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Convolutional neural networks 
can accurately distinguish four 
histologic growth patterns of lung 
adenocarcinoma in digital slides
Arkadiusz Gertych  1,2, Zaneta Swiderska-Chadaj  3, Zhaoxuan Ma4, Nathan Ing1,4, 
Tomasz Markiewicz3,5, Szczepan Cierniak5, Hootan Salemi1, Samuel Guzman2, Ann E. Walts2 

& Beatrice S. Knudsen2,4

During the diagnostic workup of lung adenocarcinomas (LAC), pathologists evaluate distinct 
histological tumor growth patterns. The percentage of each pattern on multiple slides bears prognostic 
significance. To assist with the quantification of growth patterns, we constructed a pipeline equipped 
with a convolutional neural network (CNN) and soft-voting as the decision function to recognize solid, 
micropapillary, acinar, and cribriform growth patterns, and non-tumor areas. Slides of primary LAC 
were obtained from Cedars-Sinai Medical Center (CSMC), the Military Institute of Medicine in Warsaw 
and the TCGA portal. Several CNN models trained with 19,924 image tiles extracted from 78 slides 
(MIMW and CSMC) were evaluated on 128 test slides from the three sites by F1-score and accuracy 
using manual tumor annotations by pathologist. The best CNN yielded F1-scores of 0.91 (solid), 0.76 
(micropapillary), 0.74 (acinar), 0.6 (cribriform), and 0.96 (non-tumor) respectively. The overall accuracy 
of distinguishing the five tissue classes was 89.24%. Slide-based accuracy in the CSMC set (88.5%) was 
significantly better (p < 2.3E-4) than the accuracy in the MIMW (84.2%) and TCGA (84%) sets due to 
superior slide quality. Our model can work side-by-side with a pathologist to accurately quantify the 
percentages of growth patterns in tumors with mixed LAC patterns.

Lung cancer is currently the second most common cancer in men and women and the leading cause of 
cancer-related deaths worldwide. Within invasive lung adenocarcinomas (LAC), the new WHO classi�cation 
separates six histological patterns: lepidic, papillary, micropapillary, acinar, cribriform and solid and recommends 
that surgically excised tumors be subclassi�ed based on the predominant growth pattern1. Based on this recom-
mendation, the histologic patterns observed in the tumor are quanti�ed in 5% increments and reported.

In addition to the tumor stage at diagnosis, the predominant tumor growth pattern impacts prognosis2–4. 
While tumors with mostly lepidic and acinar histology tend to be less aggressive5,6, tumors with predominantly 
micropapillary and solid patterns have been consistently associated with poorer prognosis7–9. Recently, the per-
centage of cribriform pattern has also been identi�ed as a marker of unfavorable prognosis10,11. Over 80% of LACs 
demonstrate a mixture of two or more histologic growth patterns, and the evaluation of tumor histology requires 
a composite manual estimation of the percentage of each pattern in each of several slides prepared from the 
tumor. �e subjectivity inherent in such estimations contributes to only modest agreement between pathologists 
in assessing growth patterns of LAC12,13.

Machine learning approaches have been shown to improve the accuracy and automation of histopathologic 
slide analysis14. Convolutional neural networks (CNNs) are currently the state-of-the-art generation of tools to 
build decision-making work�ows in digital pathology. When presented with su�cient annotated training image 
data, CNNs can learn complex histological patterns from images through a deconvolution of the image content 
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into thousands of salient features followed by selection and aggregation of the most meaningful features and 
then recognize these patterns in as yet unseen images. Applications involving CNNs in digital pathology are 
numerous and range from the recognition of tumor regions to the extraction of “hidden” tumor characteristics 
for biomarker development15,16.

CNNs can also be instrumental to systematically analyze lung tumors whose histomorphologic heterogeneity 
poses a challenge to direct visual microscopic quanti�cation of growth patterns by pathologists.

Currently available computer-assisted methods for the analysis of slides with lung tumors focus on the clas-
si�cation of one or two types of lung cancer and separation of tumor from non-tumor. In the study by Luo et al., 
hand-cra�ed image features extracted from squared image tiles were used to distinguish areas of adenocarcinoma 
from squamous carcinoma of the lung17. �ese features were used in statistical models to predict survival in cases 
from �e Cancer Genome Atlas (TCGA). Using digital histology slides from the National Lung Screening Trial 
repository18, Wang et al. trained a CNN to delineate tumor, and prognosticated patient survival outcome from 
tumor shape19. �eir tool assigned consecutive square image tiles to tumor, background or non-tumor categories. 
Other CNN models were trained to distinguish adenocarcinoma from small cell carcinoma20,21, or adenocarci-
noma from squamous carcinoma and  from non-tumor tissue22. Furthermore, using whole slides of LAC, a CNN 
was trained to predict the presence of six gene mutations based on associated morphologic tumor features22. 
�ese and other studies demonstrate the feasibility of using CNNs for histologic analysis of lung cancer.

Primary lung adenocarcinomas are heterogeneous tumors which commonly exhibit a mixture of di�erent his-
tologic growth patterns and molecular pro�les that are distinct from those of squamous cell carcinoma23. Besides a 
proof-of-concept study by our group demonstrating the ability of a machine learning approach to distinguish solid and 
micropapillary growth patterns in digital images of LAC24, there is a lack of computer-assisted methods to aid pathol-
ogists in the comprehensive quanti�cation of growth patterns of LAC. In this study, we developed a pipeline to distin-
guish four growth patterns of pulmonary adenocarcinoma (acinar, micropapillary, solid, and cribriform) and separate 
tumor regions from non-tumor. We focused on light-weight CNN architectures and strategies that have low hardware 
requirements and compared two CNN architectures (pre-trained and de-novo trained) to assess their performances 
in classi�cation of these �ve tissue classes. Our models were validated using digital slides from 3 independent cohorts.

Materials
Ethics Statement. Data collection and analysis for this research project was approved by the O�ce of 
Research Compliance at the Cedars-Sinai Medical Center (approval # Pro00051794) and the Research Ethics 
Board of the Military Institute of Medicine in Poland (Number: 30/WIM/2016). Prior to obtaining digital slides 
for analysis, all glass slides were de-identi�ed to comply with HIPAA regulations, and the analysis of digital slides 
was conducted in accordance with approved guidelines at both intuitions.

Cohorts and data collection. �is study involved digital slides from three cohorts. Hematoxylin and eosin 
(H&E) stained slides from cases previously diagnosed as primary lung adenocarcinoma were retrieved from 
pathology department archives at Cedars-Sinai Medical Center in Los Angeles (CSMC, 50 cases) and the Military 
Institute of Medicine in Warsaw, Poland (MIMW, 33 cases). �e third cohort consists of 27 digital slides (one slide 
per case) identi�ed using “primary tumor” and “lung adenocarcinoma” as key search terms and downloaded from 
the TCGA portal. Prior to inclusion in the study, slides in the CSMC and MIMW cohorts underwent manual 
review (AW, SG at CSMC; SC at MIMW) for tissue quality and to con�rm the presence of at least one of the fol-
lowing tumor growth patterns: acinar, micropapillary, solid or cribriform in each slide. Slides with other growth 
patterns were excluded. A�er downloading, digital slides from the TCGA portal were reviewed (AW) in the same 
manner. No preference other than tumor growth pattern was given to cases during the selection. For most of the 
cases only one slide was available. Other cases had multiple slides: up to 7 in the MIMW cohort, and up to 6 in 
the CSMC cohort, with each slide prepared from a di�erent formalin �xed para�n embedded section of the LAC. 
Cases from the CSMC and the MIMW cohorts were randomly partitioned into training and validation sets. We 
randomly picked a subset of 19 slides from the CSMC training cases, to validate our CNN models. A detailed 
breakdown of the datasets constructed from the CSMC, MIMW and TCGA cohorts is shown in Fig. 1.

Slide digitization. CSMC slides were digitized using Aperio AT Turbo (Leica Biosystems, Vista, CA), 
whereas slides from MIMW were digitized with Pannoramic 250 Flash II (3DHISTECH, Budapest, Hungary) 
whole slide scanner. Digital slides deposited in TCGA had been obtained through scanning with Aperio AT 
Turbo at either x20 or x40 magni�cation. Each digital slide was encoded as a set of multiresolution 24 bit RGB 
matrices and saved in SVS (slides from CSMC and TCGA) or MRXS (slides from MIMW) image format. Due to 
di�erences in hardware con�gurations between the Aperio and Pannoramic scanners and scanning modes set at 
the time of slide scanning, the pixel size and magni�cation for SVS and MRXS formats varied (Supplementary 
Table 1). Digital slides from MIMW and CSMC were manually checked for blur artifacts, and a�ected slides were 
rescanned prior to downstream processing.

Ground truth annotations. Pathologists from CSMC provided ground truth annotations of the four pat-
terns of LAC and non-tumor areas directly on digital slides using Aperio ImageScope viewer (ver. 12.3, Leica 
Biosystems, Vista, CA). �e pathologists �rst inspected the slides at 10x or higher magni�cation to identify areas 
of tumor, then reduced the magni�cation in order to circle and label areas of tumor as acinar, solid, micropapil-
lary or cribriform growth pattern. Regions composed entirely of non-tumorous components including alveoli, 
stroma, clusters of immune cells, bronchial cartilage and epithelium, blood vessels, or their admixtures were 
collectively labeled as non-tumor. On each digital slide, a pathologist traced 1–10 tumor and up to 3 non-tumor 
areas. Since accurate tracing of tumor borders was very time consuming, the areas for annotation were arbitrarily 
selected without preference to the speci�c tumor growth patterns, or the size, shape or location of the annotated 

https://doi.org/10.1038/s41598-018-37638-9


www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |          (2019) 9:1483  | https://doi.org/10.1038/s41598-018-37638-9

areas. Prior to annotation, the cases were divided into training and test sets as described above. In total, outlines 
from 206 digital slides (110 cases) (Fig. 1, Supplementary Table 1) were exported through the viewer and served 
as ground truth tissue masks to train or test classi�cation models. Annotations in test and validation slides are 
detailed in Fig. 2 and Supplementary Table 2.

Image tiles to train CNN models. Areas on digital slides underneath the ground truth masks were randomly 
sampled to extract adjacent and non-overlapping square image tiles. Pre-screened tiles that contained clearly readable 
and high-quality tissue areas were reviewed by the pathologist (AW). A tile with tumor was considered suitable for 
CNN training if the pathologist could assess the growth pattern based on the tumor architecture in the tile. Tumor 
tiles were labeled as AC (acinar), MP (micropapillary), SO (solid), or CR (cribriform) (Fig. 3). Tiles in which the 
pathologist could not de�nitively assign a tumor growth pattern were excluded. Tiles without cancer cells were labeled 
as non-tumor (NT). All tiles were extracted from full resolution digital slides. Prior to extracting tiles, our team deter-
mined the minimal tile size su�cient for the pathologist to assess tumor growth patterns. �e tile size was chosen 
to ensure resolution of nuclear features and include cell organization and larger structures that comprised the tumor 
growth pattern. A tile size of 600 × 600 pixels (CSMC cases were scanned at 20x) – an equivalent of 9 × 10−3mm2 area 
was found optimal. Depending on scanning magni�cation, the size of tiles extracted from MIMW and TCGA slides 
(Supplementary Table 1) was adjusted to match this area, yielding 19,942 image tiles for CNN training (Table 1).

Methods
Image tiles augmentation. Training of a CNN for a multiclass classi�cation task requires thousands of 
training images25. However, collecting image data originating from manual input is costly and time consuming. 
Image augmentation reduces the e�ort needed to acquire additional training data, improves the robustness and 
ability of CNN to generalize, and decreases the risk of over�tting26. It relies on existing images whose content 
is manipulated to create multiple altered copies of a single image within parameters determined by the desired 
task. In our approach, augmentation is a product of color and image orientation alteration. Color augmentation 
is justi�ed to sample from the range of hues (Fig. 3), that result from inter- and intra-laboratory variance in H&E 
staining. Orientation augmentation is justi�ed since we aim to identify histologic growth patterns with no inher-
ent orientation with respect to imaging, and which may naturally occur in any orientation. �e color alteration is 
accomplished by modifying the original image coloration according to four new color patterns with the goal to 
simulate variations in H&E staining. We began by extracting Lab color components from the training tiles that we 
then grouped into four clusters using k-means clustering algorithm. Next, we calculated the mean and standard 
deviation of L, a and b color components in a cluster to de�ne one new target Lab color pattern. In total, four color 
patterns were obtained by separately clustering Lab color components from CSMC and MIMW training tiles. 
�ese four color patterns were subsequently used in the Reinhard’s color transfer technique27 to give an original 
image tile four new appearances. �e original image and each of the four color transformed image tiles were then 
rotated by 0, 90, 180 and 270 degrees, then diagonally �ipped, rotated again, and saved a�er each rotation or 
�ipping (Supplementary Fig. 1). By implementing the color and orientation augmentation, the original set of tiles 
was expanded to 797,680 image tiles for training.

Figure 1. A breakdown of CSMC, MIMW and TCGA cases into training, validation and testing cohorts. �e 
number of slides per case varies from 1 to 7. Each slide was obtained from a di�erent para�n block.
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CNN training. �e progress of deep learning technologies has led to the development of numerous CNN 
architectures. For our project, we trained and tested publicly available GoogLeNet28, ResNet-5029 and AlexNet30 
CNNs that have been shown useful in pattern recognition tasks pertaining to digital pathology. Although 
AlexNet has competitors such as GoogLeNet, Inception-v3, or ResNet-50 that seem to outperform it in selected 

Figure 2. Ground truth annotations in validation and test (n = 128) slides: (A) example of manual delineations 
(green line) and labeling performed by a pathologist using Aperio digital slide viewer. Pixels under each 
annotation were sorted into �ve tissue classes and then counted to re�ect proportions shown in (B). �e total 
number of annotated pixels originating from tumors is closely matched by the number of pixels from non-
tumor areas (53% to 47%). Solid growth patterns comprised 62% of total tumor pixels. 18.3% of the tumor pixels 
were of acinar, 12.8% of microcapillary and 6.1% of cribriform growth. Most of the annotations come from the 
MIMW (43 slides) while the CSMC and TCGA contributed 58 and 27 slides, respectively.

Figure 3. Example image tiles of LAC tumor growth patterns used for CNN training extracted from MIMW 
and CSMC training slides. Tiles with dark purple/blue straining (one each of solid, acinar and cribriform) are 
from MIMW training slides. Other tiles are from CSMC slides.
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applications, we followed previously published works31–34 and incorporated this model into our study for its high 
generalization capability and low memory footprint during inference.

As AlexNet has not been used previously to classify growth patterns in heterogenous tumors, we elected to test 
a model that was pretrained on LSVRC-2010 ImageNet database with 1000 di�erent classes of natural objects30 
and was �ne-tuned (FT) using our data (FT-AlexNet). Our training data were also used to train AlexNet with 
de-novo initialized weights (DN-AlexNet). �e augmented tiles were downsized to 256 × 256 pixels for CNN 
training. �e FT was performed in Ca�e environment35 by training for 205,000 iterations using 80% of image 
tiles randomly picked from the augmented set and tested while being trained on the remining 20% of tiles. �e 
learning rate, gamma, and momentum for stochastic gradient descent (SGD) optimizer were set to 0.01, 0.9 
and 0.1 respectively. �e DN-AlexNet was trained using MatConvNet plugin for Matlab (ver. 2017a, Mathworks 
Natic, MA) with learning rate logarithmically decreasing from 0.1 to 0.001 over 20 epochs. GoogLeNet was also 
trained in Ca�e for 205,000 iterations with 90%/10% ratio of image tiles randomly picked for training/testing. 
�e optimization was performed using the SGD optimizer with momentum set to 0.9, learning rate 0.001, and 
gamma 0.95. ResNet-50 was trained on the MatConvNet36 platform in Matlab for 90 epochs with a batch size of 
256 images. �e learning rate for SGD was initially set to 0.1 and then multiplied by 1/10 every 30 epochs, and 
momentum was 0.9. ResNet-50 and DN-AlexNet were trained using all available training data. Dropout37, at a 0.5 
rate was applied to hidden layers during training. All CNNs were trained with batch-normalized images. A�er 
random weights initialization, DN-AlexNet was trained de novo four times, Resnet-50 and GoogLeNet were 
each trained three times, and FT-AlexNet was trained once. All models were tested to determine their �tness for 
identifying growth patterns of LAC and to identify the best performing model.

The FT-AlexNet was considered a baseline for the de-novo trained models. All models were trained on 
Nvidia GPUs. A�er training, the models were plugged into our WSI processing pipeline to evaluate performance 
(Fig. 4A).

Digital slide processing pipeline. Our processing pipeline consists of three parts: 1) foreground tissue 
localization and partitioning into tiles, 2) individual tile classi�cation by CNN, and 3) a module outputting tumor 
maps from classi�ed WSIs (Fig. 4). To reduce the overall WSI analysis time, a tissue masking algorithm �rst 
located tissue area as foreground against white optical background by applying an intensity threshold (t = 230) 
to a gray level WSI image at low magni�cation (5x). Subsequently, the tissue mask was re�ned by hole �lling 
and morphological closing. A grid of square tiles was then overlaid onto the mask. Tiles with insu�cient tissue 
pixels (<20% of white pixels from the mask) were deleted from the map. �e remaining tiles were kept for CNN 
classi�cation (Fig. 4B). �e tile size in the grid is the same as the size of a training tile (Supplementary Table 1).

Prior to processing, tiles under the mask were color-normalized using Reinhard’s method27 and then contextu-
ally classi�ed by the CNN either as acinar (AC), micropapillary (MP), solid (SO), cribriform (CR) or non-tumor 
(NT) using the so� voting classi�cation approach formulated as:

∑=

=

ŷ a parg max
(1)

i
j

N

j ij
1

where: p
ij
 is the probability of the j-th tile belonging to the i-th tissue class ∈ …i {1 5}, aj is the weight, and N 

is the total number of tiles in the neighborhood. In our pipeline, the weights are uniform and N=9.
�e idea of contextual classi�cation (Equ.1) resembles a classi�cation of a set of glimpses into the image. �en 

an external decision function is applied to combine the result of each glimpse. In our case, the glimpses were 
extracted by a �xed policy and then combined by a permutation invariant operation (so� voting), to render our 
�nal decision system (Fig. 4C). While we did not include a learnable function to inter-glimpse relationships, we 
nevertheless introduced the contextual classi�cation to investigate whether it yields accurate results. Classi�ed 
tiles were color coded and organized as a tumor map to overlay directly onto the original WSI for visual assess-
ment and performance evaluation. Tiles from WSIs were imported to the pipeline through OpenSlide libraries38.

Tumor growth pattern classification performance measured against pathologist ground truth.  
Classi�cation performance of the four tumor growth patterns (AC, SO, MP, CB) and the non-tumor (NT) tissue 
was reported using 5 × 5 confusion matrices with rows representing ground truth and columns representing 
computed results. For a single slide, the confusion matrix was formed by superimposing the tumor map outputted 
by the CNN (Fig. 4C) onto a corresponding pathologist ground truth mask and then counting true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN) pixel detections under the ground truth mask 
for each of the �ve tissue classes. For each CNN model, we generated one study-level, three set-level and 128 

Image tiles CSMC MIMW Total

ACINAR 1,533 2,670 4,203

MICROPAPILLARY 2,071 1,165 3,236

SOLID 2,357 1,205 3,562

CRIBIFORM 863 2,375 3,238

NON-TUMOR 3,480 2,223 5,703

Total 10,304 9,638 19,942

Table 1. Summary of image tiles from CSMC and MIMW training cohorts.
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slide-level confusion matrices. A set-level confusion matrix was formed by concatenating all slide-level confusion 
matrices from a set. �e three sets are CSMC, MIMW and TCGA. Further concatenation of the set-level confu-
sion matrices into one yielded the study-level confusion matrix. F1-scores were calculated to focus the analysis 
on the performance in recognizing individual tumor growth patterns. To compare each model’s performance 
in slides irrespectively of the tumor growth pattern, size and number of annotated areas on a slide, and the slide 
origin, the measure of accuracy (ACC) was applied. ACC and F1-scores were calculated directly from a confusion 
matrix as de�ned previously39,40.

We �rst calculated the ACC of the models in the validation and test slides from CSMC. �e models separated 
tissues into �ve classes. �e validation slides (n = 19) originated from a sub-group of CSMC 14 cases that were 
also used for training. However, for each case the training and test slides were obtained from di�erent para�n 
blocks of the same tumor (Fig. 1). In this experiment, we investigated potential biases arising from using the same 
cases (but di�erent slides) for testing and training. We queried whether classi�cation accuracy of a CNN model 
is the same in the validation and test sets from CSMC. �e presence of a statistically signi�cant di�erence with a 
lower performance shown in the test set would be indicative of model over�tting. �is hypothesis was tested using 
the Wilcoxon rank sum test. �is statistical evaluation is reinforced by the fact that the test and validation and 
slides di�ered in tumor composition (Supplementary Table 2): the 19 validation slides did not contain cribriform 
growth pattern, and the number of annotated regions of solid growth was much higher in the test set compared to 
the validation set. Furthermore, for all trained models we calculated the mean ACC (5-class classi�cation) in the 
combined set (n = 128) of the validation and test slides. �is experiment allowed us to identify one best perform-
ing model that we compared to the FT-AlexNet which we considered the baseline model.

In the next step, using slide-level confusion matrices we calculated and then plotted distributions of the �ve 
F1-scores to rank the recognition performance for each tumor growth pattern and non-tumor tissue. ACCs were 
juxtaposed for comparison of slide classi�cation accuracy in CSMC (n = 58, test and validation slides combined), 
MIMW (n = 43) and TCGA (n = 27) slide sets. �e F1-scores and ACCs achieved by the best-performing model 
and the baseline FT-AlexNet were statistically evaluated (Wilcoxon signed rank test) to identify di�erences in 
classi�cation performance between these models.

Figure 4. Overview of the WSI analysis pipeline: CNN trained with an augmented set of images from the 
training slides (A), is applied to classify tiles from test and validation slides (B) in a contextual (so� voting) 
manner (C). Eight overlapping tiles generated by respectively shi�ing the central tile by 1/3 of its length 
horizontally, vertically or diagonally to the central tile, and the central tile are independently classi�ed by the 
CNN. �e �nal classi�cation result, which is the most frequently detected class (either AC, SO, MP, CR, or NT) 
amongst these nine tiles is then assigned to the central tile.
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Using the study-level confusion matrix, we also calculated a F1-score for each tumor growth pattern. 
Subsequently, we compared the F1-scores for annotations of solid, micropapillary and cribriform growth pat-
terns which we labeled collectively as tumor patterns associated with worse prognosis, in contrast to the F1-score 
for annotations of tumors with acinar growth that we labeled as a tumor pattern associated with poor prognosis. 
Furthermore, we merged annotations from all tumor growth patterns under one tumor category and assessed 
the general performance for distinguishing tumor from non-tumor tissue and provided an F1-score for each of 
these two categories. Lastly, we summarized the performance of the model by the overall classi�cation accuracy 
for �ve class and two category (any tumor vs. non-tumor) tissue recognition scenarios. �e F1-scores and ACC 
measures were calculated for the best-performing model and for the baseline FT-AlexNet using data aggregated 
in study-level confusion matrices.

Results
Evaluation of tumor growth pattern classification using pathologist annotations. Visual assess-
ment of tumor maps outputted by our classi�cation pipeline was performed prior to quantitative evaluation of 
tumor growth pattern classi�cation results. �e tumor maps were false colored and displayed side-by-side to 
original H&E slides with superimposed pathologist annotations (Fig. 5). Subsequently, a 5 × 5 confusion matrix 
representing the classi�cation performance was calculated for each digital slide.

�e Wilcoxon rank sum test was performed for one training instance of FT-AlexNet, for four of DT-AlexNet, 
and for three of GoogLeNet and ResNet-50 (Supplementary Table 3) to investigate the di�erence in classi�cation 
accuracy of slides from the CSMC test and validation sets. Slides from the test set were processed with a slightly 
higher accuracy for each CNN instance. However, a statistically signi�cant di�erence in accuracy of 3.42% 
(p = 0.045) was obtained only for one training instance of the DN-AlexNet model. All other training instances 
of this model and other models yielded an accuracy that was not signi�cantly di�erent. Prompted by the lack of 
robust evidence to indicate that a de-novo trained model can always output tumor maps that are signi�cantly 
more accurate, we appended the CSMC validation set to the CSMC test set for further performance evaluations.

In order to select the best trained CNN, we calculated the accuracy of classifying tissues from all 128 test WSIs 
into �ve classes. One of the DN-AlexNets performed better than the best GoogLeNet and Resnet-50 CNNs which 
yielded ACCs that were lower by 4.06% and 2.26%, respectively (Supplementary Table 4). �us, for the �nal eval-
uation of LAC growth pattern classi�cation, we compared the F1-scores and ACCs obtained from the tumor maps 
by the best-performing DN-AlexNet trained and the FT-AlexNet model.

We �rst calculated F1-scores and accuracies using slide-level confusion matrices (n = 128). �e de-novo 
trained model achieved significantly higher F1-scores than the fine-tuned model for all tissue classes: AC 
(p < 8.7e-7), MP (p < 0.002), SO (p < 2.e-8), CR (p < 0.001) and NT (p < 1.2e-14). �e distribution of F1-scores 
categorized according to tumor pattern is shown in Fig. 6A. �e de-novo trained model was also more accurate 
in the overall classi�cation regardless of the tissue class in slides from the di�erent cohorts: CSMC (p < 1.9e-
4), MIMW (p < 1.1e-8), TCGA (p < 1.2e-5). Corresponding accuracy distributions are shown in Fig. 6B. �e 
study-level confusion matrices from aggregated slide-level confusion matrices shown in Fig. 6C were used to 
calculate F1-scores for each tumor growth pattern (Table 2) associated with worse or poor prognosis which are: 
0.924 and 0.742 for DN-AlexNet, and 0.851 and 0.465 for FT-AlexNet, respectively. F1-scores from data aggre-
gated at the set-level (Supplementary Fig. 2) are shown in Supplementary Table 5.

When the histological growth pattern of tumors was disregarded, and all tumor patterns were bundled into 
one category, the F1-score representing tumor was 0.965 for the DN-AlexNet and 0.897 for the FT-AlexNet. 
�e F1-score for non-tumor was 0.960 and 0.893 for these two models, respectively. �e accuracies in classi�ca-
tion involving the �ve tissue classes were 89.9% (DN-AleXNet) and 75.3% (FT-AlexNet) when all test sets from 
CSMC, MIMW, and TCGA were combined.

�e average ACC for the CSMC, MIMW and TCGA set was 88.5%, 84.2% and 84%, respectively for the 
de-novo model, and 82.5%, 63.2%, and 60.2%, respectively for the �ne-tuned model (Fig. 6D). �e overall accu-
racy in the CSMC set was also signi�cantly better than the accuracy in the MIMW and TCGA sets, irrespective of 
the model. �e overall tumor versus non-tumor classi�cation accuracies reached 96.1% in CSMC set and 89.9% 
in MIMW set.

Discussion
Increasing evidence indicates that LAC comprises a heterogeneous group of growth patterns and that tumor 
growth patterns in the excised tumor specimen impact the clinical prognosis7–9,41. However, machine learning 
tools that reliably quantify the growth patterns of LAC in whole slides are currently unavailable. It is also unclear 
how they can learn tumor growth patterns for e�ective classi�cation. To address these needs, we have developed 
an analytical pipeline that automatically analyzes digital slides and identi�es areas of solid, microcapillary, acinar 
and cribriform patterns for quanti�cation.

Tumor growth patterns can be reliably classified in digital slides. Classi�cation performance of the 
de-novo trained model was signi�cantly better than the pretrained and �ne-tuned model (Supplementary Figs 2 
and 3). High F1-scores for solid (0.912), micropapillary (0.762) and acinar (0.742) growth patterns in digital slides 
of routinely prepared H&E stained sections of excised LAC indicated excellent ability of the de-novo trained 
model to distinguish one tumor growth pattern from another. �e F1-score was highest for solid tumor growth 
in both models. Since solid tumors are composed of nests or sheets of tumor cells that lack acini and papillae, we 
infer that its architectural features are more straightforward to learn than the features of microcapillary, acinar, 
and cribriform growth which alone are more structured and heterogenous42 (Fig. 3). �e challenge of learning 
complex morphologic patterns is demonstrated by only moderate recognition performance for the cribriform 
pattern (F1-score = 0.606) which ranked lowest amongst the four tumor growth patterns studied. Both CNN 
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models confused this pattern mainly with the solid pattern and to a lesser extent with the other tumor growth 
patterns (Fig. 6C, Supplementary Fig. 2). �e �ne-tuned model generally underperformed except in slides with 
solid tumor pattern from the CSMC cohort where it achieved a slightly higher true positive detection rate than 
the de-novo trained model (Supplementary Fig. 2). Several studies have shown that grouping adenocarcinoma 

Figure 5. Classi�cation of LAC tumor growth patterns in digital slides. Slides classi�ed by CNNs are outputted 
as colored maps showing the growth pattern and location of solid, micropapillary, acinar, and cribriform 
tumor growth patterns. Middle column: maps outputted by FT-AlexNet, right column: maps outputted by DN-
AlexNet. Reference annotations by pathologists are shown in the le�most column. Example slides are from 
(A) CSMC, (B) MIMW and (C) TCGA cohorts. Pathologist’s annotations and computer-generated maps were 
overlaid to calculate measures of CNN performance.
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growth patterns with similar survival can strengthen the prognostic impact of the classi�cation2,3. �e F1-scores 
achieved by the de-novo trained model for tumors strati�ed into those associated with worse or poor outcomes 
were very high. �e pre-trained model achieved satisfactorily high F1-scores only for the group associated with 
worse outcomes.

�e de-novo trained model was very accurate (ACC = 96.1%) in distinguishing tumor from non-tumor areas. 
However, the performance of the pre-trained model was only slightly inferior (ACC = 89.92%). �ese accuracies are 
unbiased because the fractions of all tumor and all non-tumor pixels in the whole dataset are nearly the same (Fig. 2). 

Figure 6. LAC tumor growth pattern classi�cation performance in three independent sets by two models: (A) 
violin plots of F1-scores showing classi�cation performance for acinar (AC), micropapillary (MP), solid (SO) 
and cribriform (CR) tumor growth patterns and non-tumor (NT) tissue in all test slides (n = 128). One data 
point represents one tissue class in one slide. (B) Violin plots of whole slide classi�cation accuracy in slides from 
CSMC, MIMW and TCGA test sets. One data point represents one slide. C) Normalized study-level confusion 
matrices. Confusion matrices from CSMC, MIMW and TCGA test sets are shown in Supplementary Figure 2.

Tissue class

CNN model

FT-AlexNet DN-AlexNet

Acinar growth 0.465 0.742

Micropapillary growth 0.465 0.762

Solid growth 0.759 0.912

Cribriform growth 0.399 0.606

Non-tumor 0.893 0.960

Table 2. F1-scores for lung adenocarcinoma growth patterns and non-tumor classi�ed by two CNN models.
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Interestingly, both performance rates are close to those reported in studies in which more complex CNN models 
were trained. For instance, Arujo et al.43 distinguished regions of carcinoma from non-carcinoma in breast tum-
ors with an accuracy of 83.3%. �e same model distinguished normal tissue, benign lesion, in situ carcinoma and 
invasive carcinoma (a four-class classi�cation) with an accuracy of 77.8%. In study by Graham et al.21 a ResNet-32 
network trained on image tiles from LAC and small cell carcinoma demonstrated an 81% accuracy. To distinguish 
tumor from “normal tissue”, Coudray et al.22 applied a de-novo trained Inception-v3 network. However, the 96.1% 
accuracy achieved by this much more complex network was matched by our less-complex model. Inception-v3 
trained in19 showed 88.1% accuracy for tumor patches and 93.5% for non-malignant patches. In another study, 
Khosravi et al.20 �ne-tuned Inception-V1 to distinguish LAC from squamous cell carcinoma in TCGA images. �eir 
model achieved an accuracy of 82%. Since the slides were not annotated for adenocarcinoma growth patterns, the 
authors recognized that this result (inferior in fact to their other classi�cation experiments) is worsened by the heter-
ogeneity in LACs. Although it was not the main aim of our study, our experiments with LAC showed that more com-
plex CNNs (GoogleNet and ResNet-50) can yield a lower classi�cation accuracy than a simpler CNN. To summarize, 
our best-performing CNN model matches or outperforms more complex models in recognizing tumor areas19–22,43. 
Since our best model had fewer weights to train, we suggest that its superior ability to generalize can be attributed to 
the quality and diversity of data collected for this experiment and used in training our models.

Differences in classification of slides from CSMC, MIMW and TCGA sets. In contrast to CSMC 
slides for which classi�cation rates were excellent, the slides from MIMW and TCGA validation sets were clas-
si�ed with a signi�cantly lower accuracy (Fig. 6D). To explain this discrepancy, we inspected the quality of the 
slides and compared the percentages of annotated pixels in all three sets (Fig. 2). First, the tissue preservation in 
slides from CSMC and MIMW was superior to that in the slides from TCGA which also contained occasional 
tissue processing artifacts (Fig. 5C). Second, the fraction of all non-tumor pixels was higher in the CSMC slides 
(63%) compared to the TCGA slides (44%). Since non-tumor areas are recognized with the highest F1-score 
(Table 2), we assume that the superior classi�cation accuracy of CSMC slides can be explained by better slide 
quality and higher proportion of non-tumor pixels in annotated areas. On average, the classi�cation accuracy 
in slides from the MIMW set was also inferior to the classi�cation accuracy of slides from CSMC, but similar to 
that for TCGA slides. However, slides in the MIMW set have lowest percentage of non-tumor pixels (39%), and a 
six times higher proportion of cribriform pixels than the other two sets. Together, these two conditions lowered 
the average classi�cation accuracy of MIMW slides to the level observed for slides from the TCGA set (Fig. 2). 
Despite the inter and intra cohort data variabilities, the de-novo trained model performed signi�cantly better 
than the pretrained model in each of the three cohorts.

Whole slide analysis pipeline design and development. To classify tumor growth patterns, our ana-
lytical pipeline employs a striding window technique. �e stride length can vary from one pixel to the window 
length. Pipelines that involve a single pixel stride can output continuous class probability maps and are applicable 
to the detection of objects ranging from single cells to large areas of tumor44. However, due to small stride, the 
analysis is slow. Pipelines that employ a stride larger than one pixel, but smaller than the window length, can 
analyze digital slides faster. However, they output sparse class probability maps that require computationally 
expensive interpolation to yield whole slide large continuous class probability maps - one for each class22. �ese 
approaches become even more burdensome if the number of tissue classes to be recognized is larger than two 
(more than just tumor vs. non-tumor classi�cation)21. To optimize whole slide analysis for a project that involves 
recognition of 5 distinct tissue classes, we applied a striding window technique with so� voting that, in addition 
to the striding window, classi�es eight additional overlapping tiles. No interpolation of class probability maps is 
performed, and the classi�cation result is immediately saved into a ready-to-display map of tumor growth pat-
terns for quanti�cation (Figs 3 and 4). Considering the existing bottlenecks in the development of tools for the 
recognition of complex histological features in digital slides, we believe that at this stage of pipeline development 
the so� voting is optimal for the classi�cation of tumor growth patterns in lung adenocarcinomas.

Limitations and future research. �e resolution of tumor map outputted by our pipeline is determined by 
the length of the striding window. Our pipeline currently retrieves 600 × 600 pixel tiles from the digital slide (20x 
mag). �is size was set empirically by humans to ensure that the growth pattern in a tile of this size can be reliably 
assessed by expert eye. Other researchers trained their models ad-hoc on 300 × 30019 or 512 × 51222 pixel tiles at 
20x magni�cation without providing justi�cation in their papers. For downstream processing, our tiles need to 
be downsized to 256 × 256 pixels to match the receptive �led of CNNs. �is solution lengthens processing time. 
Akin to21, one can retrieve 256 × 256 pixel tiles to avoid downsizing, but it remains to be tested whether this size 
will decrease the recognition accuracy of LAC growth patterns.

A possible improvement to our pipeline would be to implement a semantic CNN model45. In contrast to the 
originally proposed CNNs which output a class label for an image frame, its semantic brother46,47 can output 
class labels for every pixel in the frame. Application of a semantic CNN model can reduce whole slide process-
ing time45. However, its training would require that �ne pixel-level annotations of tumor be provided for each 
training tile. Since LACs are heterogenous, generating �ne outlines manually for complex growth patterns such 
as micropapillary or acinar would be time- and cost- prohibitive. One solution to this shortcoming would be to 
adopt our in-house developed immunohistochemistry-based slide labeling for transferring of tumor mask from 
the IHC over the corresponding H&E image to obtain �ne tumor delineations48,49.

In the current study, our models were trained to recognize four growth patterns of LAC, three of which are 
currently associated with worse and one that is associated with poor/intermediate prognosis1,2,4. A logical con-
tinuation is to add LACs exhibiting lepidic and papillary growth to the training set and to develop a model that is 
able to identify all six growth patterns of LACs.
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Conclusions
�is is the �rst study to quantify tumor growth patterns in surgical specimens of lung adenocarcinoma. �e 
tumor region maps generated by our pipeline can help pathologists quantitate total tumor area and the areas of 
each of four tumor growth patterns in gigapixel pathology slides. Our relatively simple CNN model was validated 
on slides from three separate institutions.

Data Availability
Very few repositories o�er whole slides annotated for tumor growth patterns or labeled image tiles in su�ciently 
large numbers to enable training of machine learning tools for digital pathology applications. Per to the review by 
Komura et al.50 available sets to date include data for breast43, prostate45 and colon tumors33,51. Our datasets would 
be the �rst pertaining to LAC and would contain one of the largest number of WSIs and image tiles for training. 
With the exception of the prostate cancer image repository collected previously by our team45, we are aware of no 
other repository with annotated images of tumor growth pattern. To diminish this gap, annotations for the TCGA 
slides used in this study are available as Supplementary Data. So�ware components can be found here: https://
github.com/zhaoxuanma/Deeplearning-digital-pathology.

References
 1. Travis, W. D. et al. �e 2015 World Health Organization Classi�cation of Lung Tumors: Impact of Genetic, Clinical and Radiologic 

Advances Since the 2004 Classi�cation. J �orac Oncol 10, 1243–1260, https://doi.org/10.1097/JTO.0000000000000630 (2015).
 2. Russell, P. A. et al. Does lung adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the new 

International Association for the Study of Lung Cancer/American �oracic Society/European Respiratory Society international 
multidisciplinary lung adenocarcinoma classi�cation. J �orac Oncol 6, 1496–1504, https://doi.org/10.1097/JTO.0b013e318221f701 
(2011).

 3. Yoshizawa, A. et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and 
implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 24, 653–664, https://doi.org/10.1038/
modpathol.2010.232 (2011).

 4. Yoshizawa, A. et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classi�cation for prognosis and association with EGFR 
and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol 8, 52–61, https://doi.org/10.1097/
JTO.0b013e3182769aa8 (2013).

 5. Araki, K. et al. Excellent prognosis of lepidic-predominant lung adenocarcinoma: low incidence of lymphatic vessel invasion as a key 
factor. Anticancer Res 34, 3153–3156 (2014).

 6. Sardari Nia, P. et al. Di�erent growth patterns of non-small cell lung cancer represent distinct biologic subtypes. Ann �orac Surg 85, 
395–405, https://doi.org/10.1016/j.athoracsur.2007.08.054 (2008).

 7. Tsao, M. S. et al. Subtype Classi�cation of Lung Adenocarcinoma Predicts Bene�t From Adjuvant Chemotherapy in Patients 
Undergoing Complete Resection. J Clin Oncol 33, 3439–3446, https://doi.org/10.1200/JCO.2014.58.8335 (2015).

 8. Tsuta, K. et al. �e utility of the proposed IASLC/ATS/ERS lung adenocarcinoma subtypes for disease prognosis and correlation of 
driver gene alterations. Lung Cancer 81, 371–376, https://doi.org/10.1016/j.lungcan.2013.06.012 (2013).

 9. Zhang, Y. et al. �e prognostic and predictive value of solid subtype in invasive lung adenocarcinoma. Sci Rep 4, 7163, https://doi.
org/10.1038/srep07163 (2014).

 10. Kadota, K. et al. �e cribriform pattern identi�es a subset of acinar predominant tumors with poor prognosis in patients with stage 
I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod 
Pathol 27, 690–700, https://doi.org/10.1038/modpathol.2013.188 (2014).

 11. Warth, A. et al. Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J 
�orac Oncol 10, 638–644, https://doi.org/10.1097/JTO.0000000000000490 (2015).

 12. �unnissen, E. et al. Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international 
interobserver study. Mod Pathol 25, 1574–1583, https://doi.org/10.1038/modpathol.2012.106 (2012).

 13. Warth, A. et al. Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS 
classi�cation. Virchows Arch 461, 185–193, https://doi.org/10.1007/s00428-012-1263-6 (2012).

 14. Litjens, G. et al. Deep learning as a tool for increased accuracy and e�ciency of histopathological diagnosis. Scienti�c reports 6, 
26286 (2016).

 15. Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the 
National Academy of Sciences, 201717139 (2018).

 16. Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scienti�c reports 8, 3395 (2018).
 17. Luo, X. et al. Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis. J �orac Oncol 12, 

501–509, https://doi.org/10.1016/j.jtho.2016.10.017 (2017).
 18. Aberle, D. R. et al. The National Lung Screening Trial: overview and study design. Radiology 258, 243–253, doi:10.1148/

radiol.10091808 (2011).
 19. Wang, S. et al. Comprehensive analysis of lung cancer pathology images to discover tumor shape features that predict survival 

outcome. bioRxiv, doi:10.1101/274332 (2018).
 20. Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O. & Hajirasouliha, I. Deep Convolutional Neural Networks Enable 

Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine 27, 317–328, https://doi.org/10.1016/j.ebiom.2017.12.026 
(2018).

 21. Graham, S., Shaban, M., Qaiser, T., Khurram, S. A. & Rajpoot, N. In SPIE Medical Imaging. 8 (SPIE).
 22. Coudray, N. et al. Classi�cation and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images using Deep 

Learning. bioRxiv, doi:10.1101/197574 (2017).
 23. Travis, W. D. Pathology of lung cancer. Clin Chest Med 32, 669–692, https://doi.org/10.1016/j.ccm.2011.08.005 (2011).
 24. Ing, N. et al. In Information Technologies in Medicine: 5th International Conference, ITIB 2016 Kamień Śląski, Poland, June 20–22, 

2016 Proceedings, Volume 2 (eds Ewa Piętka, Pawel Badura, Jacek Kawa, & Wojciech Wieclawek) 193–206 (Springer International 
Publishing 2016).

 25. Hou, L. et al. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classi�cation. Proc IEEE Comput Soc Conf 
Comput Vis Pattern Recognit 2016, 2424–2433, https://doi.org/10.1109/CVPR.2016.266 (2016).

 26. Tellez, D. et al. In SPIE Medical Imaging. 7 (SPIE).
 27. Reinhard, E., Ashikhmin, M., Gooch, B. & Shirley, P. Color Transfer between Images. IEEE Comput. Graph. Appl. 21, 34–41, https://

doi.org/10.1109/38.946629 (2001).
 28. Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 

1–9, 7–12 June 2015.

https://doi.org/10.1038/s41598-018-37638-9
https://github.com/zhaoxuanma/Deeplearning-digital-pathology
https://github.com/zhaoxuanma/Deeplearning-digital-pathology
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.1097/JTO.0b013e318221f701
https://doi.org/10.1038/modpathol.2010.232
https://doi.org/10.1038/modpathol.2010.232
https://doi.org/10.1097/JTO.0b013e3182769aa8
https://doi.org/10.1097/JTO.0b013e3182769aa8
https://doi.org/10.1016/j.athoracsur.2007.08.054
https://doi.org/10.1200/JCO.2014.58.8335
https://doi.org/10.1016/j.lungcan.2013.06.012
https://doi.org/10.1038/srep07163
https://doi.org/10.1038/srep07163
https://doi.org/10.1038/modpathol.2013.188
https://doi.org/10.1097/JTO.0000000000000490
https://doi.org/10.1038/modpathol.2012.106
https://doi.org/10.1007/s00428-012-1263-6
https://doi.org/10.1016/j.jtho.2016.10.017
https://doi.org/10.1016/j.ebiom.2017.12.026
https://doi.org/10.1016/j.ccm.2011.08.005
https://doi.org/10.1109/CVPR.2016.266
https://doi.org/10.1109/38.946629
https://doi.org/10.1109/38.946629


www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |          (2019) 9:1483  | https://doi.org/10.1038/s41598-018-37638-9

 29. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer 
vision and pattern recognition. 770–778, 27–30 June 2016.

 30. Krizhevsky, A., Sutskever, I. & Hinton, G. E. In Proceedings of the 25th International Conference on Neural Information Processing 
Systems 1097–1105 (Curran Associates Inc., Lake Tahoe, Nevada 2012).

 31. Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use 
cases. J Pathol Inform 7, 29, https://doi.org/10.4103/2153-3539.186902 (2016).

 32. Sharma, H., Zerbe, N., Klempert, I., Hellwich, O. & Hufnagl, P. Deep convolutional neural networks for automatic classi�cation of 
gastric carcinoma using whole slide images in digital histopathology. Comput Med Imaging Graph 61, 2–13, https://doi.org/10.1016/j.
compmedimag.2017.06.001 (2017).

 33. Xu, Y. et al. Large scale tissue histopathology image classi�cation, segmentation, and visualization via deep convolutional activation 
features. BMC Bioinformatics 18, 281, https://doi.org/10.1186/s12859-017-1685-x (2017).

 34. Campanella, G., Silva, V. W. K. & Fuchs, T. J. Terabyte-scale Deep Multiple Instance Learning for Classi�cation and Localization in 
Pathology. arXiv preprint arXiv:1805.06983 (2018).

 35. Jia, Y. et al. In Proceedings of the 22nd ACM international conference on Multimedia 675–678 (ACM, Orlando, Florida, USA 2014).
 36. Vedaldi, A. & Lenc, K. In Proceedings of the 23rd ACM international conference on Multimedia. 689–692 (ACM).
 37. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from 

over�tting. �e Journal of Machine Learning Research 15, 1929–1958 (2014).
 38. Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. OpenSlide: A vendor-neutral so�ware foundation for digital 

pathology. Journal of Pathology Informatics 4, 27–27, https://doi.org/10.4103/2153-3539.119005 (2013).
 39. Olson, D. L. & Delen, D. Advanced Data Mining Techniques. (Springer Publishing Company, Incorporated 2008).
 40. Powers, D. M. W. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. Journal of 

Machine Learning Technologies 2, 37–63, citeulike-article-id:12882259 (2011).
 41. Sica, G. et al. A grading system of lung adenocarcinomas based on histologic pattern is predictive of disease recurrence in stage I 

tumors. Am J Surg Pathol 34, 1155–1162, https://doi.org/10.1097/PAS.0b013e3181e4ee32 (2010).
 42. Solis, L. M. et al. Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome. Cancer 

118, 2889–2899, https://doi.org/10.1002/cncr.26584 (2012).
 43. Araujo, T. et al. Classi�cation of breast cancer histology images using Convolutional Neural Networks. PLoS One 12, e0177544, 

https://doi.org/10.1371/journal.pone.0177544 (2017).
 44. Ehteshami Bejnordi, B. et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in 

Women With Breast Cancer. JAMA 318, 2199–2210, https://doi.org/10.1001/jama.2017.14585 (2017).
 45. Ing, N. et al. In SPIE Medical Imaging Vol. 10581 Digital Pathology (eds John E. Tomaszewski & Metin N. Gurcan) 105811B–105813 

(SPIE, Houston, TX 2018).
 46. Long, J., Shelhamer, E. & Darrell, T. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3431–3440.
 47. Long, J., Shelhamer, E. & Darrell, T. In 2015 IEEE Conference on Computer Vision andPattern Recognition (CVPR). 3431–3440.
 48. Ing, N. et al. A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome. Sci Rep 7, 

13190, https://doi.org/10.1038/s41598-017-13196-4 (2017).
 49. Bulten, W. et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as 

reference standard. (2018).
 50. Komura, D. & Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Computational and Structural 

Biotechnology Journal 16, 34–42, https://doi.org/10.1016/j.csbj.2018.01.001 (2018).
 51. Linder, N. et al. Identi�cation of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol 7, 22, 

https://doi.org/10.1186/1746-1596-7-22 (2012).

Acknowledgements
This work has been supported by a grant from Cedars-Sinai Precision Health Grant, seed grants from the 
department of Surgery at Cedars-Sinai Medical Center, Cedars-Sinai in support of CTSI grant UL1TR001881-01, 
and a grant from the National Science Centre, Poland (grant 2016/23/N/ST6/02076). �e authors would like to 
thank Drs. Robert Szmurło and Bartek Chaber for support with computing cluster infrastructure at the Warsaw 
University of Technology, and Drs. Janusz Patera and Robert Koktysz for identifying cases in the archives of the 
Military Institute of Medicine, Department of Pathology, Warsaw, Poland.

Author Contributions
A.G., Z.S.C., Z.M. and A.E.W. conceived the study and designed the algorithms and experiments. A.G., Z.S.C., 
Z.M. and N.I. developed the algorithms, wrote the codes, built the pipeline and performed analysis. A.E.W., T.M., 
S.C., H.S., S.G., Z.S.C. and A.G. contributed to data collection. A.G. dra�ed the manuscript. A.E.W. and B.S.K. 
contributed to the manuscript and provided additional pathological expertise. A.G., A.E.W. and B.S.K. �nalized 
the manuscript. All authors read, edited and approved the �nal manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-37638-9.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.4103/2153-3539.186902
https://doi.org/10.1016/j.compmedimag.2017.06.001
https://doi.org/10.1016/j.compmedimag.2017.06.001
https://doi.org/10.1186/s12859-017-1685-x
https://doi.org/10.4103/2153-3539.119005
https://doi.org/10.1097/PAS.0b013e3181e4ee32
https://doi.org/10.1002/cncr.26584
https://doi.org/10.1371/journal.pone.0177544
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1038/s41598-017-13196-4
https://doi.org/10.1016/j.csbj.2018.01.001
https://doi.org/10.1186/1746-1596-7-22
https://doi.org/10.1038/s41598-018-37638-9
http://creativecommons.org/licenses/by/4.0/

	Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital  ...
	Materials
	Ethics Statement. 
	Cohorts and data collection. 
	Slide digitization. 
	Ground truth annotations. 
	Image tiles to train CNN models. 

	Methods
	Image tiles augmentation. 
	CNN training. 
	Digital slide processing pipeline. 
	Tumor growth pattern classification performance measured against pathologist ground truth. 

	Results
	Evaluation of tumor growth pattern classification using pathologist annotations. 

	Discussion
	Tumor growth patterns can be reliably classified in digital slides. 
	Differences in classification of slides from CSMC, MIMW and TCGA sets. 
	Whole slide analysis pipeline design and development. 
	Limitations and future research. 

	Conclusions
	Acknowledgements
	Figure 1 A breakdown of CSMC, MIMW and TCGA cases into training, validation and testing cohorts.
	Figure 2 Ground truth annotations in validation and test (n = 128) slides: (A) example of manual delineations (green line) and labeling performed by a pathologist using Aperio digital slide viewer.
	Figure 3 Example image tiles of LAC tumor growth patterns used for CNN training extracted from MIMW and CSMC training slides.
	Figure 4 Overview of the WSI analysis pipeline: CNN trained with an augmented set of images from the training slides (A), is applied to classify tiles from test and validation slides (B) in a contextual (soft voting) manner (C).
	Figure 5 Classification of LAC tumor growth patterns in digital slides.
	Figure 6 LAC tumor growth pattern classification performance in three independent sets by two models: (A) violin plots of F1-scores showing classification performance for acinar (AC), micropapillary (MP), solid (SO) and cribriform (CR) tumor growth patter
	Table 1 Summary of image tiles from CSMC and MIMW training cohorts.
	Table 2 F1-scores for lung adenocarcinoma growth patterns and non-tumor classified by two CNN models.


