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Abstract

We explore using Convolutional Neural Networks (CNNs) for

a small-footprint keyword spotting (KWS) task. CNNs are at-

tractive for KWS since they have been shown to outperform

DNNs with far fewer parameters. We consider two different

applications in our work, one where we limit the number of

multiplications of the KWS system, and another where we limit

the number of parameters. We present new CNN architectures

to address the constraints of each applications. We find that the

CNN architectures offer between a 27-44% relative improve-

ment in false reject rate compared to a DNN, while fitting into

the constraints of each application.

1. Introduction

With the rapid development of mobile devices, speech-related

technologies are becoming increasingly popular. For exam-

ple, Google offers the ability to search by voice [1] on An-

droid phones, while personal assistants such as Google Now,

Apple’s Siri, Microsoft’s Cortana and Amazon’s Alexa, all uti-

lize speech recognition to interact with these systems. Google

has enabled a fully hands-free speech recognition experience,

known as “Ok Google” [2], which continuously listens for spe-

cific keywords to initiate voice input. This keyword spotting

(KWS) system runs on mobile devices, and therefore must have

a small memory footprint and low computational power.

The current KWS system at Google [2] uses a Deep Neural

Network (DNN), which is trained to predict sub keyword tar-

gets. The DNN has been shown to outperform a Keyword/Filler

Hidden Markov Model system, which is a commonly used tech-

nique for keyword spotting. In addition, the DNN is attractive to

run on the device, as the size of the model can be easily adjusted

by changing the number of parameters in the network.

However, we believe that alternative neural network archi-

tecture might provide further improvements for our KWS task.

Specifically, Convolutional Neural Networks (CNNs) [3] have

become popular for acoustic modeling in the past few years,

showing improvements over DNNs in a variety of small and

large vocabulary tasks [4, 5, 6].

CNNs are attractive compared to DNNs for a variety of

reasons. First, DNNs ignore input topology, as the input can

be presented in any (fixed) order without affecting the perfor-

mance of the network [3]. However, spectral representations

of speech have strong correlations in time and frequency, and

modeling local correlations with CNNs, through weights which

are shared across local regions of the input space, has been

shown to be beneficial in other fields [7]. Second, DNNs are

not explicitly designed to model translational variance within

speech signals, which can exist due to different speaking styles

[3]. More specifically, different speaking styles lead to formants

being shifted in the frequency domain. These speaking styles

require us to apply various speaker adaptation techniques to re-

duce feature variation. While DNNs of sufficient size could

indeed capture translational invariance, this requires large net-

works with lots of training examples. CNNs on the other hand

capture translational invariance with far fewer parameters by

averaging the outputs of hidden units in different local time and

frequency regions.

We are motivated to look at CNNs for KWS given the ben-

efits CNNs have shown over DNNs with respect to improved

performance and reduced model size [4, 5, 6]. In this paper, we

look at two applications of CNNs for KWS. First, we consider

the problem where we must limit the overall computation of our

KWS system, that is parameters and multiplies. With this con-

straint, typical architectures that work well for CNNs and pool

in frequency only [8], cannot be used here. Thus, we introduce

a novel CNN architecture which does not pool but rather strides

the filter in frequency, to abide within the computational con-

straints issue. Second, we consider limiting the total number of

parameters of our KWS system. For this problem, we show we

can improve performance by pooling in time and frequency, the

first time this has been shown to be effective for speech without

using multiple convolutional blocks [5, 9].

We evaluate our proposed CNN architectures on a KWS

task consisting of 14 different phrases. Performance is mea-

sured by looking at the false reject (FR) rate at the operating

threshold of 1 false alarm (FA) per hour. In the task where we

limit multiplications, we find that a CNN which strides filters in

frequency gives over a 27% relative improvement in FR over the

DNN. Furthermore, in the task of limiting parameters, we find

that a CNN which pools in time offers over a 41% improvement

in FR over the DNN and 6% over the traditional CNN [8] which

pools in frequency only.

The rest of this paper is as follows. In Section 2 we give

an overview of the KWS system used in this paper. Section 3

presents different CNN architectures we explore, when limit-

ing computation and parameters. The experimental setup is de-

scribed in Section 4, while results comparing CNNs and DNNs

is presented in Section 5. Finally, Section 6 concludes the paper

and discusses future work.

2. Keyword Spotting Task

A block diagram of the DNN KWS system [2] used in this

work is shown in Figure 1. Conceptually, our system consists

of three components. First, in the feature extraction module,

40 dimensional log-mel filterbank features are computed every

25ms with a 10ms frame shift. Next, at every frame, we stack

23 frames to the left and 8 frames to the right, and input this

into the DNN.

The baseline DNN architecture consists of 3 hidden lay-

ers with 128 hidden units/layer and a softmax layer. Each hid-

den layer uses a rectified linear unit (ReLU) nonlinearity. The

softmax output layer contains one output target for each of the



words in the keyword phrase to be detected, plus a single ad-

ditional output target which represents all frames that do not

belong to any of the words in the keyword (denoted as ‘filler’

in Figure 1). The network weights are trained to optimize a

cross-entropy criterion using distributed asynchronous gradient

descent [10]. Finally, in the posterior handling module, individ-

ual frame-level posterior scores from the DNN are combined

into a single score corresponding to the keyword. We refer the

reader to [2] for more details about the three modules.

Figure 1: Framework of Deep KWS system, components from

left to right: (i) Feature Extraction (ii) Deep Neural Network

(iii) Posterior Handling

3. CNN Architectures

In this section, we describe CNN architectures as an alternative

to the DNN described in Section 2. The feature extraction and

posterior handling stages remain the same as Section 2.

3.1. CNN Description

A typical CNN architecture is shown in Figure 2. First, we are

given an input signal V ∈ ℜt×f , where t and f are the input

feature dimension in time and frequency respectively. A weight

matrix W ∈ ℜ(m×r)×n is convolved with the full input V . The

weight matrix spans across a small local time-frequency patch

of size m×r, where m <= t and r <= f . This weight sharing

helps to model local correlations in the input signal. The weight

matrix has n hidden units (i.e., feature maps). The filter can

stride by a non-zero amount s in time and v in frequency. Thus,

overall the convolutional operation produces n feature maps of

size
(t−m+1)

s
× (f−r+1)

v
.

After performing convolution, a max-pooling layer helps to

remove variability in the time-frequency space that exists due

to speaking styles, channel distortions, etc. Given a pooling

size of p × q, pooling performs a sub-sampling operation to

reduce the time-frequency space. For the purposes of this paper,

we consider non-overlapping pooling as it has not shown to be

helpful for speech [8]. After pooling, the time-frequency space

has dimension
(t−m+1)

s·p
× (f−r+1)

v·q
.
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Figure 2: Diagram showing a typical convolutional network ar-

chitecture consisting of a convolutional and max-pooling layer.

3.2. Typical Convolutional Architecture

An typical convolutional architecture that has been heavily

tested and shown to work well on many LVCSR tasks [6, 11]

is to use two convolutional layers. Assuming that the log-mel

input into the CNN is t × f = 32 × 40, then typically the first

layer has a filter size in frequency of r = 9. The architecture is

less sensitive to the filter size in time, though a common practice

is to choose a filter size in time which spans 2/3 of the overall

input size in time, i.e. m = 20. Convolutional multiplication

is performed by striding the filter by s = 1 and v = 1 across

both time and frequency. Next, non-overlapping max-pooling

in frequency only is performed, with a pooling region of q = 3.

The second convolutional filter has a filter size of r = 4 in fre-

quency, and no max-pooling is performed.

For example, in our task if we want to keep the number

of parameters below 250K, a typical architecture CNN archi-

tecture is shown in Table 1. We will refer to this architecture

as cnn-trad-fpool3 in this paper. The architecture has 2

convolutional, one linear low-rank and one DNN layer. In Sec-

tion 5, we will show the benefit of this architecture for KWS,

particularly the pooling in frequency, compared to a DNN.

However, a main issue with this architecture is the huge

number of multiplies in the convolutional layers, which get ex-

acerbated in the second layer because of the 3-dimensional in-

put, spanning across time, frequency and feature maps. This

type of architecture is infeasible for power-constrained small-

footprint KWS tasks where multiplies are limited. Furthermore,

even if our application is limited by parameters and not mul-

tiplies, other architectures which pool in time might be better

suited for KWS. Below we present alternative CNN architec-

tures to address the tasks of limiting parameters or multiplies.

type m r n p q Par. Mul.

conv 20 8 64 1 3 10.2K 4.4M

conv 10 4 64 1 1 164.8K 5.2M

lin - - 32 - - 65.5K 65.5K

dnn - - 128 - - 4.1K 4.1K

softmax - - 4 - - 0.5K 0.5K

Total - - - - - 244.2K 9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

3.3. Limiting Multiplies

Our first problem is to find a suitable CNN architecture where

we limit the number of multiplies to 500K. After experiment-

ing with several architectures, one solution to limit the num-

ber of multiplies is to have one convolutional layer rather than

two, and also have the time filter span all of time. The output

of this convolutional layer is then passed to a linear low-rank

layer and then 2 DNN layers. Table 2, show a CNN architec-

ture with only one convolutional layer, which we refer to as

cnn-one-fpool3. For simplicity, we have omitted s = 1

and v = 1 from the Table. Notice by using one convolutional

layer, the number of multiplies after the first convolutional layer

is cut by a factor of 10, compared to cnn-trad-fpool3.

type m r n p q Params Mult

conv 32 8 54 1 3 13.8K 456.2K

linear - - 32 - - 19.8K 19.8K

dnn - - 128 - - 4.1K 4.1K

dnn - - 128 - - 16.4K 16.4K

softmax - - 4 - - 0.5K 0.5K

Total - - 4 - - 53.8K 495.6K

Table 2: CNN Architecture for cnn-one-fpool3



Pooling in frequency (q = 3) requires striding the filter by

v = 1, which also increases multiplies. Therefore, we com-

pare architectures which do not pool in frequency but rather

stride the filter in frequency1. Table 3 shows the CNN ar-

chitecture when we have a frequency filters of size r = 8

and stride the filter by v = 4 (i.e., 50% overlap), as well as

when we stride by v = 8 (no overlap). We will refer to these

as cnn-one-fstride4 and cnn-one-fstride8 respec-

tively. For simplicity, we have omitted the linear and DNN lay-

ers, as they are the same as Table 2. Table 3 shows that if we

stride the filter by v > 1 we reduce multiplies, and can there-

fore increase the number of hidden units n to by 3-4 times larger

than the cnn-one-fpool3 architecture in Table 2.

model m r n s v Params Mult

(a) 32 8 186 1 4 47.6K 428.5K

(b) 32 8 336 1 8 86.6K 430.1K

Table 3: CNN for (a) cnn-one-fstride4 and (b)

cnn-one-fstride8

3.4. Limiting Parameters

One of the issue with the models presented in the previous sec-

tion was that when keeping multiplies fixed, the number of pa-

rameters of the model remains much smaller than 250K. How-

ever, increasing CNN parameters often leads to further improve-

ments [6]. In other applications, we would like to design a

model where we keep the number of parameters fixed, but al-

low multiplications to vary. In this section, we explore CNN ar-

chitectures different than cnn-trad-fpool3 where we limit

model size to be 250K but do not limit the multiplies.

On way to improve CNN performance is to increase feature

maps. If we want to increase feature maps but keep parameters

fixed, we must explore sampling in time and frequency. Given

that we already pool in frequency in cnn-trad-fpool3, in

this section we explore sub-sampling in time.

Conventional pooling in time has been previously explored

for acoustic modeling [4, 8], but has not shown promise. Our

rationale is that in acoustic modeling, the sub-word units (i.e.,

context-dependent states) we want to classify occur over a very

short time-duration (i.e., 10-30ms). Therefore, pooling in time

is harmful. However, in KWS the keyword units occur over a

much longer time-duration (i.e., 50-100ms). Thus, we explore

if we can improve over cnn-trad-fpool3 by sub-sampling

the signal in time, either by striding or pooling. It should be

noted that pooling in time helps when using multiple convolu-

tional sub-networks [5, 9]. However, this type of approach in-

creases number of parameters and is computationally expensive

for our KWS task. To our knowledge, this is the first exploration

of conventional sub-sampling in time with longer acoustic units.

3.4.1. Striding in Time

First, we compare architectures where we stride the time filter

in convolution by an amount of s > 1. Table 4 shows differ-

ent CNN architectures where we change the time filter stride

s. We will refer to these architectures as cnn-tstride2,

cnn-tstride4 and cnn-tstride8. For simplicity, we

have omitted the DNN layer and certain variables held constant

for all experiments, namely frequency stride v = 1 and pool

in time p = 1. One thing to notice is that as we increase the

1Since the pooling region is small (q = 3), we have found that we
cannot pool if we stride the frequency filter by v > 1

time filter stride, we can increase the number of feature maps n
such that the total number of parameters remains constant. Our

hope is that sub-sampling in time will not degrade performance,

while increasing the feature maps will improve performance.

model layer m r n s q Params

cnn-tstride2 conv 16 8 78 2 3 10.0K

conv 9 4 78 1 1 219.0K

lin - - 32 - - 20.0K

cnn-tstride4 conv 16 8 100 4 3 12.8K

conv 5 4 78 1 1 200.0K

lin - - 32 - - 25.6K

cnn-tstride8 conv 16 8 126 8 3 16.1K

conv 5 4 78 1 1 190.5K

lin - - 32 - - 32.2K

Table 4: CNNs for Striding in Time

3.4.2. Pooling in Time

An alternative to striding the filter in time is to pool in time,

by a non-overlapping amount. Table 5 shows configurations as

we vary the pooling in time p. We will refer to these architec-

tures as cnn-tpool2 and cnn-tpool4. For simplicity, we

have omitted certain variables held constant for all experiments,

namely time and frequency stride s = 1 and v = 1. Notice that

by pooling in time, we can increase the number of feature maps

n to keep the total number of parameters constant.

model layer m r n p q Params

cnn-tpool2 conv 21 8 94 2 3 5.6M

conv 6 4 94 1 1 1.8M

lin - - 32 - - 65.5K

cnn-tpool3 conv 15 8 94 3 3 7.1M

conv 6 4 94 1 1 1.6M

lin - - 32 - - 65.5K

Table 5: CNNs for Pooling in Time

4. Experimental Details

In order to compare the proposed CNN approaches to a baseline

DNN KWS system, we selected fourteen phrases2 and collected

about 10K–15K utterances containing each of these phrases.

We also collected a much larger set of approximately 396K ut-

terances which do not contain any of the keywords and are thus

used as ‘negative’ training data. The utterances were then ran-

domly split into training, development, and evaluation sets in

the ratio of 80:5:15, respectively.

Next, we created noisy training and evaluation sets by arti-

ficially adding car and cafeteria noise at SNRs randomly sam-

pled between [-5dB, +10dB] to the clean data sets. Models

are trained in noisy conditions, and evaluated in both clean and

noisy conditions.

KWS performance is measured by plotting a receiver oper-

ating curve (ROC), which calculates the false reject (FR) rate

per false alarm (FA) rate. The lower the FR per FA rate is the

better. The KWS system threshold is selected to correspond to

1 FA per hour of speech on this set.

2The keyword phrases are: ‘answer call’, ‘decline call’, ‘email
guests’, ‘fast forward’, ‘next playlist’, ‘next song’, ‘next track’, ‘pause
music’, ‘pause this’, ‘play music’, ‘set clock’, ‘set time’, ‘start timer’,
and ‘take note’.



(a) Results on Clean (b) Results on Noisy

Figure 3: ROCs for DNN vs. CNNs with Pooling in Frequency

5. Results

5.1. Pooling in Frequency

First, we analyze how a typical CNN architecture, as described

in Section 3.2 compares to a DNN for KWS. While the number

of parameters is the same for both the CNN and DNN (250K),

the number of multiplies for the CNN is 9M. To understand the

behavior of frequency pooling for the KWS task, we compare

CNN performance when we do not pool p = 1, as well as pool

by p = 2 and p = 3, holding the number of parameters constant

for all three experiments.

Figures 3a and 3b show that for both clean and noisy

speech, CNN performance improves as we increase the pool-

ing size from p = 1 to p = 2, and seems to saturate after

p = 3. This is consistent with results observed for acous-

tic modeling [8]. More importantly, the best performing CNN

(cnn-trad-fpool3) shows improvements of over 41% rel-

ative compared to the DNN in clean and noisy conditions at the

operating point of 1 FA/hr. Given these promising results, we

next compare CNN and DNN performance when we constrain

multiplies and parameters.

5.2. Limiting Multiplies

In this section, we compare various CNN architectures de-

scribed in Section 3.3 when we limit the number of multi-

plies to be 500K. Figures 4a and 4b show results for both

clean and noisy speech. The best performing system is

cnn-one-fstride4, where we stride the frequency filter

with 50% overlap but do not pool in frequency. This gives much

better performance than cnn-one-fstride8 which has a

non-overlapping filter stride. Furthermore, if offers improve-

ments over cnn-one-fpool3, which pools in frequency.

While pooling in frequency is helpful, as demonstrated in Sec-

tion 5.1, it is computationally expensive and thus we must re-

duce feature maps drastically to limit computation. Therefore,

if we are in a situation where multiplies are limited, the pre-

ferred CNN architecture is to stride the filter with overlap.

The best performing system cnn-one-fstride4 gives

a 27% relative improvement in clean and 29% relative improve-

ment in noisy over the DNN at the operating point of 1 FA/hr.

5.3. Limiting Parameters

In this section, we compare CNN architectures where we match

number of multiplies to the best performing system in Section

5.1, namely cnn-trad-fpool3. Figures 5a and 5b show

performance of different architectures when we stride the con-

volutional filter in frequency, as described in Section 3.4.1. All

architectures which stride the filter in time have slightly worse

performance than cnn-trad-fpool3 which does not stride

the time filter.

(a) Results on Clean (b) Results on Noisy

Figure 4: ROCs for DNN vs. CNN, Matching Multiplies

In comparison, Figures 6a and 6b compare performance

when we pool the convolutional filter in time. System

cnn-tpool2, which pools in time by p = 2, is the

best performing system. These results indicate that pool-

ing in time, and therefore modeling the relationship between

neighboring frames before sub-sampling, is more effective

than striding in time which a-priori selects which neighboring

frames to filter. In addition, when predicting long keyword

units, pooling in time gives a 6% relative improvement over

cnn-trad-fpool3 in clean, but has a similar performance

to cnn-trad-fpool3 in noisy. In addition, cnn-tpool2

shows a 44% relative improvement over the DNN in clean and

41% relative improvement in noisy. To our knowledge, this is

the first time pooling in time without sub-networks has shown

to be helpful for speech tasks.

(a) Results on Clean (b) Results on Noisy

Figure 5: ROC Curves comparing CNN with Striding in Time

(a) Results on Noisy (b) Results on Noisy

Figure 6: ROC Curves comparing CNN with Pooling in Time

6. Conclusions

In this paper, we explore CNNs for a KWS task. We compare

CNNs to DNNs when we limit number of multiplies or param-

eters. When limiting multiplies, we find that shifting convolu-

tional filters in frequency results in over a 27% relative improve-

ment in performance over the DNN in both clean and noisy con-

ditions. When limiting parameters, we find that pooling in time

results in over a 41% relative improvement over a DNN in both

clean and noisy conditions.
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