
HAL Id: hal-01369906
https://hal.inria.fr/hal-01369906

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convolutional Neural Networks for Large-Scale Remote
Sensing Image Classification

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, Pierre Alliez

To cite this version:
Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, Pierre Alliez. Convolutional Neu-
ral Networks for Large-Scale Remote Sensing Image Classification. IEEE Transactions on Geo-
science and Remote Sensing, Institute of Electrical and Electronics Engineers, 2017, 55, pp.645-657.
10.1109/tgrs.2016.2612821. hal-01369906

https://hal.inria.fr/hal-01369906
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Convolutional Neural Networks for Large-Scale

Remote Sensing Image Classification
Emmanuel Maggiori, Student member, IEEE, Yuliya Tarabalka, Member, IEEE,

Guillaume Charpiat, and Pierre Alliez

Abstract—We propose an end-to-end framework for the dense,
pixelwise classification of satellite imagery with convolutional
neural networks (CNNs). In our framework, CNNs are directly
trained to produce classification maps out of the input images.
We first devise a fully convolutional architecture and demonstrate
its relevance to the dense classification problem. We then address
the issue of imperfect training data through a two-step training
approach: CNNs are first initialized by using a large amount
of possibly inaccurate reference data, then refined on a small
amount of accurately labeled data. To complete our framework
we design a multi-scale neuron module that alleviates the common
trade-off between recognition and precise localization. A series
of experiments show that our networks take into account a large
amount of context to provide fine-grained classification maps.

Index Terms—Classification, satellite images, convolutional
neural networks, deep learning.

I. INTRODUCTION

THE ANALYSIS of remote sensing images is of

paramount importance in many practical applications,

such as precision agriculture and urban planning. Recent

technological developments have significantly increased the

amount of available satellite imagery. Notably, the constel-

lation of Pléiades satellites produces high spatial resolution

images that cover the whole Earth in less than a day. The

large-scale nature of these datasets introduces new challenges

in image analysis. In this paper we address the problem of

pixelwise classification of satellite imagery.

There is a vast literature on classification approaches that

take into account the spectrum of every individual pixel to

assign it to a certain class. Alternatively, more advanced

techniques combine information from a few neighboring pixels

to enhance the classifiers’ performance, often referred to as

spectral-spatial classification. These approaches rely on the

separability of the different classes based on the spectrum

of a single pixel or of some neighboring pixels. In a large-

scale setting, however, these approaches are not effective.

On the one hand, current large-scale satellite imagery does

not use high spectral resolution sensors, making it difficult

to distinguish object classes solely by their spectrum. On

the other hand, due to the large spatial extent covered by

the datasets, classes have a considerable internal variability,

which further challenges the class separability when simply

E. Maggiori, Y. Tarabalka and P. Alliez are with Univeristé Côte d’Azur,
TITANE team, Inria, 2004 Route des Lucioles, BP93 06902 Sophia Antipolis
Cedex, France. E-mail: emmanuel.maggiori@inria.fr.

G. Charpiat is with Tao team, Inria Saclay–Île-de-France, LRI, Bât. 660,
Universit Paris-Sud, 91405 Orsay Cedex, France.

Manuscript received ...; revised ...

observing the spectral signatures of a restricted neighborhood.

We argue that a more thorough understanding of the context

such as, e.g., the shape of objects, is required to aid the

classification process.

Convolutional neural networks (CNNs) [1] are therefore

gaining attention, due to their capability to automatically

discover relevant contextual features in image categorization

problems. CNNs consist of a stack of learned convolution

filters that extract hierarchical contextual image features, and

are a popular form of deep learning networks. They are already

outperforming other approaches in various domains such as

digit recognition [2] and natural image categorization [3].

Our goal is to devise an end-to-end framework to clas-

sify satellite imagery with CNNs. The context of large-scale

satellite image classification introduces certain challenges that

we must address in order to turn CNNs into a relevant

classification tool. Notably, we must (1) design a specific

neural network architecture for our problem, (2) acquire large-

scale training data and handle its eventual inaccuracies, and

(3) generate high-resolution output classification maps.

1) CNN architecture: CNNs are commonly used for image

categorization, i.e., for assigning the entire image to a class

(e.g., a digit [1] or an object category [3]). In remote sensing,

the equivalent problem is to assign a category to an entire

image patch, such as ‘residential’ or ‘agricultural’ area. Our

context differs in that we wish to conduct a dense pixelwise

labeling. We must thus design a CNN that outputs a per-pixel

classification and not just a category for the entire input.

2) Imperfect training data: A sensitive point regarding

CNNs is the amount of training data required to properly learn

the network parameters. A large source of free-access maps

is OpenStreetMap, a collaborative online mapping platform,

but the availability of data is highly variable between areas.

In some areas, the coverage is very limited or nonexistent,

and an irregular misregistration is prevalent throughout the

maps. As we focus on the large-scale application of CNNs for

classification, we must explore the use of imperfect training

data in order to make our framework applicable to a wide

range of geographic areas.

3) High-resolution output: The power of CNNs to take a

large context to conduct predictions comes at the price of

losing resolution for the output. This is because some degree

of downsampling of the feature maps along the network is

required in order to increase the amount of context without

an excessive number of learnable parameters. Such coarse

resolution translates into a fuzzy aspect around object edges

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

and corners. One of our challenges is then to alleviate this

trade-off.

A. Related Work

We now review classification methods and the use of CNNs

in remote sensing.

In the context of spectral classification, decision trees [4],

artificial neural networks [5], [6] and support vector ma-

chines [7] are some of the approaches that have been ex-

plored, both for multispectral and hyperspectral image analy-

sis. Spectral-spatial methods [8] use contextual information to

regularize the classification maps. Different approaches have

been presented, for example, Liao et al. [9] sequentially apply

morphological filters to model different kinds of structural

information and Tarabalka et al. [10] model spatial interactions

with a graphical model. Neural networks have also been used

for spectral-spatial classification. In this direction, Kurnaz

et al. [11] use such network to classify the concatenated

spectrum of pixels inside a sliding window, in order to label

multispectral images. In a similar fashion, Lloyd et al. [12]

compute a textural feature which is concatenated to the pixel

spectrum vector, prior the a neural network classification. Lu

and Weng [13] provide a comprehensive survey on classifica-

tion methods.

In remote sensing, CNNs have been used to individually

classify the pixels of hyperspectral images. This was achieved

by performing convolutions in the 1D domain of the spectrum

of each pixel [14], [15], [16]. Alternatively, a spectral-spatial

approach has been taken by convolving in the 1D flattened

spectrum vector of a group of adjacent pixels [17], [18].

Note however that these approaches do not learn spatial

contextual features such as the typical shape of the objects

of a class. Recent works have incorporated convolutions on

the spatial domain after extracting the principal components

of the hyperspectral image [19], [20], [21], and the idea of

reasoning at multiple spatial scales has also been exploited,

notably for hyperspectral classification [22], [23] and image

segmentation [24]. Let us remark that convolutional neural

networks have also been used for other remote sensing appli-

cations, such as road tracking [25], object detection [26] and

land use classification [27], [28].

Mnih [29] proposed a specific architecture to learn large-

extent spatial contextual features for aerial image labeling.

It is derived from common image categorization networks

by increasing the output size of the final layer. Instead of

outputting a single value to indicate the category, the final layer

produces an entire dense classification patch. This network

successfully learns contextual spatial features to better distin-

guish the object classes. However, this patchwise procedure

has the disadvantage of introducing artifacts on the border of

the classified patches. Moreover, the last layer of the network

introduces an unnecessarily large number of parameters, ham-

pering its efficiency.

B. Contributions

We now summarize our contributions to address the issues

presented before and provide then a framework for satellite

image classification with CNNs.

1) Fully convolutional architecture: We first analyze the

CNN architecture proposed by Mnih [29] and the fact that it

has a fully connected layer, i.e., connected to all the outputs of

the previous layer, to produce the output classification patches.

We point out that this architectural decision hampers both its

accuracy and efficiency.

We then propose a new network architecture that is fully

convolutional, i.e., that only involves a series of convolution

and deconvolution operations to produce the output clas-

sification maps. This architecture solves the issues of the

previous patch-based approach by construction. While such a

fully convolutional architecture imposes further restrictions to

the neuronal connections than the fully connected approach,

these restrictions reduce the number of trainable parameters

without losing generality. It has been seen multiple times in

the literature that reducing the number of parameters under

sensible assumptions often implies a simpler error surface

and helps reaching better local minima. For example, con-

volutional networks have fewer connections than multi-layer

perceptrons but perform better in practice for visual tasks [1],

and Mnih [29] showed that adding too many layers to a

network resulted in poorer results.

We compare the fully convolutional vs fully connected

approaches on a dataset of publicly available aerial color

images over Massachusetts [29] created with the specific

purpose of evaluating CNN architectures.

2) Two-step training approach: To deal with the imper-

fections in training data we propose a two-step approach.

First, we train our fully convolutional neural network on raw

OpenStreetMap data to discover the generalities of the dataset.

Second, we fine-tune the resulting neural networks for a few

iterations under a small piece of manually labeled image. Our

hypothesis is that, once the network is pre-trained on large

amounts of imperfect data, we can boost its performance by

“showing” it a small amount of accurate labels. Our approach

is inspired by a common practice in deep learning: taking

pre-trained networks designed to solve one problem and fine-

tuning them to another problem.

3) Multi-scale architecture: We design a specific neuron

module that processes its input at multiple scales, while

keeping a low number of parameters. This alleviates the

aforementioned trade-off between the amount of context taken

and the resolution of the classification maps. Our overall

approach constitutes then an end-to-end framework for satellite

image labeling with CNNs. We evaluate it on a Pléiades image

dataset over France, where the associated OpenStreetMap data

is significantly inaccurate.

C. Organization of the Paper

In the next section an introduction to convolutional neural

networks is presented. In Section III the fully convolutional

architecture is described and evaluated. Section IV presents

the two-step training approach and the multi-scale architec-

ture, in order to use CNNs as an end-to-end framework for

satellite image classification. Finally, conclusions are drawn

in Section V.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

II. CONVOLUTIONAL NEURAL NETWORKS

In machine learning an artificial neural network is a system

of interconnected neurons that pass messages to each other.

Neural networks are used to model complex functions and, in

particular, as frameworks for classification. In this work we

deal with the so-called feed-forward networks, whose graph

of message passing between neurons is acyclic [30].

An individual neuron takes a vector of inputs x = x1 . . . xn

and performs a simple operation to produce an output a. The

most common neuron is defined as follows:

a = σ(wx+ b), (1)

where x denotes a weight vector, b a scalar known as bias and

σ an activation function. The weight vectors and the biases are

parameters that define the function computed by a network,

and the goal of training is to find the optimal values for

these parameters. When using at least one layer of nonlinear

activation functions, one can prove that a sufficiently large

network can represent any function, suggesting the expres-

sive power of neural networks. The most common activation

functions are sigmoids, hyperbolic tangents and rectified linear

units (ReLU) [3]. ReLUs are known to offer some practical

advantages in the convergence of the training procedure.

Even though any function can be represented by a suffi-

ciently large single layer of neurons, it is common to organize

them in a set of stacked layers that transform the outputs of the

previous layer and feed it to the next layer. This encourages

the networks to learn hierarchical features, doing low-level

reasoning in the first layers and performing higher-level tasks

in the last layers. For this reason, the first and last layers are

often referred to as lower and upper layers respectively.

In an image categorization problem, the input of our net-

work is an image (or a set of features derived from an image),

and the goal is to predict the correct label associated with the

image. Finding the optimal neural network classifier reduces

to finding the weights and biases that minimize a loss L
between the predicted values and the target values in a training

set. If there is a set L of possible classes, the labels are

typically encoded as a vector of length |L| with value ‘1’

at the position of the correct label and ‘0’ elsewhere. The

network has then as many output neurons as possible labels. A

softmax normalization is performed on top of the last layer to

guarantee that the output is a probability distribution, i.e., the

values for every label are between zero and one and add to

one. The multi-label problem is then seen as a regression on

the desired output label vectors.

The loss function L quantifies the misclassification by

comparing the target label vectors y(i) and the predicted label

vectors ŷ(i), for n training samples i = 1 . . . n. In this work

we use the common cross-entropy loss, defined as:

L = −
1

n

n
∑

i=1

|L|
∑

k=1

y
(i)
k log ŷ

(i)
k . (2)

The cross-entropy loss has fast convergence rates when train-

ing neural networks (compared with, for instance, the Eu-

clidean distance between y and ŷ) and is numerically stable

when coupled with softmax normalization [30].

Note that in the special case of binary labeling we can

produce only one output (with targets ‘1’ for positive and

‘0’ for negative). In this case a sigmoid normalization and

cross-entropy loss are analogously used, albeit a multi-class

framework can also be used for two classes.

Once the loss function is defined, the parameters (weights

and biases) that minimize the loss must be solved for. Solving

is achieved by gradient descent by computing the derivative
∂L
∂wi

of the loss function with respect to every parameter wi,

and updating the parameters with a learning rate λ as follows:

wi ← wi + λ
∂L

∂wi
. (3)

The derivatives ∂L
∂wi

are obtained by backpropagation, which

consists in explicitly computing the derivatives of the loss with

respect to the last layer’s parameters and using the chain rule

to recursively compute the rest of the derivatives. In practice,

learning is performed by stochastic gradient descent, i.e., by

estimating the loss (2) on a small subset of the training set,

referred to as a mini-batch.

Despite the fact that neural networks can represent very

complex functions, the epigraph of the loss function L can

be highly non-convex, making the optimization difficult via a

gradient descent approach. To regularize this loss and improve

training, convolutional neural networks (CNNs) [1] are a

special type of neural networks that impose restrictions that

make sense in the context of image processing. In these

networks, every neuron is associated to a spatial location (i, j)
with respect to the input image. The output aij associated with

location (i, j) is then computed as follows:

aij = σ((W ∗X)ij + b), (4)

where W denotes a kernel with learned weights, X the input

to the layer and ‘∗’ the convolution operation. Note that this

is a special case of the neuron in Eq. 1 with the following

constraints:

• The connections only extend to a limited spatial neigh-

borhood determined by the kernel size;

• The same filter is applied to each location, guaranteeing

translation invariance.

Typically multiple convolution kernels are learned in every

layer, interpreted as a set of spatial feature detectors. The

responses to every learned filter are therefore known as a

feature map.

Departing from the traditional fully connected layer, in

which every neuron is connected to all outputs of the previous

layer, a convolutional layer dramatically reduces the number

of parameters by enforcing the aforementioned constraints.

This results in a regularized loss function, easier to optimize,

without losing much generality.

Note that the convolution kernels are actually three-

dimensional because, in addition to their spatial extent, they go

through all the feature maps in the previous layers, or through

all the bands in the input image. Since the third dimension

can be inferred from the previous layer it is rarely specified

in architecture descriptions, only the two spatial dimensions

being usually mentioned.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

In addition to convolutional layers, state-of-the-art networks

such as Imagenet [3] involve some degree of downsampling,

i.e., a reduction in the resolution of the feature maps. The

goal of downsampling is to increase the so-called receptive

field of the neurons, which is the part of the input image

that neurons can “see”. For the predictions to take into

account a large spatial context, the upper layers should have

a large receptive field. This is achieved either by increasing

the convolution kernel sizes or by downsampling feature

maps to a lower resolution. The first alternative increases the

number of parameters and memory consumption, making the

training and inference processes prohibitive. State-of-the-art

CNNs tend then to keep the kernels small and add some

degree of downsampling instead. This can be accomplished

either by including pooling layers (e.g., taking the average or

maximum of adjacent locations) or by introducing a so-called

stride, which amounts to skip some convolutions through, e.g.,

applying the filter once every four locations.

Classification networks typically contain a fully connected

layer on top of the convolutions/pooling. This layer is designed

to have as many outputs as labels, and produces the final

classification scores.

The overall success of CNNs lies mostly in the fact the

the networks are forced by construction to learn hierarchical

contextual translation-invariant features, which are particularly

useful for image categorization.

III. CNNS FOR DENSE CLASSIFICATION

In this work we address the problem of dense classifi-

cation, i.e., not just the categorization of an entire image,

but a full pixelwise labeling into the different categories. We

first describe an existing approach, the patch-based network,

point out its limitations and propose a fully convolutional

architecture that addresses these limitations. We restrict our

experiments to the binary labeling problem for the building

vs not building classes, but our approach is extensible to

an arbitrary number of classes following the formulation

described in Section II.

A. Patch-based Network

To perform dense classification of aerial imagery, Mnih

proposed a patch-based convolutional neural network [29].

Training and inference are performed patch-wise: the network

takes as input a patch of an aerial image, and generates

as output a classified patch. The output patch is smaller,

and centered in the input patch, to take into account the

surrounding context for more accurate predictions. The way to

create dense predictions is to increase the number of outputs of

the last fully connected classification layer, in order to match

the size of the target patch.

Fig. 1(a) illustrates the patch-based architecture from [29].

The network takes 64× 64 patches (on color images of 1m2

spatial resolution) and predicts 16×16 centered patches of the

same resolution. Three convolutional layers learn 64, 112 and

80 convolution kernels, of 12 × 12, 4 × 4 and 3 × 3 spatial

dimensions, respectively. The first convolution is strided (one

(a) Color (b) Patch-based (c) FCN

Fig. 2: The patch-based predictions exhibit artifacts on the

patch borders while the FCN prevents them by construction.

convolution every four pixels), which implies a downsampling

with factor 4.

After the three convolutional layers, a fully connected layer

transforms the high-level features of the last convolutional

layer into a classification map of 256 elements, matching the

required 16× 16 output patch.

Training is performed by selecting random patches from the

training set, and grouping them into mini-batches as required

by the stochastic gradient descent algorithm.

B. Limitations of the Patch-based Framework

We now point out some limitations of the patch-based

approach discussed above, which motivate the design of an

improved network architecture. Let us first analyze the role

of the last fully connected layer that constructs the output

patches. In the architecture of Fig. 1(a), the size of the feature

maps in the last convolutional layer (before the last fully

connected one) is 9× 9. The resolution of these filters is 1/4

of the resolution of the input image, due to the 4-stride in

the first convolution. The output of the fully connected layer

is, however, a full-resolution 16× 16 classification map. This

means that the fully connected layer does not only compute

the classification scores, but also learns how to upsample

them. Outputting a full-resolution patch is then the result of

upsampling and not of an intrinsic high-resolution processing.

We also observe that the fully connected layer allows outputs

at different locations to have different weights with respect

to the previous layer. For example, the weights associated

to an output pixel at the top-left corner of a patch can be

different to those of a pixel at the bottom right. In other

words, the network can learn priors on the position inside

a patch. This makes sense in some specific contexts such as

when labeling pictures of outdoor scenes: the system could

learn a prior for the sky to be at the top of the image. In

our context, however, the partition of an image into patches

is arbitrary, hence the “in-patch location” prior is irrelevant

since allowing different weights at different patch locations

may yield undesirable properties. For example, feeding two

image patches that are identical but rotated by 90 degrees

could yield different classification maps.

When training the network of Fig. 1(a) we expect that, after

processing many training cases, the fully connected layer will

end up learning a location-invariant function. Figs. 2(a)-(b)

illustrate a fragment of an output score map by using such

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

(a) Patch-based
(b) Fully convolutional (16× 16 output)

Fig. 1: Convolutional neural network architectures (e.g., “64@14× 14” means 64 feature maps of size 14× 14).

an architecture. Notice the discontinuities at the border of

the patches, which reveal that the network did not succeed

in learning to classify pixels independently of their location

inside the patch. While this issue is partly addressed in [29]

by smoothing the outputs with a conditional random field, we

argue that avoiding such artifacts by construction is desirable.

In addition, generating similar results regardless of image

tiling is an important property for large-scale satellite image

processing, and an active research topic [31], [32]. Another

concern with the fully connected layer is that the receptive field

of every patch output is not centered in itself. For example, a

prediction near the center of the output patch can “see” about

32 pixels in every direction around it. However, the prediction

at the top-left corner of the output patch considers a larger

portion of the image to the bottom and to the right than to the

top and to the left. Considering that the division into patches

is arbitrary, this behavior is hard to justify.

A deeper understanding of the role played by every layer of

the network, as described in this section, motivates the design

of a more suitable architecture from a theoretical point of view,

with the additional goal of boosting the overall performance

of the approach.

C. Fully Convolutional Network

We propose a fully convolutional neural network architec-

ture (FCN) to produce dense predictions. We explicitly restrict

the process to be location-independent, enforcing the outputs

to be the result of a series of convolutions only (see Fig. 1b).

A classification network may be “convolutionalized” [33] as

follows. We first convert the fully connected layer that carries

out the classification to a convolutional layer. The convolution

kernel is chosen so that its dimensions coincide with the

previous layer. Thus, its connections are equivalent to a fully

connected layer. The difference is that if we enlarge the input

image, the output size is also increased, but the number of

parameters remains constant. This may be seen as convolving

the whole original network around a larger image to evaluate

the output at different locations.

To increase the resolution of the output map, we then add a

so-called “deconvolutional” layer [33]. The goal of this layer is

to upsample the feature maps from the previous layer, which is

achieved by performing an interpolation from a set of nearby

points. Such an interpolation is parametrized by a kernel

that expresses the extent and amount of contribution from a

pixel value to its neighboring positions, only based on their

locations. For an effective interpolation, the kernels must be

Fig. 3: “Deconvolution” layer for upsampling.

large enough to overlap in the output. The interpolation is then

performed by multiplying the values of the kernel by every

input and adding the overlapping responses in the output. This

process is illustrated by Fig. 3 for a 2x upsampling. Notice

that the scaling step is performed based on a constant 4 × 4
kernel. In our framework, and as in previous work [33], the

interpolation kernel is another set of learnable parameters of

the network instead of being determined a priori, e.g., setting

them to represent a bilinear interpolation. Note also that the

upsampled feature map has a central part computed by adding

the contribution of two neighboring kernels and an outer

border obtained solely by the contribution of one kernel (the

two leftmost and rightmost output columns in Fig. 3). The

outer border can be seen as an extrapolation of the input while

the inner part can be seen as an interpolation. The extrapolated

border can be cropped from the output to avoid artifacts.

As compared to a patch-based approach, we can expect our

fully convolutional network to exhibit the following advan-

tages:

• Elimination of discontinuities due to patch borders;

• Improved accuracy due to a simplified learning process,

with a smaller number of parameters;

• Lower execution time at inference, due to the fast GPU

execution of convolution operations.

Our FCN network is constructed by convolutionalizing the

existing patch-based network depicted by Fig. 1(a). We choose

an existing framework to benefit from a mature architecture

and to carry out a rigorous comparison. The architectural

decisions (i.e., the choice of the number of layers and filter

sizes) of the base network are described in [29].

Fig. 1(b) depicts the resulting FCN. First, we pretend that

the output patch of the original network is only of size

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

1 × 1, thus just focusing on a single output centered in its

receptive field. Second, we rewrite the fully connected layer

as a convolutional layer with one feature map and the spatial

dimensions of the previous layer (9 × 9). Third, we add a

deconvolutional layer that upsamples its input by a factor of

4 (with a learnable kernel of size 8 × 8), in order to recover

the input resolution. Notice that the tasks of classification and

upsampling are now separated.

This new network can take input images of different sizes,

with the output size varying accordingly. For example, during

the training stage we wish to output patches of size 16×16 in

order to emulate the learning process as was done in the patch-

based network of Fig. 1(a). For this we require a patch input

of size 80 × 80, as in the architecture of Fig. 1(b). Notice

that the input is larger than the original 64 × 64 patches.

This is not because we are taking more context to carry

out the predictions, but instead because every output is now

centered in its context. At inference time we can take inputs

of arbitrary sizes and feed them to the network to construct

the classification maps, and the number of network parameters

does not vary.

In the deconvolutional layer illustrated in Fig. 1(b), the

overlapping areas added to produce the output are depicted

in gray while the excluded extrapolation is in white.

D. Experiments on Fully Convolutional Networks

We implemented the CNNs using the Caffe deep learning

framework [34]. In a first experiment we apply our approach

to the Massachusetts Buildings Dataset [29]. This dataset

consists of color images over the area of Boston with 1 m2

spatial resolution, covering an area of 340 km2 for training,

9 km2 for validation and 22.5 km2 for testing. The images are

labeled into two classes: building and not building. A portion

of an image and its corresponding reference are depicted in

Figs. 4(a-b).

We train the patch-based and fully convolutional networks

(Figs. 1(a) and 1(b) respectively) for 30,000 stochastic gra-

dient descent iterations, until we observe barely no further

improvement on the validation set. The patches are sampled

uniformly from the whole training set, with mini-batches of

64 patches each and a learning rate of 0.0001. A momentum

and an L2 parameter penalty are introduced to regularize

the learning process and avoid overfitting. Momentum adds

a fraction of the previous gradient to the current one in order

to smooth the descent, while an L2 penalty on the learned

parameters discourages neurons to specialize too much on

particular training cases [30]. The weights of these regularizers

are set to 0.9 and 0.0002 respectively. Further details on these

so-called hyperparameters and rationale for selecting them are

provided by Mnih [29].

To evaluate the accuracy of the classification we use two

different measures: pixelwise accuracy (proportion of correctly

classified pixels, obtained through binary classification of the

output probabilities with threshold 0.5) and area under the

receiver operating characteristics (ROC) curve [35]. The latter

quantifies the relation between true and false positives at

different thresholds, and is appropriate to evaluate the overall

quality of the fuzzy maps.

Fig. 5(a) plots the evolution of the area under ROC curve

and pixelwise accuracy in the test set, across iterations.

The FCN consistently outperforms the patch-based network.

Fig. 5(b) shows ROC curves for the final networks after

convergence, the FCN exhibiting the best relation between true

and false positive rates. Fig. 4(c-d) depicts some visual results.

To further illustrate the benefits of neural networks over

other learning approaches we train a support vector machine

(SVM) with Gaussian kernel on 1,000 randomly selected

pixels of each class. We train on the individual pixel spec-

tra without any feature selection. The SVM parameters are

selected by 5-fold cross-validation, as commonly performed

in remote sensing image classification [10]. As shown by

Fig. 4(e), the pixelwise SVM classification often confuses

roads with buildings due to the fact that their colors are similar,

while neural networks better infer and separate the classes by

taking into account the geometry of the context. The accuracy

of the SVM on the Boston test dataset is 0.6229 and its area

under ROC curve is 0.5193, i.e., significantly lower than with

CNNs, as shown in Fig. 5. If we wished to successfully use an

SVM for this task, we should design and select spatial features

(e.g., texture) and use them as the input to the classifier instead.

The amplified fragment in Fig. 2 shows that the border

discontinuity artifacts present in the patch-based scheme are

absent in our fully convolutional setting. This behaves as

expected considering that the issues described in Section III-B

are addressed by construction in the new architecture. This

confirms that imposing sensible restrictions to the connections

of a neural network has a positive impact in the performance.

In terms of efficiency the FCN also outperforms the patch-

based CNN. At inference time, instead of carrying out the

prediction in a small patch basis, the input of the FCN is

simply increased to output larger predictions, better benefiting

from the GPU parallelization of convolutions. The execution

time required to classify the whole Boston 22.5 km2 test set

(performed on an Intel I7 CPU @ 2.7Ghz with a Quadro

K3100M GPU) is 82.21 s with the patch-based CNN against

8.47 s with the FCN. The speedup is about 10x, a relevant im-

provement considering the large-scale processing capabilities

required by new sensors.

IV. END-TO-END FRAMEWORK

In remote sensing image analysis it is a common practice to

train classifiers on the spectrum of a small number (a couple

of hundreds) of isolated sample pixels [36]. Training relies

on the trustworthiness of the reference data and on the fact

that classes are reliably separable simply by observing the

spectral signature of the sampled pixels. While such training

approaches are popular, for example, in hyperspectral image

classification, our goals differ as we wish to automatically

learn contextual features that can help better identify the

classes in satellite imagery. Our goal requires more training

data per se, as we must show the classifier the many different

contexts in which a pixel class can be embedded, and not just

its spectral values. In addition, is it well-known that massive

data might be required to train neural networks, contrary to

a common feature selection and classification approach. This

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

(a) Color image (b) Reference data (c) Patch-based fuzzy map (d) FCN fuzzy map (e) SVM fuzzy map

Fig. 4: Experimental results on a fragment of the Boston dataset.

0.5 1 1.5 2 2.5 3

x 10
4

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Iterations

A
re

a
 u

n
d
e
r

R
O

C
 c

u
rv

e

Fully convolutional

Patch−based

0.5 1 1.5 2 2.5 3

x 10
4

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Iterations

P
ix

e
l−

w
is

e
 a

c
c
u
ra

c
y

Fully convolutional

Patch−based

(a) Performance evolution

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
 P

o
s
it
iv

e
 r

a
te

Patch−based

Fully convolutional

(b) ROC curves

Fig. 5: Evaluation of patch-based and fully convolutional neural networks on the Boston test set.

led us to analyze and address the dependency of the algorithm

on the availability and accuracy of the training data.

In the experiments described in Section III-D, the Mas-

sachusetts Buildings dataset is used for training and testing.

This dataset is a hand-corrected version of the OpenStreetMap

(OSM) vectorial map available over the area covered by

the images. Despite the existence of some inaccuracies in

the reference data, the coverage of OSM in that region is

satisfactory and the errors are minor.

In many other areas of Earth, however, the coverage of OSM

is limited. In the samples of Fig. 8 we observe large areas

with missing data and a general misregistration of the vectorial

maps with respect to the actual structures. In addition, the

misregistration is not uniform and neighboring buildings are

often shifted in different directions. Note that in the samples of

Fig. 8 the buildings have been delineated in OSM based on the

official French cadaster records. However, even the cadaster

records are not always accurate up to the meter resolution.

Furthermore, satellite images undergo a series of corrections

before being aligned to the maps. For example, the use of

inexact elevation models for orthorectification might introduce

misregistrations throughout the images. As a result, the OSM

raw data is imperfect and thus not fully reliable.

The reference data obtained from OSM, as shown by Fig. 8,

provides a rough idea of the location of the buildings, but

rarely outlines them. In such a setting, convolutional neural

networks would hardly learn that building boundaries are

likely to fall on visible edges, since this is not what the refer-

ence data depicts. Under these circumstances, we expect the

predictions not to be very confident, especially on the border of

the objects. As we will illustrate in Section IV-C, this yields a

“blobby” and overly fuzzy aspect to predictions obtained with

the network of Section III-C on more challenging datasets.

Our first contribution in this section is a novel approach for

tackling the issue of inaccurate labels for CNN training. For

this we propose a two-step approach: 1) the network is first

trained on raw OSM data, 2) it is then fine-tuned on a tiny

piece of manually labeled image.

This method provides us with a means to deal with the

inaccuracy of training data, by increasing the confidence

and sharpness of the predictions. However, we still cannot

expect it to provide highly precise boundaries with the fully

convolutional architecture as described in Section III-C. This

is because such network includes a downsampling step, re-

quired to capture the long-range spatial dependencies that

help recognize the classes. However, downsampling makes

the whole system lose spatial precision, and the deconvo-

lutional layer learns a way of naively upsampling the data

from a restricted number of neighbors, without reincorporating

higher-resolution information. What is lost in spatial precision

through the network, is not recovered. This is a consequence

of a well-known trade-off between the receptive field (how

much context is taken to conduct predictions) and the output

resolution (how fine is the prediction) if we wish to keep a

reasonable number of trainable parameters [33]. Our second

contribution is then a new architecture that incorporates infor-

mation at multiple scales in order to alleviate this trade-off.

Our architecture combines low-resolution long-range features

with high-resolution local features that conduct predictions

with a higher level of detail. This architecture, when combined

with our two-step training approach, provides a framework that

can be used end-to-end to classify satellite imagery.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 8

A. Fine-tuning

Fine-tuning is a very common procedure in the neural

network literature. The idea is to adapt an existing pretrained

model to a different domain by executing a few training iter-

ations on a new dataset. The notion of fine-tuning is based on

the intuition that low-level information/features can be reused

in different applications, without training from scratch. Even

when the final classification objective is different, it is also

a relevant approach for initializing the learnable parameters

close to good local minima, instead of initializing with random

weights. After proper fine-tuning, low-level features tend to be

quite preserved from one dataset to another, while the higher

layers’ parameters are updated to adapt the network to the new

problem [37].

When fine-tuning, the training set for the new domain is usu-

ally substantially smaller than the one used to train the original

network. This is because one assumes that some generalities

of both domains are well conveyed in the pretrained network

(e.g., edge detectors in different directions) and the fine-tuning

phase is just needed to conduct the domain adaptation. When

the training set used for fine-tuning is very small, additional

considerations to avoid overfitting are commonly taken, such

as early stopping (executing just a few iterations on the new

training dataset), fixing the weights at the lower layers or

reducing the learning rate.

We now incorporate the idea of neural network fine-tuning,

in order to perform training on imperfect data. Our approach

proceeds in two steps. In step one large amounts of training

data are used to train a fully convolutional neural network.

This raw training data is extracted directly from OSM, without

any hand correction. The goal of this step is to capture the

generalities of the dataset such as, e.g., the representative

spectrum of object classes.

In step two, we fine-tune the network by using a small

part of carefully labeled image. This phase is designed to

compensate for the inaccuracy of labels obtained in step one,

by fine-tuning the network on small yet consistent target

outputs. Assuming that most of the generalities have been

captured during the initial training step, the fine-tuning step

should locally correct the network parameters to output more

accurate classifications. The efforts of fine-tuning are thus

limited to manually labeling a small dataset, while the large

inaccurate dataset is automatically extracted from OSM.

B. Conducting Fine Predictions

The resolution at which the networks proposed in Section III

operate yields probability maps that, once upsampled, are

coarse in terms of spatial accuracy. A naive way to increase

the resolution of the network would be to use higher-resolution

filters, which requires to increase their dimensions if we

want to preserve the receptive field. For example, instead of

applying a 5× 5 filter at a fourth of the image resolution, one

could use a 20×20 filter at full resolution, hence covering the

same spatial extent. However, such an increase in filter sizes

is prohibitive, hampering the spatial and temporal efficiency

of the algorithm and producing less accurate results due to the

difficulty of optimizing so many parameters.

Nevertheless, we observed that we do not need full-

resolution filters to conduct accurate predictions. One requires

a higher resolution only in the center of the convolution

filters (assuming that the pixel we wish to predict is in the

center of the context of interest). A large spatial extent is

indeed required to capture contextual information, but it is

not necessary to conduct this analysis at full resolution. For

example, the presence of two parallel bands of grass can help

identify a road (and distinguish it from, for instance, a building

with a gray rooftop), but a precise localization of the grass is

not necessary. On the contrary, at the center of the convolution

filter, a higher-resolution analysis is required to specifically

locate the boundary of the aforementioned road.

Fig. 6 illustrates this observation. In Fig. 6(a) we observe

the area around a pixel whose class we wish to predict, at full

resolution. A filter taking such an amount of context with that

resolution would be prohibitive in the number of parameters,

as well as unnecessary. Fig. 6(b) depicts the same context

at a quarter of the resolution. Notice that it is still possible

to visually infer that there is a road. However, identifying

the precise location of the boundaries of the road becomes

difficult. Alternatively, Fig. 6(c) depicts a small patch but at

full resolution. We can now better locate the precise boundary

of the object, but with so little context it is difficult to identify

that the object is indeed a road. Large filters at low resolution

- see Fig. 6(b) or small filters at high resolution - see Fig. 6(c),

which would both have a reasonable number of parameters,

are bad alternatives: the first filter is too coarse and the second

filter is using too little context.

We propose convolutional filters that combine multiple

scales instead. In Fig. 6(d) the large-size low-resolution con-

text of Fig. 6(b) is combined with the small high-resolution

context of 6(d). This provides us with a means to simultane-

ously infer the class by observing the surroundings at a coarse

scale, and determine the precise boundary location by using

a finer context. This way, the amount of parameters are kept

small while the trade-off between recognition and localization

is alleviated.

Les us denote by S a set of levels of detail expressed as a

fraction of the original resolution. For example, S = {1, 1/2}
is a set comprising two-scales: full resolution and half of the

full resolution. We denote by xs a feature map x downsampled

to a certain level s ∈ S . For example, x1/2 is a feature map

downsampled to half of the original resolution. Inspired in

Equation 1, we design a special type of neuron that adds the

responses to a set of filters applied at different scales of the

feature maps in the previous layer:

a = σ

(

∑

s∈S

wsxs + b

)

. (5)

Notice that individual filters ws are learned for every scale

s. Such a filter is easily implemented by using a combination

of elementary convolutional, downsampling and upsampling

layers. Fig. 7 illustrates this process in the case of a two-

scale (S = {1, 1/2}) module. In our implementation we

average neighboring elements in a window for downsampling

and perform bilinear interpolation for upsampling, but other

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

(a) Large context, high res-
olution

(b) Large context, low res-
olution

(c) Small context, high res-
olution

(d) Combined scales

Fig. 6: Different types of context to predict a pixel’s class. A multi-scale context such as in (d) alleviates the trade-off between

classification accuracy and number of learnable parameters.

Fig. 7: Two-scale convolutional module that simultaneously

combines coarse large-range and fine short-range reasoning.

Fig. 8: Fragments of the Forez training set (red: building).

approaches are also applicable. The kernel sizes of the con-

volutions at both scales are set to be equal (e.g., 3 × 3), yet

the amount of context taken varies from one path to the other

due to the different scales. The addition is an elementwise

operation, followed by the nonlinear activation function.

C. Experiments on the End-to-End Classification Framework

We conduct our experiments on a Pléiades image over the

area of Forez, France. An orthorectified color pansharpened

version of the image is used, at a spatial resolution of 0.5

m2. Our training subset amounts to 22.5 km2. The criterion to

construct the training set was to choose ten 3000× 3000 tiles

with at least some coverage of OpenStreetMap (OSM). The

shape files were rasterized with GDAL1 to create the binary

reference maps. Fig. 8 shows some fragments of the reference

data. Inconsistent misregistrations and considerable omissions

are observed all over.

1http://www.gdal.org

Fig. 9: Manually labeled tile for fine-tuning (3000×3000).

Fig. 10: Fragment of the fine-tuning tile. Red borders enclose

building areas.

We manually labeled a 2.25 km2 tile for FCN fine-tuning,

and a different 2.25 km2 tile for testing. The manual labeling

takes about two hours for each of the tiles. The entire tuning

tile is depicted by Fig. 9 and a close-up is shown in Fig. 10.

The fully convolutional network (FCN) described in Section

III-C, which was used for the Massachusetts dataset, is now

trained with the Forez set, under a similar experimental setting.

Note that this FCN was designed for images which have a

1 m2 resolution, while Pléiades imagery features a 0.5 m2

resolution. In order for the architectural decisions of FCN to

be valid in our new dataset, one must preserve the receptive

field size in terms of meters, not pixels. We thus downsample

Pléiades images prior to entering the first layer of the FCN,

and bilinearly upsample the output classification maps. Even

though a new network directly tailored to the Pléiades reso-

lution could be designed, we favor this proven architecture to

conduct our experiments. The concepts described in this paper

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

Method Accuracy AUC IoU

FCN 0.99126 0.99166 0.48
FCN + Fine-tuning 0.99459 0.99699 0.66

Two-scale FCN 0.99129 0.98154 0.47
Two-scale FCN + Fine-tuning 0.99573 0.99836 0.72

TABLE I: Performance evaluation on the Pléiades test set.

are however general and can be used to design other networks.

After training on the raw OSM Forez dataset, we fine-tune

the weights on the manually labeled tuning tile. The training

hyper-parameters are kept similar in the fine-tuning step, but

an early stopping criterion interrupts it after 200 iterations.

To assess the performance of fine-tuning we use as criteria

pixelwise accuracy and area under the ROC curve (AUC), as

described in Section III-D. Since there are many more non-

building pixels than building pixels in this dataset, these accu-

racy measures might seem overly high, a well-known issue of

pixelwise accuracy in imbalanced datsets [38]. We add then

the intersection over union criterion (IoU), an object-based

overlap measure typically used for imbalanced datasets [38].

In our case it is defined as the number of pixels labeled as

buildings both in the classified image and in the ground truth,

divided by the total amount of pixels labeled as such in either

of them. These criteria are evaluated on the manually labeled

test set, which is used neither for training nor for fine-tuning.

The first two rows of Table I show that fine-tuning enhances

the quality of the predictions in terms of accuracy, AUC and

IoU. To confirm the significance of the accuracy, a McNemar’s

test [39] proved that the improvement is not a result of mere

luck with a probability greater than 0.99999. Besides, the IoU

is improved by over a third with the fine-tuned network.

Fig. 11(a-d) shows the impact of fine-tuning on several

amplified fragments of the test set. A greater confidence in

the fine-tuned network predictions is observed. The objects

exhibit better alignment to the objects of the image, albeit the

boundaries could better line up to the underlying edges.

Fig. 12 illustrate the first-layer convolutional filters learned

by the initial and fine-tuned networks. We observe a combina-

tion of low- and high-frequency filters, a behavior typically

observed in CNNs. We also observe edge and color blob

detectors. These filter remain unchanged after fine-tuning, even

though no constraints are introduced to enforce this. Fine-

tuning corrects the weights in the high-level layers, which

suggests that the initial low-level features were useful indeed,

but the inaccuracy in the labels was introducing fuzziness in

the upper layers of the network.

We now evaluate the performance of a two-scale network.

The FCN architecture described in Section III-C is replaced

by three two-scale stacked modules, with scales S = {1, 1/4}.
We select S = 1/4 as it corresponds to the degree of

downsampling of the original FCN network, and S = 1 is

added to refine the predictions. The three modules learn 3× 3
filters in both scales. The first two modules generate 64 feature

maps and the last module generates a single map with the

building/non-building prediction.

The two-scale network is trained and fine-tuned in a similar

setting as the FCN network. The results summarized in the

last two rows of Table I show that fine-tuning significantly

Fig. 12: First layer filters before and after fine-tuning.

enhances the classification performance, and that the fine-

tuned two-scale network outperforms the single scale network.

Notably, IoU goes from 0.48 to 0.72, implying that objects

overlap with the ground truth 50% better by adding a scale

and performing fine-tuning. Note that if a scale is added but

no fine-tuning is done, there is actually a slight decrease in

performance. A possible explanation for this is that including a

finer scale adds even more confusion to the training algorithm

if only noisy misregistered labels are provided.

Figs. 11(e-f) illustrate the results on visual fragments of

the test set. The two-scale network yields classification maps

that better correspond to the actual image objects, and exhibit

sharper angles and straighter lines. The entire classified test tile

for the fine-tuned two-scale network is depicted by Fig. 13c.

The time required to generate this result corresponds to three

hours for training on the OSM dataset, two hours to manually

label an image tile and about a minute for fine-tuning. The

prediction of the 3000 × 3000 test tile using the hardware

described in Section III-D takes 3.2 seconds, and it grows

linearly in the size of the image. As in Section III-D, we ran

an SVM on the individual pixel values (see the classification

map in Fig. 13b). Accuracy is 0.9487 and IoU 0.19, yielding

poorer results than the presented CNN-based approaches.

As validated by the experiments, the issue of not having

large amounts of high-quality reference data can be alleviated

by providing the network with a small amount of accurate

data in a fine-tuning step. Our multi-scale neurons combine

reasoning at different resolutions to effectively produce fine

predictions, while keeping a reasonable number of parameters.

Such a framework can be used end-to-end to perform the

classification task directly from input imagery. More scales

can be easily be added and, besides the fact of being fully

convolutional, there are little constraints on the architecture

itself, admitting a different number of classes, input bands or

number of feature maps.

V. CONCLUDING REMARKS

Convolutional neural networks have become a popular clas-

sifier in the context of image analysis due to their potential

to automatically learn relevant contextual features. Initially

devised for the categorization of natural images, these net-

works must be revisited and adapted to tackle the problem of

pixelwise labeling in remote sensing imagery.

We proposed a fully convolutional network architecture by

analyzing a state-of-the-art model and solving its concerns by

construction. Despite their outstanding learning capability, the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

(a) Color image (b) Reference (c) FCN (d) FCN + Fine-tuning (e) 2-scale FCN (f) 2-scale FCN +
Fine-tuning

Fig. 11: Classified fragments of the Pléiades test image. Fine-tuning increases the confidence of the predictions, and the

two-scale network produces fine-grained classification maps.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 12

(a) Color pansharpened input (b) SVM on individual pixels (c) FCN (two scales + fine-tuning)

Fig. 13: Binary classification maps on the Forez test image.

lack of accurate training data might limit the applicability of

CNN models in realistic remote sensing contexts. We therefore

proposed a two-step training approach combining the use of

large amounts of raw OpenStreetMap data and a small sample

of manually labeled reference. The last ingredient we needed

to provide a usable end-to-end framework for remote sensing

image classification was to produce fine-grained classification

maps, since typical CNNs tend to hamper the fineness of the

output as a side effect of taking large amounts of context. We

proposed a type of neuron module that simultaneously reasons

at different scales.

Experiments showed that our fully convolutional network

outperforms the previous model in multiple aspects: the accu-

racy of the results is improved, the visual artifacts are removed

and the inference time is reduced by a factor of ten. The use of

our architecture constitutes then a win-win situation in which

no aspect is compromised for the others. This was achieved

by analyzing the role played by every layer in the network in

order to propose a more appropriate architecture, showing that

a deep understanding of how CNNs work is important for their

success. Further experimentation showed that the two-step

training approach effectively combines imperfect training data

with manually labeled data to capture the dataset’s generalities

and its precise details. Moreover, the multi-scale modules

increase the level of detail of the classification without making

the number of parameters explode, attenuating the trade-off

between detection and localization.

Our overall framework shows then that convolutional neural

networks can be used end-to-end to process large amounts of

satellite images and provide accurate pixelwise classifications.

As future work we plan to extend our experiments to

multiple object classes and study the possibility of directly

inputting non-pansharpened imagery, in order to avoid this

preprocessing step. We also plan to study the introduction of

shape priors in the learning process and the vectorization of

the classification maps.

ACKNOWLEDGMENT

All Pléiades images are c©CNES (2012 and 2013), distri-

bution Airbus DS / SpotImage. The authors thank CNES for

initializing and funding the study, and providing Pléiades data.

REFERENCES

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings

of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber, “Multi-column deep
neural networks for image classification,” in IEEE CVPR, 2012, pp.
3642–3649.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in NIPS, 2012.

[4] Annamalai Senthil Kumar and Kantilal Majumder, “Information fusion
in tree classifiers,” International Journal of Remote Sensing, vol. 22,
no. 5, pp. 861–869, 2001.

[5] Jean Mas and Juan Flores, “The application of artificial neural networks
to the analysis of remotely sensed data,” International Journal of Remote

Sensing, vol. 29, no. 3, pp. 617–663, 2008.

[6] Thomas Villmann, Erzsbet Mernyi, and Barbara Hammer, “Neural maps
in remote sensing image analysis,” Neural Networks, vol. 16, no. 34,
pp. 389 – 403, 2003, Neural Network Analysis of Complex Scientific
Data: Astronomy and Geosciences.

[7] Gustavo Camps-Valls and Lorenzo Bruzzone, “Kernel-based methods
for hyperspectral image classification,” IEEE Tran. Geosci. Remote

Sens., vol. 43, no. 6, pp. 1351–1362, 2005.

[8] Mathieu Fauvel, Yuliya Tarabalka, Jon Atli Benediktsson, Jocelyn
Chanussot, and James C Tilton, “Advances in spectral-spatial classi-
fication of hyperspectral images,” Proceedings of the IEEE, vol. 101,
no. 3, pp. 652–675, 2013.

[9] Wenzhi Liao, Mauro Dalla Mura, Jocelyn Chanussot, Rik Bellens,
and Wilfried Philips, “Morphological attribute profiles with partial
reconstruction,” IEEE Tran. Geosci. Remote Sens., vol. 54, no. 3, pp.
1738–1756, 2016.

[10] Yuliya Tarabalka and Aakanksha Rana, “Graph-cut-based model for
spectral-spatial classification of hyperspectral images,” in IEEE IGARSS.
IEEE, 2014, pp. 3418–3421.

[11] Mehmet Nadir Kurnaz, Zmray Dokur, and Tamer lmez, “Segmentation
of remote-sensing images by incremental neural network,” Pattern

Recognition Letters, vol. 26, no. 8, pp. 1096 – 1104, 2005.

[12] Christopher David Lloyd, Suha Berberoglu, Paul Curran, and Peter
Atkinson, “A comparison of texture measures for the per-field classi-
fication of mediterranean land cover,” International Journal of Remote

Sensing, vol. 25, no. 19, pp. 3943–3965, 2004.

[13] Dengsheng Lu and Qihao Weng, “A survey of image classification
methods and techniques for improving classification performance,” In-

ternational journal of Remote sensing, vol. 28, no. 5, pp. 823–870, 2007.

[14] ME Midhun, Sarath R Nair, VT Prabhakar, and S Sachin Kumar, “Deep
model for classification of hyperspectral image using restricted boltz-
mann machine,” in Proceedings of the 2014 International Conference

on Interdisciplinary Advances in Applied Computing. ACM, 2014, p. 35.

[15] Tong Li, Junping Zhang, and Ye Zhang, “Classification of hyperspectral
image based on deep belief networks,” in IEEE ICIP, 2014.

[16] Viktor Slavkovikj, Steven Verstockt, Wesley De Neve, Sofie Van Hoecke,
and Rik Van de Walle, “Hyperspectral image classification with convo-
lutional neural networks,” in Proceedings of the 23rd ACM international

conference on Multimedia. ACM, 2015, pp. 1159–1162.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 13

[17] Yushi Chen, Xing Zhao, and Xiuping Jia, “Spectral-spatial classification
of hyperspectral data based on deep belief network,” IEEE J. Sel. Topics

Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, June 2015.
[18] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu,

“Deep learning-based classification of hyperspectral data,” IEEE J. Sel.

Topics Appl. Earth Observ. in Remote Sens., vol. 7, no. 6, pp. 2094–
2107, 2014.

[19] Jun Yue, Wenzhi Zhao, Shanjun Mao, and Hui Liu, “Spectral–spatial
classification of hyperspectral images using deep convolutional neural
networks,” Remote Sensing Letters, vol. 6, no. 6, pp. 468–477, 2015.

[20] Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios
Doulamis, and Nikolaos Doulamis, “Deep supervised learning for
hyperspectral data classification through convolutional neural networks,”
in IEEE IGARSS. IEEE, 2015, pp. 4959–4962.

[21] Wenzhi Zhao and Shihong Du, “Spectral–spatial feature extraction
for hyperspectral image classification: A dimension reduction and deep
learning approach,” IEEE Tran. Geosci. Remote Sens., vol. 54, no. 8,
pp. 4544–4554, 2016.

[22] Wenzhi Zhao, Zhou Guo, Jun Yue, Xiuyuan Zhang, and Liqun Luo,
“On combining multiscale deep learning features for the classification of
hyperspectral remote sensing imagery,” International Journal of Remote

Sensing, vol. 36, no. 13, pp. 3368–3379, 2015.
[23] Wenzhi Zhao and Shihong Du, “Learning multiscale and deep repre-

sentations for classifying remotely sensed imagery,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 113, pp. 155–165, 2016.
[24] Essa Basaeed, Harish Bhaskar, Paul Hill, Mohammed Al-Mualla, and

David Bull, “A supervised hierarchical segmentation of remote-sensing
images using a committee of multi-scale convolutional neural networks,”
International Journal of Remote Sensing, vol. 37, no. 7, 2016.

[25] Jun Wang, Jingwei Song, Mingquan Chen, and Zhi Yang, “Road network
extraction: a neural-dynamic framework based on deep learning and a
finite state machine,” International Journal of Remote Sensing, vol. 36,
no. 12, pp. 3144–3169, 2015.

[26] Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan,
“Vehicle detection in satellite images by hybrid deep convolutional
neural networks,” IEEE Geoscience and remote sensing letters, vol.
11, no. 10, pp. 1797–1801, 2014.

[27] Igor Ševo and Aleksej Avramović, “Convolutional neural network based
automatic object detection on aerial images,” IEEE Geoscience and

Remote Sensing Letters, vol. 13, no. 5, pp. 740–744, 2016.
[28] FPS Luus, BP Salmon, F Van Den Bergh, and BTJ Maharaj, “Multiview

deep learning for land-use classification,” IEEE Geoscience and Remote

Sensing Letters, vol. 12, no. 12, pp. 2448–2452, 2015.
[29] Volodymyr Mnih, Machine learning for aerial image labeling, Ph.D.

thesis, University of Toronto, 2013.
[30] Christopher M Bishop, Neural networks for pattern recognition, Oxford

university press, 1995.
[31] Julien Michel, David Youssefi, and Manuel Grizonnet, “Stable mean-

shift algorithm and its application to the segmentation of arbitrarily large
remote sensing images,” IEEE Tran. Geosci. Remote Sens., vol. 53, no.
2, pp. 952–964, 2015.

[32] Pierre Lassalle, Jordi Inglada, Julien Michel, Manuel Grizonnet, and
Julien Malik, “A scalable tile-based framework for region-merging
segmentation,” IEEE Tran. Geosci. Remote Sens., vol. 53, no. 10, pp.
5473–5485, 2015.

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolu-
tional networks for semantic segmentation,” in CVPR, 2015.

[34] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” arXiv preprint

arXiv:1408.5093, 2014.
[35] Cèsar Ferri, José Hernández-Orallo, and Peter A Flach, “A coherent

interpretation of AUC as a measure of aggregated classification perfor-
mance,” in ICML, 2011.

[36] Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, and Jón Atli
Benediktsson, “Svm-and mrf-based method for accurate classification of
hyperspectral images,” Geoscience and Remote Sensing Letters, IEEE,
vol. 7, no. 4, pp. 736–740, 2010.

[37] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How
transferable are features in deep neural networks?,” in NIPS, 2014.

[38] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France Meylan,
“What is a good evaluation measure for semantic segmentation?.,” in
BMVC, 2013, vol. 27, p. 2013.

[39] Quinn McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, 1947.

Emmanuel Maggiori received the Engineering de-
gree in computer science from Central Buenos Aires
Province National University (UNCPBA), Tandil,
Argentina, in 2014. The same year he joined
AYIN and STARS teams at Inria Sophia Antipolis-
Méditerranée as a research intern in the field of
remote sensing image processing. Since 2015, he
has been working on his Ph.D. within TITANE team,
studying machine learning techniques for large-scale
processing of satellite imagery.

Yuliya Tarabalka (S’08–M’10) received the B.S.
degree in computer science from Ternopil Ivan
Pul’uj State Technical University, Ukraine, in 2005
and the M.Sc. degree in signal and image processing
from the Grenoble Institute of Technology (INPG),
France, in 2007. She received a joint Ph.D. degree
in signal and image processing from INPG and in
electrical engineering from the University of Iceland,
in 2010.

From July 2007 to January 2008, she was a
researcher with the Norwegian Defence Research

Establishment, Norway. From September 2010 to December 2011, she was a
postdoctoral research fellow with the Computational and Information Sciences
and Technology Office, NASA Goddard Space Flight Center, Greenbelt, MD.
From January to August 2012 she was a postdoctoral research fellow with
the French Space Agency (CNES) and Inria Sophia Antipolis-Méditerranée,
France. She is currently a researcher with the TITANE team of Inria Sophia
Antipolis-Méditerranée. Her research interests are in the areas of image
processing, pattern recognition and development of efficient algorithms. She
is Member of the IEEE Society.

Guillaume Charpiat is a researcher at Inria Saclay
(France) in the TAO team. He studied Mathemat-
ics and Physics at the École Normale Supérieure
(ENS Paris), and then Computer Vision and Machine
Learning (at ENS Cachan), as well as Theoretical
Physics. His PhD thesis, in Computer Science, ob-
tained in 2006, was on the topic of distance-based
shape statistics for image segmentation with priors.
He then spent one year at the Max-Planck Institute
for Biological Cybernetics (Tübingen, Germany),
on the topics of medical imaging (MR-based PET

prediction) and automatic image colorization. As a researcher at Inria Sophia-
Antipolis (France), he worked mainly on image segmentation and optimization
techniques. Now at Inria Saclay he focuses on Machine Learning, in particular
on building a theoretical background for neural networks.

Pierre Alliez Pierre Alliez is Senior Researcher and
team leader at Inria Sophia-Antipolis - Mediterranee.
He has authored scientific publications and several
book chapters on mesh compression, surface recon-
struction, mesh generation, surface remeshing and
mesh parameterization. He is an associate editor
of the Computational Geometry Algorithms Library
(http://www.cgal.org) and an associate editor of the
ACM Transactions on Graphics. He was awarded
in 2005 the EUROGRAPHICS young researcher
award for his contributions to computer graphics

and geometry processing. He was co-chair of the Symposium on Geometry
Processing in 2008, of Pacific Graphics in 2010 and Geometric Modeling and
Processing 2014. He was awarded in 2011 a Starting Grant from the European
Research Council on Robust Geometry Processing.

