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Abstract

Convolutional neural networks (CNN) have led to many state-of-the-art results spanning
through various fields. However, a clear and profound theoretical understanding of the
forward pass, the core algorithm of CNN, is still lacking. In parallel, within the wide field of
sparse approximation, Convolutional Sparse Coding (CSC) has gained increasing attention
in recent years. A theoretical study of this model was recently conducted, establishing it as
a reliable and stable alternative to the commonly practiced patch-based processing. Herein,
we propose a novel multi-layer model, ML-CSC, in which signals are assumed to emerge
from a cascade of CSC layers. This is shown to be tightly connected to CNN, so much so
that the forward pass of the CNN is in fact the thresholding pursuit serving the ML-CSC
model. This connection brings a fresh view to CNN, as we are able to attribute to this
architecture theoretical claims such as uniqueness of the representations throughout the
network, and their stable estimation, all guaranteed under simple local sparsity conditions.
Lastly, identifying the weaknesses in the above pursuit scheme, we propose an alternative
to the forward pass, which is connected to deconvolutional and recurrent networks, and
also has better theoretical guarantees.
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1. Introduction

Deep learning (LeCun et al., 2015), and in particular CNN (LeCun et al., 1990, 1998;
Krizhevsky et al., 2012), has gained a copious amount of attention in recent years as it
has led to many state-of-the-art results spanning through many fields – including speech
recognition (Bengio et al., 2003; Hinton et al., 2012; Mikolov et al., 2013), computer vision
(Farabet et al., 2013; Simonyan and Zisserman, 2014; He et al., 2015), signal and image
processing (Gatys et al., 2015; Ulyanov et al., 2016; Johnson et al., 2016; Dong et al., 2016),
to name a few. In the context of CNN, the forward pass is a multi-layer scheme that provides
an end-to-end mapping, from an input signal to some desired output. Each layer of this
algorithm consists of three steps. The first convolves the input with a set of learned filters,
resulting in a set of feature (or kernel) maps. These then undergo a point wise non-linear
function, in a second step, often resulting in a sparse outcome (Glorot et al., 2011). A third
(and optional) down-sampling step, termed pooling, is then applied on the result in order to
reduce its dimensions. The output of this layer is then fed into another one, thus forming
the multi-layer structure, often termed forward pass.

Despite its marvelous empirical success, a clear and profound theoretical understanding
of this scheme is still lacking. A few preliminary theoretical results were recently sug-
gested. In (Mallat, 2012; Bruna and Mallat, 2013) the Scattering Transform was proposed,
suggesting to replace the learned filters in the CNN with predefined Wavelet functions. In-
terestingly, the features obtained from this network were shown to be invariant to various
transformations such as translations and rotations. Other works have studied the properties
of deep and fully connected networks under the assumption of independent identically dis-
tributed random weights (Giryes et al., 2015; Saxe et al., 2013; Arora et al., 2014; Dauphin
et al., 2014; Choromanska et al., 2015). In particular, in (Giryes et al., 2015) deep neural
networks were proven to preserve the metric structure of the input data as it propagates
through the layers of the network. This, in turn, was shown to allow a stable recovery of
the data from the features obtained from the network.

Another prominent paradigm in data processing is the sparse representation concept,
being one of the most popular choices for a prior in the signal and image processing commu-
nities, and leading to exceptional results in various applications (Elad and Aharon, 2006;
Dong et al., 2011; Zhang and Li, 2010; Jiang et al., 2011; Mairal et al., 2014). In this
framework, one assumes that a signal can be represented as a linear combination of a few
columns (called atoms) from a matrix termed a dictionary. Put differently, the signal is
equal to a multiplication of a dictionary by a sparse vector. The task of retrieving the spars-
est representation of a signal over a dictionary is called sparse coding or pursuit. Over the
years, various algorithms were proposed to tackle this problem, among of which we mention
the thresholding algorithm (Elad, 2010) and its iterative variant (Daubechies et al., 2004).
When handling natural signals, this model has been commonly used for modeling local
patches extracted from the global data mainly due to the computational difficulties related
to the task of learning the dictionary (Elad and Aharon, 2006; Dong et al., 2011; Mairal
et al., 2014; Romano and Elad, 2015; Sulam and Elad, 2015). However, in recent years
an alternative to this patch-based processing has emerged in the form of the Convolutional
Sparse Coding (CSC) model (Bristow et al., 2013; Kong and Fowlkes, 2014; Wohlberg, 2014;
Gu et al., 2015; Heide et al., 2015; Papyan et al., 2016a,b). This circumvents the afore-

2



Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

mentioned limitations by imposing a special structure – a union of banded and Circulant
matrices – on the dictionary involved. The traditional sparse model has been extensively
studied over the past two decades (Elad, 2010; Foucart and Rauhut, 2013). More recently,
the convolutional extension was extensively analyzed in (Papyan et al., 2016a,b), shedding
light on its theoretical aspects and prospects of success.

In this work, by leveraging the recent study of CSC, we aim to provide a new perspec-
tive on CNN, leading to a clear and profound theoretical understanding of this scheme,
along with new insights. Embarking from the classic CSC, our approach builds upon the
observation that similar to the original signal, the representation vector itself also admits a
convolutional sparse representation. As such, it can be modeled as a superposition of atoms,
taken from a different convolutional dictionary. This rationale can be extended to several
layers, leading to the definition of our proposed ML-CSC model. Building on the recent
analysis of the CSC, we provide a theoretical study of this novel model and its associated
pursuits, namely the layered thresholding algorithm and the layered basis pursuit (BP).

Our analysis reveals the relation between the CNN and the ML-CSC model, showing
that the forward pass of the CNN is in fact identical to our proposed pursuit – the layered
thresholding algorithm. This connection is of significant importance since it gives a clear
mathematical meaning, objective and model to the CNN architecture, which in turn can
be accompanied by guarantees for the success of the forward pass, studied via the layered
thresholding algorithm. Specifically, we show that the forward pass is guaranteed to recover
an estimate of the underlying representations of an input signal, assuming these are sparse
in a local sense. Moreover, considering a setting where a norm-bounded noise is added
to the signal, we show that such a mild corruption in the input results in a bounded
perturbation in the output – indicating the stability of the CNN in recovering the underlying
representations. Lastly, we exploit the answers to the above questions in order to propose
an alternative to the commonly used forward pass algorithm, which is tightly connected to
both deconvolutional (Zeiler et al., 2010; Pu et al., 2016) and recurrent networks (Bengio
et al., 1994). The proposed alternative scheme is accompanied by a thorough theoretical
study. Although this and the analysis presented throughout this work focus on CNN, we
will show that they also hold for fully connected networks.

This paper is organized as follows. In Section 2 we review the basics of both the CNN and
the Sparse-Land model. We then define the proposed ML-CSC model in Section 3, together
with its corresponding deep sparse coding problem. In Section 4, we aim to solve this using
the layered thresholding algorithm, which is shown to be equivalent to the forward pass of
the CNN. Next, having established the relevance of our model to CNN, we proceed to its
analysis in Section 5. Standing on these theoretical grounds, we then propose in Section 6 a
provably improved pursuit, termed the layered BP, accompanied by its theoretical analysis.
We revisit the assumptions of our model in Section 7. First, in Section 7.1 we link the double
sparsity model to ours by assuming the dictionaries throughout the layers are sparse. Then,
in Section 7.2 we consider an idea typically employed in CNN, termed spatial-stride, showing
its benefits from a simple theoretical perspective. Combining our insights from Section 7.1
and 7.2, we move to an experimental phase by constructing a family of signals satisfying
the assumptions of our model, which are then used in order to verify our theoretical results.
Finally, in Section 9 we conclude the contributions of this paper and present several future
directions.
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(a) A convolutional matrix.

(b) A concatenation of banded and Circulant matrices.

Figure 1: The two facets of the convolutional structure.

2. Background

This section is divided into two parts: The first is dedicated to providing a simple mathemat-
ical formulation of the CNN and the forward pass, while the second reviews the Sparse-Land
model and its various extensions. Readers familiar with these two topics can skip directly
to Section 3, which moves to serve the main contribution of this work.

2.1 Deep Learning - Convolutional Neural Networks

The fundamental algorithm of deep learning is the forward pass, employed both in the
training and the inference stages. The first step of this algorithm convolves an input (one
dimensional) signal X ∈ R

N with a set of m1 learned filters of length n0, creating m1 feature
(or kernel) maps. Equally, this convolution can be written as a matrix-vector multiplication,
WT

1 X ∈ R
Nm1 , where W1 ∈ R

N×Nm1 is a matrix containing in its columns the m1 filters
with all of their shifts. This structure, also known as a convolutional matrix, is depicted in
Figure 1a. A pointwise nonlinear function is then applied on the sum of the obtained feature
mapsWT

1 X and a bias term denoted by b1 ∈ R
Nm1 . Many possible functions were proposed

over the years, the most popular one being the Rectifier Linear Unit (ReLU) (Glorot et al.,
2011; Krizhevsky et al., 2012), formally defined as ReLU(z) = max(z, 0). By cascading the
basic block of convolutions followed by a nonlinear function, Z1 = ReLU(WT

1 X + b1), a
multi-layer structure of depth K is constructed. Formally, for two layers this is given by

f(X, {Wi}2i=1, {bi}2i=1) = Z2 = ReLU

(

WT
2 ReLU

(

WT
1 X+ b1

)

+ b2

)

, (1)

where W2 ∈ R
Nm1×Nm2 is a convolutional matrix (up to a small modification discussed

below) constructed from m2 filters of length n1m1 and b2 ∈ R
Nm2 is its corresponding

bias. Although the two layers considered here can be readily extended to a much deeper
configuration, we defer this to a later stage.

By changing the order of the columns in the convolutional matrix, one can observe that
it can be equally viewed as a concatenation of banded and Circulant1 matrices, as depicted

1. We shall assume throughout this paper that boundaries are treated by a periodic continuation, which
gives rise to the cyclic structure.
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(a) An illustration of Equation (1) for a one dimensional signal X.
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(b) The evolution of an image X throughout the CNN. Notice that the number of channels
in X is equal to one and as such m0 = 1.

Figure 2: The forward pass algorithm for a one dimensional signal (a) and an image (b).

in Figure 1b. Using this observation, the above description for one dimensional signals can
be extended to images, with the exception that now every Circulant matrix is replaced by
a block Circulant with Circulant blocks one.

An illustration of the forward pass algorithm is presented in Figure 2a and 2b. In Figure
2a one can observe that W2 is not a regular convolutional matrix but a stride one, since it
shifts local filters by skipping m1 entries at a time. The reason for this becomes apparent
once we look at Figure 2b; the convolutions of the second layer are computed by shifting
the filters of W2 that are of size

√
n1 ×

√
n1 ×m1 across N places, skipping m1 indices at

a time from the
√
N ×

√
N ×m1-sized array. A matrix obeying this structure is called a

stride convolutional matrix.
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Thus far, we have presented the basic structure of CNN. However, oftentimes an ad-
ditional non-linear function, termed pooling, is employed on the resulting feature map ob-
tained from the ReLU operator. In essence, this step summarizes each wi-dimensional
spatial neighborhood from the i-th kernel map Zi by replacing it with a single value. If
the neighborhoods are non-overlapping, for example, this results in the down-sampling of
the feature map by a factor of wi. The most widely used variant of the above is the max
pooling (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014), which picks the maximal
value of each neighborhood. In (Springenberg et al., 2014) it was shown that this operator
can be replaced by a convolutional layer with increased stride without loss in performance
in several image classification tasks. Moreover, the current state-of-the-art in image recog-
nition is obtained by the residual network (He et al., 2015), which does not employ any
pooling steps (except for a single layer). As such, we defer the analysis of this operator to
a follow-up work.

In the context of classification, for example, the output of the last layer is fed into a
simple classifier that attempts to predict the label of the input signal X, denoted by h(X).
Given a set of signals {Xj}j , the task of learning the parameters of the CNN – including
the filters {Wi}Ki=1, the biases {bi}Ki=1 and the parameters of the classifier U – can be
formulated as the following minimization problem

min
{Wi}Ki=1

,{bi}Ki=1
,U

∑

j

ℓ
(

h(Xj),U, f
(

Xj , {Wi}Ki=1, {bi}Ki=1

)

)

. (2)

This optimization task seeks for the set of parameters that minimize the mean of the loss
function ℓ, representing the price incurred when classifying the signal X incorrectly. The
input for ℓ is the true label h(X) and the one estimated by employing the classifier defined
by U on the final layer of the CNN given by f

(

X, {Wi}Ki=1, {bi}Ki=1

)

. Similarly one can
tackle various other problems, e.g. regression or prediction.

In the remainder of this work we shall focus on the feature extraction process and assume
that the parameters of the CNN model are pre-trained and fixed. These, for example, could
have been obtained by minimizing the above objective via the backpropagation algorithm
and the stochastic gradient descent, as in the VGG network (Simonyan and Zisserman,
2014).

2.2 Sparse-Land

This section presents an overview of the Sparse-Land model and its many extensions. We
start with the traditional sparse representation and the core problem it aims to solve, and
then proceed to its nonnegative variant. Next, we continue to the dictionary learning task
both in the unsupervised and supervised cases. Finally, we describe the recent CSC model,
which will lead us in the next section to the proposal of the ML-CSC model. This, in turn,
will naturally connect the realm of sparsity to that of the CNN.

2.2.1 Sparse Representation

In the sparse representation model one assumes a signal X ∈ R
N can be described as a

multiplication of a matrix D ∈ R
N×M , also called a dictionary, by a sparse vector Γ ∈ R

M .
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Equally, the signal X can be seen as a linear combination of a few columns from the
dictionary D, coined atoms.

For a fixed dictionary, given a signal X, the task of recovering its sparsest representation
Γ is called sparse coding, or simply pursuit, and it attempts to solve the following problem
(Donoho and Elad, 2003; Tropp, 2004; Elad, 2010):

(P0) : min
Γ

‖Γ‖0 s.t. DΓ = X, (3)

where we have denoted by ‖Γ‖0 the number of non-zeros in Γ. The above has a convex
relaxation in the form of the Basis-Pursuit (BP) problem (Chen et al., 2001; Donoho and
Elad, 2003; Tropp, 2006), formally defined as

(P1) : min
Γ

‖Γ‖1 s.t. DΓ = X. (4)

Many questions arise from the above two defined problems. For instance, given a signal X,
is its sparsest representation unique? Assuming that such a unique solution exists, can it
be recovered using practical algorithms such as the Orthogonal Matching Pursuit (OMP)
(Chen et al., 1989; Pati et al., 1993) and the BP (Chen et al., 2001; Daubechies et al., 2004)?
The answers to these questions were shown to be positive under the assumption that the
number of non-zeros in the underlying representation is not too high and in particular less

than 1
2

(

1 + 1
µ(D)

)

(Donoho and Elad, 2003; Tropp, 2004; Donoho et al., 2006). The quantity

µ(D) is the mutual coherence of the dictionary D, being the maximal inner product of two
atoms extracted from it2. Formally, we can write

µ(D) = max
i 6=j
|dT

i dj |.

Tighter conditions, relying on sharper characterizations of the dictionary, were also sug-
gested in the literature (Candes et al., 2006; Schnass and Vandergheynst, 2007; Candes
et al., 2006; Candes and Tao, 2007). However, at this point, we shall not dwell on these.

One of the simplest approaches for tackling the P0 and P1 problems is via the hard and
soft thresholding algorithms, respectively. These operate by computing the inner products
between the signal X and all the atoms in D and then choosing the atoms corresponding
to the highest responses. This can be described as solving, for some scalar β, the following
problems:

min
Γ

1

2
‖Γ−DTX‖22 + β‖Γ‖0

for the P0, or

min
Γ

1

2
‖Γ−DTX‖22 + β‖Γ‖1, (5)

for the P1. The above are simple projection problems that admit a closed-form solution in
the form3 of Hβ(D

TX) or Sβ(DTX), where we have defined the hard thresholding operator

2. Hereafter, we assume that the atoms are normalized to a unit ℓ2 norm.
3. The curious reader may identify the relation between the notations used here and the ones in the

previous subsection, which starts to reveal the relation between CNN and sparsity-inspired models. This
connection will be made clearer as we proceed to CSC.
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Hβ(·) by

Hβ(z) =











z, z < −β
0, −β ≤ z ≤ β

z, β < z,

and the soft thresholding operator Sβ(·) by

Sβ(z) =











z + β, z < −β
0, −β ≤ z ≤ β

z − β, β < z.

Both of the above, depicted in Figure 3, nullify small entries and thus promote a sparse
solution. However, while the hard thresholding operator does not modify large coefficients
(in absolute value), the soft thresholding does, by contracting these to zero. This inherent
limitation of the soft version will appear later on in our theoretical analysis.

As for the theoretical guarantees for the success of the simple thresholding algorithms;
these depend on the properties of D and on the ratio between the minimal and maximal
coefficients in absolute value in Γ, and thus are weaker when compared to those found for
OMP and BP (Donoho and Elad, 2003; Tropp, 2004; Donoho et al., 2006). Still, under
some conditions, both algorithms are guaranteed to find the true support of Γ along with
an approximation of its true coefficients. Moreover, a better estimation of these can be
obtained by projecting the input signal onto the atoms corresponding to the found support
(indices of the non-zero entries) by solving a Least-Squares problem. This step, termed
debiasing (Elad, 2010), results in a more accurate identification of the non-zero values.

2.2.2 Nonnegative Sparse Coding

The nonnegative sparse representation model assumes a signal can be decomposed into a
multiplication of a dictionary and a nonnegative sparse vector. A natural question arising
from this is whether such a modification to the original Sparse-Land model affects its ex-
pressiveness. To address this, we hereby provide a simple reduction from the original sparse
representation to the nonnegative one.

Consider a signal X = DΓ, where the signs of the entries in Γ are unrestricted. Notice
that this can be equally written as

X = DΓP + (−D)(−ΓN ),

where we have split the vector Γ to its positive coefficients, ΓP , and its negative ones,
ΓN . Since the coefficients in ΓP and −ΓN are all positive, one can thus assume the sig-
nal X admits a non-negative sparse representation over the dictionary [D,−D] with the
vector [ΓP ,−ΓN ]T . Thus, restricting the coefficients in the sparsity inspired model to be
nonnegative does not change its expressiveness.

Similar to the original model, in the nonnegative case, one could solve the associated
pursuit problem by employing a soft thresholding algorithm. However, in this case a con-
straint must be added to the optimization problem in Equation (5), forcing the outcome to
be positive, i.e.,

min
Γ

1

2
‖Γ−DTX‖22 + β‖Γ‖1 s.t. Γ ≥ 0.
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Figure 3: The thresholding operators for a constant β = 2.

Since the above is a simple projection problem (onto the ℓ1 ball constrained to positive
entries), it admits a closed-form solution S+β (DTX), where we have defined the soft non-

negative thresholding operator S+β (·) as

S+β (z) =

{

0, z ≤ β

z − β, β < z.

Remarkably, the above function satisfies

S+β (z) = max(z − β, 0) = ReLU(z − β).

In other words, the ReLU and the soft nonnegative thresholding operator are equal, a fact
that will prove to be important later in our work. We should note that a similar conclusion
was reached in (Fawzi et al., 2015). To summarize this discussion, we depict in Figure 3
the hard, soft, and nonnegative soft thresholding operators.

2.2.3 Unsupervised and Task Driven Dictionary Learning

At first, the dictionaries employed in conjunction with the sparsity inspired model were
analytically defined matrices, such as the Wavelet and the Fourier (Daubechies et al., 1992;
Mallat and Zhang, 1993; Elad and Bruckstein, 2002; Mallat, 2008). Although the sparse
coding problem under these can be done very efficiently, over the years many have shifted
to a data driven approach – adapting the dictionary D to a set of training signals at hand
via some learning procedure. This was empirically shown to lead to sparser representations
and better overall performance, at the cost of complicating the involved pursuit, since the
dictionary was usually chosen to be redundant (having more columns than rows).
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The task of learning a dictionary for representing a set of signals {Xj}j can be formulated
as follows

min
D,{Γj}j

∑

j

‖Xj −DΓj‖22 + ξ‖Γj‖0.

The above formulation is an unsupervised learning procedure, and it was later extended to
a supervised setting. In this context, given a set of signals {Xj}j , one attempts to predict
their corresponding labels {h(Xj)}j . A common approach for tackling this is first solving
a pursuit problem for each signal Xj over a dictionary D, resulting in

Γ⋆(Xj ,D) = argmin
Γ

‖Γ‖0 s.t. DΓ = Xj ,

and then feeding these sparse representations into a simple classifier, defined by the param-
eters U. The task of learning jointly the dictionary D and the classifier U was addressed
in (Mairal et al., 2012), where the following optimization problem was proposed

min
D,U

∑

j

ℓ
(

h(Xj),U,Γ⋆(Xj ,D)
)

.

The loss function ℓ in the above objective penalizes the estimated label if it is different
from the true h(Xj), similar to what we have seen in Section 2.1. The above formulation
contains in it the unsupervised option as a special case, in which U is of no importance,
and the loss function is the representation error

∑

j ‖Xj −DΓ⋆
j‖22.

Double sparsity – first proposed in (Rubinstein et al., 2010) and later employed in (Su-
lam et al., 2016) – attempts to benefit from both the computational efficiency of analytically
defined matrices, and the adaptability of data driven dictionaries. In this model, one as-
sumes the dictionary D can be factorized into a multiplication of two matrices, D1 and D2,
where D1 is an analytic dictionary with fast implementation, and D2 is a trained sparse
one. As a result, the signal X can be represented as

X = DΓ2 = D1D2Γ2,

where Γ2 is sparse.

We propose a different interpretation for the above, which is unrelated to practical
aspects. Since both the matrix D2 and the vector Γ2 are sparse, one would expect their
multiplication Γ1 = D2Γ2 to be sparse as well. As such, the double sparsity model implicitly
assumes that the signal X can be decomposed into a multiplication of a dictionary D1 and
sparse vector Γ1, which in turn can also be decomposed similarly via Γ1 = D2Γ2.

2.2.4 Convolutional Sparse Coding Model

Due to the computational constraints entailed when deploying trained dictionaries, this
approach seems valid only for treatment of low-dimensional signals. Indeed, the sparse
representation model is traditionally used for modeling local patches extracted from a global
signal. An alternative, which was recently proposed, is the CSC model that attempts to
represent the whole signal X ∈ R

N as a multiplication of a global convolutional dictionary
D ∈ R

N×Nm and a sparse vector Γ ∈ R
Nm. Interestingly, the former is constructed by

10
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𝑚=

𝛀 ∈ ℝ𝑛× 2𝑛−1 𝑚𝐱i ∈ ℝ𝑛 𝛄i ∈ ℝ 2𝑛−1 𝑚
𝑚𝑛

Figure 4: The i-th patch xi of the global system X = DΓ, given by xi = Ωγi.

shifting a local matrix of size n×m in all possible positions, resulting in the same structure
as the one shown in Figure 1a.

In the convolutional model, the classical theoretical guarantees (we are referring to
results reported in (Chen et al., 2001; Donoho and Elad, 2003; Tropp, 2006)) for the P0

problem, defined in Equation (3), are very pessimistic. In particular, the condition for the
uniqueness of the underlying solution and the requirement for the success of the sparse

coding algorithms depend on the global number of non-zeros being less than 1
2

(

1 + 1
µ(D)

)

.

Following the Welch bound (Welch, 1974), this expression was shown in (Papyan et al.,
2016a) to be impractical, allowing the global number of non-zeros in Γ to be extremely low.

In order to provide a better theoretical understanding of this model, which exploits the
inherent structure of the convolutional dictionary, a recent work (Papyan et al., 2016a)
suggested to measure the sparsity of Γ in a localized manner. More concretely, consider
the i-th n-dimensional patch of the global system X = DΓ, given by xi = Ωγi. The stripe-
dictionary Ω, which is of size n× (2n− 1)m, is obtained by extracting the i-th patch from
the global dictionary D and discarding all the zero columns from it. The stripe vector γi

is the corresponding sparse representation of length (2n − 1)m, containing all coefficients
of atoms contributing to xi. This relation is illustrated in Figure 4. Notably, the choice
of a convolutional dictionary results in signals such that every patch of length n extracted
from them can be sparsely represented using a single shift-invariant local dictionary Ω – a
common assumption usually employed in signal and image processing.

Following the above construction, the ℓ0,∞ norm of the global sparse vector Γ is defined
to be the maximal number of non-zeros in a stripe of length (2n − 1)m extracted from it.
Formally,

‖Γ‖S0,∞ = max
i
‖γi‖0,

where the letter s emphasizes that the ℓ0,∞ norm is computed by sweeping over all stripes.
Given a signal X, finding its sparest representation Γ in the ℓ0,∞ sense is equal to the
following optimization problem:

(P0,∞) : min
Γ

‖Γ‖S0,∞ s.t. DΓ = X. (6)

11
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Intuitively, this seeks for a global vector Γ that can represent sparsely every patch in the
signal X using the dictionary Ω. The advantage of the above problem over the traditional
P0 becomes apparent as we move to consider its theoretical aspects. Assuming that the

number of non-zeros per stripe (and not globally) in Γ is less than 1
2

(

1 + 1
µ(D)

)

, in

(Papyan et al., 2016a) it was proven that the solution for the P0,∞ problem is unique.
Furthermore, classical pursuit methods, originally tackling the P0 problem, are guaranteed
to find this representation.

When modeling natural signals, due to measurement noise as well as model deviations,
one can not impose a perfect reconstruction such as X = DΓ on the signal X. Instead, one
assumes Y = X + E = DΓ + E, where E is, for example, an ℓ2-bounded error vector. To
address this, the work reported in (Papyan et al., 2016b) considered the extension of the
P0,∞ problem to the PE

0,∞ one, formally defined as

(PE

0,∞) : min
Γ

‖Γ‖S0,∞ s.t. ‖Y −DΓ‖22 ≤ E
2.

Similar to the P0,∞ problem, this was also analyzed theoretically, shedding light on the
theoretical aspects of the convolutional model in the presence of noise. In particular, a
stability claim for the PE

0,∞ problem and guarantees for the success of both the OMP and
the BP were provided. Similar to the noiseless case, these assumed that the number of
non-zeros per stripe is low.

3. From Atoms to Molecules: Multi-Layer Convolutional Sparse Model

Convolutional sparsity assumes an inherent structure for natural signals. Similarly, the
representations themselves could also be assumed to have such a structure. In what follows,
we propose a novel layered model that relies on this rationale.

The convolutional sparse model assumes a global signal X ∈ R
N can be decomposed

into a multiplication of a convolutional dictionary D1 ∈ R
N×Nm1 , composed of m1 local

filters of length n0, and a sparse vector Γ1 ∈ R
Nm1 . Herein, we extend this by proposing a

similar factorization of the vector Γ1, which can be perceived as an N -dimensional global
signal with m1 channels. In particular, we assume Γ1 = D2Γ2, where D2 ∈ R

Nm1×Nm2

is a stride convolutional dictionary (skipping m1 entries at a time) and Γ2 ∈ R
Nm2 is a

sparse representation. We denote the number of unique filters constructing D2 by m2 and
their corresponding length by n1m1. Due to the multi-layer nature of this model and the
imposed convolutional structure, we name this the ML-CSC model.

Intuitively, X = D1Γ1 assumes that the signal X is a superposition of atoms taken
from D1. While equation X = D1D2Γ2 views the signal as a superposition of more complex
entities taken from the dictionary D1D2, which we coin molecules.

While this proposal can be interpreted as a straightforward fusion between the double
sparsity model (Rubinstein et al., 2010) and the convolutional one, it is in fact substantially
different. The double sparsity model assumes that D2 is sparse, and forces only the deepest
representation Γ2 to be sparse as well. Here, on the other hand, we replace this constraint
by forcing D2 to have a stride convolution structure, putting emphasis on the sparsity of
both the representations Γ1 and Γ2. In Section 7.1 we will revisit the double sparsity work
and its ties to ours by showing the benefits of injecting the assumption on the sparsity of
D2 into our proposed model.
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𝑚1𝑛0
𝐃1 ∈ ℝ𝑁×𝑁𝑚1 𝚪1 ∈ ℝ𝑁𝑚1𝐗 ∈ ℝ𝑁

𝚪1 ∈ ℝ𝑁𝑚1
𝑛1𝑚1 𝑚2

𝐒1,𝑗𝚪1 ∈ ℝ 2𝑛0−1 𝑚1

𝐏1,𝑗𝚪1 ∈ ℝ𝑛1𝑚1

𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2 𝚪2 ∈ ℝ𝑁𝑚2

𝑚1

Figure 5: An instance X = D1Γ1 = D1D2Γ2 of the ML-CSC model. Notice that Γ1 is built
of both stripes S1,jΓ1 and patches P1,jΓ1.

Under the above construction the sparse vector Γ1 has two roles. In the context of
the system of equations X = D1Γ1, it is the convolutional sparse representation of the
signal X over the dictionary D1. As such, the vector Γ1 is composed from (2n0 − 1)m1-
dimensional stripes, S1,jΓ1, where Si,j is the operator that extracts the j-th stripe from
Γi. From another point of view, Γ1 is in itself a signal that admits a sparse representation
Γ1 = D2Γ2. Denoting by Pi,j the operator that extracts the j-th patch from Γi, the signal
Γ1 is composed of patches P1,jΓ1 of length n1m1. The above model is depicted in Figure
5, presenting both roles of Γ1 and their corresponding constituents – stripes and patches.
Clearly, the above construction can be extended to more than two layers, leading to the
following definition:
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Definition 1 For a global signal X, a set of convolutional dictionaries {Di}Ki=1, and a
vector λ, define the deep coding problem DCPλ as:

(DCPλ) : find {Γi}Ki=1 s.t. X = D1Γ1, ‖Γ1‖S0,∞ ≤ λ1

Γ1 = D2Γ2, ‖Γ2‖S0,∞ ≤ λ2

...
...

ΓK−1 = DKΓK , ‖ΓK‖S0,∞ ≤ λK ,

where the scalar λi is the i-th entry of λ.

Denoting Γ0 to be the signal X, the DCPλ can be rewritten compactly as

(DCPλ) : find {Γi}Ki=1 s.t. Γi−1 = DiΓi, ‖Γi‖S0,∞ ≤ λi, ∀1 ≤ i ≤ K.

Intuitively, given a signal X, this problem seeks for a set of representations, {Γi}Ki=1, such
that each one is locally sparse. As we shall see next, the above can be easily solved using
simple algorithms that also enjoy from theoretical justifications. Next, we extend the DCPλ

problem to a noisy regime.

Definition 2 For a global signal Y, a set of convolutional dictionaries {Di}Ki=1, and vectors
λ and E, define the deep coding problem DCPE

λ
as:

(DCPE

λ ) : find {Γi}Ki=1 s.t. ‖Y −D1Γ1‖2 ≤ E0, ‖Γ1‖S0,∞ ≤ λ1

‖Γ1 −D2Γ2‖2 ≤ E1, ‖Γ2‖S0,∞ ≤ λ2

...
...

‖ΓK−1 −DKΓK‖2 ≤ EK−1, ‖ΓK‖S0,∞ ≤ λK ,

where the scalars λi and Ei are the i-th entry of λ and E, respectively.

We now move to the task of learning the model parameters. Denote by DCP⋆
λ
(X, {Di}Ki=1)

the representation ΓK obtained by solving the DCP problem (Definition 1, i.e., noiseless)
for the signal X and the set of dictionaries {Di}Ki=1. Relying on this, we now extend the
dictionary learning problem, as presented in Section 2.2.3, to the multi-layer convolutional
sparse representation setting.

Definition 3 For a set of global signals {Xj}j, their corresponding labels {h(Xj)}j, a loss
function ℓ, and a vector λ, define the deep learning problem DLPλ as:

(DLPλ) : min
{Di}Ki=1

,U

∑

j

ℓ
(

h(Xj),U,DCP⋆
λ(Xj , {Di}Ki=1)

)

.

A clarification for the chosen name, deep learning problem, will be provided shortly. The
solution for the above results in an end-to-end mapping, from a set of input signals to their
corresponding labels. Similarly, we can define the DLPE

λ
problem. However, this is omitted

for the sake of brevity. We conclude this section by summarizing, for the convenience of the
reader, all notations used throughout this work in Table 1.
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X = Γ0 : a global signal of length N .

E, Y = Γ̂0 : a global error vector and its corresponding noisy signal, where generally
Y = X+E.

K : the number of layers.

mi : the number of local filters in Di, and also the number of channels in Γi.
Notice that m0 = 1.

n0 : the size of a local patch in X = Γ0.

ni, i ≥ 1 : the size of a local patch (not including channels) in Γi.

nimi : the size of a local patch (including channels) in Γi.

D1 : a (full) convolutional dictionary of size N ×Nm1 with filters of length n0.

Di, i ≥ 2 : a convolutional dictionary of size Nmi−1 × Nmi with filters of length
ni−1mi−1 and a stride equal to mi−1.

Γi : a sparse vector of length Nmi that is the representation of Γi−1 over the
dictionary Di, i.e. Γi−1 = DiΓi.

Si,j : an operator that extracts the j-th stripe of length (2ni−1 − 1)mi from Γi.

‖Γi‖S0,∞ : the maximal number of non-zeros in a stripe from Γi.

Pi,j : an operator that extracts the j-th nimi-dimensional patch from Γi.

‖Γi‖P0,∞ : the maximal number of non-zeros in a patch from Γi (Definition 6).

Ri,j : an operator that extracts the filter of length ni−1mi−1 from the j-th atom
in Di.

‖V‖P2,∞ : the maximal ℓ2 norm of a patch extracted from a vector V (Definition 6).

Table 1: Summary of notations used throughout the paper.

4. Layered Thresholding: The Crux of the Matter

Consider the ML-CSC model defined by the set of dictionaries {Di}Ki=1. Assume we are
given a signal

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

and our goal is to find its underlying representations, {Γi}Ki=1. Tackling this problem by
recovering all the vectors at once might be computationally and conceptually challenging;
therefore, we propose the layered thresholding algorithm that gradually computes the sparse
vectors one at a time across the different layers. Denoting by Pβ(·) a sparsifying operator
that is equal to Hβ(·) in the hard thresholding case and Sβ(·) in the soft one; we commence

by computing Γ̂1 = Pβ1
(DT

1 X), which is an approximation of Γ1. Next, by applying another

thresholding algorithm, however this time on Γ̂1, an approximation of Γ2 is obtained, Γ̂2 =
Pβ2

(DT
2 Γ̂1). This process, which is iterated until the last representation Γ̂K is acquired, is

summarized in Algorithm 1.
One might ponder as to why does the application of the thresholding algorithm on the

signal X not result in the true representation Γ1, but instead an approximation of it. As
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Algorithm 1 The layered thresholding algorithm.

Input:

X – a signal.
{Di}Ki=1 – convolutional dictionaries.
P ∈ {H,S,S+} – a thresholding operator.
{βi}Ki=1 – thresholds.

Output:

A set of representations {Γ̂i}Ki=1.

Process:

1: Γ̂0 ← X
2: for i = 1 : K do
3: Γ̂i ← Pβi

(DT
i Γ̂i−1)

4: end for

previously described in Section 2.2.1, assuming some conditions are met, the result of the
thresholding algorithm, Γ̂1, is guaranteed to have the correct support. In order to obtain
the vector Γ1 itself, one should project the signal X onto this obtained support, by solving a
Least-Squares problem. For reasons that will become clear shortly, we choose not to employ
this step in the layered thresholding algorithm. Despite this algorithm failing in recovering
the exact representations in the noiseless setting, as we shall see in Section 5, the estimated
sparse vectors and the true ones are close – indicating the stability of this simple algorithm.

Thus far, we have assumed a noiseless setting. However, the same layered thresholding
algorithm could be employed for the recovery of the representations of a noisy signal Y =
X + E, with the exception that the threshold constants, {βi}Ki=1, would be different and
proportional to the noise level.

Assuming two layers for simplicity, Algorithm 1 can be summarized in the following
equation

Γ̂2 = Pβ2

(

DT
2 Pβ1

(

DT
1 X

)

)

.

Comparing the above with Equation (1), given by

f(X, {Wi}2i=1, {bi}2i=1) = ReLU

(

WT
2 ReLU

(

WT
1 X+ b1

)

+ b2

)

,

one can notice a striking similarity between the two. Moreover, by replacing Pβ(·) with the
soft nonnegative thresholding, S+β (·), we obtain that the aforementioned pursuit and the
forward pass of the CNN are equal ! Notice that we are relying here on the discussion of
Section 2.2.2, where we have shown that the ReLU and the soft nonnegative thresholding
are equal4.

4. A slight difference does exist between the soft nonnegative layered thresholding algorithm and the forward
pass of the CNN. While in the former a constant threshold β is employed for all entries, the latter uses
a bias vector, b, that might not be constant in all of its entries. This is of little significance, however,
since a similar approach of an entry-based constant could be used in the layered thresholding algorithm
as well.
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Recall the optimization problem of the training stage of the CNN as shown in Equation
(2), given by

min
{Wi}Ki=1

,{bi}Ki=1
,U

∑

j

ℓ
(

h(Xj),U, f
(

Xj , {Wi}Ki=1, {bi}Ki=1

)

)

,

and its parallel in the ML-CSC model, the DLPλ problem, defined by

min
{Di}Ki=1

,U

∑

j

ℓ
(

h(Xj),U,DCP⋆
λ(Xj , {Di}Ki=1)

)

.

Notice the remarkable similarity between both objectives, the only difference being in the
feature vector on which the classification is done; in the CNN this is the output of the
forward pass algorithm, given by f

(

Xj , {Wi}Ki=1, {bi}Ki=1

)

, while in the sparsity case this is
the result of the DCPλ problem. In light of the discussion above, the solution for the DCPλ

problem can be approximated using the layered thresholding algorithm, which is in turn
equal to the forward pass of the CNN. We can therefore conclude that the problems solved
by the training stage of the CNN and the DLPλ are tightly connected, and in fact are equal
once the solution for the DLPλ is approximated via the layered thresholding algorithm
(hence the name DLPλ).

5. Theoretical Study

Thus far, we have defined the ML-CSC model and its corresponding pursuits – the DCPλ

and DCPE

λ
problems. We have proposed a method to tackle them, coined the layered thresh-

olding algorithm, which was shown to be equivalent to the forward pass of the CNN. Relying
on this, we conclude that the proposed ML-CSC is the global Bayesian model implicitly
imposed on the signal X when deploying the forward pass algorithm. Put differently, the
ML-CSC answers the question of who are the signals belonging to the model behind the
CNN. Having established the importance of our model, we now proceed to its theoretical
analysis.

We should emphasize that the following study does not assume any specific form on the
network’s parameters, apart from a broad coherence property (as will be shown hereafter).
This is in contrast to the work of (Bruna and Mallat, 2013) that assumes that the filters
are Wavelets, or the analysis in (Giryes et al., 2015) that considers random weights.

5.1 Uniqueness of the DCPλ Problem

Consider a signal X admitting a multi-layer convolutional sparse representation defined by
the sets {Di}Ki=1 and {λi}Ki=1. Can another set of sparse vectors represent the signal X?
In other words, can we guarantee that, under some conditions, the set {Γi}Ki=1 is a unique
solution to the DCPλ problem? In the following theorem we provide an answer to this
question.
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Theorem 4 (Uniqueness via the mutual coherence): Consider a signal X satisfying the
DCPλ model,

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

where {Di}Ki=1 is a set of convolutional dictionaries and {µ(Di)}Ki=1 are their corresponding
mutual coherences. If

∀ 1 ≤ i ≤ K ‖Γi‖S0,∞ <
1

2

(

1 +
1

µ(Di)

)

,

then the set {Γi}Ki=1 is the unique solution to the DCPλ problem, assuming that the thresh-
olds {λi}Ki=1 are chosen to satisfy

∀ 1 ≤ i ≤ K ‖Γi‖S0,∞ ≤ λi <
1

2

(

1 +
1

µ(Di)

)

.

The proof for the above theorem is given in Appendix A. In what follows, we present its
importance in the context of CNN. Assume a signalX is fed into a network, resulting in a set
of activation values across the different layers. These, in the realm of sparsity, correspond
to the set of sparse representations {Γi}Ki=1, which according to the above theorem are in
fact unique representations of the signal X.

One might ponder at this point whether there exists an algorithm for obtaining the
unique solution guaranteed in this subsection for the DCPλ problem. As previously men-
tioned, the layered thresholding algorithm is incapable of finding the exact representations,
{Γi}Ki=1, due to the lack of a Least-Squares step after each layer. One should not despair,
however, as we shall see in a following section an alternative algorithm, which manages to
overcome this hurdle.

5.2 Global Stability of the DCPE

λ
Problem

Consider an instance signal X belonging to the ML-CSC model, defined by the sets {Di}Ki=1

and {λi}Ki=1. AssumeX is contaminated by a noise vector E, generating the perturbed signal
Y = X + E. Suppose we solve the DCPE

λ
problem and obtain a set of solutions {Γ̂i}Ki=1.

How close is every solution in this set, Γ̂i, to its corresponding true representation, Γi? In
what follows, we provide a theorem addressing this question of stability, the proof of which
is deferred to Appendix B.

Theorem 5 (Stability of the solution to the DCPE

λ
problem): Suppose a signal X that has

a decomposition

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK
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is contaminated with noise E, resulting in Y = X+E. Assume we solve the DCPE

λ
problem

for E0 = ‖E‖2 and Ei = 0 ∀1 ≤ i ≤ K, obtaining a set of solutions {Γ̂i}Ki=1. If for all
1 ≤ i ≤ K

‖Γi‖S0,∞ ≤ λi <
1

2

(

1 +
1

µ(Di)

)

,

then

‖Γi − Γ̂i‖22 ≤ 4‖E‖22
i

∏

j=1

1

1− (2λj − 1)µ(Dj)
.

Intuitively, the above claims that as long as all the feature vectors {Γi}Ki=1 are ℓ0,∞-
sparse, then the representations obtained by solving the DCPE

λ
problem must be close to

the true ones. Interestingly, the obtained bound increases as a function of the depth of the
layer.

Is this necessarily the true behavior of a deep network? Perhaps the answer to this
resides in the choice we made above of considering the noise as adversary. A similar, yet
somewhat more involved, analysis with a random noise assumption should be done, with
the hope to see a better controlled noise propagation in this system. We leave this for our
future work.

Another important remark is that the above bounds the absolute error between the
estimated and the true representation. In practice, however, the relative error is of more
importance. This is measured in terms of the signal to noise ratio (SNR), which we shall
define in Section 8.

Having established the stability of the DCPE

λ
problem, we now turn to the stability of

the algorithms attempting to solve it, the chief one being the forward pass of CNN.

5.3 Stability of the Layered Hard Thresholding

Consider a signal X that admits a multi-layer convolutional sparse representation, which
is defined by the sets {Di}Ki=1 and {λi}Ki=1. Assume we run the layered hard thresholding
algorithm on X, obtaining the sparse vectors {Γ̂i}Ki=1. Under certain conditions, can we
guarantee that the estimate Γ̂i recovers the true support of Γi? or that the norm of the
difference between the two is bounded? Assume X is contaminated with a noise vector
E, resulting in the measurement Y = X + E. Assume further that this signal is then fed
to the layered thresholding algorithm, resulting in another set of representations. How do
the answers to the above questions change? To tackle these, we commence by presenting a
stability claim for the simple hard thresholding algorithm, relying on the ℓ0,∞ norm. We
should note that the analysis conducted in this subsection is for the noisy scenario, and the
results for the noiseless case are simply obtained by setting the noise level to zero.

Next, we present a localized ℓ2 and ℓ0 measure of a global vector that will prove to be
useful in the following analysis.

Definition 6 Define the ‖ · ‖P2,∞ and ‖ · ‖P0,∞ norm of Γi to be

‖Γi‖P2,∞ = max
j
‖Pi,jΓi‖2
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and
‖Γi‖P0,∞ = max

j
‖Pi,jΓi‖0,

respectively. The operator Pi,j extracts the j-th patch of length nimi from the i-th sparse
vector Γi.

In the above definition, the letter p emphasizes that the norms are computed by sweeping
over all patches, rather than stripes. Recall that we have defined m0 = 1, since the number
of channels in the input signal X = Γ0 is equal to one.

Given Y = X + E = D1Γ1 + E, the first stage of the layered hard thresholding algo-
rithm attempts to recover the representation Γ1. Intuitively, assuming that the underlying
representation Γ1 is ℓ0,∞-sparse, and that the energy of the noise E is ℓ2,∞-bounded; we
would expect that the simple hard thresholding algorithm would succeed in recovering a
solution Γ̂1, which is both close to Γ1 and has its support. We now present such a claim,
the proof of which is found in Appendix C.

Lemma 7 (Stable recovery of hard thresholding in the presence of noise): Suppose a clean
signal X has a convolutional sparse representation D1Γ1, and that it is contaminated with
noise E to create the signal Y = X + E, such that ‖E‖P2,∞ ≤ ǫ0. Denote by |Γmin

1 | and
|Γmax

1 | the lowest and highest entries in absolute value in Γ1, respectively. Denote further by
Γ̂1 the solution obtained by running the hard thresholding algorithm on Y with a constant
β1, i.e. Γ̂1 = Hβ1

(DT
1 Y). Assuming that

a) ‖Γ1‖S0,∞ < 1
2

(

1 + 1
µ(D1)

|Γmin

1
|

|Γmax

1
|

)

− 1
µ(D1)

ǫ0
|Γmax

1
| ; and

b) The threshold β1 is chosen according to Equation (14) (see below),

then the following must hold:

1. The support of the solution Γ̂1 is equal to that of Γ1; and

2. ‖Γ1 − Γ̂1‖P2,∞ ≤
√

‖Γ1‖P0,∞
(

ǫ0 + µ(D1)
(

‖Γ1‖S0,∞ − 1
)

|Γmax

1 |
)

.

Notice that by plugging ǫ0 = 0 the above theorem covers the noiseless scenario. Notably,
even in such a case, we obtain a deviation from the true representation due to the lack of
a Least-Squares step.

We suspect that, both in the noiseless and the noisy case, the obtained bound might
be improved, based on the following observation. Given an ℓ2,∞-norm bounded noise, the
above proof first quantifies the deviation between the true representation and the estimated
one in terms of the ℓ∞ norm, and only then translates the latter into the ℓ2,∞ sense. A
direct analysis going from an ℓ2,∞ input error to an ℓ2,∞ output deviation (bypassing the
ℓ∞ norm) might lead to smaller deviations. We leave this for future work.

We now proceed to the next layer. Given Γ̂1, which can be considered as a perturbed
version of Γ1, the second stage of the layered hard thresholding algorithm attempts to
recover the representation Γ2. Using the stability of the first layer – guaranteeing that Γ1

and Γ̂1 are close in terms of the ℓ2,∞ norm – and relying on the ℓ0,∞-sparsity of Γ2, we
show next that the second stage of the layered hard thresholding algorithm is stable as
well. Applying the same rationale to all the remaining layers, we obtain the theorem below
guaranteeing the stability of the complete layered hard thresholding algorithm.
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Theorem 8 (Stability of layered hard thresholding in the presence of noise): Suppose a
clean signal X has a decomposition

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

and that it is contaminated with noise E to create the signal Y = X+E, such that ‖E‖P2,∞ ≤
ǫ0. Denote by |Γmin

i | and |Γmax

i | the lowest and highest entries in absolute value in the vector
Γi, respectively. Let {Γ̂i}Ki=1 be the set of solutions obtained by running the layered hard
thresholding algorithm with thresholds {βi}Ki=1, i.e. Γ̂i = Hβi

(DT
i Γ̂i−1) where Γ̂0 = Y.

Assuming that ∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ < 1
2

(

1 + 1
µ(Di)

|Γmin

i |
|Γmax

i |

)

− 1
µ(Di)

ǫi−1

|Γmax

i | ; and

b) The threshold βi is chosen according to Equation (19),

then5

1. The support of the solution Γ̂i is equal to that of Γi; and

2. ‖Γi − Γ̂i‖P2,∞ ≤ ǫi,

where ǫi =
√

‖Γi‖P0,∞
(

ǫi−1 + µ(Di)
(

‖Γi‖S0,∞ − 1
)

|Γmax

i |
)

.

The proof for the above is given in Appendix D. We now turn to an analogous theorem
for the forward pass of the CNN, prior to discussing the surprising implications of these
theorems.

5.4 Stability of the Forward Pass (Layered Soft Thresholding)

In light of the discussion in Section 4, the equivalence between the layered thresholding
algorithm and the forward pass of the CNN is achieved assuming that the operator em-
ployed is the nonnegative soft thresholding S+β (·). However, thus far, we have analyzed
the closely related hard version Hβ(·) instead. In what follows, we show how the stability
theorem presented in the previous subsection can be modified to the soft version, Sβ(·). For
simplicity, and in order to stay in line with the vast sparse representation theory, herein we
choose not to assume the nonnegative assumption. This implies that we are proposing a
slightly different CNN architecture in which the ReLU function is two sided (Kavukcuoglu
et al., 2010). We now move to the stable recovery of the soft thresholding algorithm.

5. Recall that ‖Γi‖
P

2,∞ is defined to be the maximal ℓ2 norm of a patch extract from Γi. The size of this
patch is defined according to the dictionary Di+1. However, the last sparse vector ΓK does not have a
corresponding dictionary DK+1. As such, the size of a patch in ΓK can be chosen arbitrarily. Where

the choice of the size directly affects the bound on the difference, ǫi, due to the term
√

‖Γi‖P

0,∞.
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Lemma 9 (Stable recovery of soft thresholding in the presence of noise): Suppose a clean
signal X has a convolutional sparse representation D1Γ1, and that it is contaminated with
noise E to create the signal Y = X + E, such that ‖E‖P2,∞ ≤ ǫ0. Denote by |Γmin

1 | and
|Γmax

1 | the lowest and highest entries in absolute value in Γ1, respectively. Denote further
by Γ̂1 the solution obtained by running the soft thresholding algorithm on Y with a constant
β1, i.e. Γ̂1 = Sβ1

(DT
1 Y). Assuming that

a) ‖Γ1‖S0,∞ < 1
2

(

1 + 1
µ(D1)

|Γmin

1
|

|Γmax

1
|

)

− 1
µ(D1)

ǫ0
|Γmax

1
| ; and

b) The threshold β1 is chosen according to Equation (14),

then the following must hold:

1. The support of the solution Γ̂1 is equal to that of Γ1; and

2. ‖Γ1 − Γ̂1‖P2,∞ ≤
√

‖Γ1‖P0,∞
(

ǫ0 + µ(D1)
(

‖Γ1‖S0,∞ − 1
)

|Γmax

1 |+ β1

)

.

Armed with the above lemma, which is proven in Appendix E, we now proceed to the
stability of the forward pass of the CNN.

Theorem 10 (Stability of the forward pass (layered soft thresholding algorithm) in the
presence of noise): Suppose a clean signal X has a decomposition

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

and that it is contaminated with noise E to create the signal Y = X+E, such that ‖E‖P2,∞ ≤
ǫ0. Denote by |Γmin

i | and |Γmax

i | the lowest and highest entries in absolute value in the
vector Γi, respectively. Let {Γ̂i}Ki=1 be the set of solutions obtained by running the layered
soft thresholding algorithm with thresholds {βi}Ki=1, i.e. Γ̂i = Sβi

(DT
i Γ̂i−1) where Γ̂0 = Y.

Assuming that ∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ < 1
2

(

1 + 1
µ(Di)

|Γmin

i |
|Γmax

i |

)

− 1
µ(Di)

ǫi−1

|Γmax

i | ; and

b) The threshold βi is chosen according to Equation (19) (with the ǫi defined below),

then

1. The support of the solution Γ̂i is equal to that of Γi; and

2. ‖Γi − Γ̂i‖P2,∞ ≤ ǫi,

where ǫi =
√

‖Γi‖P0,∞
(

ǫi−1 + µ(Di)
(

‖Γi‖S0,∞ − 1
)

|Γmax

i |+ βi

)

.
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The proof for the above is omitted since it is tantamount to that of Theorem 8. As
one can see, the layered soft thresholding algorithm is in fact inferior to its hard variant
due to the added constant of βi in the local error level, ǫi. This results in a more strict
assumption on the ℓ0,∞ norm of the various representations and also augments the bound
on the distance between the true sparse vector and the one recovered. Following this
observation, a natural question arises; why does the deep learning community employ the
ReLU, which corresponds to a soft nonnegative thresholding operator instead of another
nonlinearity that is more similar to its hard counterpart? One possible explanation could
be that the filter training stage of the CNN becomes harder when the ReLU is replaced
with a non-convex alternative, which also has discontinuities, such as the hard thresholding
operator.

The above theorem guarantees that the distances between the original representations
and the ones obtained from the CNN are bounded. Even if we set ǫ0 = 0, the recovered
activations deviate from the true ones, simply because the layered thresholding algorithm
does not do a perfect job, even on a noiseless signal. When the signal is noisy, these
deviations are strengthened, but still in a controlled way.

This, by itself, might not be surprising. After all, the CNN is a deterministic system of
linear operations (convolutions), followed by simple non-linearities that are non-expanding.
If we feed a slightly perturbed signal to such a system, it is clear that the activations all
along the network will be perturbed as well with a bounded effect. However, the above
theorem shows far more than that. There are, in fact, two types of stabilities, the trivial
one that considers the sensitivity of the whole feed-forward network to perturbations in its
input, and the more intricate one that shows that this system enables a rather accurate
recovery of the generating representations. The second option is the stability we prove
here.

5.5 Guarantees for Fully Connected Networks

One should note that the convolutional structure imposed on the dictionaries in our model
could be removed, and the theoretical guarantees we have provided above would still hold.
The reason being is that the unconstrained dictionary can be regarded as a convolutional
one, constructed from a single shift of a local matrix with no circular boundary. In the
context of CNN, this is analogous to a fully connected layer. As such, the theoretical
analysis provided here sheds light on both convolutional and fully connected networks. A
different point of view on the same matter can also be proposed; fully connected layers can
be viewed as convolutional ones with filters that cover their entire input (Long et al., 2015).

5.6 Worst-Case Analysis

The proposed analysis takes a worst-case point of view, where the noise is adversary (rather
than random), the number of nonzeros in each stripe is maximal and the characteristics
of the dictionaries are simple. Specifically, the success and stability guarantees are given
in terms of the mutual coherences of the dictionaries. In classic sparse theory it is known
that this measure is pessimistic. Still, it is widely used in proving guarantees for sparse
representations, perhaps because it is simple and intuitive to grasp.
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Sharper bounds, relying on stronger characterizations of the dictionary, result in signif-
icantly harder analysis. One example for a different characterization is that of the average
mutual coherence – defined to be the average correlation in absolute value between two
distinct atoms taken from the dictionary (instead of the highest correlation, as measured by
the original mutual coherence). From a theoretical point of view, this measure was shown
to lead to better theoretical guarantees in classic sparse theory (Bajwa et al., 2012). In ad-
dition, from a practical point of view, it was proven beneficial penalizing over this quantity
in compressed sensing applications (Elad, 2007).

Our analysis did not rely on the average mutual coherence, but rather on the maximal
coherence. Still, the two are closely related, and following the discussion above we believe
that this might predict better the performance of CNN in practice. Interestingly, the work
of (Shang, 2015) measured the average mutual coherences of the different layers in the “all-
conv” network, which was trained on the ImageNet dataset (Springenberg et al., 2014). The
authors found that most layers have a low average mutual coherence.

6. Layered Basis Pursuit

The stability analysis presented above unveils two significant limitations of the forward
pass of the CNN. First, this algorithm is incapable of recovering the unique solution for the
DCPλ problem, the existence of which is guaranteed from Theorem 4. This acts against
our expectations, since in the traditional sparsity inspired model it is a well known fact that
such a unique representation can be retrieved, assuming certain conditions are met.

The second issue is with the condition for the successful recovery of the true support.
The ℓ0,∞ norm of the true solution, Γi, is required to be less than an expression that
depends on the term |Γmin

i |/|Γmax
i |. The dependence on this ratio is a direct consequence of

the forward pass algorithm relying on the simple thresholding operator that is known for
having such a theoretical limitation6. However, alternative pursuits whose success would
not depend on this ratio could be proposed, as indeed was done in the Sparse-Land model;
resulting in both theoretical and practical benefits.

A solution for the first problem, already presented throughout this work, is a two-stage
approach. First, run the thresholding operator in order to recover the correct support. Then,
once the atoms are chosen, their corresponding coefficients can be obtained by solving a
linear system of equations. In addition to retrieving the true representation in the noiseless
case, this step can also be beneficial in the noisy scenario, resulting in a solution closer to
the underlying one. However, since no such step exists in current CNN architectures, we
refrain from further analyzing its theoretical implications.

Next, we present an alternative to the layered soft thresholding algorithm, which will
tackle both of the aforementioned problems. Recall that the result of the soft thresholding
is a simple approximation of the solution for the P1 problem, previously defined in Equation
(4). In every layer, instead of applying a simple thresholding operator that estimates the
sparse vector by computing Γ̂i = Sβi

(DT
i Γ̂i−1); we propose to tackle the full pursuit, i.e. to

6. The dependence on the ratio is also a direct consequence of assuming a worst-case analysis. Perhaps in
reality this ratio does not play such a critical role.
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minimize

Γ̂i = argmin
Γi

‖Γi‖1 s.t. Γ̂i−1 = DiΓi. (7)

Notice that one could readily obtain the nonnegative sparse coding problem by simply
adding an extra constraint in the above equation, forcing the coefficients in Γi to be non-
negative. More generally, Equation (7) can be written in its Lagrangian formulation

Γ̂i = argmin
Γi

ξi‖Γi‖1 +
1

2
‖DiΓi − Γ̂i−1‖22, (8)

where the constant ξi is proportional to the noise level and should tend to zero in the
noiseless scenario. We name the above the layered basis pursuit (BP) algorithm. In practice,
one possible method for solving it is the iterative soft thresholding (IST). Formally, this
obtains the minimizer of Equation (8) by repeating the following recursive formula

Γ̂t
i = Sξi/ci

(

Γ̂t−1
i +

1

ci
DT

i

(

Γ̂i−1 −DiΓ̂
t−1
i

)

)

, (9)

where Γ̂t
i is the estimate of Γi at iteration t. The above can be interpreted as a simple

projected gradient descent algorithm, where the constant ci is inversely proportional to
its step size. As a result, if ci is chosen to be large enough7, the above algorithm is
guaranteed to converge to its global minimum that is the solution of (8), as was shown in
(Daubechies et al., 2004). The method obtained by gradually computing the set of sparse
representations, {Γi}Ki=1, via the IST is summarized in Algorithm 2 and named layered
iterative soft thresholding. Notice that this algorithm coincides with the simple layered soft
thresholding if it is run for a single iteration with ci = 1 and initialized with Γ̂0

i = 0. This
implies that the above algorithm is a natural extension to the forward pass of the CNN.
Moreover, the above is similar to the approach taken in the work of deconvolutional networks
(Zeiler et al., 2010), where the authors suggested to solve a sequence of BP problems across
different layers of abstraction.

With respect to the computational aspects of the IST algorithm, the work of (Gregor
and LeCun, 2010) proposed the LISTA method, showing how the number of iterations
required by the IST to convergence can be reduced using neural networks. Later, (Giryes
et al., 2016) proved the theoretical justification for this algorithm, and (Sprechmann et al.,
2015) extended LISTA to other sparse and low-rank problems. Analogously, the work of
(Xin et al., 2016) presented a generalization for the iterative hard thresholding (IHT), which
was shown to be both theoretically and empirically superior to the original IHT.

The original motivation for the layered IST was its theoretical superiority over the
forward pass algorithm – one that will be explored in detail in the next subsection. Yet
more can be said about this algorithm and the CNN architecture it induces. In (Gregor and
LeCun, 2010) it was shown that the IST algorithm can be formulated as a simple recurrent
neural network. As such, the same can be said regarding the layered IST algorithm proposed
here, with the exception that the induced recurrent network is much deeper. The reader can

7. The constant ci should satisfy ci > 0.5λmax

(

D
T
i Di

)

, where λmax

(

D
T
i Di

)

is the maximal eigenvalue of

the gram matrix D
T
i Di (Combettes and Wajs, 2005).
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Algorithm 2 The layered iterative soft thresholding algorithm.

Input:

X – a signal.
{Di}Ki=1 – convolutional dictionaries.
P ∈ {S,S+} – a soft thresholding operator.
{ξi}Ki=1 – Lagrangian parameters.
{1/ci}Ki=1 – step sizes.
{Ti}Ki=1 – number of iterations.

Output:

A set of representations {Γ̂i}Ki=1.

Process:

1: Γ̂0 ← X
2: for i = 1 : K do
3: Γ̂0

i ← 0
4: for t = 1 : Ti do

5: Γ̂t
i ← Pξi/ci

(

Γ̂t−1
i + 1

ci
DT

i

(

Γ̂i−1 −DiΓ̂
t−1
i

))

6: end for
7: Γ̂i ← Γ̂Ti

i

8: end for

therefore interpret this part of the work as a theoretical study of a special case of recurrent
neural networks.

From another perspective, the underlying architecture of the layered IST algorithm is
a cascade of K blocks. Each of these corresponds to a fixed number of unfolded iterations,
Ti, of a single IST algorithm. These unfolded iterations attempt to estimate better the
representation after the initial thresholding operator. Practically, this can be implemented
using several convolutional layers with shared weights, as well as skip connections in order
to compute the residual, Γ̂i−1−DiΓ̂

t−1
i , as defined in Equation (9). Interestingly, the above

description is reminiscent of residual networks (He et al., 2015), which have recently led to
state-of-the-art results in image recognition. The authors of (Greff et al., 2016) propose a
similar viewpoint of residual networks, based on unrolled iterative estimation. Similar to
the above discussion, they claim that a group of successive layers iteratively refine estimates
of the same features instead of computing an entirely new representation.

Since the submission of our work, the authors of (Sun et al., 2017) suggested an algorithm
similar to the layered IST, showing promising results for the task of image recognition when
compared to other conventional architectures.

6.1 Noiseless Case: Success of Layered BP Algorithm

In Section 5.1, we established the uniqueness of the solution for the DCPλ problem, as-
suming that certain conditions on the ℓ0,∞ norm of the underlying representations are met.
However, as we have seen in the theoretical analysis of the previous section, the forward
pass of the CNN is incapable of finding this unique solution; instead, it is guaranteed to
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be close to it in terms of the ℓ2,∞ norm. Herein, we address the question of whether the
layered BP algorithm can prevail in a task where the forward pass did not.

Theorem 11 (Layered BP recovery guarantee using the ℓ0,∞ norm): Consider a signal X,

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

where {Di}Ki=1 is a set of convolutional dictionaries and {µ(Di)}Ki=1 are their corresponding
mutual coherences. Assuming that ∀ 1 ≤ i ≤ K

‖Γi‖S0,∞ <
1

2

(

1 +
1

µ(Di)

)

then the layered BP algorithm is guaranteed to recover the set {Γi}Ki=1.

The proof for the above can be directly derived from the recovery condition of the
BP using the ℓ0,∞ norm, as presented in (Papyan et al., 2016a). The implications of this
theorem are that the layered BP algorithm can indeed recover the unique solution to the
DCPλ problem.

6.2 Noisy Case: Stability of Layered BP Algorithm

Having established the guarantee for the success of the layered BP algorithm, we now
move to its stability analysis. In particular, in a noisy scenario where obtaining the true
underlying representations is impossible, does this algorithm remain stable? If so, how
do its guarantees compare to those of the layered thresholding algorithm? The following
theorem, which we prove in Appendix F, aims to answer these questions.

Theorem 12 (Stability of the layered BP algorithm in the presence of noise): Suppose a
clean signal X has a decomposition

X = D1Γ1

Γ1 = D2Γ2

...

ΓK−1 = DKΓK ,

and that it is contaminated with noise E to create the signal Y = X+E, such that ‖E‖P2,∞ ≤
ǫ0. Let {Γ̂i}Ki=1 be the set of solutions obtained by running the layered BP algorithm with
parameters {ξi}Ki=1. Assuming that ∀ 1 ≤ i ≤ K

a) ‖Γi‖S0,∞ ≤ 1
3

(

1 + 1
µ(Di)

)

; and

b) ξi = 4ǫi−1,
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then

1. The support of the solution Γ̂i is contained in that of Γi;

2. ‖Γi − Γ̂i‖P2,∞ ≤ ǫi;

3. In particular, every entry of Γi greater in absolute value than ǫi
√

‖Γi‖P0,∞

is guaranteed

to be recovered; and

4. The solution Γ̂i is the unique minimizer of the Lagrangian BP problem (Equation (8)),

where ǫi = ‖E‖P2,∞ 7.5i
∏i

j=1

√

‖Γj‖P0,∞.

Several remarks are due at this point. The condition for the stability of the layered
thresholding algorithm, given by

‖Γi‖S0,∞ <
1

2

(

1 +
1

µ(Di)

|Γmin
i |
|Γmax

i |

)

− 1

µ(Di)

ǫi−1

|Γmax
i | ,

is expected to be more strict than that of the theorem presented above, which is

‖Γi‖S0,∞ <
1

3

(

1 +
1

µ(Di)

)

.

In the case of the layered BP algorithm, the bound on the ℓ0,∞ norm of the underlying
sparse vectors does no longer depend on the ratio |Γmin

i |/|Γmax
i | – a term present in all

the theoretical results of the thresholding algorithm. Moreover, the ℓ0,∞ norm becomes
independent of the local noise level of the previous layers, thus allowing more non-zeros per
stripe.

In addition, similar to the stability analysis presented in Section 5.2, the above shows the
growth (as a function of the depth) of the distance between the recovered representations
and the true ones.

7. A Closer Look at the Proposed Model

In this section, we revisit the assumptions of our model by imposing additional constraints
on the dictionaries involved and showing their theoretical benefits. These additional as-
sumptions originate from the current common practice of both CNN and sparsity.

7.1 When a Patch Becomes a Stripe

Throughout the analysis presented in this work, we have assumed that the representations
in the different layers, {Γi}Ki=1, are ℓ0,∞-sparse. Herein, we study the propagation of the ℓ0,∞
norm throughout the layers of the network, showing how an assumption on the sparsity of
the deepest representation ΓK reflects on that of the remaining layers. The exact connection
between the sparsities will be given in terms of a simple characterization of the dictionaries
{Di}Ki=1.
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Consider the representation ΓK−1, given by

ΓK−1 = DKΓK ,

where ΓK is ℓ0,∞-sparse. Following Figure 4, the i-th patch in ΓK−1 can be expressed as

PK−1,iΓK−1 = ΩK γK,i,

where ΩK is the stripe-dictionary of DK , the vector PK−1,iΓK−1 is the i-th patch in ΓK−1

and γK,i is its corresponding stripe. Recalling the definition of the ‖ · ‖P0,∞ norm (Definition
6 in Section 5.3), we have that

‖ΓK−1‖P0,∞ = max
i
‖ΩK γK,i‖0.

Consider the following definition.

Definition 13 Define the induced ℓ0 pseudo-norm of a dictionary D, denoted by ‖D‖0, to
be the maximal number of non-zeros in any of its atoms8.

The multiplication ΩK γK,i can be seen as a linear combination of at most ‖γK,i‖0 atoms,
each contributing no more than ‖ΩK‖0 non-zeros. As such

‖ΓK−1‖P0,∞ ≤ max
i
‖ΩK‖0 ‖γK,i‖0.

Noticing that ‖ΩK‖0 = ‖DK‖0 (as can be seen in Figure 4), and using the definition of the
‖ · ‖S0,∞ norm, we conclude that

‖ΓK−1‖P0,∞ ≤ ‖DK‖0 ‖ΓK‖S0,∞. (10)

In other words, given ‖ΓK‖S0,∞ and ‖DK‖0, we can bound the maximal number of non-zeros
in a patch from ΓK−1.

The claims in Section 5 and 6 are given in terms of not only ‖ΓK−1‖P0,∞, but also
‖ΓK−1‖S0,∞. According to Table 1, the length of a patch in ΓK−1 is nK−1mK−1, while the
size of a stripe is (2nK−2 − 1)mK−1. As such, we can fit (2nK−2 − 1)/nK−1 patches in a
stripe. Assume for simplicity that this ratio is equal to one. As a result, we obtain that a
patch in the signal ΓK−1 extracted from the system

ΓK−1 = DKΓK ,

is also a stripe in the representation ΓK−1 when considering

ΓK−2 = DK−1ΓK−1,

hence the name of this subsection. Leveraging this assumption, we return to Equation (10)
and obtain that

‖ΓK−1‖S0,∞ = ‖ΓK−1‖P0,∞ ≤ ‖DK‖0 ‖ΓK‖S0,∞.

8. According to the definition of the induced norm ‖D‖0 = maxv ‖Dv‖0 s.t. ‖v‖0 = 1. Since ‖v‖0 = 1,
the multiplication Dv is simply equal to one of the atoms in D times a scalar, and ‖Dv‖0 counts the
number of non-zeros in this atom. As a result, ‖D‖0 is equal to the maximal number of non-zeros in any
atom from D.
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Using the same rationale for the remaining layers, and assuming that once again the patches
become stripes, we conclude that

‖Γi‖S0,∞ = ‖Γi‖P0,∞ ≤ ‖ΓK‖S0,∞
K
∏

j=i+1

‖Dj‖0. (11)

We note that our assumption here of having sparse dictionaries is reasonable, since at the
training stage of the CNN an ℓ1 penalty is often imposed on the filters as a regularization,
promoting their sparsity. The conclusion thus is that the ℓ0,∞ norm is expected to decrease
as a function of the depth of the representation. This aligns with the intuition that the
higher the depth, the more abstraction one obtains in the filters, and thus the less non-zeros
are required to represent the data. Taking this to the extreme, if every input signal could
be represented via a single coefficient at the deepest layer, we would obtain that its ℓ0,∞
norm is equal to one.

7.2 On the Role of the Spatial-Stride

A common step among practitioners of CNN (Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2014; He et al., 2015) is to convolve the input to each layer with a set of filters, skipping
a fixed number of spatial locations in a regular pattern. One of the primary motivations
for this is to reduce the dimensions of the kernel maps throughout the layers, leading to
computational benefits. In this subsection we unveil some theoretical benefits of this
common practice, which we coin spatial-stride.

Following Figure 5, recall that Di is a stride convolutional dictionary that skips mi−1

shifts at a time, which correspond to the number of channels in Γi−1. Translating the
spatial-stride to our language, the above mentioned works do not consider all spatial shifts
of the filters in Di. Instead, a stride of mi−1si−1 is employed, where mi−1 corresponds
to the channel-stride, while si−1 is due to the spatial-stride. The addition of the latter
implies that instead of assuming that the i-th sparse vector satisfies Γi−1 = DiΓi, we have
that Qi−1Γi−1 = DiQ

T
i QiΓi. We denote QT

i ∈ R
Nmi×Nmi/si−1 as a columns’ selection

operator that chooses the atoms from Di that align with the spatial-stride. The coefficients
corresponding to these atoms are extracted from Γi (resulting in its subsampled version) via
the Qi matrix. In light of the above discussion, we modify the DCPλ problem, as defined
in Definition 1, into the following

find {Γi}Ki=1 s.t. X = D1Q
T
1 Q1Γ1, ‖Q1Γ1‖S0,∞ ≤ λ1

Q1Γ1 = D2Q
T
2 Q2Γ2, ‖Q2Γ2‖S0,∞ ≤ λ2

...
...

QK−1ΓK−1 = DKQT
KQKΓK , ‖QKΓK‖S0,∞ ≤ λK .

Note that while the original ‖Γi‖S0,∞ is equal to the maximal number of non-zeros in a stripe
of length (2ni−1 − 1)mi in Γi, the term ‖QiΓi‖S0,∞ counts the same quantity but for stripes
of length (2 ⌈ni−1/si−1⌉ − 1)mi in QiΓi.

According to the study in Section 5 and 6, the theoretical advantage of the spatial-stride
is twofold. First, consider the mutual coherence of the stride convolutional dictionary Di.
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Due to the locality of the filters and their restriction to certain spatial shifts, the mutual
coherence of DiQ

T
i is expected to be lower than that of Di, thus leading to more non-zeros

allowed per stripe. Second, the length of a stripe in QiΓi is equal to (2 ⌈ni−1/si−1⌉− 1)mi,
while that of Γi is (2ni−1− 1)mi. As such, our analysis allows a larger number of non-zeros
per a smaller-sized stripe. From another perspective, notice that imposing a spatial-stride
on the dictionary Di is equivalent to forcing a portion of the entries in Γi to be zero. As
such, the spatial-stride encourages sparser solutions.

8. Experiments: The Generator Behind the CNN

Consider the following question: can we synthesize signals obeying the ML-CSC model?
Throughout this work we have posited that the answer to this question is positive; we have
assumed the existence of a set of signals X, which satisfy ∀i Γi = Di+1Γi+1 where {Γi}Ki=1

are all ℓ0,∞ bounded. However, a natural question arises as to whether we can give a simple
example of set of dictionaries {Di}Ki=1 and their corresponding signals X that indeed satisfy
our model assumptions.

A näıve attempt would be to choose an arbitrary set of dictionaries, {Di}Ki=1, and a
random deepest representation, ΓK , and compute the remaining sparse vectors (and the
signal itself) using the set of relations Γi = Di+1Γi+1. However, without further restrictions,
this would lead to a set of representations {Γi}Ki=1 with growing ℓ0,∞ norm as we propagate
towards Γ0. A somewhat better approach would be to impose sparsity on the dictionaries
involved, as suggested in Section 7.1, thus leading to sparser representations. However,
besides the obvious drawback of forcing a limiting structure on the dictionaries, as can be
seen in Equation (11), in the worst case this would also lead to growth in the density of the
representations, even if it is more controlled. The spatial-stride – at first glance unrelated
to this discussion – is another solution that addresses the same problem. In particular, in
Section 7.2 this idea was shown to encourage sparser vectors by forcing zeros in a regular
pattern in the set of representations {Γi}Ki=1.

In this section we combine the above notions in order to achieve our goal – generate a set
of signals that will satisfy the ML-CSC assumptions. These will then serve as a playground
for several experiments, which will compare both theoretically and practically the different
pursuits presented in this paper.

8.1 Designing the Dictionaries

We commence by describing the design of the dictionaries, and in the next subsection
continue to the actual generation of the signals. In our experiments, the signal is one
dimensional and therefore m0 = 1. Moreover, for simplicity, the dictionary in every layer
contains a single atom with its shifts and thus mi = 1 ∀1 ≤ i ≤ K. We should note that
the choice of a single atom simplifies the involved pursuit problem, but as we will see, even
in such a case the suggested layered pursuits (including the forward pass) may fail. This is
because the mutual coherence and the amount of non-zeros are still non-trivial.

In the first layer we choose this filter to be the analytically defined discrete Meyer
Wavelet of length n0 = 29. In order to obtain sparser representations and improve the
coherence of the global dictionary D1, we employ a stride of s0 = 6, resulting in µ(D1) =
2.44 × 10−4. As a consequence of our choice of D1, the signals resulting from our model
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are a superposition of shifted versions of discrete Meyer Wavelets, multiplied by different
coefficients.

Recall that in the context of the layered thresholding algorithm, our theoretical study
has shown that the stability of the pursuit depends on the ratio |Γmin

i |/|Γmax
i |. As such, in

addition to requiring µ(Di) to be small, we would also like the ratio |Γmin
i |/|Γmax

i | to be as
close as possible to one. Since the sparse vectors satisfy Γi = Di+1Γi+1 ∀1 ≤ i ≤ K−1, one
can control this ratio by forcing the entries in the dictionaries {Di}Ki=2 to be9 discrete10.
Following this observation, and motivated by the benefits of a sparse dictionary, we generate
a filter of length 20 with 7 non-zero entries belonging to the set {−8,−7, ..., 7, 8} (these are
the entries before the atom is normalized to a unit ℓ2 norm). In practice, this is done by
sampling random vectors satisfying these constraints and choosing one resulting in a good
mutual coherence. For simplicity, all {Di}Ki=2 are created from the very same local atom,
i.e. ni = 20 ∀1 ≤ i ≤ K − 1. Moreover, in all the dictionaries this atom is shifted by a
stride of si = 6, leading to µ(Di) = 4.33 × 10−3. Note that in the above description the
specific number of layers K was purposely omitted, as this number will vary in the following
experiments.

8.2 Noiseless Experiments

We now move to the task of sampling a signal when the number of layers is K = 3. First,
we draw a random Γ3 of length 100 with an ℓ0 norm in the range [20, 66] and set each non-
zero coefficient in it to ±1, with equal probability. Given the dictionaries and the sampled
sparse vector Γ3, we then compute the representations Γ2, Γ1 and the signal X, which are
of length 600, 3, 600 and N = 21, 600, respectively. The obtained sparse vectors satisfy
‖Γ1‖S0,∞ = 8, 5 ≤ ‖Γ2‖S0,∞ ≤ 6 and 3 ≤ ‖Γ3‖S0,∞ ≤ 7.

Given the signals, we attempt to retrieve their underlying representations using the
layered pursuits presented in this work. Recall that our analysis in Section 5 and 6 indicates
that the layered hard thresholding is superior to its soft counterpart, which is equivalent
to the forward pass, and that the layered BP is even better than both of these algorithms.
We now turn to asserting this claim empirically. While doing so, we aim to study the
gap between the theoretical guarantees presented throughout our paper and the empirical
performance obtained in practice.

For every signal X (termed realization below), we employ the layered hard thresholding
algorithm. The thresholds are set to be the ones presented in Theorem 8, since the ℓ0,∞
norms of the representations of each X satisfy the assumptions of this theorem. Given the
estimated sparse vectors {Γ̂i}3i=1, we then compute the errors ‖Γ̂i − Γi‖P2,∞ and compare
these to the theoretical bounds. While doing so, we also verify that the correct support
is indeed retrieved, as our theorem guarantees. Next, the same process is repeated for the

9. Note that we do not force the entries in D1 to be discrete since X = D1Γ1 and the ratio of the entries
in X is of no significance to the success of the layered thresholding algorithms.

10. In our experiments, the non-zero entries in the deepest representation ΓK are chosen to be ±1. As
such, the sparse vector ΓK−1 = DKΓK is a superposition of filters (or their negative) taken from the
dictionary DK . If the entries in DK are non-discrete then the summation of two filters can result in
extremely small values in ΓK−1, which in turn would lead to a very small |Γmin

K−1| and a bad ratio. On
the other hand, if the atoms are chosen to be discrete, this would not happen since the entries would
simply cancel each other.
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layered soft thresholding algorithm, with the exception that the thresholds and the bound
on the distance are computed according to Theorem 10. We note that the assumptions of
this hold as well for every signal X. The results for both algorithms are depicted in Figure

6 in terms of the local signal to noise ratio (SNR), defined as 20 log 10
(

‖Γi‖
P
2,∞

‖Γ̂i−Γi‖P2,∞

)

. Due to

the locality of the analysis, we choose to deviate from the classical definition of the (global)

SNR, given by 20 log 10
(

‖Γi‖2
‖Γ̂i−Γi‖2

)

.

Several remarks are due here. First and foremost, the theoretical bounds indeed hold,
since the blue points are above their corresponding green ones and the correct supports are
always recovered. Second, our analysis predicts that the distance between the estimated
sparse representation, Γ̂i, and the true ones, Γi, should increase with the layer. This is
evident by the decrease in the values of the green points with the layers. The empirical
results presented here (blue dots) corroborate this prognosis, as the error in both algorithms
is lowest in the first layer and highest in the last11. Third, our analysis suggests that the
layered hard thresholding algorithm should be superior to its soft counterpart. Once again,
this can be deduced from the figure by comparing the values of the green points in both of
the algorithms. The empirical results presented in Figure 6 confirm this behavior, as can
be clearly seen by comparing the errors (blue points) obtained by both algorithms in the
i-th layer. One should note that the performance gap exhibited here is due to the constant
βi being subtracted from every entry in the soft thresholding algorithm.

The implications of the above discussion might be troubling in the context of CNN, as
what this experiment shows is a deterioration of the empirical SNR throughout the layers
of the network. Is this truly the behavior of CNN? Recall that in practice the biases of the
different layers (thresholds) are learned in order to achieve the best possible performance in
solving a certain task. As such, it might be possible that the decline in SNR presented here
is alleviated when better thresholds are employed in lieu of the theoretical ones used thus
far. We demonstrate this by running the layered soft thresholding algorithm with an oracle
parameter, chosen to be the minimal threshold that leads to ‖Γi‖0 non-zeros being chosen
in the estimated sparse representation Γ̂i. The results for this are presented in Figure 6
and colored in red. Indeed, we observe that this better choice of parameters improves
the empirical performance of the layered soft thresholding algorithm and leads to a slower
decline in SNR. Still, the performance of the layered soft thresholding is inferior to that of
its hard variant12, as can be seen by comparing the red points with the blue ones in the
subplots below.

Next, we proceed our experiments by running the layered BP algorithm, as defined in
Section 6, on the same set of signals. Recall that one of the prime motivations for proposing
this algorithm was its ability to retrieve the exact underlying representations, as justified
theoretically in Theorem 11. In our experiments, we validate this claim by checking that its
conditions hold for each signal and that the underlying representations are indeed retrieved.
We omit showing a plot for this and comparing it to the layered thresholding algorithms
since the errors obtained are simply zeros.

11. Interestingly, the error in the layered hard thresholding algorithm is approximately equal in the second
and third layers.

12. Note that in the layered hard thresholding, as long as the correct support is chosen, the threshold does
not affect the error and as such the oracle version for it is meaningless.
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Figure 6: Comparison between the performance of the layered thresholding algorithms in a
noiseless setting. All the signals presented here satisfy the assumptions of Theorem 8 and
10 and indeed the correct support of all the representations are recovered. The horizontal
axis plots the realization number, while the vertical axis shows the SNR (the higher the
better). Blue: layered thresholding algorithm with the theoretically justifiable thresholds.
Green: the theoretical bound on the error. Red: layered soft thresholding algorithm with
oracle thresholds. Note that the points are sorted according to the theoretical bound.
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8.3 Noisy Experiments

Having established the stability of our proposed algorithms in a perfect scenario, where
ǫ0 = 0, we now turn to a noisy setting. Naturally, the estimation task becomes now
even more challenging – not only does the SNR drop with each layer, as demonstrated
previously, but also the input SNR is no longer infinity. In order to facilitate the success of
our algorithms, in this section we demonstrate the empirical performance and theoretical
bounds on K = 2 layers and a small noise level.

Similar to the previous subsection, we begin by sampling a signal X. To this end, we
draw a random Γ2 of length 100 where 20 ≤ ‖Γ2‖0 ≤ 66. Each non-zero coefficient in it is
then set to ±1, with equal probability. Given the dictionaries and the sampled sparse vector
Γ2, we then compute the representation Γ1 and the signal X, which are of length 600 and
3, 600, respectively. The ℓ0,∞ norm of the obtained sparse vectors satisfies 7 ≤ ‖Γ1‖S0,∞ ≤ 8
and 3 ≤ ‖Γ2‖S0,∞ ≤ 7.

Next, we contaminate each signal X with a zero-mean white additive Gaussian noise E,
creating a signal Y = X + E. The average SNR of the obtained noisy signals is 68.53 dB.
These are then fed into the layered pursuits, resulting in a set of estimated sparse repre-
sentations, Γ̂i. We note that the ℓ0,∞ norms of the representations of each X satisfy the
assumptions of Theorem 8, 10 and 12. As such, the parameters for every algorithm are
chosen according to our theoretical study. For each estimated representation we compute
the error ‖Γ̂i − Γi‖P2,∞ and its corresponding theoretical bound obtained from the afore-
mentioned theorems. Since the underlying representations satisfy the assumptions of the
stability theorem for the layered thresholding algorithms, for each signal we verify that
indeed the correct support is found. As for the layered BP, our stability analysis guarantees
that the support retrieved should be contained in the true one and coefficients that are large
enough in Γi should be retrieved. In practice, the layered BP always finds the full support.

We present the obtained results in terms of the local SNR in Figure 7, showing the sta-
bility of the different algorithms that is in accordance with our theoretical bounds. Similar
to the noiseless experiment, we observe that for all the algorithms the error increases both
theoretically (green points) and empirically (blue points) with the layer depth. As previ-
ously discussed, a performance gap exists between the soft and hard layered thresholding
algorithms. To mitigate this, we run the layered soft thresholding with an oracle parameter
and compare the obtained errors (red points) to those of the other algorithms. The results,
depicted in the same figure, show a clear improvement in the performance.

Interestingly, although theoretically superior, the layered BP leads to similar perfor-
mance to that of the layered soft thresholding and worse performance than that of the lay-
ered hard thresholding (when comparing the blue points). We attribute this phenomenon
to the suboptimal choice of the parameter ξi, which was chosen thus far according to our
theoretical analysis. To validate this suspicion, we run the layered BP with hand-picked ξi
and plot the obtained SNR in red in Figure 7. Not only are the correct supports retrieved
for all the signals, but we can also see a clear improvement in terms of the SNR. In the first
layer, the layered BP outperforms the layered soft thresholding and leads to similar results
to those of the layered hard thresholding, while in the second, the layered BP significantly
outperforms both of the other pursuit algorithms.
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Figure 7: Comparison between the performance of the layered pursuit algorithms in a noisy
setting. All the signals presented here satisfy the assumptions of Theorem 8, 10 and 12
and the correct support of all the representations are indeed recovered. The horizontal axis
plots the realization number, while the vertical axis shows the SNR (the higher the better).
Blue: layered pursuits with the theoretically justifiable thresholds. Green: the theoretical
bound on the error. Red: layered soft thresholding with oracle thresholds and layered BP
with hand-picked parameters. Note that the points are sorted according to the theoretical
bound.
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Thus far, our experiments focused on a setting where the ratio of the coefficients in Γi

is reasonable. One should note, however, that the superiority of the layered BP becomes
conspicuous once this ratio is spoiled. In this case, the layered thresholding algorithms
will fail, while the layered BP will still succeed. To illustrate this, we create a signal using
the dictionaries delineated in subsection 8.1, where the number of layers is K = 5. We
first draw a random Γ5 of length 100 where its ℓ0 norm is in the range 20 ≤ ‖Γ5‖0 ≤ 66,
and then set the non-zero coefficients in Γ5, similar to how it was done in the previous
experiments. Given the dictionaries and the sampled sparse vector Γ5, we compute the
representation {Γi}4i=1 and the signal X, which is of length N = 777, 600. The ℓ0,∞ norms
of the obtained sparse vectors are ‖Γ1‖S0,∞ = 8, ‖Γ2‖S0,∞ = 6, ‖Γ3‖S0,∞ = 6, ‖Γ4‖S0,∞ = 6
and 4 ≤ ‖Γ5‖S0,∞ ≤ 7. Besides the depth of the network, the main difference between this
experiment and the previous ones is the coefficient ratio. While the ratio of the deepest
representation Γ5 is equal to 1, due to the coefficients in it being equal to ±1, the ratio of
Γ1 is equal to 2.44× 10−4. As a consequence, the theoretical results we have presented for
the layered thresholding algorithms do not hold, while those of the layered BP still do.

Next, each signal X is contaminated with a zero-mean white additive Gaussian noise
E, resulting in a noisy signal Y = X + E. The average SNR of the noisy signals obtained
is 124.43 dB. Note that this is a weak noise, chosen due to the deterioration of the SNR
throughout the layers (one that is worsened when the theoretical parameters are employed).
The signals are then fed into the layered BP algorithm, resulting in a set of estimated sparse
representations, Γ̂i. The parameters ξi employed are the theoretically justified ones, ξi =
4ǫi−1. We should note that in our experiments we attempted to run the layered thresholding
algorithms, however, as our theory predicts these failed in recovering the correct supports.

Given the estimated representations, we compute the errors ‖Γ̂i − Γi‖P2,∞ and compare
these to their corresponding theoretical bounds, obtained from Theorem 12. In addition, we
verify that the retrieved supports are contained in the true one, as the theorem guarantees.
In practice, we obtain that the layered BP always finds the full support. The obtained results
are depicted in Figure 8 in terms of the local SNR. For comparison, we run the layered BP
with hand-picked ξi and present the obtained results in the same figure. We conclude
that the layered BP remains stable despite the poor coefficient ratio, unlike the layered
thresholding algorithms. Moreover, tuning the ξi results in a much better performance,
similar to what we have seen in the previous experiment.

At this point, one might ponder as to whether the hurdle of poor coefficient ratio is
one that the layered soft thresholding (forward pass) can not overcome. We believe that
several ideas currently used in CNN, such as Batch Normalization (Ioffe and Szegedy, 2015)
or Local Response Normalization (Krizhevsky et al., 2012), are tightly connected to this
problem. However, their exact relation to this issue and its theoretical analysis is a matter
of future work.

9. Conclusion

Definition: “A guiding question is the fundamental query that directs the search for un-
derstanding” (Traver, 1998). In this work our guiding question was who are the signals
that the CNN architecture is designed for? To answer this we have defined the ML-CSC
model, for which the thresholding pursuit is nothing but the forward pass of the CNN.
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Figure 8: The performance of the layered BP algorithm in a noisy setting. All the signals
presented here satisfy the assumptions of Theorem 12 and the correct support of all the
representations are recovered. The horizontal axis plots the realization number, while the
vertical axis shows the SNR (the higher the better). Blue: layered BP with the theoretically
justifiable thresholds. Green: the theoretical bound on the error. Red: layered BP with
hand-picked parameters. Note that the points are sorted according to the theoretical bound.

Although nothing promises that the forward pass will lead to the original representation of
a signal emerging from the ML-CSC model, we have shown this is indeed the case. Having
established the relevance of our model to CNN, we then turned to its theoretical analysis.
In particular, we provided guarantees for the uniqueness of the feature maps CNN aims to
recover, and the stability of the problem CNN aims to solve.

Inspired by the evolution of the pursuit methods in the theory of Sparse-Land, we
continued our work by proposing the layered BP algorithm. In the noiseless case, this was
theoretically shown to be capable of finding the unique solution of the deep coding problem,
the existence of which has been also guaranteed; while in the noisy setting, we have proved
the stability of this algorithm.

We analyzed the theoretical benefits of two popular ideas employed in the CNN com-
munity, namely the use of sparse filters and the spatial-stride. Leveraging those, we then
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generated signals satisfying the ML-CSC assumptions and demonstrated the performance
of the pursuits presented throughout this work.

We conclude this work by presenting our ongoing research directions:

1. Through this paper we have assumed the worst – an adversary noise. Can our theo-
retical analysis be extended to a setting where the noise is random?

2. Thus far in tackling the deep coding problem, we have restricted ourself to existing
methods, such as the forward pass of the CNN or deconvolutional networks (Zeiler
et al., 2010). Can we suggest better approximations for the solution of this problem?

3. What is the role of common tricks currently employed in CNN in the context of
the ML-CSC model? These include but are not limited to, Batch Normalization
(Ioffe and Szegedy, 2015), Local Response Normalization (Krizhevsky et al., 2012),
Dropout (Srivastava et al., 2014) and Pooling (LeCun et al., 1990; Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014).
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Appendix A.
Uniqueness via the Mutual Coherence (Proof of Theorem 4)

Proof In (Papyan et al., 2016a) a solution Γ to the P0,∞ problem, as defined in Equation

(6), was shown to be unique assuming that ‖Γ‖S0,∞ < 1
2

(

1 + 1
µ(D)

)

. In other words, if the

true representation is sparse enough in the ℓ0,∞ sense, no other solution is possible. Herein,
we leverage this claim in order to prove the uniqueness of the DCPλ problem.

Let {Γ̂i}Ki=1 be a set of representations of the signal X, obtained by solving the DCPλ

problem. According to our assumptions, ‖Γ1‖S0,∞ < 1
2

(

1 + 1
µ(D1)

)

. Moreover, since the set

{Γ̂i}Ki=1 is a solution of the DCPλ problem, we also have that ‖Γ̂1‖S0,∞ ≤ λ1 <
1
2

(

1 + 1
µ(D1)

)

.

As such, in light of the aforementioned uniqueness theorem, both representations are equal.
Once we have concluded that Γ1 = Γ̂1, we would also like to show that the representa-

tions Γ2 and Γ̂2 are identical. Similarly, the assumptions ‖Γ2‖S0,∞ < 1
2

(

1 + 1
µ(Di)

)

and

‖Γ̂2‖S0,∞ ≤ λ2 < 1
2

(

1 + 1
µ(D2)

)

guarantee that Γ2 = Γ̂2. The same set of steps can be

applied for all 1 ≤ i ≤ K, leading to the fact that both sets of representations are identical.
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Appendix B.
Global Stability of the DCPE

λ
Problem (Proof of Theorem 5)

Proof In (Papyan et al., 2016b), for a signal Y = X+E = D1Γ1 +E, it was shown that
if the following hold:

1. ‖Γ1‖S0,∞ ≤ λ1 <
1
2

(

1 + 1
µ(D1)

)

and ‖E‖2 = ‖Y −D1Γ1‖2,

2. ‖Γ̂1‖S0,∞ ≤ λ1 <
1
2

(

1 + 1
µ(D1)

)

and ‖Y −D1Γ̂1‖2 ≤ ‖E‖2,

then

‖Γ1 − Γ̂1‖22 ≤
4‖E‖22

1− (2λ1 − 1)µ(D1)
.

In item 2 we have used the fact that the solution for the DCPE

λ
problem, Γ̂1, must satisfy

‖Y−D1Γ̂1‖2 ≤ ‖E‖2 and ‖Γ̂1‖S0,∞ ≤ λ1. Notice that the true solution satisfies Γ1 = D2Γ2

and also the solution of DCPE

λ
satisfies Γ̂1 = D2Γ̂2. As such,

‖D2Γ2 −D2Γ̂2‖22 = ‖Γ1 − Γ̂1‖22 ≤
4‖E‖22

1− (2λ1 − 1)µ(D1)
. (12)

Using the definition of SRIP from (Papyan et al., 2016b) and the fact that

‖Γ2 − Γ̂2‖S0,∞ ≤ 2λ2

we have

(1− δ2λ2
) ‖Γ2 − Γ̂2‖22 ≤ ‖D2Γ2 −D2Γ̂2‖22,

where δ2λ2
is the SRIP constant of D2 for an ℓ0,∞ norm equal to 2λ2. Bounding the SRIP

using the mutual coherence, as was done in (Papyan et al., 2016b), the above results in

(1− (2λ2 − 1)µ(D2)) ‖Γ2 − Γ̂2‖22 ≤ (1− δ2λ2
) ‖Γ2 − Γ̂2‖22

≤‖D2Γ2 −D2Γ̂2‖22.

Combining this together with Equation (12), we obtain

‖Γ2 − Γ̂2‖22 ≤
4‖E‖22

(1− (2λ1 − 1)µ(D1)) (1− (2λ2 − 1)µ(D2))
.

Repeating the above set of steps for the deeper layers, we conclude that

∀ 1 ≤ i ≤ K ‖Γi − Γ̂i‖22 ≤ 4‖E‖22
i

∏

j=1

1

1− (2λj − 1)µ(Dj)
,

as claimed.
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Appendix C.
Stable Recovery of Hard Thresholding in the Presence of Noise (Proof of
Lemma 7)

Proof Denote by T1 the support of Γ1. Denote further the i-th atom from D1 by d1,i.
The success of the hard thresholding algorithm with threshold β1 in recovering the correct
support is guaranteed if the following holds

min
i∈T1

∣

∣dT
1,iY

∣

∣ > β1 > max
j /∈T1

∣

∣dT
1,jY

∣

∣ .

Using the same set of steps as those used in proving Theorem 4 in (Papyan et al., 2016b),
we can lower bound the left-hand-side by

min
i∈T1

∣

∣dT
1,iY

∣

∣ ≥ |Γmin
1 | − (‖Γ1‖S0,∞ − 1)µ(D1)|Γmax

1 | − ǫ0

and upper bound the right-hand-side via

‖Γ1‖S0,∞µ(D1)|Γmax
1 |+ ǫ0 ≥ max

j /∈T1

∣

∣dT
1,jY

∣

∣ .

Next, by requiring

min
i∈T1

∣

∣dT
1,iY

∣

∣ ≥|Γmin
1 | − (‖Γ1‖S0,∞ − 1)µ(D1)|Γmax

1 | − ǫ0 (13)

> β1

>‖Γ1‖S0,∞µ(D1)|Γmax
1 |+ ǫ0

≥max
j /∈T1

∣

∣dT
1,jY

∣

∣ ,

we ensure the success of the thresholding algorithm. This condition can be equally written
as

‖Γ1‖S0,∞ <
1

2

(

1 +
1

µ(D1)

|Γmin
1 |
|Γmax

1 |

)

− 1

µ(D1)

ǫ0
|Γmax

1 | .

Equation (13) also implies that the threshold β1 that should be employed must satisfy

|Γmin
1 | − (‖Γ1‖S0,∞ − 1)µ(D1)|Γmax

1 | − ǫ0 > β1 > ‖Γ1‖S0,∞µ(D1)|Γmax
1 |+ ǫ0. (14)

Thus far, we have considered the successful recovery of the support of Γ1. Next, assum-
ing this correct support was recovered, we shall dwell on the deviation of the thresholding
result, Γ̂1, from the true Γ1. Denote by Γ1,T1 and Γ̂1,T1 the vectors Γ1 and Γ̂1 restricted to
the support T1, respectively. We have that

‖Γ1 − Γ̂1‖∞ = ‖Γ1,T1 − Γ̂1,T1‖∞
=

∥

∥

∥

(

DT
1,T1D1,T1

)−1
DT

1,T1X−DT
1,T1Y

∥

∥

∥

∞

=
∥

∥

∥

(

(

DT
1,T1D1,T1

)−1
DT

1,T1 −DT
1,T1

)

X−DT
1,T1(Y −X)

∥

∥

∥

∞
,
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where the Gram DT
1,T1

D1,T1 is invertible according to Lemma 1 in (Papyan et al., 2016a).
Using the triangle inequality of the ℓ∞ norm and the relation X = D1,T1Γ1,T1 , we obtain

‖Γ1 − Γ̂1‖∞ ≤
∥

∥

∥

(

(

DT
1,T1D1,T1

)−1
DT

1,T1 −DT
1,T1

)

D1,T1Γ1,T1

∥

∥

∥

∞
+
∥

∥

∥
DT

1,T1(Y −X)
∥

∥

∥

∞

=
∥

∥

(

I−DT
1,T1D1,T1

)

Γ1,T1

∥

∥

∞
+

∥

∥DT
1,T1(Y −X)

∥

∥

∞
,

where I is an identity matrix. Relying on the definition of the induced ℓ∞ norm, the above
is equal to

‖Γ1 − Γ̂1‖∞ ≤
∥

∥I−DT
1,T1D1,T1

∥

∥

∞
· ‖Γ1,T1‖∞ +

∥

∥DT
1,T1(Y −X)

∥

∥

∞
. (15)

In what follows, we shall upper bound both of the expressions in the right hand side of the
inequality.

Beginning with the first term in the above inequality,
∥

∥

∥
I−DT

1,T1
D1,T1

∥

∥

∥

∞
, recall that the

induced infinity norm of a matrix is equal to its maximum absolute row sum. The diagonal
entries of I − DT

1,T1
D1,T1 are equal to zero, due to the normalization of the atoms, while

the off diagonal entries can be bounded by relying on the locality of the atoms and the
definition of the ℓ0,∞ norm. As such, each row has at most ‖Γ1‖S0,∞ − 1 non-zeros, where
each is bounded by µ(D1) based on the definition of the mutual coherence. We conclude
that the maximum absolute row sum can be bounded by

‖DT
1,T1D1,T1 − I‖∞ ≤ (‖Γ1‖S0,∞ − 1)µ(D1). (16)

Next, moving to the second expression, define R1,i ∈ R
n0×N to be the operator that extracts

a filter of length n0 from d1,i. Consequently, the operator RT
1,i pads a local filter of length

n0 with zeros, resulting in a global atom of length N . Notice that, due to the locality of
the atoms RT

1,iR1,id1,i = d1,i. Using this together with the Cauchy-Schwarz inequality, the
normalization of the atoms, and the local bound on the error ‖Y −X‖P2,∞ ≤ ǫ0, we have
that

∥

∥DT
1,T1(Y −X)

∥

∥

∞
= max

i∈T1

∣

∣dT
1,i(Y −X)

∣

∣ (17)

= max
i∈T1

∣

∣

∣
(R1,id1,i)

T R1,i(Y −X)
∣

∣

∣

≤ max
i∈T1

‖R1,id1,i‖2 · ‖R1,i(Y −X)‖2

≤ 1 · ‖Y −X‖P2,∞
≤ ǫ0.

In the second to last inequality we have used Definition 6, denoting the maximal ℓ2 norm
of a patch extracted from Y −X by ‖Y −X‖P2,∞. Plugging (16) and (17) into Equation
(15), and using the fact that ‖Γ1,T1‖∞ = |Γmax

1 |, we obtain that

‖Γ1 − Γ̂1‖∞ ≤ (‖Γ1‖S0,∞ − 1)µ(D1)|Γmax
1 |+ ǫ0. (18)

In the remainder of this proof we will localize the above bound into one that is posed in
terms of patch-errors. Note that ‖Γ1 − Γ̂1‖P2,∞ is equal to the maximal energy of an n1m1-
dimensional patch taken from it, where the i-th patch can be extracted using the operator

42



Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

P1,i. Relying on this and the relation ‖V‖2 ≤
√

‖V‖0 ‖V‖∞, we have that

‖Γ1 − Γ̂1‖P2,∞ = max
i

∥

∥

∥
P1,i

(

Γ1 − Γ̂1

)
∥

∥

∥

2

≤ max
i

√

∥

∥

∥
P1,i

(

Γ1 − Γ̂1

)
∥

∥

∥

0

∥

∥

∥
P1,i

(

Γ1 − Γ̂1

)
∥

∥

∥

∞
.

Recalling that, based on Definition 6, ‖Γ1 − Γ̂1‖P0,∞ denotes the maximal number of non-
zeros in a patch of length n1m1 extracted from this vector, we obtain that

‖Γ1 − Γ̂1‖P2,∞ ≤
√

‖Γ1 − Γ̂1‖P0,∞ ‖Γ1 − Γ̂1‖∞

≤
√

‖Γ1‖P0,∞ ‖Γ1 − Γ̂1‖∞.

In the last inequality we have used the success of the first stage in recovering the correct
support, resulting in ‖Γ1 − Γ̂1‖P0,∞ ≤ ‖Γ1‖P0,∞. Plugging inequality (18) into the above
equation, we conclude that

‖Γ1 − Γ̂1‖P2,∞ ≤
√

‖Γ1‖P0,∞
(

ǫ0 + µ(D1)
(

‖Γ1‖S0,∞ − 1
)

|Γmax
1 |

)

,

as claimed.

Appendix D.
Stability of the Layered Hard Thresholding in the Presence of Noise
(Proof of Theorem 8)

Proof The stability of the first stage of the layered hard thresholding algorithm is obtained
from Lemma 7. Denoting by ∆1 = Γ̂1 − Γ1, notice that Γ̂1 = Γ1 +∆1 = D2Γ2 +∆1. In
other words, Γ1 is a signal that admits a convolutional sparse representation D2Γ2, which
is contaminated with noise ∆1, resulting in Γ̂1. Next, we would like to employ Lemma 7
for the signal Γ̂1 = Γ1 +∆1 = D2Γ2 +∆1, with the local noise level

‖∆1‖P2,∞ ≤
√

‖Γ1‖P0,∞
(

ǫ0 + µ(D1)
(

‖Γ1‖S0,∞ − 1
)

|Γmax
1 |

)

= ǫ1,

to obtain the stability of the second stage. To this end, we require its conditions to hold;
in particular, the ℓ0,∞ norm of Γ2 to obey

‖Γ2‖S0,∞ <
1

2

(

1 +
1

µ(D2)

|Γmin
2 |
|Γmax

2 |

)

− 1

µ(D2)

ǫ1
|Γmax

2 | ,

and the threshold β2 to satisfy

|Γmin
2 | − (‖Γ2‖S0,∞ − 1)µ(D2)|Γmax

2 | − ǫ1 > β2 > ‖Γ2‖S0,∞µ(D2)|Γmax
2 |+ ǫ1.

Assuming the above hold, Lemma 7 guarantees that the support of Γ̂2 is equal to that of
Γ2, and also that

‖Γ2 − Γ̂2‖P2,∞ ≤
√

‖Γ2‖P0,∞
(

ǫ1 + µ(D2)
(

‖Γ2‖S0,∞ − 1
)

|Γmax
2 |

)

= ǫ2.
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Using the same steps as above, we obtain the desired claim for all the remaining layers,
assuming that

‖Γi‖S0,∞ <
1

2

(

1 +
1

µ(Di)

|Γmin
i |
|Γmax

i |

)

− 1

µ(Di)

ǫi−1

|Γmax
i |

and that the thresholds βi are chosen to satisfy

|Γmin
i | − (‖Γi‖S0,∞ − 1)µ(Di)|Γmax

i | − ǫi−1 > βi > ‖Γi‖S0,∞µ(Di)|Γmax
i |+ ǫi−1. (19)

This completes our proof.

Appendix E.
Stable Recovery of Soft Thresholding in the Presence of Noise (Proof of
Lemma 9)

Proof The success of the soft thresholding algorithm with threshold β1 in recovering the
correct support is guaranteed if the following holds

min
i∈T1

∣

∣dT
1,iY

∣

∣ > β1 > max
j /∈T1

∣

∣dT
1,jY

∣

∣ .

Since the soft thresholding operator chooses all atoms with correlations greater than β1,
the above implies that the true support T1 will be chosen. This condition is equal to that
of the hard thresholding algorithm, and thus using the same steps as in Lemma 7, we are
guaranteed that the correct support will be chosen under Assumptions (a) and (b).

The difference between the hard thresholding algorithm and its soft counterpart becomes
apparent once we consider the estimated sparse vector. While the former estimates the non-
zero entries in Γ̂1 by computing DT

1,T1
Y, the latter subtracts or adds a constant β1 from

these, obtaining DT
1,T1

Y−β1B, where B is a vector of ±1. As a result, the distance between
the true sparse vector and the estimated one is given by

‖Γ1 − Γ̂1‖∞ =
∥

∥

∥
Γ1,T1 − Γ̂1,T1

∥

∥

∥

∞

=
∥

∥

∥

(

DT
1,T1D1,T1

)−1
DT

1,T1X−
(

DT
1,T1Y − β1B

)

∥

∥

∥

∞

≤
∥

∥

∥

(

DT
1,T1D1,T1

)−1
DT

1,T1X−DT
1,T1Y

∥

∥

∥

∞
+ ‖β1B‖∞ ,

where in the last step we have used the triangle inequality for the ℓ∞ norm. Notice that
‖β1B‖∞ = β1, since β1 must be positive according to Equation (14). Combining this
together with the same steps as those used in proving Lemma 7, the above can be bounded
by

‖Γ1 − Γ̂1‖P2,∞ ≤
√

‖Γ1‖P0,∞
(

ǫ0 + µ(D1)
(

‖Γ1‖S0,∞ − 1
)

|Γmax
1 |+ β1

)

,

resulting in the desired claim.

44



Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

Appendix F.
Stability of the Layered BP Algorithm in the Presence of Noise (Proof of
Theorem 12)

Proof In (Papyan et al., 2016b), for a signal Y = X+E = D1Γ1 +E, it was shown that
if the following hold:

a) ‖Y −X‖P2,∞ ≤ ǫ0; and

b) ‖Γ1‖S0,∞ ≤ 1
3

(

1 + 1
µ(D1)

)

,

then the solution Γ̂1 for the Lagrangian formulation of the BP problem with β1 = 4ǫ0 (see
Equation (8)) satisfies that

1. The support of the solution Γ̂1 is contained in that of Γ1;

2. ‖∆1‖∞ = ‖Γ1 − Γ̂1‖∞ ≤ 7.5 ǫ0;

3. In particular, every entry of Γ1 greater in absolute value than 7.5 ǫ0 is guaranteed to
be recovered; and

4. The solution Γ̂1 is the unique minimizer of the Lagrangian BP problem (Equation (8)).

Using similar steps to those employed in the proof of Theorem 8, we obtain that

‖∆1‖P2,∞ ≤
√

‖∆1‖P0,∞ ‖∆1‖∞.

Plugging above the inequality ‖∆1‖∞ ≤ 7.5 ǫ0, we get

‖∆1‖P2,∞ ≤
√

‖∆1‖P0,∞ 7.5 ǫ0.

Since the support of Γ̂1 is contained in that of Γ1, we have that ‖∆1‖P0,∞ = ‖Γ1− Γ̂1‖P0,∞ ≤
‖Γ1‖P0,∞, leading to

‖∆1‖P2,∞ ≤
√

‖Γ1‖P0,∞ 7.5 ǫ0 = ǫ1.

We conclude that the first stage of the layered BP is stable and the following must hold

1. The support of the solution Γ̂1 is contained in that of Γ1;

2. ‖∆1‖P2,∞ ≤ ǫ1;

3. In particular, every entry of Γ1 greater in absolute value than ǫ1
√

‖Γ1‖P0,∞

is guaranteed

to be recovered; and

4. The solution Γ̂1 is the unique minimizer of the Lagrangian BP problem (Equation (8)).

Next, we turn to the stability of the second stage of the layered BP algorithm. Notice
that Γ̂1 = Γ1+∆1 = D2Γ2+∆1. Put differently, Γ1 is a signal that admits a convolutional
sparse representation D2Γ2 that is perturbed by ∆1, resulting in Γ̂1. As such, we can
invoke once again the same theorem from (Papyan et al., 2016b). Since we have that
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a) ‖∆1‖P2,∞ ≤ ǫ1; and

b) ‖Γ2‖S0,∞ ≤ 1
3

(

1 + 1
µ(D2)

)

,

we are guaranteed that the solution Γ̂2 for the Lagrangian formulation of the BP problem
with parameter β2 = 4ǫ1 satisfies

1. The support of the solution Γ̂2 is contained in that of Γ2;

2. ‖∆2‖∞ = ‖Γ2 − Γ̂2‖∞ ≤ 7.5 ǫ1 ;

3. In particular, every entry of Γ2 greater in absolute value than 7.5 ǫ1 is guaranteed to
be recovered; and

4. The solution Γ̂2 is the unique minimizer of the Lagrangian BP problem (Equation (8)).

Using similar steps to those used above, the inequality that relies on the ℓ∞ norm can be
translated into another one that depends on the ℓ2,∞. This results in

‖∆2‖P2,∞ ≤
√

‖Γ2‖P0,∞ 7.5 ǫ1 = ǫ2.

We conclude that, similar to the first one, the second stage of the layered BP is stable and
the following must hold

1. The support of the solution Γ̂2 is contained in that of Γ2;

2. ‖∆2‖P2,∞ ≤ ǫ2;

3. In particular, every entry of Γ2 greater in absolute value than 7.5 ǫ1 = ǫ2
√

‖Γ2‖P0,∞

is

guaranteed to be recovered; and

4. The solution Γ̂2 is the unique minimizer of the Lagrangian BP problem (Equation (8)).

Using the same set of steps, we obtain similarly the stability of the remaining layers.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-
bilistic language model. journal of machine learning research, 3(Feb):1137–1155, 2003.

46



Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional sparse coding. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
391–398, 2013.
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