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Convolutional neural networks (CNNs) represent an interesting method for
adaptive image processing, and form a link between general feedforward neu-
ral networks and adaptive filters. Two dimensional CNNs are formed by one or
more layers of two dimensional filters, with possible non-linear activation func-
tions and/or down-sampling. Conventional neural network error minimization
methods may be used to optimize convolutional networks in order to implement
quite powerful image transformations. CNNs possess key properties of transla-
tion invariance and spatially local connections (receptive fields). CNNs are an
interesting alternative when the the input is spatially or temporally distributed,
and the desired output of a system may be specified. The present paper presents
a description of the convolutional network architecture, and an application to
a practical image processing application on a mobile robot. As a formal CNN
framework has not yet been specified in the literature, we describe CNNs in
some detail, conceptually and formally. A CNN is used to detect and characterize
cracks on an autonomous sewer inspection robot. Although cracks are relatively
easy to detect by a human operator, autonomous sewer inspection necessitates
the detection of pipe damage using computer vision methods. This is an appro-
priate application for trainable data-based computer vision methods, since prior
specification of appropriate of the filtering / detection method is quite difficult.
The The CNN architecture used involved a total of five layers: a single input
and output map, and three hidden layers. The filter sizes used in all cases were
5x5, and the common activation function used was a log-sigmoid. The number
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of feature maps used in the three hidden layers was, from input to output, 4, 3,
2. Thus, the number of neural weights to be optimized was 624 while the input
to the network was a square region with side lengths of 68 pixels, yielding a total
of 4624 pixel inputs to the network. The network was trained using a dataset
of 39 still image 320x240 pixel frames sampled from a pre-recorded sewer pipe
inspection video. Although development of a CNN system for civil use is on-
going, the results support the notion that data-based adaptive image processing
methods such as CNNs are useful for image processing, or other applications
where the input arrays are large, and spatially / temporally distributed. Further
refinements of the CNN architecture, such as the implementation of separable
filters, or extensions to three dimensional (ie video) processing, are suggested.
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1 Abstract

Convolutional neural networks (CNNs) represent an interesting method for adap-
tive image processing, and form a link between general feedforward neural net-
works and adaptive filters. Two dimensional CNNs are formed by one or more
layers of two dimensional filters, with possible non-linear activation functions
and/or down-sampling. CNNs possess key properties of translation invariance
and spatially local connections (receptive fields). The present paper presents a
description of the convolutional network architecture, and an application to a
practical image processing application on a mobile robot. A CNN is used to de-
tect and characterize cracks on an autonomous sewer inspection robot. The filter
sizes used in all layers of the CNN used here was 5x5, and the common activa-
tion function used was a log-sigmoid. The network was trained using a dataset
of 39 still image 320x240 pixel frames sampled from a pre-recorded sewer pipe
inspection video. The results support the notion that data-based adaptive image
processing methods such as CNNs are useful for image processing, or other appli-
cations where the input arrays are large, and spatially / temporally distributed.
Further refinements of the CNN architecture, such as the implementation of
separable filters, or extensions to three dimensional (ie video) processing, are
suggested.

2 Introduction

The term convolutional network (CNN) is used to describe an architecture for
applying neural networks to two-dimensional arrays (usually images), based on
spatially localized neural input. This architecture has also been described as the
technique of shared weights or local receptive fields [1–3] and is the main feature
of Fukushima’s neocognitron [4, 5]. Le Cun and Bengio [6] note three architectural
ideas common to CNNs: local receptive fields, shared weights (weight averaging),
and often, spatial down-sampling. Processing units with identical weight vectors
and local receptive fields are arranged in an spatial array, creating an architecture
with parallels to models of biological vision systems [6]. A CNN image mapping
is characterized by the strong constraint of requiring that each neural connec-
tion implements the same local transformation at all spatial translations. This
dramatically improves the ratio between the number of degrees of freedom in the
system and number of cases, increasing the chances of generalization [7]. This
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advantage is significant in the field of image processing, since without the use
of appropriate constraints, the high dimensionality of the input data generally
leads to ill-posed problems. To some extent, CNNs reflect models of biological
vision systems [8]. CNNs take raw data, without the need for an initial separate
pre-processing or feature extraction stage: in a CNN the feature extraction and
classification stages occur naturally within a single framework.

In the CNN architecture, the ’sharing’ of weights over processing units re-
duces the number of free variables, increasing the generalization performance
of the network. Weights are replicated over the spatial array, leading to intrin-
sic insensitivity to translations of the input - an attractive feature for image
classification applications. CNNs have been shown to be ideally suited for im-
plementation in hardware, enabling very fast real-time implementation [9]. Al-
though CNN have not been widely applied in image processing, they have been
applied to handwritten character recognition [2, 9–11] and face recognition [7,
8, 12]. CNNs may be conceptualized as a system of connected feature detectors
with non-linear activations. The first layer of a CNN generally implements non-
linear template-matching at a relatively fine spatial resolution, extracting basic
features of the data. Subsequent layers learn to recognize particular spatial com-
binations of previous features, generating ’patterns of patterns’ in a hierarchical
manner. If downsampling is implemented, then subsequent layers perform pat-
tern recognition at progressively larger spatial scales, with lower resolution. A
CNN with several downsampling layers enables processing of large spatial arrays,
with relatively few free weights.

The present paper presents an application of CNN to an applied problem in
mobile robotics. In particular, the visual system of a KURT2 [13] autonomous
mobile robot designed for sewer inspection and equipped with an infra-red video
camera. The task of the the robot is the online detection of cracks and other
faults in sewer pipes. The cracks are defined by a relatively distinctive space-
frequency structure. However, they are often embedded in a variety of complex
textures and other spurious features. Lighting and reflection effects present an
additional source of difficulty. The implementation and performance of the CNN
architecture is discussed in terms of this application. The CNN is also applied
to certain artificial image processing problems.

Figure 1 shows the architecture of a CNN with two layers of convolution
weights and one output processing layer. Neural weights in the convolution layers
are arranged in an 2-D filter matrices, and convolved with the preceding array. In
figure 1, a single layer 1 neural filter is shown operating at two different spatial
translations on the input array. The output (shaded pixel) forms a spatially
distributed feature map, which is processed by the second convolutional layer,
and passed to the output array. Downsampling of the feature array may be
implemented between the convolution layers. For fixed filter sizes, this has the
effect of increasing the spatial range of subsequent layers, while reducing the
level of spatial resolution. As with most neural networks, the exact architecture
of a CNN should depend on the problem at hand. This involves determination
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Fig. 1. Architecture of a CNN with a single convolutional neuron in two layers. A 5x5
filter at two different translations is shown mapping to shaded pixels in the first feature
array. Shaded pixels in turn are part of the local feature information which is mapped
to the output (or second feature) array by a second 5x5 filter.

of: the mixture of convolutional and downsampling layers (if any), filter-weight
sizes, number of neurons, and interconnectivity between layers.

Figure 2 shows an example two layer CNN with multiple neurons in each
layer,with down-sampling being implemented by the second layer.

Figure 3 displays the application of a simple CNN to a toy problem of detect-
ing road markers from a camera image mounted above an intersection. It may be
seen that the feature arrays in layer 1 capture simple features, while the feature
arrays in the second hidden layer capture have more complex responses. The
final output of the system does a good job of detecting road markers despite low
degrees of freedom, a high degree of noise, and the presence of many distractors
such as cars or road signs.

3 Convolutional Neural Networks

CNNs perform mappings between spatially / temporally distributed arrays in
arbitrary dimensions. They appear to be suitable for application to time series,
images, or video. CNNs are characterized by:

– translation invariance (neural weights are fixed with respect to spatial trans-
lation)

– local connectivity (neural connections only exist between spatially local re-
gions)

– an optional progressive decrease in spatial resolution (as the number of fea-
tures is gradually increased).
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Fig. 2. Architecture of a fully interconnected CNN with multiple neurons in the con-
volution layer, and a factor of two translation in the second layer.
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Fig. 3. Input, feature, and output arrays of a convolution network applied to detecting
road markers.



5

These constraints make a CNN operate like a system of interconnected fil-
ters, and profitable comparisons may be made between other filtering systems,
since the neural weights of a CNN operate like the taps of a system of finite im-
pulse response (FIR) or wavelet filters. Thus a trained CNN may be thought of
trainable filter system, custom made for a certain function mapping application.
Finally, CNNs allow the processing of large spatially distributed arrays without
a correspondingly large number of free parameters, increasing the chances of
minima avoidance and generalization.

Initially, we will describe the case of one dimensional input and a single hid-
den layer. Extensions may be then be made to multiple dimensions and multiple
layers, with possible operation of downsampling. We wish to obtain the formula
for changing the weight and bias parameters of a CNN given a training set of
input-output pairs ξ

µ
k,r, ζ

µ
i,p. The indexes {i, j, k} refer respectively to neuron ar-

rays in the output, hidden, and input layers. In a CNN neurons are ’replicated’
with respect to spatial translation, although they share the same weight and
bias vectors. Indices {p, q, r} are to used to as a spatial index for each layer. A
property of CNNs is that translated neurons h

µ
j,q receive only local connections

from the previous layer - a CNN is not a fully interconnected network. So, when
calculating the net input to a particular translated neuron, it is convenient to in-
dex the spatially distributed weights separately, using indices s, t, u. The weights
of a CNN are invariant to spatial translation, so it is natural to think of the set
of weights wt

j,k, t = {−T, .., 0, ..., T} as a filter that connects input array ξ
µ
k,r to

feature array V
µ
j,q. 2T +1 is size of the region surrounding each translation point

for which network weights exist, i.e., the filter size. It is constrained to be of an
odd - numbered length, so it is symmetrical about q.

A summary of the indices used in the present paper is shown in table 1.

output hidden input

array label O V ξ

array index i j k

spatial index p q r

weight index s t
Table 1. Indexes and array terms, organized with respect to layer and data type.

Given input pattern µ hidden unit j, q receives net input

h
µ
j,q =

∑

k

∑

t

wt
j,kξ

µ
k,q+t + bj (1)

where the index to ξ
µ
k is clamped to spatially local positions, centered at

translation q, by setting r = q + t. The term bj refers to the usual constant bias.
The neural output forms the hidden feature arrays, produced by the transfer
function
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V
µ
j,q = g

(

h
µ
j,q

)

. (2)

The neuron at translation p in the ith array in the output layer receives net
input

h
µ
i,p =

∑

j

∑

s

ws
i,jV

µ
j,p+s + bi (3)

where, as before, s = {−S, .., 0, ..., S}, and 2S + 1 describes the length of the
filter in the output layer, and relative indexing has been substituted for absolute
indexing; q = p + s. Final output of the network

O
µ
i,p = g

(

h
µ
i,p

)

= g

(

∑

j

∑

s

ws
i,jV

µ
j,p+s + bi

)

(4)

Identical to the effect of applying two convolution filters sequentially, CNNs
with hidden layers result in progressively larger portions of the input contributing
to the function, Op = f(ξp−S−T , ..., ξp, ..., ξp+S+T ).

4 Delta rule for CNNs

Although CNNs make use of the same weight update rule as normal neural
networks, some care should be taken in implementation, particularly with dif-
ferential indexing of spatial translation and feature maps.

As with normal ANNs, the cost function of a CNN is

E =
1

2

∑

µ,i,p

[

ζ
µ
i,p − O

µ
i,p

]2
. (5)

We find the derivative of the error with respect to the sth weight of the filter
connecting the jth feature array to the ith output array

∂E

∂ws
i,j

= −
∑

µ,p

[

ζ
µ
i,p − g

(

h
µ
i,p

)]

g′
(

h
µ
i,p

)

V
µ
j,p+s (6)

which used in combination with the familiar gradient descent weight update rule
yields

∆ws
i,j = η

∑

µ,p

δ
µ
i,pV

µ
j,p+s (7)

where

δ
µ
i,p =

[

ζ
µ
i,p − g

(

h
µ
i,p

)]

g′
(

h
µ
i,p

)

. (8)
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In order to find the weight change of the input to hidden connections ws
j,k the

delta rule is applied with a change of indices

∆ws
j,k = η

∑

µ,q

δ
µ
j,qξ

µ
k,q+t (9)

where

δ
µ
j,q =

∑

s

g′
(

h
µ
j,q

)

∑

i

δ
µ
i,q−sw

s
i,j . (10)

Bias terms bi and bj are treated as normal weights with constant input, and may
be likewise updated using (10) and (11).

5 Subsampling

Often when applying CNNs we wish to progressively reduce spatial resolution
at each layer in the network. For example, a CNN may be used for classification
where an image is mapped to a single classification output. Given fixed filter
sizes, reducing spatial resolution has the effect of increasing the effective spatial
range of subsequent filters. In a CNN with subsampling in each layer, the out-
come is a gradual increase in the number of features used to describe the data,
combined with a gradual decrease in spatial resolution. Because the change in
coordinate system is accomplished in a nonlinear, incremental, hierarchical man-
ner, the transformation can be be made insensitive to input translation, while
incorporating information regarding the relative spatial location of features. This
provides an interesting contrast to methods such as principle components anal-
ysis, which make the transition from normal coordinate space to feature space
in a single linear transformation.

We can rewrite the previous formulas for calculating the output of the net-
work, given that both layers incorporate spatial subsampling. This has been pre-
viously accomplished using a seperate ’averaging’ layer with fixed neural weights
[2]. However, it is described below by increasing the shift indexes by a factor of
two, thus combining adaptive and downsampling functions. Since the averaging
layer in the method of Le Cun [2] may be specified by a ’double shift’ layer with
a filter size of 2, it may be shown that the present formalism is essentially simi-
lar, albiet more general, and allowing for adaption of previously fixed averaging
weights.

h
µ
j,q =

∑

k

∑

t

wt
j,kξ

µ
k,2q+t + bj (11)

h
µ
i,p =

∑

j

∑

s

ws
i,jV

µ
j,2p+s + bi (12)

The output of the network is then

O
µ
i,p = g

(

∑

j

∑

s

ws
i,jg

(

h
µ
j,2p+s

)

+ bi

)

(13)
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= g
(

∑

j

∑

s

ws
i,jg

(

∑

k

∑

t

wt
j,kξ

µ
k,4p+2s+t + bj

)

+ bi

)

. (14)

For a general CNN with N layers, being some combination of non-subsampling
and subsampling layers, and filter sizes being given by Fn, the local region of
input contributing to the output is given by the recursive formulas

Rn+1 = Rn + Fn − 1 if nonsubsampling (15)

Rn+1 = 2(Rn + Fn) − 3 if subsampling (16)

given R1 = F1. Given fixed filter sizes Fn, it is clear that the input ’window’
of CNN may grow rapidly as the number of subsampling layers increase. Most
wavelet transforms utilize a similar nested series of downsampling operations,
achieving significant computational savings. In fact, given a tree-like connectivity
between feature arrays, the sub-sampled CNN may be profitably conceptualized
as a wavelet transform with adaptable filters.

For downsampling layers, the weight update rules are identical to [7] and [9],
with the shift indices p and q increased by a multiple of two.

6 Method

CNNs are investigated in the current work for use as an image processing system
on an autonomous mobile robot (see [14, 15] for details). The task of the system
is autonomous detection and characterization of cracks and damage in sewer pipe
walls. The robot scans the pipe wall using a monochrome CCD camera, which
is digitally converted at a resolution of 320x240 pixels per frame. The task of
the CNN is to perform filtering of the raw pixel data, identifying the spatial
location of cracks, enabling subsequent characterization of the length, width, etc
of the damage. Figure 4 displays a sample input frame, along with the ideal
output of the CNN. Although the cracks are easily identifiable by eye, the image
processing task is quite complex, as variability in lighting and orientation, width
and type of crack, along with the presence of other crack-like structures (such
as joins between pipe sections), combine to make a challenging computer vision
task.

A representative data-set of 37 frames from an on-line recording session were
manually classified for training and validation of the network. A training data
set was generated using 20 of the images, sampling 100 crack and 200 non-crack
pixel locations, yielding a total of 6000 input-target pairs. Although all pixel
locations had associated targets, not every pixel was used for training because:
a) computational expense b) the low proportion of ’crack’ to ’clean’ training
samples tended to bias the network towards classifying all samples as ’clean’.
Alternatively, it would be possible to use a biased learning procedure, where the
error generated by the rarer class would be weighted in inverse proportion to the
ratio of occurance.

The CNN architecture used involved a total of five layers: a single input and
output map, and three hidden layers. The filter sizes used in all cases were 5x5,
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and the common activation function used was a log-sigmoid. The number of
feature maps used in the three hidden layers was, from input to output, 4, 3, 2.
Thus, the number of neural weights to be optimized was (52 + 1)(1 ∗ 4 + 4 ∗ 3 +
3 ∗ 2 + 2 ∗ 1) = 624 while the input to the network was a square region with side
lengths of (((5 ∗ 2 + 4) + 4) + 4) = 68 pixels, yielding a total of 4624 pixel inputs
to the network. These figures are indicative of the degrees-of-freedom saving
achieved by the weight sharing method. Training was conducted using standard
weight updated rules, as described about, for 10,000 epochs, using a learning
rate η = 0.05, requiring approximately two hours of compute time. The network
was implemented in C++.

input image target image

Fig. 4. Example input and target images for large cracks on a concrete pipe. Note the
horizontal feature in the upper left image is a pipe joint, not a crack. Differentiating
between pipes and joints, accounting for shadows and lighting effects are significant
challenges for a detection / filtering system.

7 Results

Approximately 93% of pixels in the validation set were correctly classified. How-
ever, as the current application relates to an image processing / filtering task,
numerical results (i.e. percentage of pixels correctly / incorrectly classified) are
less informative than graphical results. Figure 5 displays three example frames,
that were representative of the data set, including crack present, no crack and
pipe joint, and crack and joint together. The network appears to have successfully
ignored the presence of joints, and attenuated lighting effects while enhancing
the cracks. In the context of the application to sewer pipe defect detection and
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characterization, the output may be profitably used by a subsequent crack de-
tection algorithm. However, the present system is in it’s early stages, and we
believe that further refinement may provide better results.

input image output image

Fig. 5. Example input and CNN output frames Note that because of the 68 pixel
window required by the network, the output image represents is subregion of the input.

8 Discussion

We have described and applied a general CNN architecture to a ’real-world’ prob-
lem of some interest to the civil robotics community. CNNs may be expected
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to achieve significantly better results than standard feed-forward networks for
many tasks because they impose appropriate constraints on the way the func-
tion mapping is learnt. The key characteristics of local connectivity, and trans-
lation invariant weight sharing, are appropriate when the input data is spatially
or temporally distributed. In addition, implementing down-sampling allows the
network to progressively trade-off resolution for a greater input range.

In training the present CNN, some issues became apparent. Training using
bitmap type images results in an over abundance of training sample points.
It appears that, in order to maximize the available computational resources,
that not all pixel-centre points of the training set should be used. Rather, a
representative sub-sample would be more appropriate. In the present application,
this might mean over-sampling joints as opposed to flat-wall regions, or thin
cracks as opposed to thick cracks. This may be done manually by hand-coding
multiple targets, and sampling each one equally. Alternatively, some statistical
criteria might be developed for selection of a representative data subset. Also,
we have not yet done work on deciding the best CNN architecture for a given
application - the present architecture was simply chosen as appearing reasonable
for the current application.

As yet, the utility of CNNs does not appear to have been fully realized, and
applications to a wide variety of data-types and function mapping problems (ie
physiological recordings, financial time-series analysis, automatic sateliite image
processing) remain to be explored. In particular, through the implementation of
3-D filters, CNNs may represent a computationally feasible method of adaptive
video processing. Refinements in the CNN architecture remain to be explored.
For example, sequential CNN layers comprising 1xN and Nx1 filters may be used
to learn separable NxN filter functions. There are clear links between CNNs
and finite impulse response filters, adaptive filters, and wavelet transforms, and
theoretical work bridging these disciplines would be of significant interest. As
a final point, the development of methods for adapting the CNN architecture
via discriminant or entropy-based cost functions, similar to those developed for
wavelet packet analysis, would be of significant interest.
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