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Abstract

In this work we address the problem of blind deconvolution and denoising. We fo-

cus on restoration of text documents and we show that this type of highly structured

data can be successfully restored by a convolutional neural network. The networks are

trained to reconstruct high-quality images directly from blurry inputs without assuming

any specific blur and noise models. We demonstrate the performance of the convolutional

networks on a large set of text documents and on a combination of realistic de-focus and

camera shake blur kernels. On this artificial data, the convolutional networks signifi-

cantly outperform existing blind deconvolution methods, including those optimized for

text, in terms of image quality and OCR accuracy. In fact, the networks outperform even

state-of-the-art non-blind methods for anything but the lowest noise levels. The approach

is validated on real photos taken by various devices.

1 Introduction

Taking pictures of text documents using hand-held cameras has become commonplace in

casual situations such as when digitizing receipts, hand-written notes, and public informa-

tion signboards. However, the resulting images are often degraded due to camera shake,

improper focus, image noise, image compression, low resolution, poor lighting, or reflec-

tions. We have selected the restoration of such images as a representative of tasks for which

current blind deconvolution methods are not particularly suited for. They are not equipped

to model some of the image degradations, and they do not take full advantage of the avail-

able knowledge of the image content. Moreover, text contains high amount of small details

which needs to be preserved to retain legibility. We propose a deblurring method based on a

convolutional network which learns to restore images from data.

In its idealized form, blind deconvolution is defined as the task of finding an original

image x, and possibly a convolution kernel k, from an observed image y which is created as

y = x∗ k+n, (1)
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Figure 1: Real photos deblured with a convolutional neural network.

where n is an independent additive noise. This is an ill-posed problem with infinite number

of solutions. The problem may remain ill-posed even in the absence of noise and when the

blur kernel is known (non-blind deconvolution). Fortunately, real images are not completely

random and the knowledge of their statistics can be used to constrain the solution.

A possible solution to the deconvolution problem is a minimization of a suitable cost

function, e.g.

x̂ = argmin
x

‖y− x∗ k‖2
2 + r(x). (2)

Here the data term ‖y− x∗ k‖2
2 forces the solution x̂ to be a plausible source of the observed

image. The regularizing prior term r(x) expresses knowledge of the image statistics and

forces the solution to be a “nice” image. Unfortunately, the process of capturing images with

real cameras is much more complex than Eq. (1) suggests. Atmosphere scatters incoming

light (haze, fog). Instead of being space-invariant, real blur depends on the position within

the image, on object distance, on object motion, and it interacts with chromatic aberrations of

the lens. The linear convolution assumption does not hold either. The image can be saturated,

cameras apply color and gamma correction, and colors are interpolated from neighboring

pixels due to Bayer mask. Many cameras even apply denoising and sharpening filters and

compress the image with lossy JPEG compression.

Some of the aspects of the real imaging process can be incorporated into Eq. (2), for ex-

ample by modification of the data term, but doing so increases computational complexity and

is often too difficult (e.g. space-variant blur [32], saturation [9], or non-Gaussian noise [4]).

It is sometimes not practical to model the imaging process fully and the unmodeled phenom-

ena is left to be handled as a noise.

In our work we propose an alternative approach to deconvolution by directly modeling

the restoration process as a general function

x̂ = F(y,θ) (3)

with parameters θ which can be learned from data. The function F(y,θ) implicitly incorpo-

rates both the data term and the prior term from Eq. (2). The advantage of this data-driven

approach is that it is relatively easy to model the forward imaging process and to generate

(x,y) pairs. In many applications, it is even possible to get the (x,y) pairs from a real imag-

ing process. Consequently, learning the restoration function F(y,θ) can be straightforward

even for a complex imaging system, as opposed to the extremely hard task of inverting the

imaging process by hand.

Convolutional neural networks (CNN) are the state-of-the art function approximators for

computer vision problems and are well suited for the deconvolution task – they can naturally
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incorporate inverse filters and, we believe, they posses enough computational capacity to

model the blind deconvolution process, including strong data priors.

We investigate whether CNNs are able to learn end-to-end mapping for deblurring of text

documents. Text is highly structured and the strong prior should allow to deconvolve images

locally even in blind setting without the need of extracting information from a large image

neighborhood.

CNNs were previously used to learn denoising [16], structured noise removal [11], non-

blind deconvolution [26, 35], and sub-tasks of blind deconvolution [27]. Our work is the

first to demonstrate that CNNs are able to perform state-of-the-art blind deconvolution (see

Figure 1). Locality, data-driven nature, and the ability to capture strong priors makes the

approach robust, efficient, easy to use, and easy to adapt to new data.

2 Related work

The key idea of general modern blind deblurring methods is to address the ill-posedness

of blind deconvolution by a suitable choice of prior (which then forms the regularizer r in

Eq. (2)), for example by using natural image statistics, or by otherwise modifying either the

minimized functional or the optimization process. This started with the work of Fergus et

al. [12], who applied variational Bayes to approximate the posterior. Other authors (e.g.

[1, 2, 18, 20, 28, 33, 34]) maximize the posterior by an alternating blur-image approach and,

in some cases, use rather ad hoc steps to obtain an acceptable solution. Levin et al. [22, 23]

showed that marginalizing the posterior with respect to the latent image leads to the correct

solution of the PSF, while correct prior alone might not – therefore these ad hoc steps are in

fact often crucial for some deconvolution methods to work.

Space-variant blind deconvolution is even more challenging problem, as the PSF also

depends on the position and the problem thus has much more unknowns. In such case, the

space of possible blurs is often limited, for example to camera rotations. The blur operator

can be then expressed as a linear combination of a small number of base blurs, and the

blind problem is solved in the space spanned by such basis [15, 19, 32]. Successful image

deblurring is further complicated by e.g. saturated pixels [9], the problem of unknown image

boundary in convolution [1], non-linear post-processing by the camera, and many more. In

short, modeling the whole process is, while perhaps possible, simply too complicated and

even state-of-the-art deblurring methods do not attempt to include all degradation factors at

once.

Images of text are markedly different from images of natural scenes. One of the first

methods specialized for text-image deblurring was [25] where Panci et al. modeled text

image as a random field and used the Bussgang algorithm to recover the sharp image. Cho

et al. [7] segment the image into background and characters, for which they use different

prior based on properties characteristic for images of text. Even more recent and arguably

state-of-the-art approach is the method of Pan et al. [24] which uses sparse l0 prior on image

gradients and on pixel intensities. Otherwise, these methods follow the established pipeline

of first estimating the blur kernel and then deconvolving the blurred image using a non-blind

method, which includes all the complications mentioned before.

Neural networks and other learning methods have been used extensively in image restora-

tion. The most relevant to our work are methods witch use CNNs to directly predict high-

quality images (as in Eq. (3)). Xu et al. [35] learn CNNs for space-invariant non-blind

deconvolution. They initialize first two layers with a separable decomposition of an inverse
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filter and then they optimize the full network on artificial data. This network can handle

complex blurs and saturation, but it has to be completely re-trained for each blur kernel. Jain

and Seung [16] learned a small CNN (15,697 parameters) to remove additive white Gaus-

sian noise with unknown energy. Eigen et al. [11] detect and remove rain drops and dirt by

CNN learned on generated data. They report significant quality increase with CNN over a

patch-based network. Dong et al. [10] learn a small 3-layer CNN with Rectified Linear Units

for state-of-the-art single image super resolution. Interesting and related to our work is the

blind deconvolution method by Schuler et al. [27]. They propose to learn a "sharpenning"

CNN for blur kernel estimation. In contrast to our work, their network is rather small and

they reconstruct the final image with a standard non-blind method.

3 Convolutional networks for blind deconvoution

We directly predict clean and sharp images from corrupted observed images by a convolu-

tional network as in Eq. (3). The architecture of the networks is inspired by the recently very

successful networks that redefined state-of-the-art in many computer vision tasks including

object and scene classification [29, 30, 37], object detection [13], and facial recognition [31].

All these networks are derived from the ImageNet classification network by Krizhevsky et

al. [21]. These networks can be reliably trained even when they contain hundreds of millions

weights [29] and tens of layers [30].

The networks are composed of multiple layers which combine convolutions with element-

wise Rectified Liear Units (ReLU):

F0(y) = y

Fl(y) = max(0,Wl ∗Fl−1(y)+bl), l = 1, . . . ,L−1

F(y) =WL ∗FL−1(y)+bL

(4)

The input and output are both 3-channel RGB images with their values mapped to interval

[−0.5,0.5]. Each layer applies cl convolutions with filters spanning all channels cl−1 of the

previous layer. The last layer is linear (without ReLU).

As in previous works [3, 11, 26, 35], we train the networks by minimizing mean squared

error on a dataset D = (xi,yi) of corresponding clean and corrupted image patches:

argmin
W,b

1

2|D| ∑
(xi,yi)∈D

||F(yi)− xi||
2
2 +0.0005||W ||22 (5)

The weight decay term 0.0005||W ||22 is not required for regularization, but previous work

showed that it improves convergence [21]. The optimization method we use is Stochastic

Gradient Descent with momentum. We set the size of clean patches xi to 16×16 pixels,

which we believe provides good trade-off between computational efficiency and diversity of

mini-batches (96 patches in each mini-batch). Size of the blurred training patches yi depends

on the spatial support of a particular network.

We initialize weights from uniform distribution with variance equal to 1
nin

, where nin is

the size of the respective convolutional filter (fan-in). This recipe was derived by authors of

Caffe framework [17] from recommendations by Xavier and Bengio [14].
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Table 1: CNN architecture – filter size and number of channels for each layer.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L15
19×19 1×1 1×1 1×1 1×1 3×3 1×1 5×5 5×5 3×3 5×5 5×5 1×1 7×7 7×7

128 320 320 320 128 128 512 128 128 128 128 128 256 64 3

L10 23×23 1×1 1×1 1×1 1×1 3×3 1×1 5×5 3×3 5×5

S 128 320 320 320 128 128 512 48 96 3

M 196 400 400 400 156 156 512 56 128 3

L 220 512 512 512 196 196 512 64 196 3

4 Results

We tested the approach on the task of blind deconvolution with realistic de-focus and camera-

shake blur kernels on a large set of documents from the CiteSeerX1 repository. We explored

different network architecture choices, and we compared results to state-of-the-art blind and

non-blind deconvolution methods in terms of image quality and OCR accuracy. We pur-

posely limited the image degradations to shift-invariant blur and additive noise to allow for

fair comparison with the baseline methods, which are not designed to handle other aspects

of the image acquisition process. To validate our approach, we qualitatively evaluated the

created networks on real photos of printed documents. The experimentes were conducted

using a modified version of Caffe deep learning framework [17].

Dataset. We selected scientific publications for the experiments as they contain an inter-

esting mix of different content types (text, equations, tables, images, graphs, and diagrams).

We downloaded over 600k documents from CiteSeerX repository from which we randomly

selected 50k files for training and 2k files for validation. We rendered at most 4 random

pages from each document using Ghostscript with resolution uniformly sampled form 240-

300 DPI. We down-sampled the images by factor of two to a final resolution 120-150 DPI

(A4 paper at 150 DPI requires 2.2 Mpx resolution). Patches for training (3M) and validation

(35k) were sampled from the rendered pages with a preference to regions with higher total

variation.

To make the extracted patches more realistic, we applied small geometric transformations

with bicubic interpolation corresponding to camera rotations in the document plane and de-

viations from the perpendicular document axis (normal distributions with standard deviation

of 1◦ and 4◦, respectively). We believe that this amount of variation may correspond to that

of automatically rectified images.

We combined two types of blur – motion blur similar to camera shake and de-focus

blur. The de-focus blur is an uniform anti-aliased disc. The motion blur was generated

by a random walk. The radius of the de-focus blur was uniformly sampled from [0,4] and

the maximum size of the motion kernel was sampled from [5,21]. Each image patch was

blurred with a uniqe kernel. A histogram of kernel sizes is shown in Figure 2 (bottom-right).

Gaussian noise with standard deviation uniformly sampled from [0, 7
255

] was added to the

blurred patches which were finally quantized into 256 discrete levels.

CNN architecture. Bigger and deeper networks give better results in computer vision

tasks [30] provided enough training data and computing power is available. Figure 2 (top-

1http://citeseerx.ist.psu.edu/
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Figure 2: Different CNN architectures. top-left – network depth; top-right – spatial support

size; bottom-left – channel number; bottom-right – distribution of blur-kernel sizes in dataset

left) shows Peak Signal to Noise Ration (PSNR) on the validation set for networks with

different number of layers (128 filters in each layer; size of first layer filters 23×23, other

layers 3×3). The deeper networks consistently outperform shallower networks.

The better results of deeper networks could be due to their higher computational capacity

or due to larger spatial support (2px per layer). To gain more insight, we trained multiple

networks with filter sizes in the first layer from 9×9 up to 35×35. These networks have

128 filters in the first layer, 3 filters 5×5 in the last layer (RGB), and 256 filters 1×1 in the

middle layers. These networks with three layers will be refered to as L03 and those with

five layers as L05. Figure 2 (top-right) shows that the spatial support affects performance

insignificantly compared the depth of the network. The optimal size of the first layer filters

is relatively small: 13×13 for L03 and 19×19 for L05. The same observations hold for a 10

layer network (L10-S from Table 1).

Another way to enlarge a network is to increase the number of channels (filters). Such

change affects the amount of information which can pass through the network at the expense

of quadratic increase of the number of weights and of computational complexity. Figure 2

(bottom-left) shows the effect of changing number of channels for networks L10 (see Ta-

ble 1) and L05 (first layer channels 128 (S), 196 (M), 220 (L); other layers 256 (S), 320 (M),

512 (L)). The reconstruction quality increases only slightly with higher number of channels,

while the effect of network depth is much stronger.

The largest and deepest network we trained has 15 layers and 2.3M parameters (L15

from Table 1). This network provides the best results (validation PSNR 16.06 dB) still

without over-fitting. Compared to convolutional networks used in computer vision tasks, this

network is still small and computationally efficient – it requires 2.3M multiply-accumulate

operations per pixel. Assuming 50% efficiency, contemporary GPUs, which provide peak

single-precision speeds exceeding 4 Tflops, should be able to process a 1Mpx image in 2s.

The network was trained for more than a weak on a single GPU.
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Figure 3: Artificial dataset and results. top – filters from test set; middle - examples from test

set with L15 CNN deblurring resuts; bottom-left – deblurring image quality; bottom-right –

OCR error on deblurred data

Image quality We evaluated image restoration quality on one hundred 200×200 image

patches which were prepared the same way as the training and the validation set. These

patches were extracted from unseen documents and the preference for regions with higher

total variation was relaxed to only avoid empty regions. A random subset of the regions

together with all 100 blur filters is shown in Figure 3. PSNR was measured only on the

central 160×160 region.

We selected 4 baselines. Two blind deconvolution methods – the standard method of

Xu and Jia [33], and the L0 regularized method by Pan et al. [24] which is especially

designed for text. In addition, we selected two non-blind methods as an upper bound on the

possible quality of the blind methods – total variation regularized deconvolution [5], and L0

regularized deconvolution which is a part of the blind method of Pan et al. [24]. Optimal

parameters of all four baseline methods were selected by grid search for each noise level

separately on an independent set of 25 images.
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Figure 4: CNN deblurring of challenging real images. More in supplementary material.

Figure 3 (bottom-left) shows results of all methods for different amounts of noise. L15

CNN clearly outperforms both reference blind methods for all noise levels. The non-blind

methods are better at very low noise levels, but their results rapidly degrade with stronger

noise – L15 CNN is better for noise with std. dev. 3 and stronger. Surprisingly, the network

maintains good restoration quality even for noise levels higher than for what it was trained

for.

Optical Character Recognition. One of the main reasons for text deblurring is to improve

legibility and OCR accuracy. We evaluated OCR accuracy on 100 manually cropped para-

graphs which ware blurred with the same kernels as the test set. The manual cropping was

necessary as OCR software uses language models and needs continuous text for realistic

performance. The 100 paragraphs were selected with no conscious bias except that width

of the selected paragraphs had to be less than 512px. The paragraphs contain in total 4730

words and 25870 chracters of various sizes and fonts2. We used ABBYY FineReader 11 to

recognize the text and we report mean Character Error Rate3 after Levenshtein alignment.

Figure 3 (bottom-right) shows results for different noise levels. The OCR results are very

similar to the deblurring image quality. Non-blind methods are the best for very low amount

of noise, but L15 CNN becomes better for noise level 3 and higher. The blind methods fail

2See supplementary material for examples.
3Character Error Rate can rise over 100% – we clipped errors at 100% when computing the mean.
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(a) blurred image (b) Xu and Jia [33] (c) L0Deblur [34]

(d) Cho and Lee. [8] (e) Zhong et al. [36] (f) Chen et al [6]

(g) Cho et al. [7] (h) Pan et al. [24] (i) CNN deblurring

Figure 5: A real image from [7]. The reference results are from [24]. The input of L15 CNN

was downsampled by factor of 3 compared to the other methods.

on many images and the respective mean results are therefore quite low.

Real images To create networks capable of restoring real images, we incorporated addi-

tional transformations into the simulation of the imaging process when creating the blurred

training data. The additional transformations are: color balance, gamma and contrast trans-

formations, and JPEG compression. This way the network effectively learns to reconstruct

the documents with perfect black and white levels. Figure 4 shows that the network was able

to restore even heavily distorted photos with high amount of noise. The presented examples

are at the limits of the CNN and reconstruction artifacts are visible. The network is not able

to handle blur larger than what it was trained for – in such cases the reconstruction fails

completely. On the other hand, it is able to handle much stronger noise and even effects like

saturation for which it was not trained. Figure 5 shows comparison with other methods on

an image by Cho et al. [7].

Discussion The results are extremely promising especially considering that the presented

approach naturally handles space-variant blur and that it processes a 1Mpx image in 5s even

in our non-optimized implementation. L15 CNN is small (9MB) and it would easily fit into

a mobile device.

To some extent, the network performs general deconvolution – it sharpens and denoises

images in documents and it produces typical ringing artefacts in some situations. However,

much of the observed performance is due to its ability to model the text prior which has to

be strong enough to disambiguate very small image patches (spatial support of L15 CNN is

only 50×50px). We observed better reconstruction quality for common words (e.g. "the",

"and") and relatively worse results for rare characters (e.g. calligraphic fonts, greek alpha-

bet). However, these effects are evident only for severely blurred inputs.

For computational reasons, we considered only relatively small-resolution images with
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correspondingly small characters and blur kernels. With the simple CNN structure we use,

it would be inefficient to process higher-resolution images – a more complex structure (e.g.

the "Inception module" [30]) would be needed.

5 Conclusions

We have demonstrated that convolutional neural networks are able to directly perform blind

deconvolution of documents, and that they achieve restoration quality surpassing state-of-

the-art methods. The proposed method is computationally efficient and it naturally handles

space-variant blur, JPEG compression, and other aspects of imaging process which are prob-

lematic for traditional deconvolution methods.

In the future, we intend to broaden the domain on which CNN deblurring can be ap-

plied, and we would like to increase the complexity of the network structure to make it more

efficient. A natural extension of the presented approach is to combine the deblurring with

character recognition into a single network. Character labels could help to learn reconstruc-

tion and vice versa. Alternatively, the deblurring task could be used to pre-train an OCR

network.
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