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Abstract

Given the great success of Convolutional Neural Network (CNN) for image representation

and classification tasks, we argue that Content-Based Image Retrieval (CBIR) systems could

also leverage on CNN capabilities, mainly when Relevance Feedback (RF) mechanisms are

employed. On the one hand, to improve the performances of CBIRs, that are strictly related

to the effectiveness of the descriptors used to represent an image, as they aim at provid-

ing the user with images similar to an initial query image. On the other hand, to reduce

the semantic gap between the similarity perceived by the user and the similarity computed

by the machine, by exploiting an RF mechanism where the user labels the returned images

as being relevant or not concerning her interests. Consequently, in this work, we propose

a CBIR system based on transfer learning from a CNN trained on a vast image database,

thus exploiting the generic image representation that it has already learned. Then, the pre-

trained CNN is also fine-tuned exploiting the RF supplied by the user to reduce the semantic

gap. In particular, after the user’s feedback, we propose to tune and then re-train the CNN

according to the labelled set of relevant and non-relevant images. Then, we suggest dif-

ferent strategies to exploit the updated CNN for returning a novel set of images that are

expected to be relevant to the user’s needs. Experimental results on different data sets show

the effectiveness of the proposed mechanisms in improving the representation power of the

CNN with respect to the user concept of image similarity. Moreover, the pros and cons of

the different approaches can be clearly pointed out, thus providing clear guidelines for the

implementation in production environments.

Keywords Content based image retrieval · Convolutional neural network ·

Feature extraction · Similarity · Relevance feedback

� Lorenzo Putzu

lorenzo.putzu@unica.it

Extended author information available on the last page of the article.

Multimedia Tools and Applications (2020) 79:26995–27021

Published online: 21 July 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09292-9&domain=pdf
http://orcid.org/0000-0001-5361-8793
mailto: lorenzo.putzu@unica.it


1 Introduction

Description, recognition, and automatic classification of the structures in the images are

the basis of a large number of applications that require the processing and transmission of

visual information. These applications are based on image processing techniques aimed to

extract information that is tailored to the task at hand. The information extracted from the

images is then analysed to provide visual or logical patterns based on the characteristics of

the images and their mutual relationship. Content-Based Image Retrieval (CBIR) is one of

such applications that leverages on the description and representation of the information in

images.

CBIR systems refer to the approaches to retrieve digital images from large databases, by

analysing their visual and semantic content. The goal of these systems is to retrieve a set of

images that is best suited to the user’s intention that is formulated using a query image. To

retrieve these images, the CBIR uses a set of distance functions to estimate the similarity

between the query image and the other images in the repository applied on the features space

used to describe the image content. Given their ability to create the representation of the

input images internally as a result of the learning process, Convolutional Neural Networks

(CNN) [4] are considered as one of the most effective techniques to extract meaningful

features to describe the image content. Indeed CNN is nowadays the state-of-the-art tech-

nique in Image Classification and Image Retrieval problems, able to achieve results never

achieved before [18] and beat humans in many challenges [39]. However, there is still a gap

between the human perception and the description of images based on features, since the

semantic content present in an image is highly subjective, and, therefore, very difficult to

describe analytically. This difference in perception is known as the semantic gap.

Different mechanisms can be employed to fill the gap to improve the effectiveness of

CBIR systems. Relevance Feedback (RF) is one of these mechanisms, that involves the user

in iteratively refining the search results [36, 38]. After the user submits a query image, she

can give to the system her feedback to the search results by labelling the returned images

as relevant to the query or not. The system, then, uses this information to provide a more

significant number of related images in the next iteration, by reformulating the original

query, by re-weighting the features according to the relevant images or by estimating the

posterior probability distribution of a random variable according to the user feedback. A

different group of approaches use a formulation of RF in terms of a pattern classification

task, by using the relevant and non-relevant image sets to train popular learning algorithms

such as SVMs [20], neural networks and self-organising maps [27, 32]. Even CNNs can

be re-purposed for this task as proposed in [31, 47–49] to move the non-relevant image

away from the query image through a modification of the feature space using the back-

propagation algorithm.

Based on that idea, here we investigated the use of CNNs both for image representation

and RF, evaluating two different architectures both to extract new features or to classify

the images according to the relevance of their contents. According to our investigation, we

recommend the use of CNN for feature extraction in image retrieval tasks as is, without

a fine-tuning process, as already proposed in [12, 35], where they highlighted the effec-

tiveness and generality of the learned CNN representations. But mostly, we would like to

discourage the CNN fine-tuning procedure for image retrieval tasks, which has recently

caught on [48, 49], where they tuned the CNNs by using the whole original data sets. Indeed,

while in image classification tasks this approach is already widely used and generally recog-

nised, we argue that in CBIR tasks this approach goes against the idea of retrieval in which

there is no concept of classes (see details in Section 3).
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We propose two CNN architectures to exploit relevance feedback, both derived from the

well know AlexNet [18] model. The first one preserves the original network depth, and it

has been adapted to the RF task by modifying just the last layer, while the second one has

been adapted by adding a further layer. Both networks are fine-tuned to separate the relevant

and non-relevant and re-trained using the images labelled by the user as the training set.

Since this training set is often tiny and unbalanced, we suggested an approach to creating a

richer and more representative training set.

The main contributions of this paper are the proposal of two strategies to create a new

image ranking, one strategy based on the exploitation of the CNN as a feature extractor, the

other strategy based on the use of CNN as a classifier, where the two classes are “relevant”

and “non-relevant”. The first strategy allowed us to propose three different methods to refine

the query according to the user feedback either by refining or reformulating the query that

could be misplaced or marginal to the user’s intention with respect to the relevant images in

the database.

The remainder of the manuscript is structured as follows: CBIR systems are presented

in Section 2, detailing the features used for image retrieval and the use of an RF phase.

Section 3 presents out CBIR system based on generic CNN features. The CNN architectures

and strategy to exploit RF are described in Section 4 with details on the creation of the

training set. In Section 5, we introduce the materials and methods used in our experiments,

that are presented in detail in Section 6. Finally, Section 7 is devoted to the query refinement

procedures, the analysis and discussion of the overall results and Section 8 to conclude.

2 Background

Many CBIR systems, based on the automatic analysis of the image content from a computer

perspective, have been proposed over the years. Most of these systems are designed to tackle

specific applications and consequently to specific retrieval problems. An example comes

from the Computer-Aided Diagnosis systems [16], that can help the diagnosis by performing

queries on a large database of images already labelled by specialists. Other examples are

related to sport events [28], cultural heritage preservation [53], identification of products for

comparative shopping [25]. As it can be guessed, a CBIR designed for a specific task can

be easily managed and can obtain more satisfactory results than a non-specific CBIR that

works on large and generic databases [45]. For this reason, the design of a general-purpose

multimedia retrieval system is still a challenging task, as such a system should be capable

of adapting to different semantic contents, and different intents of the users.

2.1 Features in CBIR

In CBIR systems, the selection and the representation of a set of content-based features, that

are expected to capture the semantics of the images, are essential steps. Indeed, the accu-

racy in retrieval depends heavily from a robust set of features. While some CBIR systems

employ low-level and mid-level features [10], trying to take into account information like

colour, edge and texture [1], CBIR systems that address specific retrieval problems lever-

age on different kind of features that are specifically designed [44]. Some works exploited

low-level image descriptors, such as colour histograms [13], a fusion of textual and visual

information [17, 40, 43] or even Scale Invariant Feature Transform (SIFT) [51, 52] orig-

inally proposed for object recognition [23] and then extended to scene categorisation by

using the Bag-of-Visual-Word (BoVW) model [19]. Even more specific low-level features
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designed for other applications have been used in CBIR systems, such as the HOG [8] and

the LBP [29] descriptors, originally proposed for pedestrian detection and texture analysis

respectively. Several CBIR systems use a combination or fusion of different image descrip-

tors [5] to provide a high-level understanding of the scene. A simple solution is based on the

concatenation of the feature vectors, such as in [52], where the authors propose two ways

based on BoVW of integrating the SIFT and LBP. A different solution produces a fusion

of the output by combining either different similarities or distances from the query [14] or

different ranks obtained by the classifiers [46].

However, it is not easy to determine which features could describe the images adequately.

For this reason, CNNs are popular for image classification and retrieval tasks since they

can learn features by creating their representation of the input images internally as a result

of the learning process [4]. The goal of the architecture of a CNN is to model high-level

features by employing a high number of connected layers composed of multiple non-linear

transformation units (see Fig. 1).

The convolutional layers are the core of a CNN as they perform most of the computations,

because they convolve images with different filters, and produce the activations as responses

to those filters. Intuitively, the network learns which filters are activated when some visual

feature or pattern is presented in the input. Typically two different layer types follow the

convolutional layer: the Rectified Linear Unit (ReLU) and pooling layers. The ReLU layer

applies an element-wise activation function, such as the thresholding at zero, while the pool-

ing layer performs a down-sampling operation along the spatial dimensions since it takes

just the maximum value in a region. The last layers are common fully connected layers,

where each neuron of a layer is fully connected to the neurons of the previous and next lay-

ers. The activations extracted from the upper CNN layers are also excellent descriptors for

image retrieval [18]. It implies that a CNN trained for a specific task has acquired a generic

representation of objects that is useful for all sorts of visual recognition tasks. As a conse-

quence, CNNs attracted the interest of many researchers in this field, that deal with semantic

visual content analysis, description and retrieval (see details in Section 3).

2.2 Relevance feedback

In image retrieval, the query image is used as an example to find all the images in a data set

that are relevant to that query. Defining which image is relevant or not relevant to a query is

not a trivial issue, in particular, if the problem must be addressed using just one image as a

query. Indeed, there is still a gap between the human perception of the semantic information
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Fig. 1 An example of CNN architecture
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present in an image, and its computer description, that is typically able to identify just a

small subset of semantic concepts. Moreover, the user that performs the query could not

have a specific target in mind, or he could start the search with an image that is only partially

related to the content that he has in mind. In both cases, the retrieval process could not be

accomplished in just one step. The mechanism of RF has been developed to involve the user

also in further phases of the process, in particular, to verify if the search results are relevant

or not.

There are three main types of feedback. The most used is the explicit feedback, through

which the user can explicitly give to the system her feedback by labelling the returned

images as relevant to the query or not. The user can provide her feedback also implicitly,

where the system infers the user’s feedback automatically from its behaviour, such as the

selected images for viewing or the duration of time spent viewing a picture. Considering that

user feedback is not always available, the third type of feedback called Pseudo RF or Blind

RF, that automates the manual part of RF, is widely used. In this way, the users can benefit

from an improved image retrieval performance without an extensive and time-consuming

interaction.

Different approaches have been proposed to exploit the feedback for refining the param-

eters of the search. Such as by computing a new query vector [36], or by modifying the

similarity measure in such a way that relevant images have a high similarity value [33], or

trying to separate relevant and non-relevant images using pattern classification techniques

such as Support Vector Machines [20], Decision Trees [24], Clustering [9], Random Forests

[6] or Convolutional Neural Networks [48]. Our approach processes the user’s feedback

and separates relevant from non-relevant images by exploiting a CNN pre-trained on a large

data set as in [31, 49]. Here, we make an extensive investigation on different approaches to

exploit the RF when a modified CNN is used both for feature extraction and for classifying

images as relevant or non-relevant to the given query.

3 CNN features

It has been recently reported that CNNs outperformed many state-of-the-art approaches in

many tasks, such as object category recognition and image classification [18], handwritten

digits and character recognition [3], pedestrian detection [41] medical image applications

[16]. Also, as stated before, features extracted from the upper layers of the CNN can serve

as image descriptors [18], implying that a CNN trained for a specific task has acquired

a generic representation of objects that is useful for all sorts of visual recognition tasks

[12, 35]. This reason has dramatically facilitated the use of CNNs, especially when large

amounts of data and resources are not available. Indeed, the training of CNN requires a

considerable quantity of data and resources for a typical problem of image classification.

3.1 Transfer learning or fine-tuning?

Transfer learning and fine-tuning are a common alternative to training a CNN from scratch,

by using a pre-trained CNN model, that could be either fine-tuned to a new classification

problem or used to extract the features for a new task directly. But, since CNNs have been

created for classification tasks, they must be adapted to extract the activation values as a

response to a given image.

The most common approach to adapt a pre-trained CNN for feature extraction, especially

if used in classification tasks (eg. CNN features to power an SVM), is to adjust the final
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CNN layer (by modifying the type and number of categories) and re-train the network to

update its weight with the new data.

This approach is mainly devoted to improving the performances of CNN features that,

after the re-training procedure, are specifically tailored to the type and number of cate-

gories of the new data. Recently this approach has also been used in image retrieval tasks

[47–49], by extracting the features from a CNN re-trained using the whole data set used

in the retrieval step. Nevertheless, we believe that for image retrieval tasks, this type of

approach is not feasible, as the images are not grouped by categories or labels but just using

a similarity concept. Furthermore, the use of features extracted from a CNN tailored for a

specific task and then re-purposed to a novel generic task, has been extensively explored

[12, 35], demonstrating that they have sufficient representational power and generalisation

ability to perform different visual recognition tasks. Therefore, the feature extraction step of

our CBIR system is performed from the original network, just exploiting the CNN internal

representation already learned from a generic data set.

3.2 CNN activation

Each layer of a CNN could be used to produce a response or activation to an input image,

but generally, just a few levels are suitable for feature extraction purposes. Indeed the first

network layers are able to describe just some images characteristics, such as points and

edges, which are then processed by the innermost layers of the network to capture high-level

features. Such high-level features are suited to object recognition tasks because they include

all the primitive characteristics to create a strong image representation. Generally, the layer

that is used for feature extraction purposes is the one that precedes the classification layer.

Thus CNN features, in an image retrieval task, are used in the same way as hand-crafted

features, by defining a matrix of features, that represents the set of images to retrieve (search

set). Consequently, if the image archive contains M images, a matrix of features of size

M × h, where h is the number of features (equal to the layer size), is created. Accordingly,

the retrieval task can be performed by extracting the feature vector of size 1 × h from the

query image and computing its similarity with all the images in the archive. Then, images

are sorted according to the selected similarity measure and returned to the user, as shown in

Fig. 2.

4 Relevance feedback to refine CNN

In CBIR systems that make use of an RF phase, the user is prompted to give her feedback

on the last retrieval phases by marking each image as being relevant or not to her query.

Fig. 2 Steps performed by an image retrieval system employing CNN features extracted from a generic layer.

M is the number of images in the database
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Relevance information is then used to refine the query and provide much more relevant

results in the next retrieval round.

4.1 The RFNet architectures

CNNs can be re-purposed also for the RF task by using the user’s feedback to separate

relevant from non-relevant images. In particular, we show how a modified CNN can produce

image representations that better fit the user’s needs. Since the training of a CNN is a long

and computationally expensive process, we rely on a pre-trained CNN model. In this case,

the network needs a fine-tuning phase to adjust the architecture and let it adapt to the type

and number of categories of the new task, that is to separate the relevant images from the

non-relevant ones. We used two different approaches to fine-tune CNN. The first approach

consists of replacing the last fully connected layer with a new two-outputs layer to label

images as being relevant or non-relevant. The goal of this approach is to preserve almost all

the original network layers while creating a new CNN with the same depth of the original

one (see Fig. 3) which we refer to as L8 RFNet. The second approach consists in adding

a new fully-connected two-outputs layer. In this way, the new CNN, which we refer to as

L9 RFNet (see Fig. 3), is more in-depth than the original architecture, but we can preserve

all the original layers, including the weights and biases.

It is worth to note that the task that we aim to perform is the update of a pre-trained

network through a new training set containing a comparably tiny set of images, that is, the

feedback provided by the user. To avoid over-fitting, and preserve as far as possible the

weights and biases of the original CNN model, we have frozen the firsts network layers.

Indeed, the re-training phase is just needed to create the weights and biases for the new fully

connected layer and to update the information of the originals fully connected layers, with

a specific image representation.

4.2 Training set creation from unbalanced set

To conclude the fine-tuning process, the RFNet is re-trained with the images belonging to

the new training set. The ability to re-train a CNN that is focused on the semantic content

of the query image heavily depends on the quality of the training set originated by the

RF round, that is, on the relevant and non-relevant images labelled by the user. However,

since the number of images labelled by the user is tiny, in particular, if compared to the
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Fig. 3 Diagram of the last layers of the tuned nets used for RF: at the left L8 RFNet and at the right L9 RFNet
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ImageNet data set images [11], in most cases, the training set can be strongly unbalanced

[49]. Indeed, it may occur that the training set does not contain any non-relevant images

or, even worse, that it does not contain any relevant images. While in the first case the

user might decide not to engage in relevance feedback as the retrieval performances are

already very high, in the case in which the training set contains only non-relevant images, it

means that there are no relevant images examples for training the network, except the query

image.

To overcome these and other issues, in this work we defined a new and potentially richer

training set, that preserves the user feedback at each RF round, and that always contains

both relevant and non-relevant images. More precisely, if we set a retrieval window of size

k, at the end of the retrieval round or round 0, the training set is a set of k0 images composed

of r relevant images and k − r images that are not relevant. The images belonging to the

k−r set will no longer be shown to the user in the following rounds and therefore at the end

of the first feedback round the training set will be a set of images k1 equal to k + (k − r)0.

Thus, while previous feedback rounds are stored in the system, the user always has to label

the same number of images, equal to k. This procedure is repeated for each feedback round,

therefore during round n the training set will be equal to kn = k + (k − r)n−1, where the

number n (with n = 1, . . . , 4) in subscript represents the feedback round. As a consequence,

the training set increases at each feedback round, but the user’s effort remains unchanged.

Moreover, to avoid a training set composed of non-relevant images only, the query image is

added to the training set, so that the training set after round 0 is a set of images of size k +1,

thus always having r >= 1.

Then, to generate more image examples from such limited image number and to prevent

overfitting, we performed a simple data augmentation procedure [18, 42]. The augmented

set is created by selecting eight crops of the original image (including the full image). Each

crop is then horizontally flipped, blurred by an average filter and modified in colours by

stretching the histograms. Hence, this data augmentation produces an augmented set of 36

images for each original image.

4.3 Proposed relevance feedback approaches

Once the RFNet has been tuned for a specific query according to the user’s feedback, it

can be used to extract the new image representation to perform a new retrieval step that

benefits from RF. We propose to extract the information from the net in different ways. In

particular, we focus on two main strategies: RF with CNN features extraction, and RF with

classification.

In the first strategy, that exploits CNN features for RF, the RFNet is used to extract

activations from the second fully connected layer (indicated as f c7 in Fig. 6), and the simi-

larity between images is computed according to the Euclidean distance, as shown in Fig. 4.

This strategy aims to exploit the new CNN’s internal image representation (obtained after

the re-trainining phase) to extract new features that are tailored to the query image. That is

to say; relevant images features should be much closer to the query image features while

non-relevant images features should be moved further away.

In the second strategy, that exploits CNN classification for RF, the RFNet is used to

classify the images belonging to the search set directly. The main goal here is to create a

CNN that is able to separate the relevant from the non-relevant images. Also, this strategy

aims to exploit all the CNN weights and biases entirely until the output layer, which provide

a further vector that contains the scores. Each score indicates the probability for an image
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Fig. 4 Conceptual representation of the proposed image retrieval with RF using a CNN for feature extraction

and b the CNN for classification

being relevant or non-relevant as shown in Fig. 4. As it can be observed, in both approaches

the RF can be performed for n iterations, but the CNN architecture is tuned for the new task

only once, just after round (0), while for the next n RF rounds it is only necessary to re-train

the network.

4.4 Query refinement for RF based on CNN features approach

Although the conceptual representation of the two approaches looks very similar, they are

very different. In particular, with the classification strategy, the query image is used just

once, and the further rounds are mainly results of the user feedback, while with the feature

extraction strategy the layer activations are always compared to the query image activation.

That is to say that, with the feature extraction strategy, the quality of retrieval results is

always related to the quality of the query image, that could be misplaced or just marginal to

the concepts searched by the user. Thus, to further exploit the user feedback, the query can

be reformulated through resorting to query shifting or query expansion paradigms. In both

cases, the new query is used as input to the re-trained CNN instead of the original query.

Here we used two different approaches for query shifting. The first one uses the original

query image and the images labelled by the user as relevant to compute the most central

image, that from now on we will call KImage (1). This approach, even if very simple, allows

us to identify the image that contains most of the semantic concepts that are relevant to

the user. The second one instead directly uses the feature vectors, and it computes a new

feature vector as the average of the features extracted from the query image and the relevant

images, that from now on we will call MeanF (2). Even this approach is very simple, but,
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by computing the average of all the relevant images features, it allows us to create a new

feature vector that contains all the semantic concepts that are relevant to the user.

KImage = argmin
∀Ij ∈IR+1

R+1∑

i=1

||Ii − Ij ||2 (1)

MeanF =
1

R + 1

R+1∑

i=1

f eatures(Ii) (2)

where IR+1 is the set of images composed by the query image and the relevant images.

Since both the previous approaches focus on exploiting the relevant images labelled by

the user, we also used the Relevance Score (RS) (6) in combination with the re-trained CNN

to facilitate the separation of relevant images from non-relevant ones, that will be referred

to in the following as “strategy name + RS”. This approach ranks the images in terms of

relevance, exploiting both the distance from the relevant images and the non-relevant ones,

allowing us to separate these sets of images better. The conceptual representation of the

proposed approaches is reported in Fig. 5.

5 Materials and experimental settings

5.1 Data Sets

We performed several experiments with several data sets differing for the number of classes,

and the semantic content of the images.

Fig. 5 Representation of the proposed approaches for query refinement: a central image extraction, b mean

features computation and c RF using relevance score
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Caltech is a well-known image data set 1 comprising a collection of pictures of objects.

In most images, objects are in the centre with somewhat similar poses, and with very limited

or no occlusion. In this work we used the Caltech-101 and the Caltech-256 subsets. Caltech-

101 is a collection of pictures of objects belonging to 101 categories. It contains a total

of 9.144 images, and most of the categories have almost 50 images, but the number of

images per categories ranges between 40 and 800. Caltech-256 contains pictures of objects

belonging to 256 categories. It contains a total of 30.607 images, and the number of images

per category ranges significantly between 80 and 827, with an average value of 100 images

per category.

The Flower data set2 presents a collection of flower images. This data set is released

in two different versions, and in this work, we used the 102 category version Flowers-102.

Although this data set has a similar number of classes as Caltech-101, the two data sets are

related to two very different problems. Indeed, Flowers-102 turns out to be a problem of

fine retrieval, since it contains the single category object ‘Flower’ that is subdivided into

102 sub-categories. It consists of 8.189 images, and the number of images per class ranges

between 20 and 238. In the experimental evaluation, these three data sets have been divided

into two subsets: the query set, containing a query image for each class, and the search set

containing all the remaining images for retrieval.

SUN-397 is an image data set for scene categorisation. It contains 108.754 images

belonging to 397 categories. The number of images varies across categories, but there are

at least 100 images per category. To reduce the data set size, and to balance the number of

images in each class, we created the search set, i.e. the set use for retrieval purposes, by

taking 100 images per class for a total of 39.700 images. The query set has been created by

selecting 250 random samples among the remaining images.

5.2 Pre-trained CNNmodel

There are several pre-trained models with high popularity thanks to their excellent per-

formances in different tasks. Most of these models are trained with the ImageNet data

set3[11], that is a collection of more than 14 millions of pictures labelled in 21 thousand

categories.

AlexNet [18] is one of such models, that is trained on a subset of the ImageNet database,

created for the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012 [39].

This subset contains 1.2 million training images belonging to 1000 object categories so that

on average, each category is represented by almost 1000 images. Although the AlexNet

has been trained on a subset of the ImageNet data set, it gained popularity for its excellent

performances on many classification tasks. The network architecture consists of 5 convolu-

tional layers, followed by three fully connected layers. In details, the convolutional layers

use a different number of kernels, that is 96, 256, 384, 384, 256, respectively, while the size

of the kernel gradually decreases from 11x11 to 3x3. Different ReLU, normalisation and

pooling layers are inserted within the convolutional layers. The output of the last fully con-

nected layer is sent to a Softmax with loss that produces a distribution over the 1000 image

categories (see Fig. 6).

1http://www.vision.caltech.edu/Image Datasets/
2http://www.robots.ox.ac.uk/∼vgg/data/flowers/
3http://image-net.org/index
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Fig. 6 Diagram of AlexNet, the CNN architecture proposed in [18]

5.3 Setup

The similarity measure used to compute the distances between the query image and all the

images in the repository is the Euclidean distance. We evaluated the retrieval performances

using the Average Precision (AP) (see (3)) measure since it averages the precision value for

all the queries. For a single query i the AP is formulated as follows:

APi =
1

Qi

N∑

n=1

Rn
i

n
t in (3)

where Qi define the number of relevant images for the i-th query, N is the total number

of images of the search set, Ri
n is the number of relevant retrieved images within the n top

results, and t in indicates if the n-th retrieved image is relevant (t in = 1) for the i-th query or

not (t in = 0).

We also report the Precision (see (4)) that measures the ratio between relevant images

within the top k retrieved images.

Precision =
Relevant Retrieved Images

Retrieved Images
(4)

To make the RF experiments repeatable and objective we automated the RF process by

labelling the retrieval results as being relevant or not according to the matching of each

retrieved image with the class label of the query. The underlying assumption is that a user

who performs a query should be interested only in images belonging to the same class of

the query image. We evaluated the different RF approaches by performing 4 RF rounds

for each query image, and by using a number of retrieved images that takes the values

k = 20, 50, 100. Manually labelling the retrieved images is a very long and time-consuming

procedure and no user would like to perform it for more than 20 images, but since the

procedure is automated, we also evaluated the higher value of k. This procedure is useful to

perform numerical experiments and comparisons between various retrieval systems and to

understand if and which system could benefit from a different value of k.

6 Experimental results

We performed several experiments with the previously mentioned data sets, mostly devoted

to evaluating the performances of the CBIR system exploiting the user feedback, but firstly

we tested the performances of CNN features without the fine-tuning process compared to

several state-of-the-art approaches
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6.1 CNN features

The CNN features have been extracted from the second fully connected layer (fc7) that

produces a feature vector of size h = 4096, and they have been compared to the fol-

lowing hand-crafted feature sets. Colour features as proposed in [26] that includes Colour

Histogram, Colour Moments and Colour Auto-correlogram, which concatenated produce

a feature vector of size 102. SIFT features [23] that have been extracted with a grid

sampling of 8-pixel size and a window size ranging from 32 to 128. Then the extracted

SIFT features have been used to create a BoVW [19] of size 4096. HOG features [8]

have been computed on HOG blocks composed by four cells of 16-pixel size. The blocks

are overlapped by one cell per side, creating a feature vector of size 6084. LBP [29]

have been extracted from blocks of 32-pixel size, to favour the analysis of small regions

of the image, since they have been created for texture analysis. The final feature vec-

tor has a size of 2891. We also extracted LLBP [37], Gabor Wavelets [40] and HAAR

wavelets [43] as are in the original formulation. They present a feature vector of size

768, 5760 and 3456, respectively. In Table 1, we reported the retrieval AP results on each

data set.

As it can be observed, the retrieval performances obtained are very different for each

feature set, but, in general, the use of CNN features outperforms the other approaches in all

the tested data sets. These results confirm the trends in image classification already brought

to light in [18].

6.2 Results of RF based on CNN

We tested the proposed RF approaches based on CNN on all the data sets previously

mentioned. The performances attained with the RFNets have been compared to other RF

approaches namely, the Query Shift (QS), the Relevance Score (RS) [15], the Efficient

Manifold Ranking (EMR) [50] and a binary Linear SVM classifier [20].

QS is a technique firstly proposed for text retrieval refinement [36] and then adopted

in CBIR systems [38]. The assumption behind this approach is that relevant images are

clustered in the feature space, but the original query could lie in the region of the feature

space that is in some way far from the cluster of relevant images. Accordingly, a new optimal

Table 1 AP on Caltech101, Flowers, Caltech256 and SUN397 by using different feature sets for image

retrieval

Features Caltech101 Caltech256 Flowers SUN397

CNN 38.53 18.17 29.81 6.14

Colours 2.96 1.05 5.21 0.48

SIFT 9.99 2.43 4.17 0.83

HOG 8.06 2.33 2.72 0.74

LBP 7.50 2.59 4.11 0.85

LLBP 4.05 1.09 4.24 0.62

HAAR 8.79 2.57 5.56 0.78

Gabor 10.26 2.48 4.27 0.59
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query is computed in such a way that it lies near to the Euclidean centre of the relevant

images, and far from the non-relevant images, according to (5)

Qopt = 1
NR

∑
i∈DR

Di − 1
NT −NR

∑
i∈DN

Di (5)

where DR and DN are the sets of relevant and non-relevant images, respectively, NR is the

number of images in DR , NT the number of the total images, and Di is the representa-

tion of an image in the feature space. QS is still widely used in CBIR systems [7, 21, 22]

also by exploiting additional parameters to control the relative weights of each component.

Indeed, in many cases positive feedback is more valuable than negative; thus most infor-

mation retrieval systems set less weight to negative feedback, or even some system allows

only positive feedback, meaning that the weight of negative feedback is set to zero [22].

Conversely, other related studies have shown the great importance of negative feedback for

image retrieval [7, 21], and since that the analysis of these parameters is not within the scope

of this work, we used the original formulation as in (5) which places the same importance

to both components.

The RS belongs to the Nearest Neighbour (NN) methods used to estimate the posterior

probabilities of an image as being relevant or not. NN approaches have been adapted in

several forms over the years, but the RS is the most used and still effective form to compute a

score for each image [34]. It uses the image distances to its nearest relevant and non-relevant

neighbours as follows:

relNN (I ) =
||I−NNnr (I )||

||I−NN r (I )||+||I−NNnr (I )||
(6)

where NN r(·) and NNnr (·) denote the nearest relevant and non-relevant image for the

image I respectively, and || · || is the metric, typically the Euclidean distance, defined for

the feature space.

EMR [50] belongs to Manifold Ranking (MR) approaches, which are graph-based rank-

ing models. Differently from classical MR approaches, that use a traditional k-nearest

neighbour graph, the EMR uses k-means for graph construction and a new form of adja-

cency matrix that optimises the ranking function by least square regression. Although MR

approaches are not designed for RF, it turned out that they can handle the feedback very

efficiently [50].

The Linear SVM belongs to the Pattern Classification paradigm. The selection of

the SVM hyper-parameters has been performed using an error-correcting output code

(ECOC) mechanism [2] with 5-fold cross-validation to fit and automatically tune the hyper-

parameters. The trained SVM is used like the RFNet to classify the images belonging to the

repository, and the resulting score vector can be used as a similarity measure, directly indi-

cating the relevance of an image. The results of this experiment are reported in Figs. 7 and

8.

As it can be observed, in all the approaches the performances increase after each RF

round, but with very different trends, depending on the data set, the size and the number of

classes, and the value of k. Indeed, the RFNet approaches heavily depend on the size of the

retrieval set k, as it serves as the training set.

It can also be observed that the RF approach based on CNN Features starts converg-

ing after few RF rounds, while the RF approaches based on CNN Classification continue

improving, even if with different trends depending on the size of k and also with a little

lag on the firsts round. This is mainly due to the final layer, introduced during the fine-

tuning procedure, that being “new” needs more examples/rounds to adapt to the new task.
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Fig. 7 Precision on Caltech101, Flowers, Caltech256 and SUN397 by exploiting 4 RF rounds for image

retrieval on top-k images, with k = 20, 50, 100

In contrast, the layer used for feature extraction (fc7) that belongs to the original Alexnet

architecture, can immediately provide more representative features. This initial advantage of

the RF approach based on CNN Features decreases with the progress of the RF rounds, both

because the feature space does not undergo radical changes during the following rounds,

and also because the RF procedure depends on the choice of the initial query.

7 Results analysis and discussion

To understand the behaviour of the feature space after the re-training of the CNN, we anal-

ysed the distances between the query images and the images labelled by the user. Indeed,

if the assumption that the relevant images come closer to the query image and far from

the non-relevant images is correct, we should see a clear trend after each RF round. Thus,

after each RF round and each re-training, we measured the Euclidean distance between

the query image features and the relevant and non-relevant images features and also the
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Fig. 8 AP on Caltech101, Flowers, Caltech256 and SUN397 by exploiting 4 RF rounds for image retrieval

on top-k images, with k = 20, 50, 100

average distance between relevant and non-relevant images. To show how CNN’s internal

image representation changes after each re-training phase, we also measured the distance

between the original query image features and the new query image features. This results

are reported in Fig. 9.

As it can be observed the image representation changes after each RF round. Neverthe-

less, there is not a clear trend showing that the two feature sets (relevant and non-relevant)

move in different directions, but rather they move in the same direction. This trend is mainly

due to the absence of the re-training process before round 0, in which the features were

extracted from a generic network, producing a much more generic image representation.

Indeed, also the query image features extracted after fine-tuning are quite far from the ones

extracted from the original network. These plots are not representative of every single image

(monitoring the features of each image could be interesting but not very significant), since

they are mediated for all the images labelled by the user on the various data sets, but they

clearly show how the network fits new images.
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Fig. 9 Feature space evolution: distances between group of features after each re-training respectively on

L8 RFNet and L9 RFNet

7.1 RF strategy analysis

It is worth noting that the quality of retrieval results is limited by the representativeness

of the query image, which often does not reflect the entire set of concepts searched by the

user. In the feature space, this translates in the query image being misplaced or marginal

with respect to other relevant images. To highlight this behaviour, we compared a single

network on both RF strategies, namely the RF based on feature extraction and RF based on

classification. The training set has been created using just the images retrieved by the RF

feature extraction strategy. Thus the RF classification strategy is slightly disadvantaged by

Fig. 10 Comparison between RF approaches exploiting the same net for features extraction and classification
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this procedure since it cannot exploit all the images it has retrieved in the previous step.

Nevertheless, as it can be observed in Fig. 10, it achieves better performances on both the

RFNet architectures. Mainly because the classification strategy exploits all the knowledge

that the network has learnt during the training process. Instead, using the feature extraction

strategy, we exploit just the layer activations, as they are compared to the ones obtained

from just one image, i.e., the query.

7.2 Refinement

Thus, although the CNN re-training process aims at modifying the image representation so

that relevant images are closer to the query image, the user feedback can be further exploited

to refine the query image. To better understand if the RF based on feature extraction could

benefit from the proposed refinement methods, we performed a comparison on all the data

sets The performances attained with this refinements have been compared with the previ-

ous formulation of RF using the RFNet features on both architectures. The results of this

experiment are reported in Fig. 11.

Fig. 11 Precision on Caltech101, Flowers, Caltech256 and SUN397 by exploiting 4 RF rounds with query

refinement for image retrieval on top-k images, with k = 20, 50, 100
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As it can be observed both RFNets exploited with the feature extraction strategy benefit

from the proposed refinements. In particular, a significant improvement is observed in each

round after the first.

7.3 Ablation studies

In order to simulate a real case scenario, we performed an experiment where the number of

retrieved images at each round is equal to k = 10. This is because in many applications,

especially those exploiting RF, small windows are used to avoid excessive effort by the

user. Moreover, to simulate the variability of human judgement on assessing the relevance

of retrieved images to a given query we randomly introduced one or two label flips per

retrieval set, by changing the automatic labelling that was used in the previous experiments.

The results of these experiments are reported in Fig. 12.

It is interesting to see that most of the proposed RF approaches achieve high perfor-

mances even with k = 10, thus being effective in exploiting a tiny training set. Indeed, in

this case, only the approaches exploiting the CNNs for classification do not perform as well

Fig. 12 Precision on Caltech101, Flowers, Caltech256 and SUN397 by exploiting 4 RF rounds for image

retrieval on top-10 images, respectively introducing, zero, one or two label flips
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as the others. Nonetheless, all of them performed well even with the presence of label flips,

without a performance decrease, but rather all of them provided continuous growth, and

even if the performances are not comparable to the baseline (without label flips), this shows

remarkable robustness to human variability.

7.4 Overall results

Table 2 reports the overall results for all the tested RF approaches averaged to all data sets.

This table shows the amount of AP gain after each round, and the total amount of gain for

each RF approach. We reported in bold the best results obtained on each RF round and in

red the results showing a decrease.

As a general comment on the attained results, all of the approaches show a performances

increase after each RF round, even if with very different trends. In particular, it can be

observed that in some RF round the AP decreases when the QS, SVM and RFNet Clas-

sification approaches are used. However, while the decrease in AP with the QS and SVM

approaches is observed in different RF rounds, the decrease in AP with the RFNet Classifi-

cation approach is only observed in the first round, outperforming all the other approaches

in the remaining RF rounds. Indeed, the RFNet Classification approach does not start con-

verging as quickly as the other approaches, but it is able to improve for other rounds, even if

in practice it is not common for users to be engaged in so many RF rounds. In general, the

RFNet Classification is the approach that shows the best performances, even if it is heavily

dependent on the size k of the retrieval set, as it serves as the training set for the classifica-

tion layer. Therefore, as expected, the greater the size of the training set (or feedback set)

the more we can exploit the learning abilities of CNNs to perform RF. Instead for small

sets, it is more effective to use approaches based on features extracted from the RFNet, but

only if associated with one of the proposed query refinement strategies such as the Rele-

vance Score and the MeanF. The Relevance Score still exhibits very good performances,

but it brings to further improvement when combined with the RF based on RFNet Features

on every k value. On the other hand, the MeanF outperformed the other approaches with

k = 10, 20, which means that the average query feature vector is more meaningful when it

is computed from less relevant images.

What emerged could also give rise to hybrid approaches, in fact, given that a single

RFNet architecture is used both for feature extraction and classification, further improve-

ment would be exploiting the network in the first rounds as a feature extractor while in

the following rounds as a classifier. The main reason is that the final classification layer

being “new” needs more examples/rounds to adapt to the new task, while the layer used for

feature extraction (fc7) that belongs to the original Alexnet architecture, can immediately

provide characteristic features. On the other hand, the proposed strategy based on classifi-

cation it is not only intended to use all the knowledge that the network has learnt during the

training process, but also to speed-up the indexing process, that in this case is based on the

classification scores. Thus, considering that the the time needed to classify or extract the

features (from the same network) is almost the same, using the classification strategy we can

avoid the similarity measure computation. Several approaches can be employed to reduce

the computational cost for both strategies. The simplest approach to avoid re-indexing the

whole data set is based on limiting the search to the top N images returned in the first itera-

tion, where N can be chosen based on the data set size M (for example as 10% of M [30]).

The hypothesis is that the most important and similar images to the query image are already

in the top positions of the ranked lists, especially when using CNN features (see Table 1),

and that the images that had already been discarded will not be recovered with RF.
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Table 2 Partial and total AP gain, averaged to all data sets, on top-k images, with k = 10, 20, 50, 100

Mode N. Images Round Total Gain

1 2 3 4

Relevance Score 10 3.74 2.08 1.17 0.08 7.07

20 7.73 2.51 1.18 1.07 12.49

50 15.36 4.38 0.92 1.55 22.21

100 21.73 7.19 2.37 2.42 33.70

Query Shift 10 7.12 0.42 2.95 3.11 0.64

20 5.90 1.50 5.36 1.41 0.44

50 1.81 2.48 5.24 1.23 4.67

100 4.98 2.81 4.50 0.08 12.37

SVM 10 11.36 2.81 1.59 3.11 10.06

20 5.89 5.06 3.20 3.16 0.79

50 7.69 10.70 1.66 1.54 18.51

100 19.28 12.36 4.05 2.44 38.14

EMR 10 7.63 6.08 0.73 0.64 15.08

20 11.06 7.24 1.40 2.36 22.05

50 14.39 8.89 2.59 4.32 30.19

100 14.98 9.93 3.77 5.63 34.31

L8 RFNet Features 10 4.04 1.14 1.05 0.61 6.84

20 5.87 2.80 1.15 0.85 10.67

50 11.66 4.45 2.26 1.66 20.03

100 16.04 6.08 3.55 2.41 28.08

L8 RFNet Features KImage 10 5.18 2.47 1.58 0.42 9.65

20 9.42 3.53 1.80 1.19 15.95

50 15.69 5.81 3.25 2.31 27.05

100 19.72 7.09 3.92 2.71 33.45

L8 RFNet Features MeanF 10 8.40 1.92 1.55 0.54 12.41

20 12.56 4.79 2.14 1.27 20.76

50 18.39 6.68 3.53 2.07 30.66

100 22.16 8.67 4.68 3.13 38.65

L8 RFNet Features +RS 10 4.55 2.10 1.34 1.15 0.04

20 8.26 4.81 1.89 1.26 16.22

50 17.48 7.47 4.34 2.61 31.89

100 23.51 9.58 5.65 3.66 42.40

L8 RFNet Classification 10 11.21 5.91 3.73 2.63 1.06

20 2.10 9.95 4.42 2.42 14.69

50 13.41 13.06 6.01 3.29 35.77

100 23.07 14.54 7.55 4.51 49.67
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Table 2 (continued)

Mode N. Images Round Total Gain

1 2 3 4

L9 RFNet Features 10 2.96 1.82 1.01 0.68 6.47

20 6.10 3.04 2.13 0.99 12.26

50 11.59 5.08 2.51 1.87 21.05

100 15.58 6.62 3.59 2.40 28.19

L9 RFNet Features KImage 10 5.36 1.94 1.76 0.96 10.02

20 9.37 4.03 2.10 1.47 16.97

50 15.13 6.31 3.37 1.90 26.72

100 19.48 7.89 3.89 3.05 34.32

L9 RFNet Features MeanF 10 6.76 2.62 2.45 0.96 12.79

20 11.62 4.86 2.40 1.48 20.37

50 17.36 7.33 3.51 2.53 30.73

100 20.93 8.75 4.73 3.24 37.64

L9 RFNet Features +RS 10 4.94 1.62 1.44 0.97 8.97

20 6.98 5.34 2.18 1.55 16.05

50 16.34 8.50 4.38 2.58 31.81

100 22.50 9.97 5.99 3.79 42.24

L9 RFNet Classification 10 6.24 3.79 2.75 1.22

20 8.85 6.52 3.41 14.67

50 10.44 12.34 7.48 4.33 34.60

100 17.98 14.67 8.45 4.65 45.75

8 Conclusion

Given the great success of CNN in image classification and representation, this paper shows

the effectiveness of CNN in image retrieval tasks. Not only we provided a comparison of the

effectiveness of features extracted from CNNs compared to hand-crafted features, but also

we evaluated different mechanisms for improving the retrieval performances by exploiting

Relevance Feedback and a CNN previously trained on a large image data set.

In particular, the user’s feedback that labels retrieved images as being relevant or not to

the query has been exploited to re-train the CNN to provide a binary output. Since CNN has

been modified and trained with samples closest to the user’s needs, the extracted features

allowed retrieving a large number of relevant images. We proposed different approaches to

exploit the RF based on two main strategies, namely by using the CNN as a feature extractor

and then computing the image similarity, or by adding a classification layer to label the

images as being relevant or not. We also proposed different approaches for reformulating

the query to be used as input to the CNN, to combine the modified feature representation

with a query more closely related to the user’s need. All the proposed approaches showed

to be suited to provide significant improvement in the retrieval performances in different

experimental settings, i.e., with small or large retrieval sets, as well as in the presence of

inaccurate feedback.
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It is worth to note how the two proposed strategies are somehow complementary. In fact,

by using the CNN as a feature extractor, it allows attaining a significant improvement in the

first rounds, and it could be useful for those search engines where the user is not expected

to be engaged in a time-consuming feedback loop. On the other hand, the RF based on

CNN classification allows further performance improvements when the number of iteration

increases, provided that the user labels a relatively large number of images to be used as a

training set for refining the CNN. Accordingly, this setting could be useful in a long term

learning task.
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