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Abstract

In order to understand the organization of the cerebral cortex, it is necessary to
create a map or parcellation of cortical areas. Reconstructions of the cortical
surface created from structural MRI scans, are frequently used in neuroimaging as
a common coordinate space for representing multimodal neuroimaging data. These
meshes are used to investigate healthy brain organization as well as abnormalities
in neurological and psychiatric conditions. We frame cerebral cortex parcellation as
a mesh segmentation task, and address it by taking advantage of recent advances in
generalizing convolutions to the graph domain. In particular, we propose to assess
graph convolutional networks and graph attention networks, which, in contrast to
previous mesh parcellation models, exploit the underlying structure of the data to
make predictions. We show experimentally on the Human Connectome Project
dataset that the proposed graph convolutional models outperform current state-of-
the-art and baselines, highlighting the potential and applicability of these methods
to tackle neuroimaging challenges, paving the road towards a better characterization
of brain diseases.

1 Introduction

The cerbral cortex is the large multilayered, folded structure on the outer surface of the human brain.
Different areas of the cortex are involved in many of our complex cognitive processes, including
high-order visual processing, language and social interactions. Damage to the cortex can therefore
lead to a wide variety of neurological and neuropsychiatric conditions. One longstanding challenge
in understanding how the cerebral cortex is organized is to create a map of these areas, and parcellate
it into functionally and structurally discrete areas.

Historically, parcellation has been based on expert examination of 2D cortical sections. Areal distinc-
tions were made based on the cytoarchitecture (based on patterns of neurons) [4], myeloarchitecture
(based on the distribution of wiring-related myelin) [38] and various other post mortem measures
of microstructural organization [28]. However, a map of cortical areas is best comprehended on
a surface, and there are numerous difficulties in creating a cortical surface parcellations based on
borders identified on a limited number of 2D post mortem sections.

With the advent of 3D neuroimaging, it has been possible to create in vivo mesh reconstructions
of individuals’ cortical surfaces. A large part of neuroimaging is now carried out on such meshes
[22, 10]. Cortical meshes create a common coordinate system to represent multiple modalities,
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including structural and functional Magnetic Resonance Imaging (MRI), diffusion MRI and Positron
Emission Tomography (PET). The same mesh structure can be used to represent a variety of different
features, like cortical thickness, curvature and functional connectivity extracted from imaging volumes.
Moreover, morphological and functional similarities can be used to coregister cortical surfaces
between individuals. Thus, meshes are commonly used to investigate the structural, functional and
developmental patterns of a healthy brain, alongside abnormalities in neurological and psychiatric
conditions. Therefore, mesh-based analyses of cortical data capture the interindividual and interareal
variance of the cortex that is of scientific interest. These interareal differences in multimodal signals,
mapped to the cortical surface, can thus be used to parcellate the cortex.

There have been numerous attempts to segment the cortical mesh using multimodal in vivo data.
Jakobsen et al. [21] proposed to compare functional connectivity maps to group-average patterns
of area-of-interest connectivity. Glasser et al. [12] approached the mesh segmentation problem by
training a multi-layer perceptron on node features. However, these methods consider each vertex of
the mesh independently and do not exploit the underlying graph structure of the data.

At the same time, in the last decade, we have experienced remarkable advances in the fields of com-
puter vision, medical imaging, speech recognition and natural language processing. These advances
have mainly been driven by the successful design and application of deep learning architectures. In
medical imaging, Convolutional Neural Networks (CNNs) have been adapted and extended to tackle
relevant research challenges, including the segmentation of biomedical images, where the underlying
data representation has a grid-like structure. However, many researchers deal with irregular data that
could be represented using graph or mesh structures and the application of CNNs to such data poses
different challenges.

Early approaches to leverage neural networks for processing graph structured data used recursive
neural networks on directed acyclic graphs [11, 34]. These approaches were further generalized
and improved by Graph Neural Networks [33, 14, 25] to deal with a more general class of graphs.
Moreover, methods relying on the node features complemented with node similarity constraints
[39] or structural features [29, 40] were also introduced in the literature. In recent years, we have
experienced increasing interest in generalizing convolutions to the graph domain. Efforts in this
directions include spectral approaches such as [5, 17], which work with a spectral representation
of the graphs and define the convolution operation in the Fourier domain. These approaches were
improved in [6, 24] by mitigating the computations and making the convolutional filters localized.
Moreover, efforts have also been devoted to develop non-spectral approaches such as [8, 3, 15],
which define convolutions directly on the graph and operate on groups of spatially close neighbors.
One of the challenges of these approaches is to define an operator which works with different sized
neighborhoods and maintains the weight sharing property of CNNs. This problem was recently
addressed in [37] by means of an attention-based architecture reminiscent of [18, 32, 26], which
yields top performance across several benchmarks.

In this paper, we study cortical meshes parcellation into brain areas using the Human Connectome
Project data. More specifically, we apply recent deep learning models to segment two adjacent
cytoarchitectonic areas, 44 and 45, inside Broca’s area [20]. Studying Broca’s area is interesting
because it has an important role in language processing [31]. Traditionally, in neuropsychological
research, morphologically defined regions of interest have been used as proxies for areas 44 and
45 [21], but the high degree of variability between different subjects requires models that produce
subject-specific segmentations if a more precise localization of each area is needed.

We approach cortical meshes parcellation as a graph segmentation problem, where the model receives
a mesh as input and produces one output label for each node of the mesh. To process cortical meshes,
we adapt the recently proposed Graph Convolutional Networks [24] and Graph Attention Networks
[37] and compare them to several simple baselines, which are agnostic to the graph structure. We
evaluate all the methods in terms of Jaccard score as well as visual inspection. The results show that
the methods that operate directly in the graph domain are able to exploit the underlying structure
of the data improving the parcellation performance when compared to alternative approaches and
baselines. Moreover, we report state-of-the-art results on the task of Broca’s area parcellation, when
using either Graph Convolutional Networks or Graph Attention Networks.
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2 Models

In this section, we describe different variants of the models that are suitable to tackle the problem
of cortical mesh segmentation. First, we discuss simple baseline approaches. Then, we review two
recent graph convolution methods: Graph Convolutional Networks and Graph Attention Networks.

2.1 Baselines

NodeMLP [2]: The NodeMLP baseline frames the mesh segmentation as node classification problem,
where we classify each node in the mesh separately. The model consists of a shared multi-layer per-
ceptron that processes each node in the cortical mesh independently, and produces a label prediction
for each one of them. Hence, the output prediction for each node depends on its features exclusively,
completely disregarding positional or neighborhood information.

NodeAVG: The NodeAVG baseline ignores the node features and relies on the position of each node
exclusively to provide a segmentation output. The baseline computes each node’s most frequent
label, based on the meshes of the training set, and predicts the associated most frequent label at test
time. Note that the applicability of this model is limited to tasks where all the meshes have the same
topology. By comparison with the NodeMLP [2] baseline, NodeAVG allows us to assess how critical
the position information of a node is; note that, in this case, the position is the only feature.

MeshMLP: The MeshMLP baseline jointly processes all the nodes in a mesh—and produces as
output a segmentation prediction for each one of them. This model processes the whole mesh at once,
by flattening it as a vector, which discards all structural information and concatenates the features
of each node. The flattened mesh representations are fed to a multi-layer perceptron, which jointly
processes all the nodes and produces as output a segmentation prediction for all the nodes in the
mesh. Although structural information is discarded, this model is capable of exploiting global mesh
information, which can influence the output of each node.

2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [6, 24] are specifically designed to operate on graphs, thus,
explicitly exploiting the underlying graph structure of the data. To do so, GCNs consider spectral
convolutions on graphs defined as the multiplication of a signal with a filter in the Fourier domain
[5, 17]. It follows that signal hi of node i, linearly transformed by W, is filtered by g as:

g ⋆Whi = U(UTg ⊙U
T
Whi), (1)

where U is the Fourier basis of the graph Laplacian L (obtained by computing the eigendecomposition
of the latter), ⋆ is the convolution operator and ⊙ is the elemen-wise multiplication.

To yield spatially localized filters and remove the need to compute the eigendecomposition of L,
GCNs approximate the filters by means of a truncated expansion of Chebyshev polynomials of the
graph Laplacian up to order K. Therefore, each GCN layer is graph convolutional layer that takes as
input a graph and produces a graph as output. Given a feature vector hi of node i, the output of a
graph convolutional layer h′

i is computed as follows:

h′
i =

K
∑

k

wkTk(L)Whi, (2)

where wk are the Chebyshev coefficients, Tk the Chebyshev polynomial of order k and W the
parameters of a learnable transformation applied to hi. Thus, the output of a graph convolutional
layer depends only on information from a local neighborhood around it (up to k steps away from the
central node). This local neighborhood can be increased by stacking several layers on top of each
other, allowing to exploit contextual information, and making a node’s segmentation output depend
on a larger part of the graph.

2.3 Graph Attention Networks

We also consider the recent Graph Attention Network (GAT) model [37], wherein the propagation
layers have identical input-output structure as the GCN, but they specify the convolution weights
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implicitly rather than explicitly. This property is achieved by leveraging a content-based self-
attentional mechanism [36] which is restricted to attending only along the edges of the provided graph.
As a consequence, the layer no longer depends on knowing the graph Laplacian upfront—it becomes
capable of handling inductive as well as transductive graph prediction problems. Furthermore, the
implicit specification of weights allows for trivially assigning different (learnable) importances to
different nodes in a k-hop neighborhood, which is not possible with techniques such as the GCN.

We leverage the same self-attention mechanism as used in [37]. We compute the convolutional
weights by applying a shared attentional mechanism a : RF × R

F → R which computes attention
coefficients

eij = a(hi, hj) (3)

that indicate the importance of node j’s features to node i. We only compute eij for nodes j ∈ Ni,
where Ni is some neighborhood of node i in the graph. To make coefficients easily comparable
across different nodes, we normalize them across all choices of j using the softmax function:

αij = softmaxj(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

. (4)

The attention mechanism a is a single-layer feedforward neural network, parametrized by a weight

vector a ∈ R
2F ′

, and applying the LeakyReLU nonlinearity (with negative input slope α = 0.2).
Fully expanded out, the coefficients computed by the attention mechanism may then be expressed as:

αij =
exp

(

LeakyReLU
(

a
T [Whi‖Whj ]

))

∑

k∈Ni
exp (LeakyReLU (aT [Whi‖Whk]))

(5)

where ·T represents transposition, ‖ is the concatenation operation, and W is a shared, learnable,
transformation matrix.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially
applying a nonlinearity, σ):

h′
i = σ





∑

j∈Ni

αijWhj



 . (6)

To stabilize the learning process of self-attention, we have found extending the mechanism to
employ multi-head attention to be beneficial, similarly to [36]. Specifically, K independent attention
mechanisms execute the transformation of Equation 6, and then their features are concatenated.

3 Experiments

We evaluate the convolutional approaches against previous state-of-the-art and the proposed baselines
on the Human Connectome Project dataset1. This section summarizes the dataset, our experimental
setup and obtained results.

3.1 Dataset

The data used for the experiments comes from the Human Connectome Project (HCP) [13], consisting
of 100 different subjects, with one mesh per subject. The nodes of the meshes have been manually
annotated as in [20], assigning each node into one of the following labels: area 44, area 45 or neither.
All the meshes from different subjects have the same structure, so they can be represented with the
same adjacency matrix. Each mesh has 1195 nodes, representing Broca’s area of the left hemisphere
of the cerebral cortex. Each node of one mesh has 9 real valued features: 6 structural features (cortical
thickness, myelin, curvature, sulcal depth, folding corrected cortical thickness and bias-corrected
myelin) and 3 functional features (rsfMRI correlation with anterior temporal and two parietal regions
of interest [20]), and each node has a single label, corresponding to the region of interest it belongs
to.

1http://www.humanconnectomeproject.org/
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Given the limited size of the dataset, we report results obtained by 10-fold cross validation of the
models. We split the data such that eight folds are used for training, one for validation and the
remaining one for test. We repeated this process 10 times (one per fold) and report the means and
standard deviations of results on the different test sets. Results are reported in terms of per-class and
average Jaccard index of the two classes of interest.

3.2 Experimental setup

The goal of our experimental section is to compare how different approaches perform in the task
of cortical mesh segmentation, and to test if explicitly using the mesh structure of the data, with
convolutional neural networks for graphs, improves the performance over methods that do not use
that information. For all models, we have experimented with different configurations, selecting the
best architecture and optimization hyper-parameters in terms of validation Jaccard index. Note that
the Jaccard score is computed as the mean per-class Jaccard of the 2 classes of interest. Then, the
best configuration results are reported for the test set.

All models are trained using backpropagation, with the Adam [23] optimizer. The optimized loss
function is either the dice loss [7], extended to multiple classes by averaging class-specific dice losses,
or a crossentropy loss, according to the best validation results. Moreover, given the class imbalance,
when using cross-entropy loss, each node is weighted depending on their ground truth class. The
weight assigned to each class c is defined as wc = median_freq(c)/freq(c), where freq(c) is the
number of nodes belonging to class c divided by the total number of nodes, and median_freq(c) is
the median of those frequencies. This class weighting is usually used in image semantic segmentation
problems [9]. Finally, unless stated otherwise, the vector of features for each node is normalized so
that it has unit norm.

NodeMLP training details: This model takes as input the 9 features of a node and stacks 4 fully
connected layers on top of it, and a classification layer (with 3 possible outputs). Each hidden layer
has 128 units, followed by a ReLU [27] non-linearity. Additionally, batch normalization [19] and
dropout [35] with p = 0.5 are applied at the output of each hidden layer. The model is trained using
a weighted cross-entropy loss, as described in the previous paragraph.

MeshMLP training details: This model takes as input a 10755-dimensional vector that concatenates
the 9 features of all nodes in the mesh (1195 nodes), and stacks a hidden layer of size 32 and a
classifier, producing as output a 3-dimensional vector per node. Hidden layers apply a ReLU non-
linearity and are followed by both batch normalization and dropout with p = 0.5. The model is
trained by minimizing a weighted cross-entropy loss.

GCN training details2: This model takes as input a mesh and outputs a label prediction for each
node in the mesh. The architecture has 8 convolutional layers and uses a degree of K = 8 in the
Chebyshev approximation described in Section 2.2. Each layer consists of 64 units followed by ReLU
non-linearity. Additionally, we apply batch normalization after each layer. The model is trained with
average dice loss across classes, which has proven to achieve better validation performance in this
case.

GAT training details3: This model takes as input a mesh and outputs a label prediction per node. We
apply an eight-layer GAT model. Each layer consists of K = 8 attention heads computing F = 32
features (for a total of 256 features). Unlike [37], each layer is followed by a batch normalization and
a ReLU non-linearity and we increase the neighborhood masks to compute attention coefficients for
all neighbors within 5-hops of the central node. Furthermore, dropout with p = 0.1 is applied to both
layers’ inputs, as well as to the normalized attention coefficients (critically, this means that at each
training iteration, each node is exposed to a stochastically sampled neighborhood). Furthermore, the
GAT architecture employs residual skip connections [16] across the intermediate attentional layers.
The model is trained with average dice loss across classes and node input features are standardized,
which has proven to achieve better validation performance in this case.

2We used the code of https://github.com/tkipf/gcn and adapted it to handle variable number of
meshes. Note that this was possible because all brain meshes have the exact same connectivity pattern.

3We used the code of https://github.com/PetarV-/GAT and incorporated additional losses.
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Table 1: Cross-validation results and comparison on the Human Connectome Project mesh dataset.
Results are reported in terms of per-class and average Jaccard index of the two classes of interest.

Method
neighbor

info
global
info

node
features

Jacc. 44
[%]

Jacc. 45
[%]

mean Jacc.
[%]

NodeAVG ✗ ✗ ✗ 53.0± 2.7 46.9± 5.0 49.9± 2.7
NodeMLP ✗ ✗ ✓ 47.8± 2.5 29.6± 3.9 38.7± 2.8
MeshMLP ✗ ✓ ✓ 55.8± 3.7 47.9± 2.8 51.8± 2.6

Jakobsen et al. [21] ✓ ✗ ✓ 56.4± 2.9 48.3± 5.3 52.4± 2.6
GCN ✓ ✓ ✓ 62.0± 3.0 54.2± 4.0 58.1± 3.1

GAT-const ✓ ✓ ✓ 60.2± 3.0 51.5± 6.5 55.9± 3.9
GAT ✓ ✓ ✓ 62.6± 3.4 52.1± 6.0 57.7± 2.5

GCN (degree) ✓ ✓ ✓ 62.8± 2.4 55.7± 4.7 59.2± 3.0
GCN (coords) ✓ ✓ ✓ 64.2± 2.4 55.2± 5.0 59.7± 3.5
GAT (degree) ✓ ✓ ✓ 63.2± 3.1 53.6± 4.7 58.4± 2.9
GAT (coords) ✓ ✓ ✓ 63.5± 2.7 55.0± 4.9 59.2± 2.9

3.3 Results

Table 1 summarizes the results obtained by the different proposed methods. Results are reported in
terms of Jaccard index of the two classes of interest (areas 44 and 45 of the brain), as well as their
average score. We divided the models according to their characteristics, i.e. their ability to exploit
different information. We consider three different kinds of information that the models can use:
neighborhood information, global information and node features. First, using node features implies
exploiting them to make the node predictions. Clearly, this is the simplest information to exploit, and
is incorporated in the prediction of all models but NodeAVG, which only leverages the node position.
Second, global information refers to the access to feature information from all nodes in the mesh to
predict the segmentation output. This property is found in the MeshMLP baseline, which considers
the features of all nodes in a mesh as input. Third and last, neighborhood information implicitly
provides relational information among nodes, i.e. information about the neighborhood connectivity
of each node. This feature is exploited by convolutional-based approaches such as GCN and GAT,
which allow parameter sharing across input locations. Note that by stacking multiple convolutional
layers and/or expanding the neighborhood around each node, we can enlarge the receptive field of the
network, and eventually gain access to an increasingly large portion of the input graph (we report this
as global information in Table 1).

As reported in the table, the first group (first four rows) includes all the baselines and state-of-the-art
models, which do not exploit local neighborhood information, global information and node features
simultaneously. The second group (rows 5 to 7) comprises the models based on graph convolutions,
GCNs and GATs. Note that we also report an ablation test on the GAT model, by fixing the attention
given to each node to be constant (GAT-const in the table).

Among baseline and state-of-the-art models, NodeMLP exhibits the lowest performance, with an
average Jaccard of 38.7%. This behavior is expected, since it only processes the features of one
node at a time, making node’s predictions independent of each other. By contrast, NodeAVG,
which ignores the node features and takes into account the node positions exclusively, yields better
results, highlighting the importance of the position cue. We argue this is due to existing partial
overlap of the brain areas across different subjects. Moreover, producing a mesh level parcellation
instead of classifying each node independently also offers a performance boost w.r.t. NodeMLP: see
how MeshMLP increases the mean Jaccard score by more than 10%, emphasizing the benefits of
introducing global information when making predictions. However, the best score within this group
is achieved by the approach proposed by Jakobsen et al. [21], the average of which is 0.6% above
MeshMLP and 2.5% above NodeAVG. It is worth noting that this state-of-the-art method injects local
neighborhood information in a post-processing clustering step and uses a larger number of functional
features to achieve this result, which could also prove beneficial to other models.

Graph convolutional models increase the overall performance further. GCN and GAT perform on
par, improving by a margin of at least 5% with respect to the average Jaccard of the baselines, taking
advantage of their access to the underlying mesh structure of the data when making predictions.
GAT-const uses the same architecture as GAT but with a constant attention mechanism (assigning the
same importance to each neighbor). Given the proposed GAT architecture described in Section 3.2,
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(a) Left hemisphere (b) Ground truth (c) NodeAVG

(d) NodeMLP (e) Jakobsen et al. [21] (f) GCN (g) GAT

Figure 1: Area parcellation qualitative results on the test set for two subjects. In all subfigures, top
images show data for one subject while the bottom images show the visualization for the second
subject. For visualization purposes, we show the segmentation results on a smoothed cortical mesh.
Red represents area 44, green represents area 45 and blue represents background.

which considers neighbors within 5-hops of the central node, the GAT-const architecture is limited
to applying the same constant attention to all neighbors that are up to 5 steps away. Note that this
architecture is less flexible than GCN, which learns one coefficient per polynomial degree.

We also evaluate and compare some of the baselines and state-of-the-art methods to graph convo-
lutional approaches qualitatively. Figure 1 shows some parcellation results produced for two test
subjects (area 44 is represented in red, area 45 in green and background in blue). Qualitative results
are well aligned with the quantitative ones. As shown in Figure 1(d), NodeMLP produces the noisier
parcellation, which could be explained by the lack of neighborhood and global information suffered
by this model. Both NodeAVG and Jakobsen et al. [21] do a decent job at segmenting area 44, but
largely oversegment area 45 in some cases (see 1(c) and 1(e), respectively). Finally, GCN and GAT
show more accurate segmentations for both areas (see 1(f) and 1(g), respectively).

4 Discussion

From the experimental results, it is clear that graph-based methods (GCN and GAT) perform better
than the baseline approaches. This emphasizes the importance of exploiting the mesh structure in the
data, with the baselines either leaving it completely unused, or eliminating all relational information
from it.

It is not possible to conclusively determine which graph-based approach has performed better on
this dataset, keeping in mind the standard deviations in the performance metrics. However, some
conclusions may still be drawn by considering the average performance of each model. The GCN has
outperformed the GAT on average by a slight margin (of 0.4%), which may be explained by the GCN
having direct access to the adjacency matrix and node degree information, while the GAT model
only uses the adjacency matrix to mask its self-attention coefficients. This result has implied that, on
this task, the benefits of exploiting the regularity in the graph structure may outweigh the value of
assigning different importances within the neighborhood. As a result, we have decided to conduct
further studies in this direction—namely, ones wherein we have injected the degree information
to the features of each node (denoted degree on Table 1). As anticipated, this has consistently
improved both the GCN and GAT models’ predictive power, achieving a rise in average performance
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of 1.1% and 0.7%, respectively. Encouraged by this result, we have attempted to introduce additional
positional features, i.e. the spatial coordinates of the nodes (denoted coords on Table 1). We show
that by incorporating these features, we are able to achieve the best per-class and average Jaccard
performance compared to previously discussed approaches, with an increase in average performance
of 1.6% and 1.5% for GCN and GAT, respectively. Furthermore, it is worth noting that, unlike k-step
GCN, k-step GAT models are not able to give special treatment to different hop neighborhoods.

While these two approaches have been successfully tested on the relatively specific challenge of
parcellating cortical areas 44 and 45 using structural and functional MRI data, the advantage of
this approach is that it can be readily adapted to many other neuroimaging challenges. Similar
architectures could be applied to any data modality on the cortical mesh, including Positron Emission
Tomography, Diffusion MRI, cytoarchitectural and even genetic data. Furthermore, while aim of
these models was to parcellate the cortex into functionally discrete areas, the methods utilized are
general, so they can be applied to many other tasks. With suitable training data, they could be used to
segment lesions in neurological diseases such as epilepsy [2] or multiple sclerosis [30].

The networks were more consistently able obtain a higher performance in parcellating area 44 than
area 45. This could be for several reasons. First is that the functional features were chosen from a
total of 32k rsfMRI internodal correlation scores due for being distinct between areas 44 and 45,
not necessarily to differentiate these areas from their surrounding cortex. Thus addition of extra
functional features might better isolate area 45 from its other neighboring areas, particularly area
47/12 which has a similar functional connectivity profile [21].

A second limitation of the proposed cortical mesh segmentation approach is that it is currently limited
to subsets of the total cortical mesh in the form of patches. A full cortical mesh may have up to 160k
nodes, and current graph convolutional approaches are limited by the amount of memory in modern
GPUs. Whereas the two evaluated models can scale to larger meshes than the ones used, they may
not be able to operate on a 160k nodes mesh. To deal with large meshes, possible solutions that we
have not explored in this work consist on using a subsampling operator to reduce the resolution of
meshes or operating on smaller patches of the whole mesh.

5 Conclusions

In this paper, we tackled the important problem of parcellation of the cerebral cortex into functionally
discrete areas, with main focus on the Broca’s area. We framed the problem as a mesh segmentation
task, and addressed it by taking advantage of recent advances in generalizing convolutions to the
graph domain. In particular, we proposed to assess graph convolutional networks and graph attention
networks as alternatives to the current state-of-the-art [21], which relies on node features without
exploiting the underlying structure of the data to make predictions. We evaluated the proposed
models on the HCP dataset and successfully reported state-of-the-art performance, highlighting the
importance of both local neighborhood as well as contextual information.

Therefore, we demonstrated the potential of recent advances in generalizing convolutions to the
graph domain and their applicability to tackle important neuroimaging challenges, showing that we
can improve standard practices in the analysis of cortical meshes and making the models readily
adoptable to investigate a myriad of other neuroscientific questions, such as disease diagnosis, lesion
characterization and developmental/pathological prognoses.
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