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Plant phenotyping has been recognized as a bottleneck for improving the efficiency of breeding programs, understanding plant-
environment interactions, and managing agricultural systems. In the past five years, imaging approaches have shown great
potential for high-throughput plant phenotyping, resulting in more attention paid to imaging-based plant phenotyping. With
this increased amount of image data, it has become urgent to develop robust analytical tools that can extract phenotypic traits
accurately and rapidly. The goal of this review is to provide a comprehensive overview of the latest studies using deep
convolutional neural networks (CNNs) in plant phenotyping applications. We specifically review the use of various CNN
architecture for plant stress evaluation, plant development, and postharvest quality assessment. We systematically organize the
studies based on technical developments resulting from imaging classification, object detection, and image segmentation,
thereby identifying state-of-the-art solutions for certain phenotyping applications. Finally, we provide several directions for
future research in the use of CNN architecture for plant phenotyping purposes.

1. Introduction

Food security is one of the biggest challenges for the world.
The global population is likely to exceed 9 billion by 2050,
which will necessitate more food, fiber, and fuel products
from agricultural production systems [1]. To fulfill these
increasing demands, current crop productivity needs to be
doubled approximately by 2050, which translates into an
annual growth of 1.75% of total factor productivity (TFP)
[2]. On average, the current TFP annual growth is approxi-
mately 1.5% globally, but the TFP annual growth has
decreased to 0.96% in developing countries, thus presenting
a significant challenge for the improvement of crop produc-
tivity. In addition to productivity, sustainability is another
crucial factor for agriculture. Crop productivity must be
increased in a sustainable way because the global population
will continue to increase and could exceed 11 billion by 2100,
which will make these situations even more challenging [3].
Agricultural sustainability, however, faces tremendous
challenges from decreasing workforce availability, chang-
ing climate, shortfall of arable land, and limited water

resources [4]. It is thus paramount to improve simulta-
neously the productivity and sustainability of agricultural
production systems.

There are two potential ways to address these issues:
improving crops and improving crop management.
Improving crops is aimed at breeding new crop cultivars
such that crops can naturally have a higher yield, better
quality, and improved adaptability to various environments
(e.g., saline soils). Improving crop management seeks to
advance farming concepts, such as precision agriculture,
which minimize the input (e.g., irrigation and chemical
application) and maximize the outcome (e.g., productivity
and quality) for an agricultural production system through
technological innovations (e.g., sensing, automation, and
data science techniques). Both ways face the same bottleneck:
the evaluation of a large amount of plants in the field. It is
therefore paramount to develop new technologies to accu-
rately evaluate crop plants in a high-throughput manner.

High-throughput plant phenotyping (HTP) has been
recognized as integral to overcoming this bottleneck [5–12].
In the past five years, various HTP solutions have been
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developed to dramatically improve phenotyping capability
and throughput, including tower-based systems, gantry-
based systems, ground mobile systems, low- and high-
altitude aerial systems, and satellite-based systems. An obvious
trend has been noticed in the recent HTP systems: imaging
sensors have been usedmore frequently because of their ample
capacity for extracting complex traits. 2D imaging (e.g., RGB
color, thermal, and spectral imaging) can provide spatial infor-
mation of a scene plus an additional data dimension such as
spectral information from the spectral images. 3D imaging
(e.g., LiDAR) can provide a 3D structure of a scene that can
be used to calculate object morphological traits (length, area,
and volume). 2.5D imaging (e.g., depth camera) retains the
structure information of the imaging plane, which is similar
to 2D imaging, and acquires the depth information of a scene,
which can be used to reconstruct the 3D structure of that
scene. Imaging-based solutions have been used for a wide
range of phenotyping applications covering plant morphol-
ogy, physiology, development, and postharvest quality. A
typical pathway for imaging-based plant phenotyping can be
demonstrated in a four-step cyclic graph (Figure 1). The first
step is to identify and define phenotypic traits to be measured,
which largely determine the use of suitable imaging modalities
for plant sensing. Measuring phenotypic traits usually
demands one or more computer vision tasks (e.g., fruit count-
ing may require object detection) that can be solved by devel-
oping new or improved algorithms through conventional
image/signal processing, machine learning, or a combination
of the two. Data processing pipelines can be designed to
extract defined phenotypic traits to support and facilitate

domain applications such as genetics/genomics studies, breed-
ing programs, and production management. Among these
options, algorithm development becomes noticeably challeng-
ing because of significant disparities in image quality (e.g.,
illumination, sharpness, and occlusions) [13]. These image
quality variations considerably affect the performance of ima-
ge/signal processing algorithms and result in poor algorithm
generalization for measuring the same phenotypic traits from
different datasets. Conventional machine learning- (ML-)
based approaches generally have improved generalizability,
but most of them still cannot meet the requirement for cur-
rent phenotypic purposes. In addition, conventional ML
approaches require considerable effort to design data repre-
sentations (features) manually that are invariant to imaging
environment changes. Furthermore, feature designing is labo-
rious and requires expertise in computing and image analysis,
which prevents the use of conventional ML techniques for
phenotyping applications.

Deep learning (DL) is a subset of machine learning and
allows for hierarchical data learning. The key DL advantage
is that features will be learned automatically from input data,
thereby breaking down barriers to the development of
intelligent solutions to different applications. A commonly
used DL architecture is deep convolutional neural networks
(CNNs), which have achieved state-of-the-art performance
for important computer vision tasks, such as image classifica-
tion/regression, object recognition, and image segmentation
(both semantic and instance). CNNs originated in the1980s
[14] and showed their first success in the recognition of
handwritten digits in the 1990s by using backpropagation-
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Figure 1: Diagram of the pathway of imaging-based plant phenotyping.
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based training [15]. In 2012, a breakthrough (AlexNet) was
made because of significant improvements in computational
power (and therefore CNN model complexity) and the
availability of annotated datasets (e.g., ImageNet) [16].
Since then, various types of CNN architecture have been
developed for image classification and eventually have dem-
onstrated better performance than humans on the same
dataset [17]. In addition, CNNs have been used widely as
feature extractors integrated with meta-architecture for
other computer vision tasks, such as object detection and
semantic and instance segmentation. CNNs have provided
state-of-the-art performance in comparison to traditional
approaches for almost all of these tasks, demonstrating
great potential for the improvement of data analysis perfor-
mance in such imaging-based applications as imaging-
based plant phenotyping. In particular, the advancement
of transfer learning (a technique that helps to transfer fea-
tures learned from one dataset to another, benefiting appli-
cations with limited annotated data from large publicly
available datasets) and the emergence of DL libraries fur-
ther facilitate the use of DL techniques for domain applica-
tions, so DL approaches have been adopted rapidly for
plant phenotyping in recent years, and an exponentially
increasing trend is foreseen for DL-based plant phenotyp-
ing. It is thus necessary to conduct a literature review to
summarize the existing knowledge, good practices, limita-
tions, and potential solutions to applying DL techniques
in plant phenotyping.

Several papers have been published in the last two years
that provide comprehensive reviews of DL techniques for
such computer vision tasks as image classification [18, 19],
object detection [20], and semantic segmentation [21]. These
reviews effectively summarize the basic principles, develop-
ment history, and future trends for CNNs in computer
vision, but none of them provide information related to agri-
culture, which highlights a gap between these technological
theories and phenotyping applications. There have been pio-
neering efforts that have focused on various DL techniques
for general agriculture applications [22] and plant stress phe-
notyping [23]. They were, however, either too broad (cover-
ing all DL techniques for all agricultural applications) or
too narrow (limited to a particular phenotyping task) and
lack a focused and comprehensive review of DL in imaging-
based plant phenotyping.

The goal of this review is to scrutinize thoroughly the cur-
rent efforts, provide insights, and identify potential research
directions for the utilization of CNNs for imaging-based
plant phenotyping. This review focuses on key phenotyping
tasks related to plant stress, development, and postharvest
quality. By addressing this gap in research, it is expected that
readers can bring CNNs into their research to benefit the
plant phenotyping community. Deep learning and plant phe-
notyping are emerging research fields and grow extremely
rapidly, so this review primarily focuses on studies published
(1) in peer-reviewed (or open-reviewed) journals and confer-
ences; (2) in the most recent 5 years (2015 to 2020); and (3) in
the use of CNNs for imaging-based plant phenotyping. Liter-
ature has been collected from three main resources including
Elsevier ScienceDirect, IEEE Xplore Digital Library, and

Google Scholar. Keywords of “CNN” and phenotyping tasks
(i.e., “plant stress”, “plant development”, “fruit counting”,
“flower counting”, “root phenotyping”, and “postharvest
quality”) were used as combinations for literature searching.
The rest of this review is organized in the following way: Sec-
tion 2 provides a concise introduction to important CNN
architecture used in image classification, object detection,
and semantic and instance segmentation; Section 3 provides
a review of CNNs for image-based plant phenotyping; Sec-
tion 4 discusses key issues in using CNNs for plant phenotyp-
ing; and Section 5 provides conclusions and potential
directions for future research.

2. CNNs for Computer Vision Tasks

Since 2012, CNNs have dominated the solutions for com-
puter vision tasks because of their superior performance.
While efforts have been made to review thoroughly the devel-
opment of various CNN architecture for computer vision
tasks [18–21], we have provided a brief introduction to make
this review more comprehensive. Most imaging-based phe-
notyping applications essentially demand solutions for one
or more tasks related to image classification, object detection,
and segmentation, so CNNs for those tasks are reviewed in
this section. Because CNNs evolve rapidly, the following
review is limited to models that provide significant perfor-
mance improvements and are used widely as benchmark
methods by other domain applications. For convenience,
useful information is summarized for those reviewed models,
including development year and group, the original refer-
ence, the key innovation concept, and the source code (or
third-party implementation) if available (Table 1).

2.1. Image Classification. Image classification is one of the
core tasks in computer vision and is aimed at assigning
images with predefined class labels. CNNs are artificial neural
networks that combine a set of mathematical operations
(e.g., convolution, pooling, and activation) using various
connection schemes (plain stacking, inception, and residual
connection), and the operational parameters (e.g., convolu-
tional kernels) can be learned from annotated images to pre-
dict image class labels (image classification in Figure 2). The
development of modern CNNs for image classification can
be grouped into three stages: (1) emergence of modern
CNNs (2012 to 2014); (2) intensive development and
improvement of CNN architecture (2014 to 2017); and (3)
reinforcement learning for CNN architectural design (i.e.,
the concept of using artificial intelligence (AI) to improve
AI, 2017 to present).

In 2012, the first modern CNN architecture (also known
as AlexNet) was reported and demonstrated breakthrough
performance on image classification in the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC 2012)
competition [16]. It showed improvements of 8.2% and
8.7% on top-1 (35.7% versus 45.7%) and top-5 (17% versus
25.7%) errors. This work began the new round of using
CNNs for image classification and other computer vision
tasks. Researchers intensively studied CNN architecture for
imaging classification from 2014 to 2017 and developed
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Table 1: Summary of major CNN architecture developed for image classification, object detection, and semantic and instance segmentation.

Model Vision task Key concept Source code (third-party implementation)

AlexNet
Image

classification
A five-layer CNN architecture

https://github.com/TensorFlow/models/blob/
master/research/slim/nets/alexnet.py (TensorFlow)
https://github.com/pytorch/vision/blob/master/

torchvision/models/alexnet.py (PyTorch)

ZFNet
Image

classification
Feature visualization for model improvement

https://github.com/caffe2/models/tree/master/
zfnet512 (Caffe2)

VGGNet
Image

classification
Small-sized (3 by 3) convolutional filters to increase

the depth of CNNs (up to 19 layers)

http://www.robots.ox.ac.uk/~vgg/research/very_
deep/ (Caffe)∗

Inception
family

Image
classification

Inception modules for increasing the width of CNNs and
therefore the capability of feature representation

https://github.com/TensorFlow/models/tree/
master/research/inception (TensorFlow)

https://github.com/pytorch/vision/blob/master/
torchvision/models/inception.py (PyTorch)

ResNet
family

Image
classification

Residual representation and skip connection scheme to
enable the training of very deep CNNs (up to 1000 layers)

https://github.com/TensorFlow/models/tree/
master/official/resnet (TensorFlow)

https://github.com/pytorch/vision/blob/master/
torchvision/models/resnet.py (PyTorch)

DenseNet
Image

classification

Dense block modules to substantially decrease the
number of model parameters (therefore computational
cost) and strengthen feature propagation (therefore

feature learning capability)

https://github.com/liuzhuang13/DenseNet
(supports multiple DL framework)∗

NASNet
Image

classification

Reinforcement learning on a small dataset to find
optimal convolutional cells that are used to build a CNN

architecture for a large dataset

https://github.com/TensorFlow/models/tree/
master/research/slim/nets/nasnet (TensorFlow)

RCNN
family

Object
detection

A two-stage framework to generate regions of interest
(ROIs) and then predict the class label and calculate

the bounding box coordinates for each ROI

https://github.com/TensorFlow/models/tree/
master/research/object_detection (TensorFlow) for

Faster RCNN
https://github.com/facebookresearch/Detectron
(Caffe2) for R-FCN, and Fast/Faster RCNN

YOLO
family

Object
detection

A one-stage framework to regress both class labels
and bounding box coordinates for each grid cell on

the last feature map

https://pjreddie.com/darknet/yolo/ (C++)∗

SSD
Object

detection

A one-stage framework to regress class labels and
bounding box coordinates for anchors in each grid

cell on feature maps extracted from different convolution
layers (thus different resolutions)

https://github.com/weiliu89/caffe/tree/ssd (Caffe)∗

https://github.com/TensorFlow/models/tree/
master/research/object_detection (TensorFlow) for

SSD

RetinaNet
Object

detection

A one-stage framework to use focal loss that is a
new loss function to solve the foreground-background

class imbalance problem

https://github.com/facebookresearch/Detectron
(Caffe2) for RetinaNet∗

FCN
Semantic

segmentation

Fully convolutional architecture to train and predict
classes at the pixel level in an end-to-end manner for

semantic segmentation

https://github.com/shelhamer/fcn.berkeleyvision
.org (Caffe)∗

https://github.com/shekkizh/FCN.TensorFlow
(TensorFlow)

https://github.com/wkentaro/pytorch-fcn
(PyTorch)

U-Net
Semantic

segmentation
An encoder-decoder architecture for semantic

segmentation

https://lmb.informatik.uni-freiburg.de/people/
ronneber/u-net/ (Caffe)∗

https://github.com/jakeret/tf_unet (TensorFlow)
https://github.com/milesial/Pytorch-UNet

(PyTorch)

4 Plant Phenomics

https://github.com/TensorFlow/models/blob/master/research/slim/nets/alexnet.py
https://github.com/TensorFlow/models/blob/master/research/slim/nets/alexnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
https://github.com/caffe2/models/tree/master/zfnet512
https://github.com/caffe2/models/tree/master/zfnet512
http://www.robots.ox.ac.uk/<vgg/research/very_deep/
http://www.robots.ox.ac.uk/<vgg/research/very_deep/
https://github.com/TensorFlow/models/tree/master/research/inception
https://github.com/TensorFlow/models/tree/master/research/inception
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
https://github.com/TensorFlow/models/tree/master/official/resnet
https://github.com/TensorFlow/models/tree/master/official/resnet
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/liuzhuang13/DenseNet
https://github.com/TensorFlow/models/tree/master/research/slim/nets/nasnet
https://github.com/TensorFlow/models/tree/master/research/slim/nets/nasnet
https://github.com/TensorFlow/models/tree/master/research/object_detection
https://github.com/TensorFlow/models/tree/master/research/object_detection
https://github.com/facebookresearch/Detectron
https://pjreddie.com/darknet/yolo/
https://github.com/weiliu89/caffe/tree/ssd
https://github.com/TensorFlow/models/tree/master/research/object_detection
https://github.com/TensorFlow/models/tree/master/research/object_detection
https://github.com/facebookresearch/Detectron
https://github.com/shelhamer/fcn.berkeleyvision.org
https://github.com/shelhamer/fcn.berkeleyvision.org
https://github.com/shekkizh/FCN.TensorFlow
https://github.com/wkentaro/pytorch-fcn
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://github.com/jakeret/tf_unet
https://github.com/milesial/Pytorch-UNet


several representative CNNs such as VGGNet [24],
Inception-based CNNs [25], ResNet and its variants [17],
and DenseNet [26]. These CNNs showed dramatical
improvements of learning capability and computational
complexity through the use of efficient operations (e.g., a 3
by 3 convolutional operation as the building block) and
revised connection schemes (e.g., inception modules, residual
modules, and dense blocks). With these improvements, rep-
resentative CNNs can now usually surpass human perfor-
mance on image classification for various datasets. It should
be noted that performance improvement following CNN
architectural modification was heavily dependent upon
human expertise and tuning efforts, which means that CNN
architectural improvement could be as laborious as feature
engineering in traditional ML. To solve this problem, a study
was conducted to explore the possibility of searching optimal
CNN architecture using reinforcement learning, which is a
learning method to reward operations yielding improved
performance [27]. A reinforcement learning framework was
introduced to seek optimal convolutional cells on a small
annotated dataset, and the resultant cells were stacked in dif-
ferent ways and transferred to a large unknown dataset.
Experimental results showed that CNNs built by searched
convolutional cells provided varying degrees of performance
improvement over CNNs designed manually. This demon-
strates the capability of using AI to improve AI, which is a
new direction for solving some of the problems associated
with designing CNN architecture. The search process, how-
ever, is extremely expensive computationally (500 NVIDIA
P100 GPUs for 4 days), which limits its potential use for
other domain applications.

In addition to performance improvement, studies have
been conducted to understand the mechanism of CNNs. This
leads the development of techniques towards explainable
artificial intelligence which helps develop interpretable and
inclusive machine learning models and deploy the models
with confidence. A pioneering work improved AlexNet to a
new variant (ZFNet) using a visualization tool. This visuali-
zation tool is a framework integrated with CNNs that can
map neuron activities back to the input pixel space. Pixel-
wise activations, therefore, can be visualized after each con-
volutional layer. This would be particularly useful for
researchers seeking to understand the CNN mechanism

and improve architectural design. The study also showed that
learned features could be generalized to various classifiers,
suggesting CNNs could learn general representations of
images rather than specific features for classification.
Successive studies furthered this direction and developed
various gradient-based methods that can visualize the
importance/relevance of features to classification results.
Commonly used methods include guided backpropagation,
gradient-weighted class activation mapping (Grad-CAM),
and layer-wise relevance propagation (LRP). Some general
framework (e.g., LIME and occlusion map) can also be used
to reveal important image regions to classification results.
Details of these visualization methods can be obtained in
separate reviews [28, 29].

2.2. Object Detection. Object detection seeks to detect and
classify all potential objects in a given image. The use of
CNNs for object detection can be categorized into two
groups: one-stage and two-stage CNN architecture (object
detection in Figure 2). Two-stage models firstly detect candi-
date object regions (region proposal) and subsequently clas-
sify the candidate regions into different object categories
(region classification). Intuitively, existing region proposal
methods can be combined with CNNs as two-stage models
for object detection. The OverFeat framework was developed
to use a single CNN to extract features for training classifiers
and regressors separately [30]. The trained classifiers and
regressors were used to predict class labels and bounding
box coordinates, respectively, for candidate ROIs generated
using a sliding window method. Although the OverFeat
framework provided the best performance on the localization
task of the 2013 ILSVRC competition, the high computa-
tional cost and training complexity presented difficulties for
practical applications. A region-based CNN (RCNN) family
was introduced to resolve those issues, including the original
RCNN [31], Fast RCNN [32], and Faster RCNN [33].

Three key techniques were identified in CNN architec-
ture of the RCNN family, including the region proposal net-
work (RPN), ROI pooling operation, and multitask loss
function. An RPN was developed to generate candidate
object ROIs using features extracted from CNNs, which
simultaneously saved processing time and increased region
proposal accuracy. An ROI pooling operation was developed

Table 1: Continued.

Model Vision task Key concept Source code (third-party implementation)

DeepLab
family

Semantic
segmentation

Atrous convolution operation to simultaneously
increase receptive field and reduce the computation

complexity to improve the segmentation accuracy; fully
connected conditional random field (CRF) as a

postprocessing method to improve the segmentation
accuracy

https://bitbucket.org/aquariusjay/deeplab-public-
ver2/src/master/ (Caffe)∗

https://github.com/TensorFlow/models/tree/
master/research/deeplab (TensorFlow)

https://github.com/jfzhang95/pytorch-deeplab-
xception (PyTorch)

Mask
RCNN

Instance
segmentation

Masking head with ROI align operation on top of
the Faster RCNN model to significantly improve

segmentation accuracy

https://github.com/facebookresearch/Detectron
(Caffe2)∗

https://github.com/tensorflow/models/tree/master/
research/object_detection (TensorFlow) for Mask

RCNN

Note: ∗source code provided by original authors.
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to extract a fixed number of features from ROIs with varying
sizes, thereby avoiding the repeated computation of features
for different ROIs. A multitask loss function was used to
unify the training process, which enabled an end-to-end
training for object detection. With these three improvements,
Faster RCNN has been used widely as either a benchmark for
performance comparison or an object detector for domain
applications (e.g., pedestrian detection in autonomous driv-
ing) because it is easy to train and generally provides accurate
detection performance. Although Faster RCNN provides
state-of-the-art accuracy, its efficiency is still inadequate for
use in real-time applications such as autonomous driving.
This is mainly because the two-stage models spend time han-
dling different components for inference [20]. Compared
with two-stage models, one-stage models can reduce time

expense by global regression/classification by mapping
directly from image pixels to bounding box coordinates and
class probabilities. In other words, candidate object regions
are generated from each pixel in feature maps and then clas-
sified and fine-tuned to create accurate object boundaries.

Representative one-stage models include the you-only-
look-once (YOLO) family [34] and the single-shot detector
(SSD) framework [35]. A critical issue, however, has been
discovered for these one-stage models: an extreme imbalance
in the number of object and background regions. Most image
regions contain only the background information (identified
as irrelevant regions), providing a limited contribution to the
model training process. A focal loss function has been pro-
posed to further penalize inaccurately detected (or classified)
samples, which solves the issues resulting from sample
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imbalance and ultimately leads to the development of an
improved one-stage framework RetinaNet [36]. When using
the same CNN backbone model, RetinaNet achieved compa-
rable performance with Faster RCNN and 29% improvement
of computational efficiency. Nevertheless, if detection accu-
racy is the most important factor to be considered, two-
stage models would be the option; otherwise, one-stage
models provide better computational efficiencies for embed-
ded systems and real-time applications.

2.3. Semantic and Instance Segmentation. Semantic segmen-
tation seeks to provide masks for objects with the same
semantic meaning (e.g., all plants in an image), whereas
instance segmentation seeks to provide individual objects in
a given image. In general, CNN architecture for semantic/in-
stance segmentation can be classified into two groups:
encoder-decoder-based frameworks and detection-based
frameworks (semantic and instance segmentation in Figure 2).

Encoder-decoder-based models usually contain two
phases. The encoder phase uses CNNs to extract feature
maps that are semantically meaningful from input images,
and the decoder phase uses transposed convolution (also
known as deconvolution) for upsampling of extracted feature
maps to per-pixel labels. Two techniques have been used to
improve the segmentation accuracy of encoder-decoder
models. First, a lateral connection scheme is used to link fea-
ture maps with the same spatial resolution between the
encoder and decoder phases, which aids in the preservation
of semantic meaning from input images to output segmenta-
tion results [37]. Second, a conditional random field (CRF) is
used as a postprocessing method to improve the segmenta-
tion accuracy of object boundaries [38]. Representative
encoder-decoder-based models include U-Net [37], fully
convolutional network (FCN) [39], and DeepLab [38]. A
detection-based framework relies on CNN architecture for
object detection. Several studies have explored the use of
object detection models for instance segmentation, including
simultaneous detection and segmentation (SDS) based on
RCNN [40] and DeepMask based on Faster RCNN. They
did not, however, reach an acceptable performance for
the instance segmentation task [41]. A breakthrough per-
formance was achieved by Mask RCNN that supplements
an FCN network with a Faster RCNN for generating
masks of individual objects [42]. Many later studies and
applications have also proven that the Mask RCNN could
provide state-of-the-art performance for semantic and
instance segmentation.

3. CNN-Based Analytical Approaches for
Image-based Plant Phenotyping

3.1. Plant Stress Phenotyping. Plant stress phenotyping is
aimed at identifying and evaluating plant responses to abiotic
and biotic stresses, providing information for the selection of
accession lines with high stress resistance and tolerance in
breeding programs and the understanding of intrinsic mech-
anisms in genetics/genomics studies. In addition, plant stress
detection, especially in early stages, is crucial for data-driven
pest and weed management in agricultural production sys-

tems. Plant stress phenotyping can be categorized into four
stages: (1) identification (presence of stress); (2) classification
(type of stress); (3) quantification (severity of stress); and (4)
prediction (possibility of stress occurrence) [23]. From the
computer vision perspective, all four stages can be considered
an image classification task, whereas some stages could
involve other processing methods, such as object detection
and semantic/instance segmentation.

The development of image classification-based
approaches can be divided into two phases. In the first phase,
studies intensively investigated well-known and custom
CNN architecture because of the availability of annotated
datasets and the simplicity of CNN implementation and
training for image classification. Several large, annotated
image datasets for plant stress classification accelerated the
evaluation of various CNNs for stress phenotyping. For
instance, PlantVillage (https://plantvillage.psu.edu/) is a pub-
licly available image dataset containing over 54,000 labeled
plant leaf images from 14 crop species with 26 types of stress.
This can be used to either evaluate a new CNN architecture
or pretrain a CNN model for transfer learning. Data annota-
tion for image classification is also relatively easy (compared
with object detection and semantic/instance segmentation),
so a large number of images in a newly collected dataset
can be annotated within a reasonable time and cost, espe-
cially when a proper data collection procedure is used. As a
result, studies related to plant stress detection typically have
a sufficient number of annotated images (several thousand
or more) for model training. In addition, DL libraries have
been developed to accelerate the implementation and train-
ing of CNNs for image classification. Commonly used DL
libraries include Caffe (University of California Berkeley),
Theno (University of Montreal), TensorFlow (Google),
PyTorch (Facebook), CNTK (Microsoft), and Keras (open
source). Key CNNs (e.g., Inception-based CNNs, ResNet
family, and DenseNet) have been implemented using various
libraries, so researchers can develop computer programs
quickly for training CNNs provided the annotated data are
available. These advancements facilitate the use of CNNs
for plant stress identification at the image level. By using
good training practices (e.g., data augmentation, background
removal, and transfer learning), various studies have shown
that CNNs achieved accuracies from 87% to 99% for stress
identification and classification [43–54]. Details of these
studies can be accessed in a latest review [23].

In the second phase, pioneering studies attempted to
understand reasons leading to high performance of CNNs
for stress identification and classification, because the under-
standing would not only help to improve CNNs but also
ensure biological correctness of obtained results. Although
some studies adopted the deconvolution layers to visualize
the activated pixels in different convolutional layers, the visu-
alization results were not used to compare with human eval-
uation or correlate with biological knowledge. Through 2018,
an explainable framework (xPlNet) was in development that
could both identify (or classify) plant stresses and generate an
explainable map showing pixels that determined identifica-
tion (or classification) results (Figure 3(a)) [55]. In this
framework, the reference activation level (the mean pixel
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intensity plus 3 times the pixel intensity variation) of healthy
leaves was calculated for each of the feature maps extracted in
the first convolutional layer. For a testing image, feature
maps from the first convolutional layer subtracted the refer-
ence activation to calculate the feature importance metric
(weighted average of leaf pixel intensity in each of feature
maps). Feature maps were ranked based on their importance,
and the top-K (K = 3 in the original study) feature maps were
selected to calculate the explainable map (EM). The mean
intensity of the EM can be used to quantify stress severity.
A separate study also examined various techniques to under-
stand the mechanism of CNNs for disease diagnosis [56].
Explanation maps generated by xPlNet generally showed
the best correlation with manual annotation and validated
its efficacy for finding pixels correlated to stressed lesions
(Figure 3(b)). Compared with studies in the first phase, the
two pioneering studies demonstrated the importance of

understanding the mechanism of CNNs for stress phenotyp-
ing as well as the potential for stress severity quantification.
Image annotation is still recognized as a limiting factor for
using many DL algorithms (especially supervised ones), so
researchers investigated the use of generative adversarial net-
works (GANs) to generate synthetic images for training CNN
models for plant stress detection and classification [54]. AR-
GAN based on Cycle-GAN was developed to translate con-
textual information learned between different image sets.
For instance, lesions in infected leaf images can be trans-
ferred to healthy leaf images or vice versa. With that, one
can expect to substantially increase the number and diversity
of images for model training.

In addition to image classification-based approaches,
improved CNN models for object detection were used for
plant stress phenotyping [46]. Three representative architec-
ture (Faster RCNN, SSD, and R-FCN) were trained and

Input image (64 × 64 pixels)

Explanation map

Weighted mean

Top 3 feature maps

DCNN

(based on FI metric)

Apply stress activation

(SA) threshold

Feature maps from

the �rst convolutional layer

128 feature maps

Importance

HighLow

Weights based on feature importance 

A1

�

A2

�

A3

�

A4

�

(FI) metric for 128 feature maps

C
o

rn
 n

o
rt

h
en

 le
af

 b
li

gh
t

Occlusion map

LIME

Perturbation

Mixed0Conv1

Explanation map

DeepLIFT

Reference

Mixed10 Mixed0

Vanilla back-
propagation

Integrated gradients Guided back-
propagation

Grad-CAM

Gradient

Original

Manual annotation

Data

(a)

(b)
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evaluated, and experimental results showed that the best
detection accuracy was 86% at an intersection over union
(IOU) level of 0.5. IOU is defined as the intersection area
between two objects over their union area, which can be used
to evaluate the object overlap: 0 for no overlap and 1 for per-
fect overlap. Trained architecture could identify and localize
the symptomatic regions. Since plants can be infected by
multiple diseases, the object detection-based solutions could
detect all possible causes, thus providing a more comprehen-
sive evaluation than image classification-based solutions. A
study was conducted to generate a heat map of stressed lesion
probabilities from small patches obtained by using a sliding
window over a given image [45]. The generated heat maps
were used as input images for a separately trained CNN for
detection of stressed lesions. The developed method showed
two advantages. First, high-resolution images were processed
directly without downsampling, so detailed spatial informa-
tion could be utilized by CNNs. Second, the generated heat
maps were used as a visualization tool to explain classifica-
tion decisions. This advantage, however, was not recognized
and fully explored. In addition, generated probability maps
can be used to segment stressed lesions by using postproces-
sing methods such as conditional random field (CRF) [57].
Plant stresses can be then quantified easily using the ratio
of stressed pixels to healthy pixels, which provides a quanti-
tative metric for stress severity evaluation. Semantic and
instance segmentation could be more straightforward
approaches to obtain masks of stressed lesions in images.
This could be an important direction for future research,
although pixel-level annotation can be extremely costly.

Advanced imaging modalities (e.g., hyperspectral imaging)
capture plant data in a wider spectrum than RGB imaging,
providing useful information for plant stress identification.
A very recent study explored the use of a custom CNN archi-
tecture to detect plant diseases in hyperspectral images [58].
The novelty of the custom architecture is the use of a 3D
convolutional operation that can directly convolute both spa-
tial and spectral information in hypercubes. This would not
only inspire future studies related to plant stresses but also
enable the reanalysis of many previous hyperspectral images
collected for plant stress analysis. With an improved detec-
tion accuracy, subtle stress differences among cultivars/treat-
ments may be revealed to enhance our understanding of
plant responses to stresses.

3.2. Plant Development

3.2.1. Plant Shoot Morphology and Growth. Morphological
changes of plant shoot are key to describing plant develop-
ment. Canopy coverage and leaf area are two commonly used
parameters to quantify plant growth and development, espe-
cially in aerial image analysis. Calculating the two parameters
requires accurate plant segmentation. Many studies have
used color-based features (e.g., excess green index) to seg-
ment plants, but they usually had imperfect segmentation
because plant color could have large image-by-image varia-
tions due to illumination, shadowing, occlusion, and so on.
Therefore, some studies explored the use of CNNs for plant
segmentation [59–64]. Most of them considered plant seg-

mentation a semantic segmentation task and used encoder-
decoder-based CNN architecture for processing. Although
these studies demonstrated improved segmentation accu-
racy, training data annotation for semantic segmentation
can be extremely laborious. To solve this issue, a study
attempted to generate synthetic images along with semantic
annotations automatically for CNN model training [64].
Combining synthetic and real images would improve the
generalizability of CNNs for plant segmentation and thus
growth analysis accuracy.

Two studies treated morphological measurement as an
object detection problem [61, 65]. The first study used a
Faster RCNN to detect citrus trees and obtain tree image
patches, so tree canopies could be easily and accurately
segmented in individual image patches by using a
thresholding-based method [61]. The second study, however,
attempted to detect key points (e.g., ground-plant junction
point and topmost point of main trunk) of plants/plant leaves,
so morphological traits (e.g., plant height and leaf length) were
measured based on the exact biological definitions [65]. Com-
pared with traditional computer vision methods, this CNN-
based solution could measure a morphological trait in a way
closer to its biological definition. For instance, plant height is
defined as the distance from the ground to the topmost main
stem point for most crops. Many studies, however, used an
approximate measurement which is the distance from the
ground to the topmost canopy point because of the difficulty
of finding the topmost main stem point (even the point pre-
sents in images). By using the CNN-based solution, one can
expect to get more accurate morphological measurements
and may have more possibility to resolve subtle differences
among plants.

Researchers also combined CNNs with other DL
methods (e.g., recurrent neural network (RNN)) for plant
development characterization [66, 67]. CNNs were used as
a feature extractor to encode plant spatial status in individual
growth stages, and RNNs (e.g., long-short-term memory
(LSTM)) were used to embed all spatial encodes to learn
plant temporal changes. In this way, plant growth patterns
could be fully encoded by neural networks to reveal differ-
ences among crop cultivars and treatment groups. This indi-
rect phenotyping scheme could be particularly useful for
selection-oriented programs, but explaining the selection
would be a significant challenge and barrier for many
research studies that aim to understand the mechanism of
many plant responses. Thus, it is important to further
develop visualization tools to enhance the explainability
and interpretability of complex neural network architecture.

In addition to morphological measurements, CNNs
could be used to monitor certain plant development events
such as plant lodging [68]. A new CNN architecture (Lod-
geNet) was developed by integrating a custom 7-layer CNN
model with handcrafted features (i.e., local binary pattern
and gray-level cooccurrence matrix). Compared with 10
well-established CNN architecture, LodgeNet provided com-
parable or better performance on the differentiation between
lodging and regular plots but with a considerable improve-
ment in processing speed (at least 2 times faster). It is note-
worthy that transfer learning in this study was not as
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efficient as other studies because of the use of multispec-
tral images, which might limit the capability of those
well-established architecture. Nonetheless, this study dem-
onstrated the potential of combining a shallow CNN with
handcrafted features for fast training and inference, which
can be very useful for applications that require real-time
processing or have limited computing resources.

3.2.2. Plant and Plant Organ Counting. Counting plants and
plant organs are central to characterizing plant development.
This section provides a comprehensive overview of studies
related to the detection and counting of plants and plant
organs. Based on data format, these studies can be classi-
fied into two categories: (1) detection and counting in still
images and (2) detection and counting in image sequences
and videos.

(1) Counting in Still Images. Regression or image classifica-
tion (can be considered discrete regression) is the simplest
and most straightforward way to fruit/organ counting from
the technical development viewpoint (regression-/classifica-
tion-based methods in Figure 4). For regression-based
methods, a major modification is made that replaced the soft-
max layer of a CNN with a single neuron for regressing
numeric values (e.g., fruit counts). This simple end-to-end
counting solution provided high accuracy (over 90%) for
counting fruits and plant leaves [69–80]. In particular, an
Arabidopsis dataset with finely grained annotations has been
developed to open opportunities for the development of
advanced analysis methods [81]. One of the dataset’s tasks

is leaf counting. Many studies have been reported in work-
shops on the Computer Vision Problems in Plant Phenotyp-
ing (CVPPP) for the leaf-counting problem [69–71, 77, 78].

A particular challenge of the regression-based solutions is
the limited availability of annotated images, leading to many
potential concerns such as poor model generalizability. To
solve this issue, a study attempted to generate synthetic data
of tomatoes to enhance the data availability and diversity
[69]. Green and brown circles with different sizes were used
to fill the entire image as background, and red circles with
different sizes were rendered on top of the background to
simulate tomatoes. Although trained CNNs achieved a
counting accuracy of 91% on real images, the study only
tested red tomatoes, which have distinctive color features
from the background. The generalizability of this approach
should be further validated for challenging situations such
as detection of green tomatoes from leaves. GANs were also
used to generate synthetic data for model training [71]. Com-
pared with the method used in [69], GANs could output
images with realistic texture and structure. This would help
to address the potential generalizability issue due to image
variations. An alternative approach was to use patch-based
training. TasselNet was developed to count maize tassels in
two steps [72]. In the first step, a local CNN regression model
was established to predict the number of tassels in each patch
of an image. In the second step, the estimated count in each
image patch was averaged based on individual pixels in that
patch to create a counting map with the same spatial size as
the original image. The sum of all pixel intensities in the
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counting map represents the final tassel count in that
image. Experimental results showed that TasselNet
achieved counting accuracies from 74.8% to 97.1%, which
were 2 to 5 times higher than with conventional methods.
TasselNet uses the patch-based training method, which
substantially increases the number of images for training.
In addition, TasselNet requires dot annotation rather than
bounding boxes, which further reduced the difficulties in
image annotation. A successive study further modified
TasselNet by expanding its receptive field to encode con-
text information and a global regression model for count
estimation, leading to improvements of both count accu-
racy and processing speed [79]. In addition to data anno-
tation, studies investigated the use of nonsupervised (e.g.,
weakly supervised and unsupervised) domain adaption to
improve the model generalizability to unseen datasets
[76, 78, 80]. Adversarial modules were used to either sim-
plify the annotation from exact object counts to object
presence [76, 80] or fine-tune pretrained CNN layers to
encode unseen images in a similar distribution to pretrain-
ing images for counting regression [78]. A very recent
study also reported the use of visualization tools to explain
CNN-based counting regression models [77]. Experiments
showed that plant leaf boundaries were the most informa-
tive parts rather than leaf petioles and centers for leaf
counting. In addition, CNNs would encode some image
information irrelevant to leaf counting, which could be
used to guide neuron pruning to increase the computa-
tional efficiency. This demonstrated a promising way of
using visualization tools for CNN improvement, explana-
tion, and interpretation. A common finding has been iden-
tified in all these studies: a moderately complex CNN is
recommended because of the potential of model overfit-
ting. This could be of particular concern for regression-
based counting methods, as its learning target is much
simpler than either image classification or object detection.
Another noteworthy drawback is that no location informa-
tion can be provided by regression-based methods, which
limits the potential for using these methods for other
applications. For classification-based methods, plant/organ
counting was treated as a discrete counting (or scoring/-
grading) problem and, thus, a predefined score or grade
(e.g., 10% of inflorescence) was assigned to a given image
rather than an exact count [82].

An example of the classification-based method is Wheat-
Net, which was developed to predict the percentage of flow-
ering in wheat images [82]. Multiple images were acquired
for each plot. A total of 11 classes were annotated for each
plot (and thus images for that plot), corresponding to 11
visual scores with a percentage heading from 0 to 100% with
an interval of 10%. The average prediction of all images in a
plot was the final percentage heading for that plot, which
reduced counting errors because of inaccurate classification.
By fitting the per-plot percentage heading into a sigmoid
function, an error of 1.25 days was achieved between the
manual and CNN-based measurements of the heading date
(50% of emerged heads), which resulted in the high accuracy
of the developed method. It should be noted that heading
dates estimated using WheatNet counts showed comparable

broad sense heritability (H2
= 0:987) to those estimated using

manual counts (H2
= 0:982), indicating a great potential for

incorporating DL for plant phenotyping and, therefore,
breeding programs and genetics/genomics studies. How-
ever, the developed method has the major limitation of
potential difficulty in generalizing the method for other
plants with complex canopy structures and flowering pat-
terns, such as cotton. Flowers in those plants are usually
inside canopies instead of on the top of canopies, which
can increase partial or full occlusions. If flowers cannot
be imaged, it is not feasible to train any ML/DL model
for detection and counting. Researchers also used the
classification-based method for counting the number of
pods in soybeans and obtained a similar performance as
human experts [83]. However, classification-based counting
methods have the same issue as regression-based methods,
which cannot provide the necessary location information
for understanding plant development.

Object detection is an intuitive approach to count
plant and plant organs in still images: accurate object
detection ensures accurate object counting (detection-
based methods in Figure 4). DeepFruits was the first study
to explore the use of modern CNN architecture (i.e., Fas-
ter RCNN) for fruit detection [84]. Several key contribu-
tions were recognized in this study. First, transfer
learning was used to train a Faster RCNN model with
100 labeled images, demonstrating the potential of using
limited labeled images to train CNN architecture. Second,
when using RGB images, the trained Faster RCNN model
provided a 1% improvement of the F1 score over that of
the CRF model. Third, data fusion was conducted at the
raw-data level and decision level for Faster RCNN models.
Experimental results showed that decision-level fusion fur-
ther improved the F1 score to 0.838 (an additional 2%
compared with Faster RCNN without fusion). However,
raw-data level fusion showed a 2% reduction of the F1
score compared to that of the RGB-based Faster RCNN.
There were two possible reasons for this reduction. First,
the decision-level fusion contained two Faster RCNN
models, which had twice the parameters that a single Fas-
ter RCNN model had to model image data distribution,
which ultimately resulted in the performance improve-
ment. Second, the performance reduction of raw-data level
fusion resulted from the pretrained weights on the Ima-
geNet dataset being more suitable for RGB color images
than NIR images.

Although these two explanations are reasonable, a more
plausible reason might be the ineffective transfer learning of
the revised Faster RCNN architecture. In order to use four-
channel (RGB-NIR) images for training, the receptive field
of the first layer in the backbone CNN was changed from 3
to 4, meaning each filter in the first layer had an additional
dimension that had to be initialized randomly. As a conse-
quence, the output from the revised first layer was not likely
to follow the data distribution pretrained on the ImageNet
dataset, and this new data distribution could eventually cor-
rupt the rest of the CNN because CNNs are hierarchical
and deep layers are dependent upon shallow layers [18, 19].
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In other words, pretrained weights in deep layers could not
effectively model data, which would result in lower transfer
learning efficiency. Even worse, if pretrained weights are
somehow in a local minimum or saddle, transfer learning
might provide worse results than randomly initialized
weights. Finally, the study also applied the Faster RCNN
model for other fruits such as cantaloupes, apples, avocados,
mangos, and oranges, which demonstrated the generaliz-
ability of Faster RCNN for fruit detection. While the study
generated much useful data, a major drawback was the
limited images for training and testing. Although 100
images could let researchers train a Faster RCNN with a
higher accuracy, the testing image sizes (from 11 to 34)
were too small to confirm the achieved high performance.
In particular, training and testing images were acquired in
the same condition, which significantly reduced the varia-
tion of images. This may also be one major reason that
CNN-based solutions showed only marginal improvements
over conventional methods.

Many studies have generally followed similar practices
and used the region-based CNNs (e.g., RCNN and Faster
RCNN) for plant/plant organ counting [85–91]. Two critical
issues, however, were not addressed by these studies. The first
issue relates to model training. High-resolution images are
typically large and cannot be fed into a CNNmodel for train-
ing. A new approach was developed to solve this issue by
splitting one high-resolution image into multiple small
patches. Each patch still had a relatively large size (e.g., 500
by 500 pixels), so all of the patches could be used to train
complex CNN architecture such as Faster RCNN with
high-resolution images [92]. In the testing stage, an image
was split into patches with a certain overlap (e.g., 50%
between two neighboring patches) and a Faster RCNN
model was used to detect maize ears in each patch. Because
of the considerable overlapping among the patches, one ear
could be detected in multiple patches. Overlap between
each pair of detections was calculated to remove repeated
detections. This strategy substantially increased training
samples and was able to process images with an arbitrary
resolution. The second issue involved the detection of
small-sized objects, which is also a common challenge for
CNN-based object detection methods [20]. An intuitive
solution was to use features from shallow layers for regional
proposals because features from shallow layers reserved
more spatial information and could identify small-sized
objects. Based on this, features from multiple layers (shal-
low, middle, and deep) were used for regional proposals
of the Faster RCNN models [93]. Compared to standard
Faster RCNN models, the modified Faster RCNN model
improved the F1 score by 4.7% for detecting almonds in
still images.

Apart from Faster RCNN, a custom two-stage framework
has been proposed that uses superpixels generated by the
simple linear iterative clustering (SLIC) algorithm as region
proposals [94]. A CNN model was used to classify each
superpixel as either a flower or a nonflower object. While this
approach showed higher performance than conventional ML
methods (e.g., color features and SVM classifier), it has a

potential limitation in region proposal. The advantage of
end-to-end CNN architecture is that they are able to use
richer features for accurate localization, especially when
images vary dramatically. However, superpixels are subject
to image variation andmight not provide optimal region pro-
posals. The generalizability of this approach, therefore, is
very likely to be inferior to that of the end-to-end methods.

In addition to the two-stage architecture, one-stage
models have been investigated for situations requiring fast
processing. YOLO-v2, for instance, has been used to detect
and count apples and pears in still images [95]. Compared
with the original YOLO-v2 model, a modification was made
to increase grid cells from 13 by 13 to 26 by 26 so relatively
small apples could be detected. The modified YOLO-v2
model achieved an F1 score of 0.9 at the IOU level of 0.5.
Because the study was concerned with inference speed, the
authors halved the YOLO-v2 model from 24 layers to 12
layers, thereby providing a dramatic increase of processing
speed (from 4 FPS to 10 FPS) with an acceptable accuracy
reduction (F1 score from 0.9 to 0.8). This study also used a
rule-based method to generate synthetic images to increase
the training data size and diversity, which led to an improved
detection performance.

Many studies also investigated semantic segmentation-
based approaches to plant/plant organ counting [96–101].
CNN architecture for semantic segmentation were firstly
used to obtain plant/plant organ masks. Subsequently, the
obtained masks were postprocessed using conventional com-
puter vision methods (e.g., circle fitting and connected com-
ponent labeling) to isolate individual plant/plant organs, so
objects could be counted. A noticeable concern is that
although CNNs could provide accurate semantic masks, the
counting accuracy can still suffer from inaccurate postpro-
cesses. To address this concern, studies explored the use of
instance segmentation CNNs (e.g., Mask RCNN) that can
directly segment individual objects in images [102–106].
These studies faced the same challenge in the lack of training
data. Training these models usually requires a large number
of images with pixel-level annotation, but data annotation
at the pixel level is considerably costly and becomes a major
limiting factor for applications. To overcome this limitation,
most of these studies developed algorithms to generate syn-
thetic images for model training. Two types of image synthe-
tization methods were proposed: rule-based and GAN-based.
Rule-based methods use a predesigned leaf model to generate
a plant based on predefined plant growth rules (e.g., L-system
for Arabidopsis) [102, 105]. During plant image generation,
although leaf size, angle, and color could be adjusted, gener-
ated plants still lacked textural information on the leaf sur-
face, which might lead to a poor performance of trained
models. GAN-based approaches, however, could generate
synthetic images without the sacrifice of leaf texture. Thus,
a method was developed by combining rule-based methods
and GANs for image synthetization [103]. The method con-
sists of a rule-based generator for plant mask image and a
conditional GAN (c-GAN) for plant color image. A plant
mask image is firstly generated based on the predefined leaf
model and growth rules and then fed into the c-GAN to
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map the plant mask to an artificial color image of that plant.
By combining the real and synthetic datasets for training,
trained models achieved the best performance in both leaf
instance segmentation and counting. The developed hybrid
method for image synthetization could be potentially used
for other applications with limited annotation data. On the
other hand, training the c-GAN (or general GANs) is not
trivial and requires extensive experiences in model tuning,
which can be the barrier for domain experts (e.g., biologists)
to directly adopt the method.

(2) Counting in Image Sequences and Videos. Although the
aforementioned studies have demonstrated that the detection
and counting of plants and plant organs can be fairly accurate
in still images, a single image is usually not adequate to cover
a plant of tree crops (e.g., an apple tree) or an entire plot of
row crops. Thus, image sequences and videos need to be
acquired, and processing these data requires expanding
detection and counting methods. The key challenge of object
detection in image sequences or videos is to associate the
same object over different images. There are currently two
types of methods that address this issue: tracking-based
methods and reconstruction-based methods.

The key to tracking-based methods is to associate
detections of the same object (correspondence estimation)
over consecutive image sequences or video frames so that
individual objects can be tracked to avoid repeated counts
(tracking-based methods in Figure 4). With regard to cor-
respondence estimation, there are two methods. The first
type is based on trajectory information, which can be
acquired using sensors such as RTK GPS and IMU devices.
For instance, a framework has been developed to count
mangos for yield estimation [107]. This framework firstly
detected mangos in each still image using a Faster RCNN
model. Camera location and pose parameters were col-
lected for each image so that the geometric correspondence
could be calculated between pixels in two consecutive
images. Thus, it was able to associate and track mango
detections from one image to the next. Experimental
results showed that the developed framework achieved an
accuracy of 98.6% for mango counting with an inexpensive
computational cost, thus demonstrating the efficacy and
efficiency of tracking-based methods. The developed
framework had three limitations, however. First, the use
of positioning devices would increase the cost of the data
acquisition system, which could be an issue for small farms
and research projects that lack adequate funds. Second, the
accuracy of geometric correspondence is dependent upon
the accuracy of positioning devices, which might be prob-
lematic in applications with very tall trees that can block
GPS signals. Last, if fruit samples can be seen from both
sides because of relatively open canopies, the developed
framework might overestimate the number of fruit counts
and thus yield load.

The second type is based on video tracking algorithms.
For instance, a simple tracking algorithm has been developed
for sweet pepper counting [108]. Sweet peppers were

detected using a Faster RCNNmodel in all images. In the first
image, all detections were initialized as trackers. In the rest of
the images, the intersection of union (IOU) and boundary
measurements (the ratio of the intersection between a tracker
and a detection to the area of that detection) were used to
quantify the proximity between a detection and a tracker.
For a given pair of a detection and a tracker, if they had an
IOU value and a boundary measurement that exceeded pre-
determined thresholds, the detection and tracker would be
associated. When sweet peppers moved in or out of the
images, the IOU and boundary measurements become prob-
lematic because of the change in the aspect ratio of the
bounding boxes. To avoid this issue, start and stop zones
were configured and sweet peppers detected in these zones
would not be used for tracking. A small set of image
sequences were used to determine the IOU and boundary
measurement thresholds as well as the start and stop zones.

Although this simple tracking algorithm provided an
average counting accuracy of 95.9%, it might not be stable
because the thresholds could be dramatically different in var-
ious datasets. If the testing image sequences and videos are
acquired in slightly different conditions, the thresholds might
become invalid and result in degraded performance. As a
result, the developed algorithm requires calibration for find-
ing the proper parameters for different datasets. In addition,
if fruit objects are highly occluded, the accuracy of detection-
tracker association would decrease significantly. To over-
come these issues, advanced video tracking algorithms (e.g.,
Kalman filter and optical flow) have been used to provide
improved tracking performance [109, 110]. The optical flow
provided motion information between two consecutive
images, so the potential position of each bounding box in
the current image can be estimated in the next image. Thus,
the detection-tracker association was constrained by the
image motion, which improved the association accuracy.
The optical flow upon some assumptions, however, such as
minimal motion between images and brightness consistency.
The first assumption can be satisfied by controlling the data
collection movement speed and image (video) acquisition
frame rate, and the second assumption is relatively easy to
counter. For instance, the optical flow provides degraded per-
formance because of changes in illumination, which is
unavoidable in field conditions. Also, some plant organs
(e.g., flowers) are not rigid objects and are affected by wind.
When the wind blows, flower shapes can change dramati-
cally, resulting in considerable differences in pixel intensities
between images.

The key concept in reconstruction-based methods is the
reconstruction of a global coordinate system to which objects
detected in individual images can be projected (reconstruc-
tion-based methods in Figure 4). For 2D reconstruction,
global orthoimages have been reconstructed by mosaicking
image sequences or video frames such that subimages of an
entire crop tree or plot could be extracted from the orthoi-
mages [111–113]. Subsequently, detection-based methods
were used to detect and count plants and plant organs in
the extracted subimages. In addition, a custom CNN archi-
tecture was developed to directly encode image sequences
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to extract both spatial and temporal features for weed detec-
tion and counting [114].

For 3D reconstruction, point clouds were obtained using
either image sequences or video frames through photogram-
metric algorithms (e.g., the structure from motion (SfM))
[115–118] or additional imaging sensors (e.g., LiDARs)
[107, 119]. A transformation relationship was established
between the 2D images and the obtained 3D point clouds,
so that objects detected in 2D images could be projected to
the 3D space or vice versa. As detections of the same object
would significantly overlap in the 3D space, redundant
detections could be eliminated to obtain accurate object
quantity [112]. Additionally, 3D reconstruction-based
methods enabled the extraction of additional information
such as 3D location and object morphology (e.g., diameter
or volume), providing great potential for comprehensive
evaluation of plant/organ development.

There were several challenges, however, for the 3D
reconstruction-based methods. First, significantly overlap-
ping objects were difficult to be accurately detected, leading
to inaccurate detection and counting. To overcome this issue,
detection and classification-based methods have been com-
bined. Instead of detecting individual apples, a Faster RCNN
model was trained to detect apple clusters, which substan-
tially reduced the problem complexity and improved detec-
tion accuracy. For each detected cluster, a classification-
based counting method was used to determine the number
of apples in that cluster. Although the combination of two
strategies dramatically simplified problem complexity and
improved accuracy, the developed framework was very
computationally expensive. Also, individual apples could
not be projected into the 3D space, which decreased the
possibility of extracting additional phenotypic traits for
development characterization. Another issue was the com-
putational cost, especially the SfM technique used to obtain
the 3D point clouds. The computational complexity of the
SfM technique increases quadratically along with the num-
ber of the images used. While some studies attempted to
use extra regulations to speed up the reconstruction pro-
cess, certain environmental factors (e.g., wind) can also
result in failure of 3D reconstruction using the SfM. Gener-
ally, these are ongoing issues with photogrammetric 3D
reconstruction in the field, which become limiting factors
for 3D reconstruction-based methods as well.

3.2.3. Root System Architecture. Root phenotyping is chal-
lenging primarily because of the difficulty of imaging root
system architecture (RSA) nondestructively. Most successful
RSA analysis methods require researchers to dig plant root
out of soil and wash them prior to imaging in an
illumination-controlled environment. Therefore, segmenting
roots from those images is not particularly complicated and
most thresholding-based segmentation methods are suffi-
cient. Root sample collection, however, is burdensome and
could cause potential RSA damages affecting image analysis
and biological interpretation. To avoid these issues,
researchers try to use rhizotron systems, so RSA can be
imaged using 2D imaging modalities (e.g., RGB) without
human interference. As roots usually intervene with the soil,

introducing several difficulties of root segmentation in
images. Several studies reported the use of encode-
decoder-based CNN architecture to segment roots in
images [120–124]. Experimental results showed that, com-
pared with conventional segmentation methods, CNN-
based approaches generally increased the segmentation
accuracy by 20% to 30% and performed more stably over
images. With accurate RSA segmentations, many existing
RSA analysis methods can be used to calculate important
root phenotypic traits for analysis. CNN-based RSA seg-
mentation methods also faced the challenge of limited
annotated training images, so researchers tried to generate
synthetic images for model training [125, 126].

While root segmentation accuracy has been improved,
measuring root phenotypic traits faces another challenge in
that root tips (especially second-order or smaller) can be
fragmented into small pieces due to the soil occlusion. To
solve this issue, a study was conducted to develop an
encoder-decoder-based CNN architecture for root segmenta-
tion correction [127]. This solution considered the problem
as an inpainting process that reconstructs lost connections
between pieces of the same root tip. Experimental results
showed that measurement accuracies of root phenotypic
traits (tip length and number) using corrected segmentations
increased 2 to 5 times than those using the raw segmenta-
tions. A following study further expanded the model by add-
ing adversarial module at the patch and global levels [125].
The adversarial module helped the model to learn robust fea-
ture representations for root tip inpainting, and the two-level
training helped the model to produce accurate results both
locally (image patches) and globally (the whole root image).
It is noteworthy that training the expanded model on a syn-
thetic dataset led to a 72% improvement of inpainting accu-
racy in real root images. This would be particularly
important and inspiring for many phenotyping applications
that lack of annotated data for training CNNs.

Regression-based model was also developed for root tip
counting to avoid extensive data annotation of RSA at the
pixel level [120]. Experimental results showed that the
regression-based counting method outperformed not only
traditional computer vision-based counting methods but also
CNN segmentation-based method. This suggests that post-
processing can be a limiting factor for the accuracy of trait
measurement despite the use of CNNs for RSA segmentation.

In addition to 2D imaging, CNNs have been adopted to
segment RSA in X-ray imaging [126] and to classify root
tip patches in multiview 3D imaging [128], respectively. With
improved segmentation and classification accuracy, a 3D
structure of RSA can be extracted and analyzed, providing
informative traits for biological studies. To the best of our
knowledge, no study has been conducted to apply CNNs
for analyzing root images collected by ground penetrating
radar (GPR). Combining CNNs and GPR might be a poten-
tial way to nondestructively characterize RSA in the field.

3.3. Crop Postharvest Quality Assessment. While the plant
phenotyping community is primarily focusing on in-season
plant performance, postharvest quality is also an important
focus for plant phenotyping because postharvest properties
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significantly affect the eventual crop productivity and quality.
Based on the nature of the analysis, postharvest quality
assessment can be classified into two categories: qualitative
assessment and quantitative assessment. Qualitative assess-
ment provides scores/grades for crop fruit, such as defect
detection and freshness grading, whereas quantitative assess-
ment provides continuous values for crop postharvest prop-
erties, such as firmness and soluble solid content (SSC).

Qualitative assessment of postharvest quality is similar to
plant stress phenotyping, with its unique emphasis on fruit
rather than plant. Most studies have investigated the use of
CNNs to detect defects for fruits such as cucumbers [129],
apples [130, 131], dates [132], pears [133], blueberries
[134], lemons [135], and peaches [136]. These studies
reported detection accuracies from 87.85% to 98.6%, which
were usually 10% to 20% higher than conventional ML
methods, demonstrating the advantages of using CNNs for
qualitative assessment of postharvest quality. Although these
efforts showed some success in addressing problems, they
had several significant limitations. First, because of the avail-
ability of labeled data, most studies used very shallow CNN
architecture (e.g., one convolutional layer followed by one
pooling layer and one fully connected layer), meaning that
the potential of CNNs for postharvest quality assessment
has not been investigated fully. Even though patch-based
training with data augmentation could substantially increase
sample sizes, most of the image patches are highly correlated,
presenting potential problems for overfitting. Second, as of
writing, no studies have explored techniques for understand-
ing the mechanism of CNNs for postharvest quality assess-
ment, making CNN decisions and high performance
unexplained. In addition to defect detection, qualitative
assessment of postharvest quality includes crop grading. A
CNN-based system was developed to grade the freshness of
packed lettuce [137]. In this system, the CNN was trained
to classify each pixel as lettuce, packaging, and artifacts using
a small patch (3 by 3 pixels) surrounding that pixel. Experi-
mental results showed that the trained CNN achieved an
accuracy of 97.9% for pixel-level classification (equivalent
to segmentation). The quality grading using the segmenta-
tion was comparable with grading using the images of lettuce
without packing. This demonstrated the potential of using
CNN to segment lettuce for grading without taking off pack-
aging and suggests the possibility for on-shelf sorting.

Quantitative assessment of postharvest quality (e.g.,
sugar/acid ratio and bruising) can also be processed using
CNNs. A study was conducted to develop a CNN-based
regression model for estimating sugar/acid ratio for citrus
[138]. An excitation-emission matrix (EEM) is an image of
a measuring sample in which the x-axis indicates excitation
wavelengths (nm), the y-axis indicates emission wavelengths
(nm), and the intensity of a pixel (x and y) is sample fluores-
cence excited at x (nm) by using emission light at y (nm).
Images of EEM were used as input to train a custom CNN
with 8 layers for regression. Sugar/acid ratio values were esti-
mated using the trained CNN models for 20 testing samples,
and results showed that the CNN-based regression model
achieved the lowest prediction error of 2.48, which was 2 to
3 times less than conventional regression models. Another

study investigated the use of a fully convolutional network
(FCN) for segmenting bruised, nonbruised, and calyx end tis-
sues for blueberries [139]. The FCN model was based on a
VGG-16 network. Experimental results showed that the
developed approach provided segmentation accuracies of
73.4% to 81.2%, which were substantially higher than the
SVM-based segmentation method (46.6%). A partial reason
for this is that the spectra of the calyx end were similar to
bruised tissues, and thus, using conventional classifiers was
difficult to accurately differentiate them. In contrast, CNN-
based approaches can learn other features, such as shape
and position, which significantly contribute to the improve-
ment of the segmentation accuracy of the calyx end. This
study was the only case using an end-to-end CNN model
for postharvest quality assessment and provided valuable
results for future studies. However, there were several issues
in the study. First, hyperspectral images have many more
channels than RGB images, which leads to an issue with
using transfer learning. In this study, an additional layer
was developed to reduce the dimensionality of raw hyper-
spectral images from an arbitrary value to 3, so that weights
pretrained on other datasets could be used for the bruising
dataset. However, experimental results showed that the
FCN models trained using transfer learning were less accu-
rate than those trained entirely using the new dataset. The
authors stated that this was primarily because of the differ-
ence between the bruising dataset and the ImageNet dataset,
meaning that the majority of learned filters from the Ima-
geNet are not useful for bruising detection. This poses a crit-
ical question of whether publicly available datasets can
benefit postharvest quality assessment studies that rely more
heavily on advanced imaging modalities (e.g., multispectral
and hyperspectral imaging) than on RGB imaging.

All the methods reviewed for various phenotyping appli-
cations are summarized in Table 2. Therefore, readers could
quickly identify potential solutions to problems similar in
their applications.

4. Discussion

4.1. Data Availability. The availability of diverse annotated
datasets is a key factor for all DL-related studies. Adequate
annotated datasets enable and ensure the swift development
and evolution of DL methods. This generally holds true for
domain applications such as plant phenotyping. For biotic/a-
biotic stress phenotyping, data annotation is relatively
straightforward and has resulted in several large publicly
available datasets, such as PlantVillage. For plant develop-
ment, as sensing technologies are under development, few
datasets are publicly available and there are also few anno-
tated datasets. As the main purpose of DL is to learn features
from data, it is very difficult to develop (or even use) DL tech-
niques without sufficient annotated data. Data annotation
itself comes with several challenges for plant phenotyping.
First, data annotation sometimes requires domain expertise.
For instance, it is easy to label cars, whereas it is difficult to
label particular plant diseases because of the need of domain
knowledge and working experiences. Thus, it is not easy to
crowdsource annotation tasks, which limits the efficiency
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Table 2: Summary of CNN-based data analysis approach in imaging-based plant phenotyping.

Phenotyping
category

Phenotyping task Main processing approach
Particular improvement

strategy
References

Plant stress
Stress detection and

classification

Image classification

NA [43, 44, 47–53]

Sliding window [45, 57]

Explainable visualization [55, 56]

Advanced imaging [58]

Synthetic data augmentation [54]

Object detection NA [46]

Plant development

Plant lodging Image classification NA [68]

Canopy morphology
measurement

Object detection NA [61, 65]

Semantic segmentation NA [59, 63, 64]

Leaf morphology
measurement

Instance segmentation NA [60, 62]

Characterization of
plant growth pattern

Combination of CNN and
other DL methods

NA [66, 67]

Plant development
Counting plant/plant
organs in still images

Regression

NA [69, 70, 72, 79]

Synthetic data augmentation [71, 73]

Multiscale and multimodal
data fusion

[74, 75]

Nonsupervised learning mode [76, 78, 80]

Explainable visualization [77]

Image classification NA [82, 83]

Object detection

NA [84–91, 93, 94]

Sliding window [92, 95]

Synthetic data augmentation [95]

Semantic segmentation
NA [96–101]

Sliding window [101]

Instance segmentation
NA [102–106]

Synthetic data augmentation [102, 103, 105, 106]

Plant development
Counting plant/plant

organs in image sequences
and videos

Object detection

2D orthoimage reconstruction [111–113]

3D structure reconstruction [107, 115–119]

Video tracking [108–110]

Semantic segmentation Movement encoding [114]

Plant development

Counting root tips Regression NA [120]

Root system architecture
segmentation

Semantic segmentation

NA [120–124]

Inpainting for
oversegmentation

correction
[125, 127]

Advanced imaging [126, 128]

Synthetic data augmentation [125, 126]

Postharvest quality

Fruit chemical
composition
measurement

Regression NA [138]

Fruit defect detection Image classification

NA [131, 132, 135, 136, 140]

Advanced imaging [134]

Sliding window [129, 137]

Fruit defect quantification Semantic segmentation
NA [141]

Advanced imaging [139]
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and throughput of data labeling. Second, unlike common
uses, plant phenotyping oftentimes relies on advanced imag-
ing techniques, such as thermal and hyperspectral imaging.
Labeling of those data is considerably more difficult than
labeling color images because of fewer visual cues. Third,
there are many phenotyping applications that require object
detection and segmentation (semantic, instance, or panop-
tic), and these applications require instance-level (bounding
boxes) and pixel-level (masks) annotations. Those are very
time-consuming tasks and become the major limiting factor
for using DL in plant phenotyping. Some challenges are com-
mon for general computer vision tasks, and researchers have
proposed and developed some solutions. To significantly
reduce the requirements of labeled data, one of the most
important techniques is transfer learning. Transfer learning
relies on the assumption that a very large dataset ensures that
the learned filters are common for other datasets. Thus, for
some domain applications with limited labeled data, transfer
learning could significantly improve training efficiency and
accuracy. However, the key challenge is whether phenotyp-
ing datasets are similar to very large common datasets (e.g.,
ImageNet or MS COCO), especially for some phenotyping
applications using advanced imaging techniques (e.g., hyper-
spectral imaging). Active learning is another effort for the
reduction in the cost of data labeling. Compared with con-
ventional data annotation, active learning is aimed at finding
and labeling samples that maximize model performance.
Thus, the majority of samples do not need to be annotated
to save time and labor cost. Crowdsourcing is also a viable
way for data annotation, which requires less investment in
labor cost. Some studies have demonstrated the capability
of using crowdsourcing for quickly labeling large image data-
sets for machine learning applications. In particular, there are
some commercial services for crowdsourcing annotation
such as Amazon Mechanical Turk and CrowdFlower.
Through those services, a reasonable quality and throughput
can be ensured for data annotation. In addition, GANs have
been originally proposed as a generative module for deep
learning [142], but they are very promising tools in combina-
tion with CNNs to solve computer vision tasks [143]. In par-
ticular, GANs can be used to generate synthetic data to
increase the data availability and enhance the data diversity.
As the technical community is making significant improve-
ments of GAN architecture and training, the phenotyping
community could better adopt them to solve the data avail-
ability issue in plant image analysis.

4.2. Adoption of DL Methods for Plant Phenotyping. Another
important consideration is the adoption of DL methods for
plant phenotyping. Technology companies have released var-
ious DL frameworks that accelerate the development and
implementation of new DL algorithms such as reinforcement
learning and attention mechanism. In particular, the DL
community encourages researchers to share source codes of
original studies to facilitate other research projects. These
efforts considerably ease the adoption of the latest DL
methods for domain applications, such as plant phenotyping.
However, there is still a delay in the use of the latest technol-
ogies for plant phenotyping. This likely occurs for three rea-

sons. First, some of the latest DL methods require a
significant investment in computational power, which can-
not be achieved easily in ordinary research labs. Second, orig-
inal DL solutions might not be directly usable for plant
phenotyping applications. Additional efforts are necessary
to adopt these advanced DL solutions, and sometimes these
efforts are technically challenging. Educational programs
are expected to be promoted, so more domain experts (e.g.,
agricultural engineers and plant scientists) can gain adequate
knowledge and skills to expedite the adoption/modification
of DL methods for challenging agricultural and biological
applications. Thirdly, large private companies, who invest
heavily in plant phenotyping, do not disclose their research
efforts in this area to the public.

4.3. CNNs for 3D Image Processing. 3D imaging, an impor-
tant imaging technique, has not been mentioned yet. An
important plant phenotyping task is to characterize and
understand plant morphology. While few studies reported
the use of CNN in a scenario with 3D imaging, they have pri-
marily focused on the detection in 2D images and projected
the detections in 3D for processing, such as removal of
redundant detections and determinations of detections with
occlusions. None of them really utilized CNNs for plant mor-
phology characterization and understanding. In particular,
3D point clouds can be collected using various approaches
(such as LiDAR and photogrammetric methods) in plant
phenotyping applications, and most of them need to be ana-
lyzed using conventional 3D processing methods. One possi-
ble reason is that even the DL community has not delivered
many reliable tools for 3D point cloud processing. PointNet
and PointNet++ are pioneering work for processing 3D
point clouds, but they are limited to the number of points
in each model (a couple of thousand points). If the point
cloud is too large, there is no efficient computational solu-
tion for network training and inference. Thus, much 3D
imaging work requires technical development from the
DL community.

5. Conclusions and Future Directions

In this review, CNN-based solutions to image-based plant
phenotyping were comprehensively reviewed to provide
advantages and disadvantages of using them for different
tasks of plant phenotyping. Through these studies, CNN-
based solutions demonstrated their great potential for solving
the most challenging problems encountered in various plant
phenotyping applications. In particular, some types of end-
to-end CNN architecture have streamlined the process of
extracting phenotypic traits from images significantly. This
would enable the improvement of data processing and ulti-
mately plant phenotyping applications.

Several future research directions that use CNNs for
plant phenotyping are identified. The first direction is to
enrich the availability of labeled data. Although there are
some datasets publicly available (e.g., ImageNet and MS
COCO), they are not well integrated and designed for agri-
cultural applications. This holds true especially for posthar-
vest quality assessment that utilizes different imaging
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modalities and has limited samples. The second direction is
to customize a deep learning framework that can facilitate
the adoption of the latest DL techniques for plant phenotyp-
ing applications. Such a framework could provide a common
interface for algorithm integration, so that newly developed
models and tools can be added for use with little or no devel-
opment effort, such as visualization tools for model explana-
tion and reinforcement learning for model improvement.
Experiences of adopting these newly developed DL methods
can be promoted through educational programs and training
workshops to advance DL-based data analytics for agricul-
tural applications. The third direction is to adopt and develop
CNN architecture for direct 3D and multimodal data pro-
cessing, especially skeleton extraction, branch-pattern classi-
fication, and plant-development understanding.
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