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Abstract—Very high throughput satellite (VHTS) systems are
expected to have a large increase in traffic demand in the near
future. However, this increase will not be uniform throughout
the service area due to the nonuniform user distribution, and the
changing traffic demand during the day. This problem is addressed
using flexible payload architectures, enabling the allocation of the
payload resources in a flexible manner to meet traffic demand
of each beam, leading to dynamic resource management (DRM)
approaches. However, DRM adds significant complexity to the
VHTS systems, which is why in this article, we are analyzing
the use of convolutional neural networks (CNNs) to manage the
resources available in flexible payload architectures for DRM. The
VHTS system model is first outlined, for introducing the DRM
problem statement and the CNN-based solution. A comparison
between different payload architectures is performed in terms of
DRM response, and the CNN algorithm performance is compared
by three other algorithms, previously suggested in the literature
to demonstrate the effectiveness of the suggested approach and to
examine all the challenges involved.

Index Terms—Bandwidth allocation, beamwidth allocation,
convolutional neural network (CNN), deep learning (DL), dynamic
resource management (DRM), flexible payload, machine learning
(ML), power allocation.

I. INTRODUCTION

V
ERY high throughput satellite (VHTS) systems have a

key role in supporting future 5G and broadcast terrestrial

networks [1], [2]. VHTS systems overcome the capacity of

traditional systems that provide fixed and mobile satellite ser-

vices using contoured regional footprints. The VHTS objective

is to achieve Terabit/s data rate per satellite in the near future
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[3], based on multibeam coverage with polarization schemes,

frequency reuse, and spectrum optimization [4].

Nowadays, VHTS systems provide uniform throughput over

the entire service area; however, traffic demands are expected to

be nonuniformly distributed over the service area since the user

distribution is not uniform within the coverage. This will result

in a system where some beams do not have the required capacity,

i.e., not meeting the traffic demands, whereas other beams

overcome the required capacity or, simply, wasting resources

[5], [6]. On the other hand, operators claim that one of the main

challenges in the design of future satellite broadband systems

is the way to increase the satellite revenues while addressing

uneven and dynamic traffic demands. In that sense, flexible

payload is a promising solution to meet changing traffic demand

patterns [3], [7]–[9].

Most of the existing satellite communication (SatCom) pay-

loads do not offer any flexibility in terms of neither bandwidth

nor coverage. Power flexibility can be instead achieved by mod-

ifying the working point of the on-board amplifier according to

the transponder loading. Recently, research interests have been

focusing on designing a new generation of flexible satellite pay-

loads enabling dynamic resource management (DRM) [7]–[9].

Cocco et al. [10] represent the problem of radio resource

allocation for VHTS as an objective function that minimizes the

error between the offered and the required capacity. However,

extensive analysis is required for both the payload architecture

design and resource management.

The next-generation VHTS systems will provide Terabit con-

nections using advanced flexible payloads, which will allow

the redirection and reconfiguration of beams, in addition to

individual per-beam power and bandwidth allocation. Thus,

DRM techniques for SatCom will be a key for operators [11].

While it may seem feasible to achieve a solution to this problem

through optimization techniques, on a larger scale, the number

of resources to be managed, the constraints coming from the

system and the infinite number of traffic demand situations

may lead to a problem that cannot be solved by conventional

techniques [12]. To solve this problem, Liu et al. [13] sug-

gested an assignment game-based dynamic power allocation

(AG-DPA) to achieve suboptimal low complexity in multibeam

satellite systems. The authors compare the results obtained with

a proportional power allocation (PPA) algorithm, obtaining a

remarkable advantage in terms of power saving; however, the

management of resources is still insufficient for the required

demand.
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Recently, there is an increasing amount of research effort

proposing to solve the problem of DRM in SatCom using ma-

chine learning (ML) techniques. In this sense, Ferreira et al. [14]

discuss the reason why ML techniques should be used instead

of traditional optimization techniques for resource allocation

in SatCom. The authors comment that when the number of

communication resources and the selection of a set present

contradictory objectives, the use of traditional optimization tech-

niques is limited. Alternatively, the use of ML techniques in

SatComs overcame some of the limitations of other approaches

to resource allocation in cognitive radios.

To this aim, the interest to use ML algorithms in satellite

systems has increased recently [14]–[16]. There have been some

technological advances in the use of ML on-board communica-

tions satellites (e.g., by NASA for cognitive space communica-

tions) [17]–[19]. On the other hand, a model for satellite image

motion blurring using a convolutional neural network (CNN)

is proposed in [20], and the results obtained confirm that the

proposed method reliably eliminates more motion blurring than

conventional methods. In this regard, a new method for satellite

rapid positioning using neural network based beam scanning is

proposed in [21].

In [22], the application of reinforced learning to manage com-

plex space links operations occurring in LEO and Deep Space

missions shows promising results. Here, authors propose the use

of software-defined radio technology to enable the flexibility and

configurability that future cognitive communication missions

will require, thus allowing the system to adapt to changes using

software updates.

Ortiz-Gomez et al. [23], [24] propose to solve the DRM prob-

lem using a neural network through a classification algorithm,

where classes correspond to all the possible configurations of

payload resource allocation. The management of the payload

resources is performed in an autonomous way; the main advan-

tage of this methodology is that the management is performed

with a low computational cost, since the neural network training

is performed offline. However, this methodology has several

challenges; one of them is the exponential dependence of number

of classes on the number of beams in addition to possible

variations of power, bandwidth, and/or beamwidth, resulting in

unsolvable problems due to flexibility increase.

Liu et al. [16] suggest a novel dynamic channel allocation

algorithm based on deep reinforcement learning (DRL-DCA) in

multibeam satellite systems, where the results showed that this

algorithm can achieve a lower blocking probability, compared to

traditional algorithms; however, the joint channel and the power

allocation algorithm is not taken into consideration. Preceding

with the previous algorithms, based on the deep reinforcement

learning (DRL) architectures, Ferreira et al. [14], [15] demon-

strated that a feasible solution to real-time and single-channel

resource allocation problems can be designed. However, in their

proposed study, DRL architectures are based on quantizing the

resources before they are allocated, whereas satellite resources,

such as power, are inherently continuous. In that sense, Luis

et al. [25] explore a DRL architecture for power allocation that

uses continuous and state action spaces, avoiding the need for

discretization. Nonetheless, the policy is not optimal, as some

demand is still being lost.

The operation of DRL algorithms for DRM has proven to have

great advantages among the various ML algorithms; however,

latency has a vital role in SatCom. Hence, the great disadvantage

of DRL algorithms is the additional latency due to the online

processing delay. When the algorithm is implemented offline, the

DRM functions as an intelligent switch for the SatCom system,

reducing the added latency [23].

Some of the recent literature considers that DRM is able to

take into account only two possible flexible resources [10], [11],

[23], i.e., power and bandwidth, whereas other studies consider

that only one flexible resources can be handled [14], [15], [25].

Differently from previous approaches, the main objective of this

article is to solve the DRM problem using an ML algorithm based

on CNNs.

The main contributions of this article can be listed as follows.

1) CNN algorithm is suggested and allows us to implement

offline the system, thus avoiding the latency problems in

DRL.

2) A novel system model and cost function are suggested that

allows for an optimal solution, which determines how to

match resources to a demand pattern while minimizing the

resource consumption of satellites.

3) Differently from previous approaches, we consider three

possible flexible resources for the study of DRM, i.e.,

power, bandwidth, and beamwidth.

4) In this article, a comparison is made between different

flexible payloads according to the three previously identi-

fied resources.

The CNN algorithm performance is compared with three

other algorithms: PPA [13], AG-DPA [13], and classification

algorithm [23].

The article is organized as follows. Section II includes the

considered system model and the problem statement, Section III

presents the CNN-based algorithm, Section IV presents the

simulation results and the analysis of the case study, and finally,

Section V concludes the article. In the Appendix, the CNN

design for the considered DRM problem is outlined.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, the system architecture is introduced, and the

DRM problem is defined.

A. System Architecture

In Fig. 1, the high-level model of the system is depicted.

The considered payload is supposed to be able to manage in

a flexible way, three resource types, i.e., power, bandwidth,

and beamwidth, similar to that in [26] and [27]. The flexibility

in these resources is achieved using the architecture shown in

Fig. 1.

From the technological point of view, the flexible power

allocation can be obtained through traveling wave tube ampli-

fiers adapting the input back-off. At the same time, the flexible

payload must be able to separate the signals into frequency

blocks and then rearrange them to obtain a flexible bandwidth;

this process requires a channelizer on board the satellite, as

mentioned in [27], able to identify the frequency plan (color
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Fig. 1. System architecture.

assignment by frequency and polarization). The proposed sys-

tem has a four-color frequency plan (two frequencies and two

polarizations). Finally, to achieve flexibility in beamwidth, the

output multiplexer of the traditional payload must be replaced by

beam forming networks (BFNs). The BFN configuration change

is halfway between the possibility of synthesizing any beam and

the possibility of choosing from a set of configurations for the

same coverage [7].

The proposed system manages communication resources in

response to changes in traffic demand. The payload manager

receives the input data from the gateways and the user beams,

and, then, generates an optimal control through the payload

control center using a DRM and sends it to the satellite. This

in turn affects the downlinks of the users.

In the following, we consider that the system is composed

by B beams, in which the overall bandwidth is BW and the

transmission power of the bth beam is Pb.

B. Link Budget

We assume that capacity Cb offered by the bth beam depends

on the bandwidth allocated to the beam, BWb, and the spectral

efficiency in the beam, SEb

Cb = BWb SEb (1)

SEb = f1 (CINRb) (2)

whereSEb is the spectral efficiency of the modulation and coding

scheme of a commercial reference modem used to obtain the

capacity of each beam [28]. Hence, in (2), the variation of the

spectral efficiency of each beam with the carrier to interference-

plus-noise ratio (CINRb) is modeled through a generic function

f1(·) as in [3] and [28].

A bent-pipe transponder architecture is considered in the

satellite. The feeder link from the gateway to the satellite is not

considered in the forward link because different technologies

are considered for guaranteeing the total link budget, such as

uplink power control, and gateway diversity [29], [30]. In this

sense, the downlink link budget in the user link can be written

as

10
−CINRb

10 = 10
−CIRb

10 + 10
−CNRb

10 (3)

where

CIRb = Pb − Ib (4)

Ib =
Φ
∑

ϕ=1

Pco (φ, θb) (5)

CNRb = Pb +Gb +Gu − Lb − 10

· log10 (k · Tsys)− 10 · log10 (BWb) (6)

Lb = LFS,b + Latm,b + LRF,b + LRF,u (7)

Gb = f2 (θb) . (8)

CINRb, CIRb (i.e., carrier to interference ratio), and CNRb

(i.e., carrier to noise ratio) are expressed in decibel. CIRb in

(4) represents the ratio of the power allocated at bth beam

(Pb, in dBW) to the interference power at bth beam (Ib, in

dBW). The beam gain must be evaluated for the bth beam in

the service area and it depends on θb, which is the beamwidth,

i.e., the 3-dB aperture angle of the bth beam. The sidelobes of

the satellite antenna pattern are taken into consideration only

for the calculation of the cochannel interference due to spatially

separated cochannel beams (the same color in the frequency

plan). The cochannel interference power (Ib) is a function of the

frequency reuse scheme and θb, and can be calculated, assuming

the cochannel beams set in the system (5), whereϕ represents the

ϕth interferer spot, Φ is the total number of interfering beams of

the beam b, and Pco is the power level (in W) of ϕth interference

inside the bth beam.

The traditional calculation of the CNRb is defined as a func-

tion of the beam power (Pb, in dBW), beam gain (Gb, in dB),

and bandwidth (BWb, in Hz) assigned to each beam as presented

in (6). Gb represents the beam antenna gain in the user location,

whose dependence with beamwidth (θb) can be modeled through

an adequate function f2(·) [3]. CNRb depends on the antenna

gain of the user (Gu, in dB), the Boltzmann constant (k, in

W/K·Hz) and the system temperature (Tsys, in K). In addition,

free space loss, atmospheric loss [31], transmission loss, and

receive loss (LFS,b, Latm,b, LRF,b, and LRF,u respectively, in

dB) are included for total link loss (Lb, in dB).

C. Traffic Model

In [32], traffic models representing realistic operating scenar-

ios are introduced. The authors consider four different datasets

that provide measurements for all beams and cover a sufficiently

long time-window. These data were provided by SES S.A.; by

exploiting these datasets, the authors aim to represent, first, the

demand behavior during a typical daily operation cycle, and

second, the unfrequented cases that could lead to major service

failures if the algorithms do not provide adequate results.

The reference model used in [32] represents the throughput

demand in a typical commercial scenario, where a higher data

rate is requested during specific time intervals of the day.

It is possible to define x as a specific geographic area of 1 km2

and Ab as bth beam area (in km2). In this sense, rx(t) is defined

as the required throughput density per km2 (in bps/km2) inside

x at time t, rb(t) as expected value over all the area inside bth
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Fig. 2. One-day cycle of traffic demand per beam.

beam at time t (in bps/km2) and the requested traffic for the bth

beam Rb(t) (in bps) is defined as

Rb (t) = rb (t) ·Ab (9)

rb (t) = E [rx (t)] (10)

The throughput density per km2 depends on the through-

put per user (Cu, in bps/user), the population density (Dx, in

inhabitant/km2), the penetration rate (Fx, in user/inhabitant), and

the concurrence rate that depends on the time of day (Tx(t)),
hence

rx (t) = Cu ·Dx · Fx · Tx (t) . (11)

To this aim, the variation of the concurrence rate throughout

the day (Tx(t)) is obtained by simulating the behavior of the

data presented in [32]. The traffic demand in each beam behaves

as shown in Fig. 2, in which the traffic demand varies depending

on the time of day. The figure shows a one-day cycle of traffic

demand in two different beams (number 1 and 37).

D. DRM Cost Function

The DRM must manage the available resources to minimize

the error between the offered capacity in each beam (Cb) and

the required capacity (Rb) while optimizing the used resources

(power, bandwidth, and beamwidth) over time. In that sense, the

DRM cost function is defined as

min
Pb(t),BWbc(t),θb(t)

F1 → F1 =
α

B

B
∑

b=1

|Cb (t)−Rb (t)|

+
β

B

B
∑

b=1

EIRPb (t) +
γ

B

Nc
∑

c=1

Bc
∑

bc=1

BWbc (t) (12)

where

Cb (t) = f3 (Pb (t) ,BWbc (t) , θb (t)) (13)

EIRPb (t) = f4 (Pb (t) , θb (t)) (14)

subject to
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Cb(t) ≥ Rb(t), if Pb(t) < Pmax,b , θb(t) < θmax

and BWbc(t) < BWmax,b

Cb(t) = Cmax(t), if Pb(t) = Pmax,b, θb(t) = θmax

and BWbc(t) = BWmax,b

(15)

B
∑

b=1

Pb(t) ≤ Pmax,S (16)

Bc
∑

bc=1

BWbc(t) ≤ BWmax,c (17)

θb(t)ǫ {θ1, θ2, . . . , θmax} ∀ b, t (18)

where the beamforming antenna generates B beams over the

coverage area. The offered capacity by bth beam at the time t,

Cb(t) (in bps), must change as it depends on Rb(t) (in bps), the

required capacity in the bth beam at the time t.

The DRM cost function is proposed in (12), aiming at mini-

mizing three parameters for each time instant t. The first param-

eter is the error between the offered capacity and the required

capacity, where α (in s/b) is the weight of the error in the cost

function. The second parameter to be minimized is total effective

isotropic radiated power (EIRP), which is assigned to all the

beams (in W), where β (in 1/W) is the weight of the total EIRP;

the third parameter to be minimized is the total bandwidth (in

Hz) that is assigned to the beams of each color (BWc) within the

frequency plan (Nc is the number of colors in the frequency plan),

and where γ (in 1/Hz or s) is the weight of the total bandwidth

assigned in each color of the frequency plan.

From (13), the offered capacity in the bth beam at time

t, Cb(t) is a function f3(·) on the power [3], beamwidth, and

the bandwidth assigned to the bth beam at time t (Pb(t), θb(t),
and BWbc(t), respectively). On the other hand, EIRP of the bth

beam at instant t, EIRPb(t) is a function f4(·) on the power and

beamwidth assigned to the bth beam at time t (14) [3].

Equation (15) introduces the minimum capacity constraint,

stating an important limitation of the proposed cost function,

where the offered capacity must be greater than or equal to the

required capacity for each beam, with the condition that the

power, beamwidth, and bandwidth allocated to the bth beam

at time t are less than the maximum allowed for each beam

(Pmax,b, θmax and BWmax,b). In case the offered capacity

cannot satisfy the beam requirement constraint, the capacity

offered on the bth beam shall be the maximum possible value.

Equations (16) and (17) represent the other two constraints of

the cost function. These constraints are that the total power used

(i.e.,
∑B

b=1 Pb(t)) should not be greater than the maximum total

system power (Pmax,S), and the total bandwidth allocated in

each colour of the frequency plan (i.e.,
∑Bc

bc=1 BWbc(t)) should

not be greater than the available bandwidth per color (BWmax,c).

In addition, the beamwidth of the bth beam must belong to the

set of possible configurations previously established (18). The

selected beamwidths must meet the requirement of completely

covering the entire service area.

III. CNN-BASED DRM ALGORITHM

A CNN algorithm handling resource allocation is the main

part of the proposed DRM. The CNN determines how to match

resources to a demand pattern while minimizing the resource

consumption of satellites.
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Fig. 3. CNN architecture.

Other ML algorithms are capable of providing solutions for

time-variant data; however, a CNN architecture has been chosen

because the distribution of traffic demand in the service area can

be represented by a spatial dependence and CNN networks have

demonstrated good performance in exploiting the features of

spatial distributions [33], [34].

The training of the CNN is performed offline so that from the

SatCom system point of view, the CNN will be operating as an

intelligent switch performing the DRM.

In this section, we introduce the proposed CNN algorithm

for managing the dynamic resources. For more details on CNN

operations, the CNN architecture is introduced in the Appendix,

whereas more general details on CNN can be found in [33]–[35].

A. CNN Architecture

A CNN is a deep learning (DL) algorithm that can take an

input and assign importance (weights) to various aspects or

objects in the input in order to distinguish one from another.

The preprocessing required in a CNN is much less compared

to other classification algorithms [33]–[35]. In that sense, CNN

can successfully capture the spatial and temporal dependencies

in the input through the application of relevant filters. The CNN

architecture is optimized in comparison with other classification

algorithms in order to improve the processing performance of

a dataset due to the reduction of the number of parameters and

the reuse of the weights. Thus, the CNN can be trained to better

understand the complexity of the neural network input.

Fig. 3 presents a typical CNN architecture. In order to under-

stand its behavior, it is divided into four main CNN operations:

1) convolution;

2) nonlinearity with a rectifier linear unit (ReLU);

3) pooling or subsampling;

4) classification (full-connected layer).

One of the most typical CNN applications is image classi-

fication. In image classification, the channel is a conventional

term used to refer to a certain component of an image, e.g., the

red, green, and blue channels of an image taken from a standard

digital camera. In other words, an image from a standard digital

camera has three channels: red, green, and blue. The channels

can be seen as three 2-D matrices stacked together (one for each

color), meaning at the CNN input, we have a tensor of matrices

[35].

CNNs derive their name from the "convolution" operator. The

main goal of convolution in the case of a CNN is to extract

features from the input image (tensor of matrices). Convolution

Fig. 4. Adaptation in the input layer.

preserves the spatial relationship between pixels by learning the

features of the image using small input data squares.

The ReLU is an element-based operation and replaces all

negative element values in the characteristics map with zero.

The purpose of ReLU is to introduce nonlinearity into the CNN

[33].

On the other hand, the spatial clustering (also called pooling

or subsampling) reduces the dimensionality of each feature map

but retains the most important information. The result of the

convolutional and pooling layers represents high-level features

of the input. The purpose of the full-connected layer is to use

these features to classify the input image into various classes

according to the training dataset [33]–[35].

CNN belongs to the collection of supervised DL algorithms,

so two sets of data are required for its functioning: the training

data and the test data. Observations in the training set form

the experience used to learn by the algorithm. In supervised

learning problems, each observation consists of one observed

output variable and one or more observed inputs, whereas test

data are a set of observations used to evaluate model performance

using some efficiency metrics, such as accuracy [33]–[35].

B. CNN for DRM

In this article, we propose to adapt CNN architecture, usually

considered in image classification problems, for solving the

DRM problem. The adaptation of the traditional CNN archi-

tecture has been performed in the input layer and in the output

layer to solve the DRM problem.

Fig. 4 represents the adaptation in the input layer where there

is a tensor of matrices, and each matrix represents the required

capacity at each geographical position in the service area. The

service area does not have a regular geometrical shape, so the

geographical coordinates contained in each matrix outside the

service area are padded to zero. With this adaptation, the depth

of the matrix tensor does not represent the channels in an image,

though it stands for the time instants (states) in which the system

is evaluated. That is, the depth of the matrix tensor is given by

the vector {t, t − 1, t − 2, ..., t − T}, where t is the current time

instant and T is the time window size.

Depending on these features; constraints and flexibility of the

payload; there is a set of possible configurations for allocating

resources in the beams. These possible configurations are coded
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Fig. 5. Adaptation in the output layer.

Fig. 6. Scheme of the different layers of the CNN for DRM.

in a vector of size L, representing the number of possible

configurations of the payload resources. By exploiting this, the

CNN has, in the output layer, the configuration that minimizes

the cost function in (12) for the conditions of the input layer.

This is shown in Fig. 5.

Fig. 6 shows the scheme of the different layers of the CNN.

The input layer is a matrix tensor with the required capacities in

each geographic coordinate. The convolution layers are used to

obtain the main features of the traffic demand in the geographic

coordinates. The full-connected layers are used to allocate the

resource configuration with the features obtained in the convo-

lution layers. The output layer results in a resource allocation

that minimizes the DRM cost function (12).

In convolutional layers, single neurons in a perceptron are

replaced by matrix processors, thus they perform an operation on

the input matrix data, rather than on a single numerical value. For

a better understanding, in the Appendix, the CNN architecture

and related parameters are explained with additional details. The

output of each convolutional neuron is calculated as [33]

Yj = g1

(

pj +
∑

i

Kij ⊗ Yi

)

(19)

where Yj , the output of the jth neuron, is a matrix calculated

as linear combination of the outputs Yi of the neurons in the

previous layer, each operated with the convolutional Kij kernel

corresponding to that connection; this amount is added to a pj
connection and then passed through a nonlinear activation func-

tion g1(·). The convolution operator has the effect of filtering

the input matrix with a previously trained kernel.

After the convolution layers, the data finally reach the full-

connected layers, where the data are then debugged; thus, these

layers implement the resource configuration that minimizes the

DRM cost function (12). The neurons in these layers work

identically to those in a multilayer perceptron, where the output

of each perceptron of each layer is calculated as [33]

yj = g2

(

pj +
∑

i

wij · yi

)

. (20)

The output yj of the jth neuron is a value that is calculated

as the linear combination of the outputs yi of the neurons in the

previous layer, each multiplied with a weight wij corresponding

to that connection. This amount is added to an influence term pj
and then passed through a nonlinear activation function g2(·).

The CNN cost function is represented by the error between

the expected and the obtained value

F2 =
1

D

D
∑

d=1

Q (ỹ,Ω) (21)

where

Ω = f5 (W,K) (22)

where Ω is used to denote the CNN configuration. That is, Ω is a

function f5(·) of W and K, the values of the weights and biases,

whereas D is the size of the training set, Q(·) is a function to be

determined by CNN configuration, and ỹ represents the expected

values [33].

Training data are generated with the traffic demand model

defined in (9) and (10), and the labels designated (Y) for training

are obtained with the DRM cost function (12).

CNN training is performed with the backpropagation algo-

rithm [34]. An accuracy parameter is defined for this purpose,

where accuracy is a metric for measuring the performance of

CNN and is defined as ratio of the total number of times the

correct resource configuration was allocated (RAcorrect) to the

total number of times a resource configuration was allocated

(RAtotal), i.e.,

Accuracy =
RAcorrect

RAtotal
. (23)

The proposed system manages the communication resources

in response to changes in traffic demand. The payload manager

receives the input data from the gateways and the user beams,

generates an optimal control through the DRM, and sends it to

the satellite. This in turn affects the downlinks of the users.

A CNN algorithm that handles resource allocation is at the

kernel of the DRM (see Fig. 7). The CNN determines how

to match resources to a demand pattern while minimizing the

resource consumption of satellites. The training of the network

is performed offline so that for the SatCom system the CNN

represents an intelligent switch that works as a DRM.



ORTIZ-GOMEZ et al.: CNNs FOR FLEXIBLE PAYLOAD MANAGEMENT IN VHTS SYSTEMS 4681

Fig. 7. CNN-based DRM algorithm.

TABLE I
ARCHITECTURE OF THE CNN

The software tool chain used to implement CNN consists of a

Jupyter development environment using Keras 2.0. CNN, which

has been defined using four convolutional layers (Conv) and

two full-connected layers (FC), as shown in Table I. The first

convolutional layer, Conv1, consists of 16 kernels, each of them

10× 10 in size. The second convolutional layer, Conv2, consists

of 16 kernels, each with a size of 8 × 8. The third convolutional

layer, Conv3, consists of 32 kernels, each with a size of 5 × 5,

and Conv4 consists of 32 kernels, each with a size of 3 × 3. The

first full-connected layer, FC1, remodels the output of Conv4

using a flatten layer. The second layer (FC2) is connected to the

classification layer. The input in the Conv1 layer represents the

size of the input layer tensor, with matrices of 256 × 256 and a

depth equal to T (i.e., time window size). One pooling layer is

added after each convolutional layer, using the maximum value

of 2 × 2 size to reduce the size of the convolutional layers. The

TABLE II
DIFFERENT PAYLOAD ARCHITECTURES

classification layer provides the L probabilities that, given the

received input, the lth resource configuration corresponds.

C. Performance Evaluation

To evaluate the performance of the DRM algorithm, two

key performance indicators (KPIs) are proposed with which an

important tradeoff can be observed.

The first KPI is defined as the normalized mean error of the

DRM algorithm

KPI1 =
1

B · ρ

B
∑

b=1

|Cb −Rb| (24)

where ρ is the normalization parameter. The normalization pa-

rameter allows the comparison of the different DRM algorithms

performance when used in different traffic demand scenarios.

The second KPI is the power saving [13], defined as

KPI2 =
PTotal,UPA

PTotal,Alg
(25)

where PTotal,UPA is the total payload power when using a

uniform power allocation (UPA) and PTotal,Alg is total payload

power when using the power allocation using the proposed

algorithm.

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, the numerical results obtained in a reference

scenario are presented, comparing the performance of the pro-

posed CNN approach with the PPA, AG-DPA, and classification

algorithms [13], [23]. The selected reference scenario corre-

sponds to a multibeam coverage for Europe and the Mediter-

ranean basin with 82 beams, similar to the coverage currently

provided by KA-SAT [36].

Table II shows the characteristics of the eight different payload

architectures that have been evaluated using a CNN for DRM. In

order to analyze the advantage of the proposed CNN approach,

we considered different payload architectures achieved by ex-

ploiting three parameters (i.e., beamwidth, bandwidth per beam,

and power per beam) in a flexible way.
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The flexibility obtained by changing the beamwidth provides

the possibility of generating irregular beams coverage, allowing

the adaptation to changing requests. However, the flexibility of

the beamwidth size depends on the definition of the BFN [7].

In this sense, three possible beamwidth sizes are considered

(see Table II). Each payload has fixed or flexible parameters

according to the features presented in Table II.

These parameters represent the resource allocation per beam.

The fixed parameters are power with 15 dBW, bandwidth with

250 MHz, and beamwidth with 0.60°. The flexible parameters

are: power 8–15 dBW with steps of 0.5 dB, bandwidth 100,

200, or 250 MHz, and beamwidth 0.55°, 0.60°, or 0.65°. The

three possible beamwidth values comply with the constraint set

in (17).

In a multibeam system, the power allocation is usually a

continuous variable [25]; however, in this article, the power

allocation is considered to be performed by selecting one value

among several in a set of possible power levels per beam, due to

existing technologies that allow power to be modified in 0.5-dB

steps [7].

In Table II, each payload has specific features depending on

the defined flexibility parameters. Those have a direct effect on

the DRM cost function parameters (α, β, and γ).The Payload

1 has all values set to zero because it represents a traditional

payload (no flexibility), so it has no parameters to optimize. To

minimize the error of the capacity offered and to save resources,

the parameters α, β, and γ are used to normalize each term

of the cost function; α is equal to (CT,P1)
−1 for all payloads

that have some flexibility factor (Payload 2–8), where CT,P1

represents the total capacity provided by Payload 1 (traditional

payload). β is equal to (EIRPT,P1)
−1 for all payloads that have

flexibility in power and/or beamwidth otherwise is equal to zero,

where EIRPT,P1 represents the total EIRP provided by Payload

1 (traditional payload). And finally γ is equal to (BWT,P1)
−1

for all payloads that have flexibility in bandwidth otherwise it

is equal to zero, where BWT,P1 represents the total bandwidth

provided by Payload 1 (traditional payload).

A. CNN Training Analysis

The first step to be addressed is related to the CNN training,

which allows us to set up the CNN parameters for the following

real-time usage.

Algorithm convergence can be observed during training and

testing with accuracy as a performance measure. The CNN

algorithm accuracy as defined in (23) allows us to obtain the

relationship between the correctly predicted values and the

desired values, obtained from the training data, during each

iteration; we notice that the accuracy has a value very close

to 1 both in training and in the test.

Among other influential parameters, the time window size

is the parameter that influences more the CNN training. Fig. 8

shows the performance of CNN during training for four different

time window sizes, where time window size T = 1 corresponds

to only one state, time window size T = 2 corresponds to two

states, time window size T = 3 corresponds to three states and

time window size T = 4 corresponds to four states.

Fig. 8. Accuracy during CNN training and test for different time windows size
using fully flexible payload architecture (Payload 8, see Table II).

The Payload 8 configuration was used to compare the impact

of the different time window sizes on the training and test

accuracy while the minimum required accuracy value is set at

0.97 [34].

Fig. 8 shows how the algorithm converges for the four time

window sizes; however, the main differences are observed in the

number of iterations required for the algorithm to converge and

the maximum accuracy achieved. After 350 training iterations,

the CNN converges regardless of the time window size showing

an accuracy of at least 0.98 (in the case of Time Window Size 1).

However, only 200 iterations are needed for Time Window Sizes

3 and 4 to converge.

The performance during training between using Time Win-

dow Sizes 3 and 4 is almost the same. Assuming that the larger

the time window size, more delay can be added to the system;

it is concluded that time window size T = 3 is the most suitable

for the proposed CNN approach.

B. CNN Performance for DRM and Comparison With

Benchmark Algorithms

Once convergence is guaranteed at the training step, the DRM

will work online as an intelligent switch that manages resources

according to the required capacity (see Fig. 7). The DRM will

attempt to minimize KPI1 in (24) while maximizing KPI2 in

(25). In this sense, the performance of the algorithm used for the

DRM is evaluated by exploiting a joint KPI, defined as

F3 = A1 ·KPI1 +
A2

KPI2
(26)

where A1 and A2 are weights parameters allowing to give differ-

ent importance to the two KPIs. Better an algorithm performs

lower is F3 in (26).

By assuming that KPI1 and KPI2 have the same importance,

we set both A1 and A2 to 0.5; four algorithms have been evaluated

for DRM using the Payload 4 architecture (see Table II), a time

window size T = 3, and a normalization parameter ρ = Rmax,

where Rmax represents the maximum capacity required per

beam for each scenario where the algorithm was evaluated.

The evaluated algorithms are as follows:

1) PPA: Proportional power allocation algorithm [13];
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Fig. 9. Performance comparison of different algorithms for DRM using Pay-
load 4 architecture (see Table II).

2) AG-DPA: Assignment game-based dynamic power allo-

cation algorithm [13];

3) Classification: Neural network for classification algorithm

[23];

4) CNN: Convolutional neural network algorithm.

Fig. 9 shows the performance comparison of the four al-

gorithms in terms of power management. The figure shows

the tradeoff between the defined KPIs. In the case of the PPA

algorithm (F3 = 0.47), it is demonstrated that it is not a suitable

algorithm since the way it manages power is proportional to

traffic demand without taking into account interference between

beams of the same color [13]. On the other hand, resource man-

agement using a classification algorithm with neural networks

loses its effectiveness by increasing the possible situations of

traffic demand [23], for that reason, it is the algorithm that

presents the worst performance (F3 = 0.48).

The algorithm that obtains the lowest normalized mean error,

i.e., KPI1, is the CNN algorithm (0.4096), whereas the algorithm

that obtains the highest power saving is the AG-D (3.86).

AG-D focuses more on optimizing power savings [13] and,

therefore, neglects the normalized error of capacity by setting

its F3 to 0.38. Therefore, based on (26), the algorithm that has

the best performance is the CNN algorithm that obtains F3 value

of 0.34 since the proposed cost function (12) achieves a balance

between minimizing KPI1 and maximizing KPI2.

C. Payload Architectures Performance

After having evaluated the impact of the training phase and

the algorithm KPIs, the performance for different payload archi-

tectures, as presented in Table II, has been evaluated using the

CNN algorithm and a 3-state time window size.

Fig. 10 shows the DRM performance for the different payload

architectures in a specific time of the day (i.e., 10 A.M.) for the

82 beams in the service area. The blue bars show the required

capacity in each beam at 10 A.M. (using the proposed traffic

model). The offered capacity of each payload architecture is

represented by the respective mark shown in Fig. 10. It is shown

that Payloads 7 (flexibility in bandwidth and power) and 8 (full

flexibility) are those achieving better performance, since the

Fig. 10. DRM performance for different payload architectures at 10 A.M.

Fig. 11. Normalized mean error between the offered capacity and the required
capacity of the system during 48 h.

capacity offered by these payloads have a behavior similar to

the required capacity.

As expected, Payload 1 (traditional) has the worst perfor-

mance since there is no flexibility in any of its parameters and

the capacity offered is always the same.

The parameters that have the most notable effect on payload

performance are power and bandwidth, where beamwidth has

very reduced influence (Payload 2) on resource management

performance (given the options in the case study). However, the

beamwidth allows adjusting the cost function when accompa-

nied by other flexibility parameters (Payload 5, Payload 6, and

Payload 8).

The DRM performance of the eight payloads was evaluated

for 48 h and is shown in Figs. 11 and 12. Fig. 11 shows the

normalized mean error between the offered capacity and the

required capacity of the system. CNN was used for all payloads

and evaluated for the same distribution of traffic demand during

the 48-h evaluation. For this reason, the mean error presented

in Fig. 11 was normalized to ρ = errormax, where errormax is

the maximum error obtained in all cases, and corresponding to

0.475 Gb/s.

Fig. 11 shows the better performance of Payloads 7 and 8

during the 48 h compared to the rest, reducing the mean error

between the offered capacity and the required capacity by up to

89% compared to a traditional payload (Payload 1).



4684 IEEE SYSTEMS JOURNAL, VOL. 15, NO. 3, SEPTEMBER 2021

Fig. 12. Normalized payload power for 48 h.

According to the conditions of the case study, the bandwidth

(Payload 3) is the parameter that has a greater influence on the

error between the offered capacity and the required capacity, re-

ducing the error up to 68% compared to a traditional architecture

(Payload 1), followed by the power (Payload 4) that reduces the

error up to 51%, and finally the beamwidth, reducing only 9%.

Fig. 12 shows the normalized power consumed by the pay-

loads, representing the inverse of the power saving. It also shows

the power requirement of the payload for 48 h, and it can be seen

that the payloads that have a constant power value (i.e., Payloads

1, 2, 3, and 6) have the highest power requirement; this is due

to the conditions of the case study (see Table II), in addition to

having fixed power, the assigned value is the maximum possible

in these payloads.

The power requirements of the payload are reduced by up

to 50% (see Fig. 12) when the flexibility parameters are power

and beamwidth (Payload 5), because the gain in each beam can

also be adjusted to meet the required capacity, allowing power

savings.

Power required for Payload 7 (flexibility in power and band-

width) is similar to that required for Payload 8 (full flexibility).

Fig. 12 also shows that both payloads can reduce the power by

up to 65% given the conditions of the case study (see Table II).

In the case of Payload 4, the least power is required (see

Fig. 11) because the only resource being managed is power,

since in addition to the attempts to reduce the error between

the offered capacity and the required capacity, the payload also

tries to minimize the power used by the payload. However, if the

priority is to reduce the error between the offered capacity and

the required capacity, the Payloads 3, 5, 6, 7, and 8 have better

performance (see Fig. 11).

V. CONCLUSION

This article analyzes the use of a CNN to solve the DRM

problem in SatComs by using a suitable cost function and a

realistic traffic model. The suggested DRM cost function aims to

minimize the error between the offered capacity and the required

capacity while minimizing the amount of resources used in the

satellite.

This contribution provides a tool to implement a dynamic

and efficient resource management in future VHTS systems.

The satellite industry increasingly expresses an interest in DL

applications for satellite systems [19], thus opening a great

possibility for future works.

Compared to PPA, AG-DPA, and classification, the proposed

algorithm achieves a better performance on the tradeoff to reduce

the capacity error and power consumption.

One of the limitations of CNN in DRM is the dependence with

the traffic model used during training. Thus, in a real system with

changes in the traffic behavior noncompliant with the model, the

CNN will have to be trained again.

A multiscale CNN has been shown to provide better predic-

tions for other applications in engineering systems compared

to the CNN [37]. Therefore, in future work, it is suggested to

implement this algorithm for DRM and make a comparison with

the CNN performance.

APPENDIX

The CNN architecture can be divided into the input layer, the

hidden convolution layers, the full connection hidden layers, and

the output layer, as shown in Figs 3–6.

In the convolutional layers, the features are extracted from

the kernels obtaining at the output Yj as represented in

(19). In this sense, the activation function g1(·) we have

used in the convolutional layers is the ReLu function defined

in [34].

MaxPooling was used to pool the convolutional layers. Max-

Pooling works to position a 2 × 2 matrix on the feature map and

choose the largest value in that matrix. The 2 × 2 matrix moves

from left to right across the feature map by choosing the largest

value on each pass. These values form a new matrix called the

pooled features map. MaxPooling works to preserve the main

features while reducing the size of the image.

After the features map is obtained, the next step is to flatten

it. The flatten layer involves the transformation of the entire

feature map matrix into a single column that is fed into the

neural network for processing.

In the neural networks area, perceptron refers to the artificial

neuron or basic unit of inference, from which an algorithm is

developed.

In the full connection layers, the features obtained in the con-

volutional layers are analyzed in order to allocate the resources

that minimize the DRM cost function (12). The multilayer per-

ceptron are obtained with (20) where the activation function used

g2(·) in the full connection layers is defined by the hyperbolic

tangent (tanh) function in [34].

The softmax function was used in the output layer of a

CNN classifier. Softmax generates a vector that represents the

probability distributions of a list of potential outcomes.

Softmax takes a vector z of L possible configurations as input

and normalizes it into a probability distribution consisting of L

probabilities proportional to the exponentials of the input num-

bers. That is, before applying softmax, some vector elements

could be negative or greater than one depending on the cost

function; and it could not add up to 1; but after applying softmax,

each element will be in the range of 0–1, and the elements will

add up to 1, so that they can be interpreted as probabilities.

Since the CNN is a supervised learning algorithm, the cost

function of the DRM (12) is used to assign in a supervised way
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the labels (Y) corresponding to the training data generated with

the traffic models (9) and (10).

The CNN cost function (21) aims to minimize the error that

exists between the predicted values (ỹ) and the labels (Y) in

the output layer. In this article, the CNN output layer is a

classification layer (see Fig. 5) where each class represents a

possible configuration of satellite resources. In that sense, the

Q(·) function in (21) is defined by the logistic regression loss

function [34]

Q = −
1

L

L
∑

l=1

[Yo,l log ỹo,l + (1− Yo,l) log (1− ỹo,l)] (27)

subject to

ỹo,l = f6 (Ω, xo) (28)

where L is the number of possible satellite resource configura-

tions (classes), Yo,l is a binary value (0 or 1) indicating if class

label l is the correct classification for observation o, and ỹo,l is

the predicted probability observation o of class l and is a function

of CNN configuration (Ω) and the input observation o.

The method implemented for learning all the supervised DL

algorithms is known as "backpropagation." The error outputs are

propagated backward from the output layer to all the neurons

in the hidden layers that contribute directly to the output. This

process is repeated, layer by layer, until all the neurons in the

network have received an error signal describing their relative

contribution to the total error. For more detail on how the

backpropagation algorithm works, see El-Amir and Hamdy [33].
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