, also frequently referred to as sto-

chastic gradient descent (SGD), and a mini-batch size is also a

hyperparameter. In addition, many improvements on the gra-

dient descent algorithm have been proposed and widely used,

such as SGDwith momentum, RMSprop, and Adam [21–23],

though the details of these algorithms are beyond the scope of

this article.

Data and ground truth labels

Data and ground truth labels are the most important compo-

nents in research applying deep learning or other machine

learning methods. As a famous proverb originating in com-

puter science notes: BGarbage in, garbage out.^ Careful col-

lection of data and ground truth labels with which to train and

test a model is mandatory for a successful deep learning pro-

ject, but obtaining high-quality labeled data can be costly and

time-consuming. While there may be multiple medical image

datasets open to the public [24, 25], special attention should be

paid in these cases to the quality of the ground truth labels.

Available data are typically split into three sets: a training, a

validation, and a test set (Fig. 8), though there are some vari-

ants, such as cross validation. A training set is used to train a

network, where loss values are calculated via forward propaga-

tion and learnable parameters are updated via backpropagation.

Avalidation set is used to evaluate themodel during the training

Fig. 5 Activation functions commonly applied to neural networks: a rectified linear unit (ReLU), b sigmoid, and c hyperbolic tangent (tanh)
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process, fine-tune hyperparameters, and perform model selec-

tion. A test set is ideally used only once at the very end of the

project in order to evaluate the performance of the final model

that was fine-tuned and selected on the training process with

training and validation sets.

Separate validation and test sets are needed because training a

model always involves fine-tuning its hyperparameters and

performing model selection. As this process is performed based

on the performance on the validation set, some information

about this validation set leaks into the model itself, i.e.,

Table 2 A list of commonly applied last layer activation functions for

various tasks

Task Last layer activation function

Binary classification Sigmoid

Multiclass single-class classification Softmax

Multiclass multiclass classification Sigmoid

Regression to continuous values Identity

a

b

Fig. 6 a An example of max pooling operation with a filter size of 2 × 2,

no padding, and a stride of 2, which extracts 2 × 2 patches from the input

tensors, outputs the maximum value in each patch, and discards all the

other values, resulting in downsampling the in-plane dimension of an

input tensor by a factor of 2. b Examples of the max pooling operation

on the same images in Fig. 3b. Note that images in the upper row are

downsampled by a factor of 2, from 26 × 26 to 13 × 13
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overfitting to the validation set, even though the model is never

directly trained on it for the learnable parameters. For that rea-

son, it is guaranteed that the model with fine-tuned

hyperparameters on the validation set will perform well on this

same validation set. Therefore, a completely unseen dataset, i.e.,

a separate test set, is necessary for the appropriate evaluation of

the model performance, as what we care about is the model

performance on never-before-seen data, i.e., generalizability.

It is worthy of mention that the term Bvalidation^ is used

differently in the medical field and the machine learning field

[26]. As described above, in machine learning, the term

Bvalidation^ usually refers to a step to fine-tune and select

models during the training process. On the other hand, in

medicine, Bvalidation^ usually stands for the process of veri-

fying the performance of a prediction model, which is analo-

gous to the term Btest^ in machine learning. In order to avoid

this confusion, the word Bdevelopment set^ is sometimes used

as a substitute for Bvalidation set^.

Overfitting

Overfitting refers to a situation where a model learns statistical

regularities specific to the training set, i.e., ends up memoriz-

ing the irrelevant noise instead of learning the signal, and,

therefore, performs less well on a subsequent new dataset.

This is one of the main challenges in machine learning, as

an overfitted model is not generalizable to never-seen-before

data. In that sense, a test set plays a pivotal role in the proper

performance evaluation of machine learning models, as

discussed in the previous section. A routine check for recog-

nizing overfitting to the training data is to monitor the loss and

accuracy on the training and validation sets (Fig. 9). If the

model performs well on the training set compared to the val-

idation set, then the model has likely been overfit to the train-

ing data. There have been several methods proposed to min-

imize overfitting (Table 3). The best solution for reducing

overfitting is to obtain more training data. A model trained

on a larger dataset typically generalizes better, though that is

not always attainable in medical imaging. The other solutions

include regularization with dropout or weight decay, batch

normalization, and data augmentation, as well as reducing

architectural complexity. Dropout is a recently introduced reg-

ularization technique where randomly selected activations are

Fig. 8 Available data are

typically split into three sets: a

training, a validation, and a test

set. A training set is used to train a

network, where loss values are

calculated via forward

propagation and learnable

parameters are updated via

backpropagation. A validation set

is used to monitor the model

performance during the training

process, fine-tune

hyperparameters, and perform

model selection. A test set is

ideally used only once at the very

end of the project in order to

evaluate the performance of the

final model that is fine-tuned and

selected on the training process

with training and validation sets

Fig. 7 Gradient descent is an optimization algorithm that iteratively

updates the learnable parameters so as to minimize the loss, which

measures the distance between an output prediction and a ground truth

label. The gradient of the loss function provides the direction in which the

function has the steepest rate of increase, and all parameters are updated in

the negative direction of the gradient with a step size determined based on

a learning rate
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set to 0 during the training, so that the model becomes less

sensitive to specific weights in the network [27]. Weight de-

cay, also referred to as L2 regularization, reduces overfitting

by penalizing the model’s weights so that the weights take

only small values. Batch normalization is a type of supple-

mental layer which adaptively normalizes the input values of

the following layer, mitigating the risk of overfitting, as well

as improving gradient flow through the network, allowing

higher learning rates, and reducing the dependence on initial-

ization [28]. Data augmentation is also effective for the reduc-

tion of overfitting, which is a process of modifying the train-

ing data through random transformations, such as flipping,

translation, cropping, rotating, and random erasing, so that

the model will not see exactly the same inputs during the

training iterations [29]. In spite of these efforts, there is still

a concern of overfitting to the validation set rather than to the

training set because of information leakage during the

hyperparameter fine-tuning and model selection process.

Therefore, reporting the performance of the final model on a

separate (unseen) test set, and ideally on external validation

datasets if applicable, is crucial for verifying the model

generalizability.

Training on a small dataset

An abundance of well-labeled data in medical imaging is de-

sirable but rarely available due to the cost and necessary work-

load of radiology experts. There are a couple of techniques

available to train a model efficiently on a smaller dataset: data

augmentation and transfer learning. As data augmentation was

briefly covered in the previous section, this section focuses on

transfer learning.

Transfer learning is a common and effective strategy to

train a network on a small dataset, where a network is

pretrained on an extremely large dataset, such as ImageNet,

which contains 1.4 million images with 1000 classes, then

reused and applied to the given task of interest. The underly-

ing assumption of transfer learning is that generic features

learned on a large enough dataset can be shared among seem-

ingly disparate datasets. This portability of learned generic

features is a unique advantage of deep learning that makes

itself useful in various domain tasks with small datasets. At

present, many models pretrained on the ImageNet challenge

dataset are open to the public and readily accessible, along

with their learned kernels and weights, such as AlexNet [3],

VGG [30], ResNet [31], Inception [32], and DenseNet [33]. In

practice, there are two ways to utilize a pretrained network:

fixed feature extraction and fine-tuning (Fig. 10).

A fixed feature extraction method is a process to remove

fully connected layers from a network pretrained on ImageNet

and while maintaining the remaining network, which consists

of a series of convolution and pooling layers, referred to as the

convolutional base, as a fixed feature extractor. In this scenar-

io, any machine learning classifier, such as random forests and

support vector machines, as well as the usual fully connected

layers in CNNs, can be added on top of the fixed feature

extractor, resulting in training limited to the added classifier

on a given dataset of interest. This approach is not common in

deep learning research on medical images because of the dis-

similarity between ImageNet and given medical images.

A fine-tuning method, which is more often applied to radi-

ology research, is to not only replace fully connected layers of

the pretrained model with a new set of fully connected layers

to retrain on a given dataset, but to fine-tune all or part of the

kernels in the pretrained convolutional base by means of

backpropagation. All the layers in the convolutional base

can be fine-tuned or, alternatively, some earlier layers can be

fixed while fine-tuning the rest of the deeper layers. This is

motivated by the observation that the early-layer features ap-

pear more generic, including features such as edges applicable

to a variety of datasets and tasks, whereas later features pro-

gressively become more specific to a particular dataset or task

[34, 35].

One drawback of transfer learning is its constraints on input

dimensions. The input image has to be 2Dwith three channels

relevant to RGB because the ImageNet dataset consists of 2D

Fig. 9 A routine check for recognizing overfitting is to monitor the loss

on the training and validation sets during the training iteration. If the

model performs well on the training set compared to the validation set,

then the model has been overfit to the training data. If the model performs

poorly on both training and validation sets, then the model has been

underfit to the data. Although the longer a network is trained, the better

it performs on the training set, at some point, the network fits too well to

the training data and loses its capability to generalize

Table 3 A list of

common methods to

mitigate overfitting

How to mitigate overfitting

More training data

Data augmentation

Regularization (weight decay, dropout)

Batch normalization

Reduce architecture complexity
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color images that have three channels (RGB: red, green, and

blue), whereas medical grayscale images have only one chan-

nel (levels of gray). On the other hand, the height and width of

an input image can be arbitrary, but not too small, by adding a

global pooling layer between the convolutional base and

added fully connected layers.

There has also been increasing interest in taking advantage

of unlabeled data, i.e., semi-supervised learning, to overcome

a small-data problem. Examples of this attempt include

pseudo-label [36] and incorporating generative models, such

as generative adversarial networks (GANs) [37]. However,

whether these techniques can really help improve the perfor-

mance of deep learning in radiology is not clear and remains

an area of active investigation.

Applications in radiology

This section introduces recent applications within radiology,

which are divided into the following categories: classification,

segmentation, detection, and others.

Classification

In medical image analysis, classification with deep learning

usually utilizes target lesions depicted in medical images, and

these lesions are classified into two or more classes. For ex-

ample, deep learning is frequently used for the classification

of lung nodules on computed tomography (CT) images as

benign or malignant (Fig. 11a). As shown, it is necessary to

prepare a large number of training data with corresponding

labels for efficient classification using CNN. For lung nodule

classification, CT images of lung nodules and their labels (i.e.,

benign or cancerous) are used as training data. Figure 11b, c

show two examples of training data of lung nodule classifica-

tion between benign lung nodule and primary lung cancer;

Fig. 11b shows the training data where each datum includes

an axial image and its label, and Fig. 11c shows the training

data where each datum includes three images (axial, coronal,

and sagittal images of a lung nodule) and their labels. After

training CNN, the target lesions of medical images can be

specified in the deployment phase by medical doctors or

computer-aided detection (CADe) systems [38].

Because 2D images are frequently utilized in computer vi-

sion, deep learning networks developed for the 2D images

(2D-CNN) are not directly applied to 3D images obtained in

radiology [thin-slice CT or 3D-magnetic resonance imaging

(MRI) images]. To apply deep learning to 3D radiological im-

ages, different approaches such as custom architectures are used.

For example, Setio et al. [39] used a multistream CNN to clas-

sify nodule candidates of chest CT images between nodules or

non-nodules in the databases of the Lung Image Database

Consortium and Image Database Resource Initiative

(LIDC-IDRI) [40], ANODE09 [41], and the Danish Lung

Cancer Screening Trial [42]. They extracted differently oriented

2D image patches based onmultiplanar reconstruction from one

nodule candidate (one or nine patches per candidate), and these

patches were used in separate streams and merged in the fully

connected layers to obtain the final classification output. One

previous study used 3D-CNN for fully capturing the spatial 3D

context information of lung nodules [43]. Their 3D-CNN per-

formed binary classification (benign or malignant nodules) and

Fig. 10 Transfer learning is a common and effective strategy to train a

network on a small dataset, where a network is pretrained on an extremely

large dataset, such as ImageNet, then reused and applied to the given task

of interest. A fixed feature extraction method is a process to remove FC

layers from a pretrained network and while maintaining the remaining

network, which consists of a series of convolution and pooling layers,

referred to as the convolutional base, as a fixed feature extractor. In this

scenario, any machine learning classifier, such as random forests and

support vector machines, as well as the usual FC layers, can be added

on top of the fixed feature extractor, resulting in training limited to the

added classifier on a given dataset of interest. A fine-tuning method,

which is more often applied to radiology research, is to not only replace

FC layers of the pretrained model with a new set of FC layers to retrain

them on a given dataset, but to fine-tune all or part of the kernels in the

pretrained convolutional base by means of backpropagation. FC, fully

connected
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ternary classification (benign lung nodule, and malignant prima-

ry and secondary lung cancers) using the LIDC-IDRI database.

They used a multiview strategy in 3D-CNN, whose inputs were

obtained by cropping three 3D patches of a lung nodule in

different sizes and then resizing them into the same size. They

also used the 3D Inception model in their 3D-CNN, where the

network path was divided into multiple branches with different

convolution and pooling operators.

Time series data are frequently obtained in radiological

examinations such as dynamic contrast-enhanced CT/MRI

or dynamic radio isotope (RI)/positron emission tomography

(PET). One previous study used CT image sets of liver masses

over three phases (non-enhanced CT, and enhanced CT in

arterial and delayed phases) for the classification of liver

masses with 2D-CNN [8]. To utilize time series data, the study

used triphasic CT images as 2D images with three channels,

which corresponds to the RGB color channels in computer

vision, for 2D-CNN. The study showed that 2D-CNN using

triphasic CT images was superior to that using biphasic or

monophasic CT images.

Segmentation

Segmentation of organs or anatomical structures is a funda-

mental image processing technique for medical image analy-

sis, such as quantitative evaluation of clinical parameters (or-

gan volume and shape) and computer-aided diagnosis (CAD)

system. In the previous section, classification depends on the

a

b

Fig. 11 A schematic illustration of a classification system with CNN and representative examples of its training data. a Classification system with CNN

in the deployment phase. b, c Training data used in training phase
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segmentation of lesions of interest. Segmentation can be per-

formed manually by radiologists or dedicated personnel, a

time-consuming process. However, one can also apply CNN

to this task as well. Figure 12a shows a representative example

of segmentation of the uterus with a malignant tumor on MRI

[24, 44, 45]. In most cases, a segmentation system directly

receives an entire image and outputs its segmentation result.

Training data for the segmentation system consist of the med-

ical images containing the organ or structure of interest and

the segmentation result; the latter is mainly obtained from

previously performed manual segmentation. Figure 12b

shows a representative example of training data for the seg-

mentation system of a uterus with a malignant tumor. In con-

trast to classification, because an entire image is inputted to

the segmentation system, it is necessary for the system to

capture the global spatial context of the entire image for effi-

cient segmentation.

One way to perform segmentation is to use a CNN classi-

fier for calculating the probability of an organ or anatom-

ical structure. In this approach, the segmentation process is

divided into two steps; the first step is construction of the

probability map of the organ or anatomical structure using

CNN and image patches, and the second is a refinement

step where the global context of images and the probability

map are utilized. One previous study used a 3D-CNN clas-

sifier for segmentation of the liver on 3D CT images [46].

The input of 3D-CNN were 3D image patches collected

from entire 3D CT images, and the 3D-CNN calculated

probabilities for the liver from the image patches. By

calculating the probabilities of the liver being present for

each image patch, a 3D probability map of the liver was

obtained. Then, an algorithm called graph cut [47] was

used for refinement of liver segmentation, based on the

probability map of the liver. In this method, the local con-

text of CT images was evaluated by 3D-CNN and the glob-

al context was evaluated by the graph cut algorithm.

Although segmentation based on image patch was suc-

cessfully performed in deep learning, U-net of Ronneberger

et al. [48] outperformed the image patch-based method on

the ISBI [IEEE (The Institute of Electrical and Electronics

Engineers) International Symposium on Biomedical

Imaging] challenge for segmentation of neuronal structures

in electron microscopic images. The architecture of U-net

consists of a contracting path to capture anatomical context

and a symmetric expanding path that enables precise local-

ization. Although it was difficult to capture global context

and local context at the same time by using the image

patch-based method, U-net enabled the segmentation process

to incorporate a multiscale spatial context. As a result, U-net

could be trained end-to-end from a limited number of train-

ing data.

One potential approach of using U-net in radiology is to

extend U-net for 3D radiological images, as shown in classi-

fication. For example, V-net was suggested as an extension of

U-net for segmentation of the prostate on volumetric MRI

images [49]. In the study, V-net utilized a loss function based

on the Dice coefficient between segmentation results and

ground truth, which directly reflected the quality of prostate

c

Fig. 11 (continued)
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segmentation. Another study [9] utilized two types of 3D

U-net for segmenting liver and liver mass on 3D CT images,

which was named cascaded fully convolutional neural net-

works; one type of U-net was used for segmentation of the

liver and the other type for the segmentation of liver mass

using the liver segmentation results. Because the second type

of 3D U-net focused on the segmentation of liver mass, the

segmentation of liver mass was more efficiently performed

than single 3D U-net.

Detection

A common task for radiologists is to detect abnormalities

within medical images. Abnormalities can be rare and they

must be detected among many normal cases. One previous

study investigated the usefulness of 2D-CNN for detecting

tuberculosis on chest radiographs [7]. The study utilized

two different types of 2D-CNN, AlexNet [3] and

GoogLeNet [32], to detect pulmonary tuberculosis on chest

radiographs. To develop the detection system and evaluate its

performance, the dataset of 1007 chest radiographs was used.

According to the results, the best area under the curve of

receiver operating characteristic curves for detecting pulmo-

nary tuberculosis from healthy cases was 0.99, which was

obtained by ensemble of the AlexNet and GoogLeNet

2D-CNNs.

Nearly 40 million mammography examinations are per-

formed in the USA every year. These examinations are

mainly performed for screening programs aimed at detect-

ing breast cancer at an early stage. A comparison between

a CNN-based CADe system and a reference CADe system

relying on hand-crafted imaging features was performed

previously [50]. Both systems were trained on a large

dataset of around 45,000 images. The two systems shared

the candidate detection system. The CNN-based CADe

system classified the candidate based on its region of in-

terest, and the reference CADe system classified it based

on the hand-crafted imaging features obtained from the

results of a traditional segmentation algorithm. The results

show that the CNN-based CADe system outperformed the

reference CADe system at low sensitivity and achieved

comparable performance at high sensitivity.

a

b

Fig. 12 A schematic illustration of the system for segmenting a uterus

with a malignant tumor and representative examples of its training data. a

Segmentation system with CNN in deployment phase. b Training data

used in the training phase. Note that original images and corresponding

manual segmentations are arranged next to each other
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Others

Low-dose CT has been increasingly used in clinical situations.

For example, low-dose CT was shown to be useful for lung

cancer screening [51]. Because noisy images of low-dose CT

hindered the reliable evaluation of CT images, many tech-

niques of image processing were used for denoising

low-dose CT images. Two previous studies showed that

low-dose and ultra-low-dose CT images could be effectively

denoised using deep learning [52, 53]. Their systems divided

the noisy CT image into image patches, denoised the image

patches, then reconstructed a new CT image from the

denoised image patches. Deep learning with encoder–decoder

architecture was used for their systems to denoise image

patches. Training data for the denoising systems consisted of

pairs of image patches, which are obtained from standard-dose

CT and low-dose CT. Figure 13 shows a representative exam-

ple of the training data of the systems.

One previous study [54] used U-net to solve the inverse prob-

lem in imaging for obtaining a noiseless CT image reconstructed

from a subsampled sinogram (projection data). To train U-net for

reconstructing a noiseless CT image from the subsampled

sinogram, the training data of U-net consist of (i) noisy CT im-

ages obtained from subsampled sinogram by filtered

backprojection (FBP) and (ii) noiseless CT images obtained from

the original sinogram. The study suggested that, while it would

be possible to train U-net for reconstructing CT images directly

from the sinogram, performing the FBP first greatly simplified

the training. As a refinement of the original U-net, the study

added a skip connection between the input and output for resid-

ual learning. Their study showed that U-net could effectively

produce noiseless CT images from the subsampled sinogram.

Although deep learning requires a large number of training

data, building such a large-scale training data of radiological

images is a challenging problem. One main challenge is the

cost of annotation (labeling); the annotation cost for a

a

b

Fig. 13 A schematic illustration of the system for denoising an ultra-low-dose CT (ULDCT) image of phantom and representative examples of its

training data. a Denoising system with CNN in deployment phase. b Training data used in training phase. SDCT, standard-dose CT
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radiological image is much larger than a general image be-

cause radiologist expertise is required for annotation. To tack-

le this problem, one previous study [55] utilized radiologists’

annotations which are routinely added to radiologists’ reports

(such as circle, arrow, and square). The study obtained 33,688

bounding boxes of lesions from the annotation of radiologists’

reports. Then, unsupervised lesion categorization was per-

formed to speculate labels of the lesions in the bounding

box. To perform unsupervised categorization, the following

three steps were iteratively performed: (i) feature extraction

using pretrained VGG16 model [30] from the lesions in the

bounding box, (ii) clustering of the features, and (iii)

fine-tuning of VGG16 based on the results of the clustering.

The study named the labels obtained from the results of clus-

tering as pseudo-category labels. The study also suggested

that the detection system was built using the Faster R-CNN

method [56], the lesions in the bounding box, and their corre-

sponding pseudo-category. The results demonstrate that detec-

tion accuracy could be significantly improved by incorporat-

ing pseudo-category labels.

Radiologists routinely produce their reports as results of

interpreting medical images. Because they summarize the

medical images as text data in the reports, it might be possible

to collect useful information about disease diagnosis effective-

ly by analyzing the radiologists’ reports. One previous study

[12] evaluated the performance of a CNN model, compared

with a traditional natural language processing model, in

extracting pulmonary embolism findings from chest CT. By

using word embedding, words in the radiological reports can

be converted to meaningful vectors [57]. For example, the

following equation holds by using vector representation with

word embedding: king –man + woman = queen. In the previ-

ous study, word embedding enabled the radiological reports to

be converted to a matrix (or image) of size 300 × 300. By

using this representation, 2D-CNN could be used to classify

the reports as pulmonary embolism or not. Their results

showed that the performance of the CNN model was equiva-

lent to or beyond that of the traditional model.

Challenges and future directions

Although the recent advancements of deep learning have been

astonishing, there still exist challenges to its application to

medical imaging.

Deep learning is considered as a black box, as it does not

leave an audit trail to explain its decisions. Researchers have

proposed several techniques in response to this problem that

give insight into what features are identified in the feature

maps, called feature visualization, and what part of an input

Fig. 14 An example of a class

activation map (CAM) [58]. A

CNN network trained on

ImageNet classified the left image

as a Bbridge pier .̂ A heatmap for

the category of Bbridge pier^,

generated by a method called

Grad-CAM [59], is superimposed

(right image), which indicates the

discriminative image regions used

by the CNN for the classification

Fig. 15 An adversarial example demonstrated by Goodfellow et al. [61].

A network classified the object in the left image as a Bpanda^ with 57.7%

confidence. By adding a very small amount of carefully constructed noise

(middle image), the network misclassified the object as a Bgibbon^ with

99.3% confidence on the right image without a visible change to a human.

Reprinted with permission from BExplaining and harnessing adversarial

examples^ by Goodfellow et al. [61]
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is responsible for the corresponding prediction, called attri-

bution. For feature visualization, Zeiler and Fergus [34] de-

scribed a way to visualize the feature maps, where the first

layers identify small local patterns, such as edges or circles,

and subsequent layers progressively combine them into

more meaningful structures. For attribution, Zhou et al. pro-

posed a way to produce coarse localization maps, called

class activation maps (CAMs), that localize the important

regions in an input used for the prediction (Fig. 14) [58,

59]. On the other hand, it is worth noting that researchers

have recently that noticed deep neural networks are vulner-

able to adversarial examples, which are carefully chosen

inputs that cause the network to change output without a

visible change to a human (Fig. 15) [60–63]. Although the

impact of adversarial examples in the medical domain is

unknown, these studies indicate that the way artificial net-

works see and predict is different from the way we do.

Research on the vulnerability of deep neural networks in

medical imaging is crucial because the clinical application

of deep learning needs extreme robustness for the eventual

use in patients, compared to relatively trivial non-medical

tasks, such as distinguishing cats or dogs.

Although there are several methods that facilitate learning

on smaller datasets as described above, well-annotated large

medical datasets are still needed since most of the notable

accomplishments of deep learning are typically based on very

large amounts of data. Unfortunately, building such datasets in

medicine is costly and demands an enormous workload by

experts, and may also possess ethical and privacy issues.

The goal of large medical datasets is the potential to enhance

generalizability and minimize overfitting, as discussed previ-

ously. In addition, dedicated medical pretrained networks can

probably be proposed once such datasets become available,

which may foster deep learning research on medical imaging,

though whether transfer learning with such networks im-

proves the performance in the medical field compared to that

with ImageNet pretrained models is not clear and remains an

area of further investigation.

Conclusion

Convolutional neural networks (CNNs) have accomplished

astonishing achievements across a variety of domains, includ-

ing medical research, and an increasing interest has emerged

in radiology. Although deep learning has become a dominant

method in a variety of complex tasks such as image classifi-

cation and object detection, it is not a panacea. Being familiar

with key concepts and advantages of CNN as well as limita-

tions of deep learning is essential in order to leverage it in

radiology research with the goal of improving radiologist per-

formance and, eventually, patient care.
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