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Abstract
Convolutional Neural Network (CNN) achieved
satisfying performance in click-through rate (CTR)
prediction in recent studies. Since features used
in CTR prediction have no meaningful sequence
in nature, the features can be arranged in any or-
der. As CNN learns the local information of a sam-
ple, the feature sequence may influence its perfor-
mance significantly. However, this problem has not
been fully investigated. This paper firstly investi-
gates whether and how the feature sequence affects
the performance of the CNN-based CTR prediction
method. As the data distribution of CTR prediction
changes with time, the best current sequence may
not be suitable for future data. Two multi-sequence
models are proposed to learn the information pro-
vided by different sequences. The first model learns
all sequences using a single feature learning mod-
ule, while each sequence is learnt individually by a
feature learning module in the second one. More-
over, a method of generating a set of embedding
sequences which aims to consider the combined in-
fluence of all feature pairs on feature learning is al-
so introduced. The experiments are conducted to
demonstrate the effectiveness and stability of our
proposed models in the offline and online environ-
ment on both the benchmark Avazu dataset and a
real commercial dataset.

1 Introduction
Displaying suitable ads to users not only enhances their ex-
perience but also increases the profit of advertisement pub-
lishers. Click-through rate (CTR), which measures the ratio
of users who click on a recommended ad to the number of
total users who view a page with this ad, is one of popular
measures for evaluating online advertising [McMahan et al.,
2013; He et al., 2014]. In some online advertising systems,
ads are displayed according to the probability of user click
and bid price in order to maximize the profit. As a result, ac-
curate CTR prediction plays an important role in the success
of online advertising.

Many recent studies apply CNN to CTR prediction [Li-
u et al., 2015; Li et al., 2015; Chen et al., 2016; Edizel
et al., 2017] due to its success in many complex applica-
tions, e.g., computer vision [He et al., 2016; Yang et al.,
2017] and natural language processing [Zhang et al., 2015;
Wang et al., 2016; 2017a]. The CNN-based CTR prediction
model [Liu et al., 2015], commonly used in the study of CTR
prediction, is the focus of this study. Its architecture is illus-
trated in Fig. 1. The model maps the information of a user, ad,
and context to estimate CTR of the user on the ad. A sample
contains a number of fields represented by a vector of one-
hot encoding. Therefore, the input space of CTR prediction
is usually sparse and has a high dimension [Guo et al., 2017;
Shan et al., 2016; Wang et al., 2017b].

Figure 1: The architecture of a common CNN-based CTR prediction
model.

The embedding layer [Rendle, 2010; Juan et al., 2016] is
applied to map the fields into a structural and dense input s-
pace, i.e., the ith field is mapped into ei, where ei denotes the
ith embedding feature vector of length t. e = [e1,e2, ...em],
where i = 1,2, ...,m and m is the number of fields. The em-
bedding feature vectors are fed into feature learning layers in-
cluding convolution and pooling. All learned latent features
are then processed by the fully connected layer to predict the
CTR in the last stage of the model.

Research of CNN-based CTR prediction mainly focuses on
the design of the embedding layer [Edizel et al., 2017] and the
architecture of the CNN model [Liu et al., 2015]. Different
from applications like image or natural language processing
in which a sample has a natural sequence, embedding feature
vectors (e) of a CTR prediction can be arranged in any order.
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However, the sequence of embedding feature vectors affects
the local information learnt by CNN since its convolution and
pooling layers capture information in local receptive fields.
This issue has not been investigated in depth.

This paper firstly discusses whether and how the sequence
of embedding feature vectors influences the CNN-based CTR
prediction method in Sect. 2. Experiments are also carried
out to illustrate the AUC (Area Under ROC Curve) [Calders
and Jaroszewicz, 2007] obtained by the model using differen-
t sequences of embedding feature vectors in the benchmark
dataset (i.e., Avazu dataset) and a real commercial dataset
(i.e., the internal advertising dataset in Tencent). The fluctua-
tion of the performance of a model with a sequence in differ-
ent periods of time is also investigated since CTR prediction
is a non-stationary problem due to the daily change on ads.

Choosing the best sequence is one of intuitive solutions.
However, the process may be inefficient and the potential in-
formation provided by other sequences is ignored. Moreover,
the best sequence for current data may perform differently in
future in a non-stationary problem. As a result, two models
considering multi-sequence of embedding feature vectors are
proposed in Sect. 3. The information provided by embedding
feature vectors with multi-sequence is firstly combined and
is learnt by one feature learning module in the first model,
Multi-Sequence Model with Single Feature Learning Module
(MSS). Although the time complexity of the model is low,
using a large number of embedding feature sequences may
downgrade the model’s performance since the feature learn-
ing module cannot learn the information provided by all se-
quences efficiently. To overcome this drawback, we introduce
another model, Multi-Sequence Model with Multiple Feature
Learning Modules (MSM), in which embedding feature vec-
tors with each sequence are learnt by one feature learning
module, and the learned representation is combined in the ful-
ly connected layer. The better performance is expected to be
achieved by MSM than MSS since the information provided
by multi-sequence is learnt more efficiently in MSM.

In addition, a sequence generation method is also proposed
in Sect. 3.1. Instead of generating embedding feature se-
quences randomly, the generated sequences aim to guarantee
that the combined information of every pair of embedding
feature vectors can be learnt in the feature learning. The pro-
posed models are evaluated in offline and online environment
using the Avazu and Tencent dataset in Sect. 4. Finally, the
conclusion and future work are discussed in Sect. 5.

The main contributions of this work can be summarized as
follows:

• This study investigates whether and how the order of the
embedding feature vectors influences the performance
of the CNN-based CTR prediction model. Besides the
conceptual discussion, experimental study is also carried
out to evaluate the accuracy of the models using differ-
ent feature sequences. The performance fluctuation of
a model with the same sequence in different periods of
time is also investigated.

• Two models with multi-sequence (i.e., MSS and MSM)
are proposed. Both models consider multiple feature
sequences to provide additional local information for

learning. MSS simply learns the feature with sequences
by using one feature learning module, while a feature
learning module is used for each sequence in MSM.

• The method of generating a set of feature sequences
which aims to consider the combined influence of ev-
ery feature pair on the output of the feature learning is
presented.

• The proposed models are evaluated by using the bench-
mark dataset (Avazu) and a commercial dataset collected
by Tencent. The impact of parameters of the models is
also investigated. Experimental results consistently sug-
gest stability and effectiveness of our models.

2 Embedding Feature Sequence Analysis
The features used in CTR prediction has no naturally mean-
ingful sequence, which is different from the samples in some
applications, e.g., image and audio. The embedding features
with different orders contain various information for learning
of CNN since CNN captures the local information in convo-
lution and pooling layers. As a result, a CNN-based CTR
prediction model may perform differently depending on the
choice of the sequence of embedding feature vectors.

An experiment is carried out to illustrate the influence of
a model using different feature sequences on the accuracy
of CTR prediction. Avazu dataset and Tencent dataset are
used. Avazu dataset includes samples with 22 fields collected
in ten days, while samples with 35 fields are collected in 17
days in the Tencent dataset. 50 CNN-based CTR prediction
models [Liu et al., 2015] with different sequences of embed-
ding feature vectors generated randomly are trained. The de-
tailed description on the datasets and the parameter settings
are introduced in Sect. 4.1 and 4.2. For the Avazu (Tencent)
dataset, the training set contains the samples in the first nine
(seven) days, while samples in the tenth (eighth) day are used
for evaluation. Each experiment is carried out three times in-
dependently. AUC is used as the evaluation metric.

(a) Avazu dataset (b) Tencent dataset

Figure 2: Mean and range of AUC of the CTR prediction model with
different feature sequences sorted in ascending order by AUC.

Fig. 2 shows the mean and range of AUC of the models
with different feature sequences. The models are sorted in as-
cending order by AUC from left to right. The average AUC of
all models is represented by the horizontal dotted line in red.
The results suggest that the models with different sequences
yield different AUCs, i.e., the best (worst) model achieves
0.7461 (0.7410) for the Avazu dataset and 0.7488 (0.6861)
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for the Tencent dataset. It should be noted that the AUC d-
ifference is small but significant in practice. Moreover, the
variance of the models due to the random initialization on the
training parameters is much smaller than the one due to using
different sequences, i.e., the AUC range of three independent
runs, shown in red solid line, is much smaller than the AUC
difference of the models using different sequences, especially
in the Tencent dataset.

For the Avazu dataset, the AUC of more than 75% of the
models is between 0.743 and 0.745, but only a few models
achieve an AUC close to the best value (0.7461). It means
searching for a sequence yielding good performance is dif-
ficult. On the other hand, the performance of the models in
the Tencent dataset is more evenly distributed than the one in
the Avazu dataset, i.e., the line of AUC is close to a linear
function in the Tencent dataset. As a result, the performance
of the models is more sensitive to different sequences in the
Tencent dataset.

Data distribution of CTR prediction changes frequently as
ads are updated every day. We evaluate the stability of a mod-
el with the same sequence at different periods of time. Data
in the Tencent dataset in three periods of time are considered,
including: 1st to 8th day, 4th to 11th day, and 7th to 14th day.
For each period, the samples in the first seven days are used
in training and the samples in the last day are reserved for
evaluation. 50 CNN-based models with different feature se-
quences generated randomly are trained by using the data in
these three periods separately. The average range of AUC of
these models on three periods is 0.0020, which is significantly
large in CTR prediction. This indicates that the performance
of the model using a single sequence fluctuates, i.e., there is
no best sequence all the time.

These experimental results suggest that the sequence of
embedding features affect the accuracy of CTR prediction
significantly. Moreover, choosing the best sequence may not
be realistic since CTR prediction is a non-stationary problem.
A sequence which works well for the current data may not be
suitable for future data.

3 Proposed Methods
The influence of the sequence of embedding feature vectors in
CTR prediction should be addressed since it affects the pre-
diction accuracy dramatically. However, choosing the best
current sequence may be time-consuming, and the sequence
may be not suitable for future data. Moreover, the potential
information provided by other sequences is also ignored. As
a result, this study proposes two models using multi-sequence
to consider additional information provided by embedding
feature vectors with different sequences.

A sequence generation method aiming to provide a set of
sequences of embedding features to enable the feature learn-
ing module of a CTR prediction model learn the combined in-
fluence of all feature pairs is firstly discussed in Sect. 3.1. The
generated sequences can be applied to MSS and MSM consid-
ering multi-sequence of embedding feature vectors proposed
in Sect. 3.2 and 3.3. The information provided by multi-
sequence is learnt by one feature learning module in MSS,
while a number of feature learning modules are applied to

learn from multi-sequence separately in MSM. The pros and
cons of the models are also discussed.

3.1 Sequence Generation Method
A method to generate a set of sequences of embedding feature
vectors is introduced in this section. The set of sequences
aims to minimize the variance of the combined influence of
all feature pairs on the output of the feature learning module
in order to provide different local information for learning.

Given the set of parameters θ of the feature learning in
the CNN-based CTR prediction model and a sequence of em-
bedding feature vectors s, where s = {s1,s2, ...,sm} is the or-
der list and the embedding features are listed in the order of
es1 ,es2 , ...,esm , we firstly define the relation r ∈R between ei
and e j as the consideration level on their combined influence
in the feature learning. Both the architecture of feature learn-
ing module (θ ) and the feature sequence (s) affect rs. The
definition of rs(ei,e j) is given as follows:

rs(ei,e j) = g(ds(ei,e j),Cθ (l)) (1)

where ds(ei,e j)∈ Z+ measures the distance between ei and e j
in s. L1-norm is used in this study. Cθ (l) is a function which
outputs the number of embedding feature vectors e affecting
the output of a neuron in the lth pooling layer in the feature
learning. rs(ei,e j) = 0 means that the combined influence
of two embedding feature vectors are not considered by the
feature learning. On the other hand, larger rs indicates that
the feature learning learns more information from the feature
pair due to the local receptive fields of CNN. For the same
Cθ , smaller ds yields larger rs, i.e., more local information of
features is captured when features are closer to each other.

Smaller Cθ (l) means less number of embedding feature
vectors are considered in the lth pooling layer in the feature
learning, and versa vice. Cθ can be calculated as:

Cθ (l) =
l

∑
i=1

[(tθ (i)−1) ·
i

∏
j=1

hθ ( j−1)]+hθ (0) (2)

where l denotes the lth pooling layer in the feature learning,
and tθ (i) is the number of features being extracted from the
previous convolution layer. tθ (i) = kh(i) + kg(i)× (ph(i)−
1), where kh(i) and kg(i) denote the height of the filter and
the height of convolution stride in the ith convolution layer,
and ph(i) is the height of the pooling in the ith pooling layer.
hθ (i) influences the outputs of two adjacent neurons in the
ith pooling layer. hθ (i) = kg(i)× pg(i), where kg(i) and pg(i)
are the height of the stride in the ith convolution and pooling
layer. In the special case when l = 0, Cθ (0) = hθ (0) = 1,
which means only one feature affects the output of the input
layer.

g is a decreasing function with ds when Cθ is fixed, i.e.,
g(di,Cθ ) ≥ g(d j,Cθ ) when di < d j. In this study, g is de-
fined as a staircase function, i.e., g = 1− (i− 1)/L when
Cθ (i− 1) < ds ≤ Cθ (i), where L denotes the total pairs of
convolution and pooling layers in the feature learning, and
1 ≤ i ≤ L. When the pair of embedding feature vectors are
considered in a shallower layer, g tends to 1; otherwise, g
tends to 0. When ds >Cθ (L), g = 0, which indicates that the
feature learning module (θ ) does not consider the combined
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influence of two embedding feature vectors with ds. On the
other hand, g = 1 when ds = 0, which means two embedding
feature vectors are the same.

The sequence generation can be formulated as the opti-
mization problem shown in (3). The model aims to consid-
er the combined influence on the feature learning for every
feature pair. The optimal sequence set S? with n number of
sequences are determined by minimizing the variance of rs of
all feature pairs.

min
S

var([r|r = ∑s∈S rs(ei,e j);1≤ i < j ≤ m)])

s.t. |S|= n
(3)

The optimization problem in (3) is a NP-hard problem.
Therefore, a practical method with greedy search is proposed
to find a sub-optimal solution. Let G be a set containing al-
l the possible sequences of embedding feature vectors. A
sequence s selected randomly from G is added to S and
G = G− s in the initialization. For each iteration, s ∈ G is
added into S and G = G− s when S

⋃
s yields the smallest

var(r), and r = [r|r = ∑s∈S rs(ei,e j);1 ≤ i < j ≤ m)]. The
iteration is terminated when |S| = n. However, the running
time of the algorithm may still be long since |G| = m! is a
huge number. G is replaced by G̃ which contains a num-
ber of elements randomly selected from G, i.e., G̃ ⊂ G and
|G̃| � |G|. The size of G̃ is the tradeoff between the time
complexity and the preciseness of the algorithm.

3.2 Multi-Sequence Model with Single Feature
Learning Module (MSS)

A model learning the multiple embedding feature sequences
is introduced in this section. The multi-sequence (MS) layer
is added after the embedding layer in the CNN-based CTR
prediction model, shown in Fig. 3. The MS layer aims to
arrange the embedding feature [e1,e2, ...,em] into n differen-
t orders, i.e., [esi1 ,esi2 , ...,esim ], according to the sequence S,
where si ∈ S, si = [si1,si2, ...,sim] and i = 1,2, ...,n. S can be
obtained by using sequence generation methods mentioned in
the previous section.

Figure 3: Architecture of MSS. MS layer which aims to arrange the
embedding features into different orders is added between the em-
bedding layer and the first convolution layer. The outputs of MS
layer are fed into a feature learning module.

All feature maps of the MS layer are then treated as in-
puts of the first convolution layer, i.e., c0

i = [esi1 ,esi2 , ...,esim ].
In general, the ith output of the lth pair of convolution and
pooling layer, cl

i , can be defined as:

cl
i = q( f (

tl−1

∑
j=1

conv(cl−1
j ,wl

i j)+bl
i j)) (4)

where q and f are the pooling function and the activation
function respectively, wi j represents the weights of the ith fil-
ter with the jth input, b is the bias term, and tl is the number
of feature maps in the ith layer. The cross-entropy loss func-
tion is applied:

L =−1
u

u

∑
i=1

[yilogŷi +(1− yi)log(1− ŷi)] (5)

where u is the number of training samples, and yi and ŷi de-
note the true and the predicted value on the ith sample.

One advantage of the model is that the additional time
complexity of training is insignificant in comparison with the
model with single sequence since only one feature learning
module is applied to learn the information provided by multi-
sequence. However, the information provided by different
sequences may exert influence on each other, which increases
the learning difficulty to the feature learning module. As a re-
sult, the performance of MSS may drop when many sequences
of embedding features (i.e., n is large) are considered.

3.3 Multi-Sequence Model with Multiple Feature
Learning Modules (MSM)

Another multi-sequence model is proposed to overcome the
problem of MSS. The embedding feature vectors with differ-
ent sequences are learnt by different feature learning modules
individually. The outputs of all feature learning modules are
then concatenated before the fully connected layer. The ar-
chitecture of MSM is illustrated in Fig. 4

Figure 4: Architecture of MSM. Each feature map in MS layer is
learnt by a feature learning module.

Different from MSS, each feature mapping in the MS layer
is learnt by a feature learning module separately. The output
of the first pair of convolution and pooling layer is defined as:

u1
i j = q( f (conv(c0

j ,w
1
i j)+b1

i j)), j = 1,2, ...,n (6)

where c0
j denotes the jth feature map of the MS layer. Finally,

the concatenated latent representations are fed into the fully
connected layer to obtain the estimated CTR.

As multiple sequences are processed separately before con-
catenation in this model, the information of each sequence
can be learnt more effectively in order to improve the accu-
racy of the prediction. However, the time complexity is a
concern since the training time of MSM is approximately e-
qual to n times of the model using a single sequence, where n
is the number of sequences used in MSM.
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4 Experiments
The proposed models are evaluated in this section experimen-
tally. The datasets and experimental setting are firstly intro-
duced. The performance of our models and the model using
one sequence of embedding feature vectors is compared in
terms of AUC in the offline and online environment in Sect.
4.3 and 4.4 respectively.

4.1 Datasets
Ad platform generates billions of dollars income for Tencent
every year. We focus on an advertising space in which ads are
recommended from hundreds of thousands of candidates to
hundred millions of users every day. A subset with hundreds
of ad candidates is firstly selected by the pre-screening proce-
dure. 35 fields of features separated into three categories (i.e.,
user profile, ad information and context information) are se-
lected for each sample in our experiments. In practice, the
ratio of the positive (click) samples are relatively small, i.e.,
CTR prediction is an imbalance problem [Deng et al., 2017].
A subsampling process is carried out on the negative samples
while all positive samples are used. 2 billion samples for 17
consecutive days are contained in the Tencent dataset. On the
other hand, the Avazu dataset1 is provided in the competition
of Kaggle in 2014. The dataset contains 40 million samples
with 22 fields for ten consecutive days. All fields are used in
the experiments.

4.2 Settings
The model using only one feature sequence is used as the
benchmark model (base). The feature sequence is selected
according to AUC in a preliminary experiment for base. Our
proposed sequence generation (SG) is compared with the ran-
dom sequence generation (RD). RD generates sequences ran-
domly except the first sequence which is provided by base.
MSS and MSM with proposed sequence generation method
(MSS-SG, MSM-SG) and also with sequence generated ran-
domly (MSS-RD, MSM-RD) are included in the experiment.

The common CNN-based CTR prediction model [Liu et
al., 2015] is considered in our experiment. Each field is
mapped to an embedding feature vector of t = 30. All mod-
els are implemented with two pairs of convolution and max-
pooling layer. The filter sizes are 4× 4 (5× 5) and 3× 3
(4× 4) in the first and second convolution layer respectively
for the Avazu (Tencent) dataset, and the convolution stride is
set as 1. Pooling size of both layers is 2×2, and the pooling
stride is 2 for both datasets. ReLU is used as the activation
function. A fully connected layer with a single neuron out-
puts estimated CTR. For our models, |G̃| is set as 1000. All
experimental settings for base, MSS and MSM are the same.
Average AUC on test sets are used as evaluation criterion.

4.3 Evaluation of the Offline System
This experiment evaluates the models offline setting in which
a model is not updated after training. The samples in the first
nine (seven) days are reserved for training and the samples of
the tenth (eighth) day is used for evaluation in the Avazu (Ten-
cent) dataset. Each experiment has been repeated three times

1https://www.kaggle.com/c/avazu-ctr-prediction

independently. We apply mini-batch stochastic optimization
with Adam optimizer [Kingma and Ba, 2014].

Analysis on Feature Sequence Number
The influence of the number of feature sequences on the per-
formance of the models is discussed. AUC of the models with
the sequence number (n) from 1 to 5 is shown in Fig. 5.

(a) Avazu dataset (b) Tencent dataset

Figure 5: AUC of the models with n = 1,2, ...,5

When n = 1, the model is identical to base, in which only
a single sequence is considered. It explains why AUC of all
models is the same. The similar performance of all methods
can be observed in both datasets. For MSS-SG and MSS-RD,
AUC reaches the peak at n = 2 (i.e., 0.7464 for the Avazu
and 0.7491 for the Tencent dataset), and decreases with the
increase of n. These results are consistent with our expecta-
tion that MSS-SG and MSS-RD may not perform well when n
is large since one feature learning module may not be able to
learn the information provided by multi-sequence efficiently.
Therefore, AUC of MSS-SG and MSS-RD slightly increases
comparing to the one for base, but the feature learning mod-
ule cannot learn well when the sequence number increases.

Different form MSS-SG and MSS-RD, AUC of MSM-SG
and MSM-RD rises with the increase of n in general. It in-
dicates that various local information provided by different
feature sequences can be learnt. The results show that using
more sequences yields a better result. However, the increase
of AUC of MSM-SG and MSM-RD with n = 4 and 5 is small
in the Avazu dataset, i.e., AUC becomes stable when no ad-
ditional information is provided by a new sequence. As the
Tencent dataset is more complicated than the Avazu dataset,
we expect that similar results will be observed in the Tencent
dataset when n is larger.

The advantage of the proposed sequence generation
method only can be observed in MSM but not in MSS. This
is because the information of multi-sequence cannot be learnt
efficiently in MSS. The difference of sequences generated ran-
domly or by our method is not significant. However, from the
difference on the performance of MSM-RD and MSM-SG, we
can conclude that a set of sequences generated by our method
provides more useful information for learning.

Accuracy of the Proposed Multi-Sequence Models
This section focuses on AUC obtained by the CNN-based
CTR prediction models. n are set as 2 and 5 for MSS
and MSM according to the experimental results in last sec-
tion. Average AUC and relative improvement (RI) defined as
( AUC(m)−0.5

AUC(base)−0.5 −1)×100% [Yan et al., 2014] of the model m
on the Avazu and Tencent dataset are listed in Table ??.
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Method Avazu Tencent
AUC RI (%) AUC RI (%)

Base 0.7461 / 0.7485 /
MSS-RD 0.7463 0.0813 0.7490 0.2012
MSS-SG 0.7464 0.1219 0.7491 0.2414
MSM-RD 0.7476 0.6095 0.7512 1.0903
MSM-SG 0.7480 0.7720 0.7514 1.1771
AdPredictor 0.7375∗ -3.4945 / /
FTRL 0.7357∗ -4.2259 / /
MatchBox 0.7426∗ -1.4222 / /
* AUC is obtained from [Liu et al., 2017]

Table 1: AUC and RI of the CTR prediction models.

All proposed multi-sequence models outperform base, i.e.,
all RIs of our models are positive. Compared to base, MSM
achieves more than 0.60% (1.00%) on the Avazu (Tencent)
dataset. Besides, AUC of MSM-SG is 0.16% (0.09%) high-
er than the one of MSM-RD on the Avazu (Tencent) dataset.
The average AUC of MSS obtains more than 0.10% (0.22%)
improvement of base on the Avazu (Tencent) dataset. The
improvement is small but significant in practice [Zhou et al.,
2017]. For the Avazu dataset, we compare our results with
the one obtained in the same experimental settings [Liu et
al., 2017]. AdPredictor, FTRL, and MatchBox, which are not
CNN-based methods, but are commonly used in CTR predic-
tion. base performs significantly better than these methods in
terms of AUC, which shows the advantage of the generation
ability of CNN-based models.

Analysis of Sequence Generation Method
This section discusses the relation between the performance
of a model and var(r) of the sequences used by the model.
The last section shows that there is no significant difference
on the performance of MSS-RD and MSS-SG, i.e., the fea-
ture sequences do not affect the performance of MSS. As a
result, only MSM is considered in this section. Ten sets of
sequences are generated randomly. MSM with each sequence
set is trained three times independently to obtain three results.
AUC of 30 models are illustrated in Fig. 6.

(a) Avazu dataset (b) Tencent dataset

Figure 6: Relation of AUC of MSM and var(r) of its sequences.

Each cross in the graphs denotes a model. X-axis and Y-
axis represent var(r) and AUC. The red dotted line represents
the least squares regression trained by using the 30 points.
The clear and strong relation between var(r) and AUC is
observed in both datasets, i.e., S with smaller var(r) yields
higher AUC. These results explain the reason why the perfor-
mance of MSM-SG is significantly better than MSM-RD.

4.4 Evaluation of the Online System
CTR prediction is a non-stationary problem due to the daily
change of ads and users. For example, the chosen advertising
space in Tencent advertising system has 10% to 20% records
being new ads in the repository each day. Since the sam-
ple distribution is not stable, the prediction performance may
change significantly. Therefore, the adaptation of the models
on the change of the sample distribution is evaluated.

The Tencent dataset is applied in this section to evaluate
the performance of the models under the online environment.
The training set with the samples in the first seven days is
used to train the initial model. The model is then updated
every two hours during the rest ten days. Each update uses
the training set containing samples collected between the last
hour and last 25 hours, while the samples in the last hour are
used for model validation. The performances of all models
with online learning are shown in Fig. 7.

Figure 7: RI (%) of all models in the online environment.

The performance of base is the worst among all method-
s in the online environment because the best sequence may
not always be good for future data. A number of sequences
provides more information than the single one which leads to
better result in general. The results of the online environment
are consistent with the offline ones, i.e., the results suggest
that models with multi-sequence achieve more accurate CTR
prediction in practice. Moreover, our models provide predic-
tion in 5ms or less, which is less than the 10ms latency budget
for CTR predictions per request for the Tencent advertising
system.

5 Conclusions
This study shows that embedding feature vectors with dif-
ferent sequences provide useful information for CNN-based
CTR prediction. The current methods which consider a s-
ingle sequence cannot perform well consistently in periods
of time due to the change of data distribution. As a result,
two multi-sequence models are proposed to capture the infor-
mation provided by different feature sequences. MSS learn-
s multi-sequence by a feature learning module, while each
sequence is learnt by a feature learning module separately
in MSM. The experimental results confirm that both model-
s achieve significantly higher accuracy than the model using
only one sequence in terms of AUC for the benchmark Avazu
dataset and the the internal advertising dataset in Tencent. Se-
quence generation method is also proposed to provide a set of
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feature sequence which considers the combined influence of
every feature pair on the output of feature learning. Its superi-
ority in comparison with random generation is also confirmed
experimentally.

One drawback of MSM is its high time complexity in train-
ing. One possible solution is to simplify the architecture of
the feature learning module for each feature sequence. In ad-
dition, some feature pairs may provide more useful informa-
tion than others. One future work may focus on investigating
the contribution of a feature pair to the learning, and arrange
the feature sequences according to their contributions.
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