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ABSTRACT
Building high accuracy text classifiers is an important task
in biomedicine given the wealth of information hidden in un-
structured narratives such as research articles and clinical
documents. Due to large feature spaces, traditionally, dis-
criminative approaches such as logistic regression and sup-
port vector machines with n-gram and semantic features
(e.g., named entities) have been used for text classifica-
tion where additional performance gains are typically made
through feature selection and ensemble approaches. In this
paper, we demonstrate that a more direct approach using
convolutional neural networks (CNNs) outperforms several
traditional approaches in biomedical text classification with
the specific use-case of assigning medical subject headings
(or MeSH terms) to biomedical articles. Trained annotators
at the national library of medicine (NLM) assign on an aver-
age 13 codes to each biomedical article, thus semantically in-
dexing scientific literature to support NLM’s PubMed search
system. Recent evidence suggests that effective automated
efforts for MeSH term assignment start with binary classi-
fiers for each term. In this paper, we use CNNs to build
binary text classifiers and achieve an absolute improvement
of over 3% in macro F-score over a set of selected hard-to-
classify MeSH terms when compared with the best prior re-
sults on a public dataset. Additional experiments on 50 high
frequency terms in the dataset also show improvements with
CNNs. Our results indicate the strong potential of CNNs in
biomedical text classification tasks.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Neural nets; H.3.1
[Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods
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1. INTRODUCTION
Text classification is an important problem with many ap-
plications in biomedicine. Specific problems such as iden-
tifying reportable cases of cancer from pathology reports,
recognizing particular phenotypes from clinical narratives,
determining the correct sense for the usage of an ambiguous
word given its context (word sense disambiguation), and as-
signing medical subject headings (MeSH terms) to biomed-
ical articles, can all be modeled as instances of the gen-
eral text classification problem. Traditional approaches to
text classification involve applying conditional models (e.g.,
logistic regression (LR), support vector machines(SVMs))
trained on features derived from the text including n-grams
and named entities. Further performance gains are usually
achieved with feature selection, data selection, and ensemble
approaches such as voting, bagging, stacking, and boost-
ing [40]. Deriving more interesting and relevant features
based on the particular domain of interest and the nature
of text are also popular additional enhancements, typically
termed as feature engineering. For example, emoticons and
hashtags form important new features for sentiment analy-
sis of Twitter data [20]. In biomedicine identifying negated
mentions of named entities and automatically deriving reg-
ular expression features from a set of domain specific seed
patterns have been shown to be effective [7]. Exploiting
definitional knowledge (concept glosses) and inter-concept
relations from an external domain specific knowledge base
such as the unified medical language system (UMLS) can
also provide performance gains [33]. Overall, applying lin-
ear classifiers with domain specific feature engineering and
ensemble modeling still produces state-of-the-art results for
text classification.

The resurgence of deep neural networks (or deep nets) has
paved ways to more general alternatives to supervised learn-
ing, especially in object classification. Deep nets obviate the
laborious process of feature engineering and take upon the
burden of automatically learning high level representations
of input instances that are better suitable for the classifi-
cation problem at hand. Deep nets have been initially ap-
plied to problems in computer vision but have been recently
adapted to natural language processing (NLP) tasks [3,9,22]
especially through learning distributed representations of
textual segments (words, sentences, documents) as vectors
in Rd. These vectors directly guide primitive tasks such as
part-of-speech tagging and statistical parsing as well as high
level tasks such as text classification and machine transla-
tion. Convolution neural networks (CNNs) take advantage



of the so called “convolutional filters” to automatically learn
features that are more suitable to the task at hand. They
have been actively used in biomedicine in image classifica-
tion even before deep learning became popular in the recent
past. However, CNNs and deep nets in general have not
been explored until recently for text classification, and are
currently used for sentiment/opinion mining [17, 19, 28] for
short texts with fairly balanced class distributions. Our mo-
tivation in this paper is to evaluate CNNs on longer texts
with highly skewed class distributions, a typical scenario en-
countered in biomedicine. We specifically demonstrate the
potential of CNNs for learning better binary classifiers to as-
sign medical subject headings (MeSH terms) to biomedical
articles when compared with more conventional approaches.

Indexing biomedical articles with concepts from the con-
trolled hierarchical MeSH vocabulary is an important task
that has significant impact on how researchers search and
retrieve relevant information. This is particularly essen-
tial given the exponential growth of biomedical articles in-
dexed by PubMedR©, the main search system developed by
the National Center for Biotechnology Information (NCBI).
PubMed lets users search over 22 million biomedical cita-
tions available in the MEDLINE bibliographic database cu-
rated by the National Library of Medicine (NLM) from over
5000 leading biomedical journals in the world. To keep up
with the explosion of information on various topics, users
depend on queries involving MeSH terms that are assigned
to each biomedical article. Once articles are indexed with
MeSH terms, users can quickly search for articles that per-
tain to a specific subject of interest instead of relying solely
on key word based searches. Besides this direct application,
recent efforts also demonstrated that using the set of MeSH
terms assigned to an article as its semantic proxy can be
helpful in high level applications such as literature based
knowledge discovery [8].

To mitigate indexing consistency issues and expedite the
indexing process, there have been many recent efforts by
researchers to develop automatic ways of assigning MeSH
terms for indexing biomedical articles including efforts in
the on-going BioASQ indexing challenge [32]. However, au-
tomated efforts (including ours) mostly focused on predict-
ing MeSH terms for indexing based solely on the abstract
and title text of the articles. This is because most full text
articles are only available based on paid licenses not sub-
scribed by many researchers. In this paper, we utilize re-
cent advances in text classification using CNNs for assign-
ing MeSH terms to biomedical articles based on the title
and abstract text of the article. Jimeno-Yepes et al. [35]
recently identified a set of nearly 29 hard-to-classify terms
based on automatic indexing efforts at the NLM. They use a
variety of classifiers in an ensemble setup and achieve better
results than NLM’s medical text indexer (MTI) program.
We use their dataset and employ a CNN model proposed by
Kim [19] to achieve an absolute improvement of over 3% in
macro F-score over these selected terms. In a very recent
attempt [15], Jimeno-Yepes et al. demonstrate the use of an
extensive set of features to obtain improved results over 50
high frequency terms in the same dataset used in their 2013
paper. On these 50 terms, we achieve about 1% improve-
ment in micro F-score and a comparable macro F-score. We
believe that our results are the first to demonstrate the util-

ity of CNNs for biomedical text classification especially for
the scenarios with extreme class imbalance.

We discuss essential background on automated efforts to
MeSH term assignment in Section 2 along with related ef-
forts that use neural networks for natural language process-
ing. In Section 3, we elaborate the specifics of the CNN
model we use in our paper. We describe the dataset used
for experiments, outline the methods compared, and specify
the settings used for the CNNs in Section 4. We present
and discuss our main results in Section 5 for three specific
groups of MeSH terms. We also provide a brief analysis on
what is actually being captured by the convolutions learned.
In Section 6, we provide new results based on our recent
experiments conducted for the 50 high frequency terms in
the dataset. Section 7 summarizes our results and identifies
some limitations of CNNs and directions for future work.

2. BACKGROUND
Assigning MeSH terms to biomedical articles is an instance
of the well known multi-label classification problem where
multiple labels from the MeSH vocabulary need to be as-
signed to each input instance, which is a biomedical article.
NLM initiated efforts in automatic MeSH term assignment
with their MTI program that exploits terms from already
tagged related citations in combination with named entity
recognition (NER), unsupervised clustering, ad hoc indexing
rules, and candidate term ranking heuristics in a pipeline [1].
MTI recommends MeSH terms for NLM indexers to assist in
their efforts to expedite the indexing process. A few recent
studies [13, 18] apply the k-NN approach to obtain MeSH
terms from a set of top k, already indexed, nearest neigh-
bors and use the supervised learning-to-rank approach with
novel features to rerank the MeSH terms from the neighbors.
Other researchers considered different machine learning ap-
proaches with novel feature selection [36] and training data
sampling [29] techniques.

A recent effort by Jimeno-Yepes et al. [14] uses a large
dataset and meta-learning to train custom binary classifiers
for each MeSH term and indexes the best performing model
for each label to be applied on new abstracts. This method
is typically known as the binary relevance approach where
separate datasets of positive and negative examples are built
for each label. Specifically, let T be the set of labels and let
q = |T |. Binary relevance learns q binary classifiers, one for
each label in T . It transforms the dataset into q separate
datasets. For each label Tj , we obtain the dataset for the cor-
responding binary classifier by considering each document–
label-set pair (Di,Yi) and generating the document-label
pair (Di, Tj) when Tj ∈ Yi and generating the pair (Di,¬Tj)
when Tj 6∈ Yi. The labels whose classifiers output a positive
decision are finally considered the assigned labels. Recent
state-of-the-art results [21] are obtained by combining the
k-NN approach with the binary relevance approach, where
the candidates from a few nearest neighbors are combined
with top few predicted candidates from the binary relevance
approach (based on classifier scores). This combined set
of candidates is then ranked using learning-to-rank with a
variety of features for each candidate that include neighbor-
hood similarity scores from the k-NN approach and classifier
scores from the binary relevance approach. Given this, we
note that building high accuracy binary classifiers is crucial



for MeSH term assignment and we use CNNs for this task
in this paper.

Neural word representations have been shown to capture
both semantic and syntactic information and a few recent
approaches learn word vectors [3, 9, 22] (as elements of Rd,
where d is the dimension) in an unsupervised fashion from
textual corpora. Deep nets have also been applied to sen-
tence/document level classification problems especially sen-
timent analysis and opinion mining with relatively smaller
and reasonably balanced datasets with few classes. Classifi-
cation models were developed for sentiment analysis to take
advantage of the structure of sentences. For instance in re-
cursive neural networks [28], words of a sentence are recur-
sively merged together using a nonlinear function until we
have single vector. The elements of this vector are then used
as features for classification. In our work, we build binary
MeSH classifiers using the CNN model by Kim [19], which is
closely related to time-delay neural networks and dynamic
convolutional neural networks described by Kalchbrenner et.
al [17]. Our main aims are to see if CNNs are helpful for
longer narratives (200 tokens per biomedical citation vs 20-
50 tokens per opinion/sentiment containing narratives) and
whether they can deal with large class imbalance for assign-
ing certain MeSH terms. In the next section, we present the
details of the CNN model.

3. CNN MODEL DETAILS
The goal of the model described in this section is to build a
binary classifier that outputs the probability estimates of un-
seen documents belonging to the positive class. This model
is recently proposed by Kim [19]; we add additional inputs
(see Section 6) to the softmax layer of this model besides
traditional CNN features. In this section we furnish addi-
tional details of the model starting with a more intuitive
explanation of CNNs and subsequently elaborating with a
more detailed specification of the model and the training
process.

The central concept in CNNs is the notion of convolution
filters (CFs) that are traditionally used in signal processing.
The general principle is to learn several CFs which are able
to extract useful features from a document for the specific
classification task based on the training dataset. This has
proven to be very useful in computer vision [38] where con-
volutions learn high level features of an image (e.g., curves
and faces). Before we go into the specifics, we provide a
high-level overview of convolutions for text classification.

3.1 Convolutions and CFs
A convolution is a binary operation involving the operands:
a segment of text and a specific CF, both of which are rep-
resented as real matrices for our purposes. The output is a
single real number. The matrix representation of the text
segment, which is typically a contiguous sequence of words
in the document, is composed of the word vectors of tokens
that constitute it. A CF is also a matrix of the same dimen-
sions as the text segment matrix. A specific CF operates on
all contiguous segments of a document using a sliding win-
dow producing as many real number outputs as there are
contiguous segments of a certain length in the document.
This sequence of real numbers is called the feature map as-
sociated with the particular CF being used. Different CFs

produce different feature maps, which can then be used as
features in text classification. The overview of the convo-
lution operation and CFs explained here forms the convo-
lutional layer of the CNN. There is a conventional softmax
layer that takes as input the feature maps and outputs class
probability estimates. The main idea is to learn CFs (that
is, the elements in the corresponding matrices) that give
better feature maps that optimize our objective function.
The learning process is based on predicting classes for train-
ing instances and making adjustments to the CF elements
through back propagation of the gradients of the objective
function (conditional log-likelihood of training data) being
optimized. In this intuitive explanation, we left out many
details including the mathematical definition of the convolu-
tion operation, the objective function, regularization (to deal
with overfitting), and the stopping protocol for the learning
process. The following section discusses these in detail.

3.2 Model Specification
The architecture of the full CNN model used is shown in
Figure 1. It has two layers including a single convolution
layer and a fully connected output (softmax) layer.

The base component in the model is a word vector x ∈ Rd,
where d is the dimension of the word vectors. A document
is represented as a matrix D ∈ Rn×d, where n is the number
of words in it and each row represents the word vector for
the corresponding token. To simplify the equations in this
section we will assume the ground truth for the document
Y ∈ R2 such that Y2 = 1 and Y1 = 0 (Y2 = 0 and Y1 =
1) when we are training on a positive (negative) instance.
This is more aligned with the two output nodes of the final
layer for the two corresponding classes (positive/negative)
for each binary classifier. Although a single node would have
been sufficient for binary classification, we chose to build
our model with multiple nodes to simply have the code set-
up for multi-class classification for other text classification
problems.

We define a CF W ∈ Rh×d, where h is the number of words
we wish the convolution filter to span, that is, the length of
the sliding window. Let the 2-D convolution operation ∗ be
defined as

W ∗Dj:j+h−1 =

j+h−1∑
i=j

d−1∑
k=0

Wi,kDi,k.

We next map a length h word window, Dj:j+h−1, of the doc-
ument to a real number cj ∈ R using a non-linear function
f as

cj = f(W ∗Di,j:j+h−1 + b), (1)

where b ∈ R represents the bias term. In this work f is
a rectified linear function [12, 23]. After convolving over
the entire document using W, we have the corresponding
convolved feature map

c(W) = [c1, c2, . . . , cn−h+1].

To overcome the issue of varying document lengths we per-
form max-pooling [10] operation

ĉW = max
i

c(W)i,



Figure 1: The CNN model layout

which gives a single feature ĉW corresponding to the fea-
ture map generated by W. However, we will learn several
CFs, say k of them, W1, . . . ,Wk, to create multiple fea-
ture maps leading to the corresponding single max-pooled
features ĉWt , t = 1, . . . , k. These form a final max-pooled
feature vector

ĉW = [ĉW1 , . . . , ĉWk ]T ,

where W = {W1, . . . ,Wk}.

After obtaining ĉW , we add a final softmax layer. Let U ∈
R2×k and bU ∈ R2 be the parameters of the softmax layer
with weighted inputs

yj = Uj ĉW + bUj (2)

and output label probability estimates

P (Yj = 1|D,W, b,U, bU ) =
eyj∑
i e

yi
, (3)

where Uj is the j-th row of U, bUj is the j-th element of bU ,
and Yj is the j-th label for the document corresponding to
matrix D.

If D is the set of training document matrices, to learn each
binary classifier we minimize

−
∑
D∈D

log(P (Y D
pos = 1|D,W, b,U, bU )), (4)

where pos = 1 (pos = 2) if the corresponding document is a
negative (positive) instance and Y D is the ground truth for
document represented by D. The parameters of the CNN
(W, b,U, bU from equation 4 and the word vectors) that min-
imize this are obtained by calculating the gradient and us-
ing back propagation with the stochastic gradient descent
approach. A subtle but crucial aspect that makes CNNs for

NLP tasks different from those used in computer vision is
that the base input components to the CNN, that is, the
word vectors, are also modified using back propagation in
addition to the traditional network weights. This is done by
treating the word vector elements as network weights of the
first and so called projection layer [27, Chapter 2] and mod-
ifying them just like any other network weight. However,
the vector elements for a given word only change when the
current instance contains that word, which happens often
if it is a common word or if the dataset is large. We used
the popular mini-batches [25] approach instead of updating
parameters for each example. CNNs also warrant multiple
epochs where the learning process goes through the entire
training dataset multiple times in optimizing equation 4.

Instead of using the well known l1 or l2 regularization we
use the dropout [30] option to prevent over-fitting during
training. Specifically, instead of passing yj (from equation 2)
to the softmax function in equation 3 during training, we
actually pass

ŷj = Uj(ĉW ◦ r) + bUj ,

where ◦ refers to element-wise multiplication and r ∈ {0, 1}k
is constructed with each ri drawn from the Bernoulli distri-
bution with parameter p (typically set to 0.5). Intuitively,
this means that gradients are backpropagated only through
unmasked elements where ri = 1. During test time we scale
the weights U such that

yj = pUj ĉW + bUj .

This down weighting is essential since at training, on av-
erage, only half of the U edges were active, which is not
true at test time. We also used early-stopping in order to
help combat over-fitting. Typically early-stopping is done
by simply terminating the training of the model when the
desired score on a held out validation dataset does not in-



crease in performance. However, we found this caused us to
stop too early. To combat this we stopped training if there
were 5 consecutive epochs in the training procedure that did
not increase the validation score. We only saved the model
on epochs that had an increase in F-score on the validation
dataset. For example, if there was an increase in F-score in
the second epoch on the validation dataset, and then train-
ing continued for five more epochs without any further in-
crease, we kept the model from the 2nd epoch. Additional
specifics on initialization of word vectors and CFs and other
parameter choices are discussed in the next section.

4. EXPERIMENTAL SETUP
In this section we discuss the dataset used in our paper along
with the MeSH terms for which we built CNN binary clas-
sifiers. We also discuss CNN model parameter settings and
other approaches compared with them. For all our experi-
ments we used the Python based Theano [4] platform.

4.1 Dataset and MeSH Terms Used
We use a publicly available1 dataset consisting of MEDLINE
citations from November 2012 to February 2013. It contains
89,942 biomedical citations for training, 5000 for validation,
and 48,911 for testing. The dataset, the MeSH terms for
which the classifiers are built, and the methods compared
with CNNs are those used in a prior effort by Jimeno-Yepes
et. al [35] to facilitate direct comparison. We compare our
model with 29 MeSH terms used in [35] split into three
groups. The three groups were created based on how NLM’s
MTI program performs on each term: check tags, low recall
terms, and low precision terms. Check-tags are a special set
of popular MeSH terms (e.g, Humans, Female, and Adult),
which are typically checked for each article to be indexed.
We built CNN models for the 12 popular check tags, the top
7 low recall terms, and the top 10 low precision terms based
on MTI’s judgments; so a total of 29 terms were considered
based on the three groups in [35]. The goal was to see if
the binary relevance approach based on supervised learn-
ing approaches can provide a better alternative to the k-NN
based approach employed in MTI. In [35], the authors also
conduct experiments on a fourth group of terms for which
MTI had zero recall. These terms are very rare (about 1% of
48,911 citations in the test set) and given we use a validation
dataset of only 5000 citations, we have excluded this group
from our evaluation after preliminary results showed that
there were not enough positive examples in the validation
dataset for early stopping.

4.2 CNN Parameters of Section 3.2
For all experiments, we used a word vector of size d = 300.
Each word vector is initialized with values drawn uniformly
from [−0.25, 0.25]. The CF W values and softmax layer
weights U are drawn uniformly from [−0.1, 0.1]. We used
three different CF sizes with window lengths h = 3, 4, and
5. For each of these filter sizes we used 100 feature maps cre-
ating a total of 300 feature maps per classifier. The models
were trained using AdaDelta [37], an adaptive learning rate
method for stochastic gradient descent with a maximum of
15 epochs per classifier. We also used mini-batches of size
50 and we zero-padded the document at the beginning as
needed. The dropout parameter p was set to 0.5. Some of

1http://ii.nlm.nih.gov/MTI_ML/index.shtml

these choices were based on settings used in the paper where
this CNN model was first used [19] and others were based
on our experimentation.

4.3 Methods Compared
The following list has a total of 13 types of models we com-
pare in our effort. The last four are based on CNN models
and the the rest of them are from Jimeno-Yepes et. al [35].

• Naive Bayes (NB)

• Logistic Regression (LR)

• Support Vector Machines (SVM)

• Support Vector Machines with Huber Loss (SVM HL)

• AdaBoostM1 (Ada)

• AdaBoostM1 with Oversampling (Ada Over)

• Medical Text Indexer (MTI)

• Vote 2 – This predicts a positive label if any two of
the preceding models make a positive prediction for any
given example.

• Vote 3 – This is the same as Vote 2 except it requires that
at least 3 of the base algorithms NB, LR, SVM, SVM HL,
Ada, Ada Over, or MTI predict any given label.

• CNN-rand – This is our first CNN model which uses ran-
domized initial word vectors and is trained as described
in Section 3.2.

• CNN-pre – This model initializes word vectors with those
obtaining from running Word2Vec [22] on all biomedical
citations in PubMed in the last decade except for in-
stances in the test set.

• CNN-Vote 2 – This model ensembles five CNN-rand mod-
els (with different word vector initializations) and one
CNN-pre model for each term. Predictions are made just
as in Vote 2, when at least two models make a positive
prediction.

5. MAIN RESULTS AND DISCUSSION
In this section we present and discuss results for each group
of terms using models in Section 4.3. The F-scores of the
models for the three MeSH term groups (from Section 4.1)
are shown in Tables 1–3. In these tables the ‘positive’ col-
umn refers to the number of positives examples in the test
dataset. The ‘prior-best’ column refers to the maximum F-
score taken over all non-CNN models (from [35]) enumerated
in Section 4.3 except MTI (we list MTI separately since it is
our baseline). However, the non-CNN models that involve
voting (Vote 2 and Vote 3) include MTI as a component of
the ensemble.

5.1 CNN Model Performance
For check-tags results (Table 1), MTI is not included because
for check-tags MTI has been modified to use AdaBoostM1
with oversampling instead of the k-NN method used for
other terms. The check tags group has an average of 8701
positive examples per label in the test set and is a popular
set of terms frequently used; most citations have at least

http://ii.nlm.nih.gov/MTI_ML/index.shtml


MeSH Term Positive Prior-best CNN-rand CNN-pre CNN-Vote 2

Adolescent 3824 0.4708 0.5028 0.4951 0.5335

Adult 8792 0.6225 0.6593 0.6491 0.6759

Aged 6151 0.6005 0.6378 0.6427 0.6516

Aged, 80 and over 2328 0.3753 0.3909 0.3932 0.4389

Child, Preschool 1573 0.5129 0.4963 0.5296 0.5417

Female 16483 0.7764 0.7820 0.7945 0.7863

Humans 35967 0.9337 0.9322 0.9407 0.9339

Infant 1281 0.4796 0.4912 0.4926 0.5378

Male 15530 0.7582 0.7690 0.7797 0.7748

Middle Aged 8392 0.6731 0.7019 0.6911 0.7058

Swine 285 0.7323 0.7233 0.7220 0.7282

Young Adult 3807 0.3973 0.4007 0.4207 0.4536

Table 1: The F-scores on test set for the check tags group

MeSH Term Positive MTI Prior-best CNN-rand CNN-pre CNN-Vote 2

Age Factors 889 0.0844 0.1748 0.2344 0.2469 0.2406

Brain 823 0.5201 0.4700 0.4640 0.4472 0.5014

Cell Line 781 0.2876 0.3059 0.2243 0.2847 0.2989

Cells, Cultured 1079 0.3046 0.3894 0.2893 0.3347 0.3979

Models, Molecular 851 0.4292 0.4763 0.3764 0.3740 0.4914

Molecular Sequence Data 1527 0.5495 0.5118 0.4047 0.4532 0.5178

RNA, Messenger 628 0.4477 0.4626 0.4675 0.3782 0.4743

Severity of Illness Index 751 0.1824 0.2415 0.2299 0.2152 0.2489

Time Factors 2153 0.0980 0.1513 0.1608 0.1574 0.2041

United States 2658 0.3585 0.4128 0.3956 0.4693 0.4613

Table 2: The per-term F-scores for the low-precision MeSH term group

Mesh Term Positive MTI prior-best CNN-rand CNN-pre CNN-Vote 2

Child 2780 0.5836 0.5854 0.6202 0.6154 0.6410

Follow-Up Studies 1470 0.0407 0.2741 0.2989 0.3337 0.3382

Reproducibility of Results 1206 0.3191 0.3722 0.3316 0.3344 0.3923

Retrospective Studies 2183 0.6608 0.6592 0.6695 0.6681 0.6756

Risk Assessment 1014 0.2556 0.2189 0.2369 0.2252 0.2661

Risk Factors 2365 0.4989 0.4774 0.4748 0.4716 0.4878

Treatment Outcome 2999 0.4202 0.4421 0.3875 0.3985 0.4553

Table 3: The per-term F-scores for the low-recall MeSH term group.



one check tag. Our results for this group in Table 1 show
that CNN models improve the F-score for all but one term
in the group. Interestingly, a single CNN with pretrained
word vectors seems to perform better than using an ensem-
ble of CNNs on very frequent terms such as Humans, Male,
and Female. This is not unexpected since our voting scheme
requires at least two models predicting a term. However, for
less frequent check tags, ensemble models prove to be very
useful. Finally, we also note that the our check tag scores
in Table 1 also show considerable improvement over another
prior effort that uses deep belief networks [34, Table 2].

The low precision group has an average of 1214 examples
per term. The low precision/recall situations are common
in unbalanced datasets due to the inherent complexity in
the particular class being predicted and also owing to un-
derfitting/overfitting issues in certain algorithms. However,
in Table 2 voting with CNNs consistently outperforms other
methods. Next, we look at the performance of the low re-
call group in Table 3. This group has an average of 2002
examples per label. Again we see that CNNs models per-
form better than other models except for one term for which
MTI performs better. Finally, we consider the macro aver-
age scores for all models in each term group in Table 4 to
assess their consistency. We can see that CNN ensembles
provide the best results. Overall, CNNs seem to perform
better than any other individual method. Ensembled CNNs
perform better than any individual method and better than
any ensemble method without CNNs.

Model Check Tags Low P Low R

MTI – 0.3262 0.3970

NB 0.4191 0.1504 0.2588

LR 0.5441 0.2682 0.3653

SVM 0.5549 0.2606 0.3647

SVM HL 0.5437 0.2654 0.3587

Ada 0.5237 0.1720 0.3398

Ada Over 0.5646 0.2764 0.3819

Vote 2 0.6072 0.3596 0.4315

Vote 3 0.5885 0.2825 0.3933

CNN-rand 0.6240 0.3247 0.4313

CNN-pre 0.6293 0.3361 0.4353

CNN-Vote 2 0.6469 0.3837 0.4652

Table 4: The macro-averaged F-scores for each in-
dividual method for all three groups.

The main difference between the CNN models we used and
other methods we compared with, such as the Linear SVM
and Logistic Regression, is that our method creates high
level abstractions using CFs. However, even in cases when
there is a small number of positive examples, CNN based
models perform better than all other methods. In Table 4,
CNN-Vote 2 is an ensemble containing only CNN models.
However, even in the low precision group which has, on
average, the least number of positive examples per term,
CNN-Vote 2 still achieves 2% improvement over the best

model that does not use CNNs. In all our voting models
in this section, we purposefully avoided including MTI as
a component model given the potential bias as the test set
articles are already indexed in PubMed when we conducted
our experiments. However, we believe using MTI as part
of the voting ensembles for new citations will yield better
performance since MTI also incorporates nearest neighbor
based predictions and as such offers complementary predic-
tive power.

5.2 Visualizing Convolutions
Given the results are promising, we wanted to see what the
CFs are actually capturing at a high level. For this we ap-
plied each of the CFs obtained after training the Humans

model to all trigrams in the test dataset. We then identi-
fied the top five trigrams when ranked based on the first
layer output score in equation 1. Table 5 shows four man-
ually selected CFs of the 100 we used. CF-2 seems to have
learned to capture information about small things, such as
nanoparticles and cells. Raman images are actually an imag-
ing/fingerprinting method for molecules. CF-4 seems to cap-
ture information from citations that are performing different
types of analysis, which may have to do with numerical prop-
erties. These results are interesting in that instead of just
learning to capture very specific important n-grams (like in
logistic regression), CFs seem to capture different topics or
aspects of the input citations to be classified.

6. ADDITIONAL EXPERIMENTS WITH FRE-
QUENT TERMS

In a recent paper [15], Jimeno-Yepes et al. used the same
dataset used in their prior effort and in our current effort
to conduct a comprehensive feature engineering study over
a set of 50 randomly selected high frequency terms from 63
terms that have a minimum frequency of 1500 citations in
the dataset. They select a large set of feature types includ-
ing named entities (and their hypernymic variants), journal,
author, and author affiliations of the citation, noun phrases,
and argumentative structure enhanced n-grams (based on
methods, results, and discussion components of structured
abstracts). They also treat title and abstract as separate
fields and consider the corresponding features as having dif-
ferent types. They also include as features term sets from
NLM’s MTI indexing program and its components includ-
ing the PubMed related citations (PRC) component that in
a sense fetches nearest neighbors of the input citation. Be-
sides the conventional SVMs with linear kernels, they also
used SVMperf [16] to directly optimize F-score (actually, a
function that lower bounds F-score), which is a non-linear
measure that cannot be directly optimized with traditional
classifiers.

We conducted experiments with our CNN models over the
same set of 50 high frequency terms (those used in [15])
whose results are shown in Table 6. In addition to the
straightforward macro average discussed earlier, we also com-
pute micro F-score over the 50 terms (where the contingency
table counts of all classifier outputs are pooled to compute
a single F-measure). As we can see, the single model with
pre-trained word vectors without any of the feature engineer-
ing described earlier has a better micro F-score compared
with the prior best score. However, the macro F-score is six
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generate strong evidence antibody conjugated nanoparticles variety of both mathematical model

academic performance in nanoparticles on intact temperament and character analysis thus we

of chemical reactions to raman images studies revealed survival like climate ph

theory and experiment of cells and electrochemical biosensor was of tumor uptake

techniques and vacuum membranes where the features of individuals benthic cyanobacterial mats

Table 5: Top five trigram activations from four different convolutions from the Humans check tag model

Model ID Model Micro-F Macro-F

1 Jimeno-Yepes Best Micro (SVMLight +MTI) 0.7135 0.5128

2 Jimeno-Yepes Best Macro (SVMperf with all features) 0.6922 0.5565

3 CNN-pre 0.7175 0.4963

4 CNN-pre+MetaMap+PRC 0.7170 0.5185

5 CNN-Vote 2 with Model 4 0.7200 0.5473

6 Model 5 and best single models for top four terms 0.7217 0.5482

Table 6: The micro and macro averaged F-scores for top 50 high frequency terms

points lower with the single pre-trained CNN. We note that
the outer softmax layer in Figure 1 can take other features in
addition to the CFs. Out of more than ten different types of
features used in [15], we use two of them: PRC component
based terms and named entities by running the named entity
recognition tool MetaMap [2]. Both these are components
of the MTI program. We did not use MTI predictions given
the articles in the test set are already indexed in PubMed.
Adding these two features to the softmax layer improves the
macro F-score over the pre-trained model by two percentage
points with negligible loss in micro F-score.

From the vote-2 model 5 in Table 6, our macro F-score is
lower by less than 1% compared with the best score produced
by extensive feature engineering with a 2.5% increase in mi-
cro F-score over the corresponding feature engineered model
that produced the best macro F-score. Model 6 is same as
model 5 except voting is not used for the top four frequent
terms, which is a natural choice given voting might decrease
the performance of very frequent terms. This improves both
micro and macro F-scores by 0.1% compared with model 5.
Thus, our analysis shows that a single CNN based voting
model (model 6) with two straightforward features (besides
the CFs) almost achieves (macro score) or improves (micro
score) over two separate feature engineered models that do
not achieve comparable macro-micro score combinations.

7. CONCLUDING REMARKS
In this effort, we demonstrated that CNNs with CFs over
word sequences are effective for biomedical text classifica-
tion in achieving new state-of-the-art scores over more tra-
ditional linear classifiers especially when there is significant
label imbalance. Specifically, using a well known public gold
standard dataset, we achieved a macro F-score improvement
of 3% over previous best scores on three specific groups of
hard to classify MeSH terms (Table 4). Additional experi-

ments over 50 high frequency terms also reveal that elabo-
rate feature engineering can also be minimized with CNNs
(Table 6) and that new features can be simply passed to
the outer softmax layer of the CNN to achieve better results
compared with using those features in traditional classifiers.
We believe our results will further improve if we incorporate
predictions from the MTI program given it offers a com-
plementary approach to our methods. We, however, chose
to exclude MTI terms from our experiments given poten-
tial bias that could occur with our particular test dataset.
Overall, our results demonstrate the strength of CNNs in
capturing high level features that lead to superior classifica-
tion performance over other approaches that involve several
well known linear classifiers with elaborate feature engineer-
ing and ensembling.

Next, we outline a few research directions we plan to ex-
plore in the immediate future. First, we will study deeper
CNNs utilizing more sophisticated max-pooling procedures.
In this effort we only have one convolutional layer followed
by a softmax layer. It would be interesting to look at the
types of higher order features CNNs generate at deeper lay-
ers for text classification. CNNs for image classification have
been widely studied and have been shown to produce very
interesting higher order features [38]. For text, topic mod-
els [5, 6, 31] have been extensively studied based on their
ability to represent documents as a distributions of ‘top-
ics’. Can deep models learn ‘topics’ or some other higher
order representation to help with different tasks? In this pa-
per, we only perform max-over-time pooling procedure after
a CF operates on sliding windows of a chosen size. How-
ever, dynamic max-pooling methods have been proposed for
text classification [17] with CNNs. Using a max-over-time
method loses a significant amount of information, especially
for long documents and we would like to explore these other
alternatives.



A caveat of CNNs is that even with early stopping they typ-
ically take at least an order of magnitude more time than
conventional classifiers. This is typically not an issue for
building high quality classifiers for few labels. However, in
multi-label classification scenarios over large label spaces,
using CNNs as part of the binary relevance approach, which
requires learning a different classifier per label, can be pro-
hibitive. So we will look at methods for expanding CNNs to
simultaneously predict over the entire label space of MeSH
avoiding the binary relevance approach. We will explore dif-
ferent loss functions that are already proposed for general
neural networks for multi-label classification [24, 39]. We
would like to see if a deep CNN with a multi-label output
can perform well on MeSH. Finally, we will explore methods
that take advantage of label correlations and prior structure
we know about the MeSH label space. While there have
been several methods that take advantage of label correla-
tions [26], few look at very large label spaces. There has
been work in computer vision that exploits prior informa-
tion about labels to improve prediction on classes that have
very few examples [11]. We would like to explore whether
they can be applied to a multi-label CNN for MeSH term
assignment.
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