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Abstract: Computer vision (CV) combined with a deep convolutional neural network (CNN) has
emerged as a reliable analytical method to effectively characterize and quantify high-throughput
phenotyping of different grain crops, including rice, wheat, corn, and soybean. In addition to
the ability to rapidly obtain information on plant organs and abiotic stresses, and the ability to
segment crops from weeds, such techniques have been used to detect pests and plant diseases and to
identify grain varieties. The development of corresponding imaging systems to assess the phenotypic
parameters, yield, and quality of crop plants will increase the confidence of stakeholders in grain crop
cultivation, thereby bringing technical and economic benefits to advanced agriculture. Therefore, this
paper provides a comprehensive review of CNNs in computer vision for grain crop phenotyping. It is
meaningful to provide a review as a roadmap for future research in such a thriving research area. The
CNN models (e.g., VGG, YOLO, and Faster R-CNN) used CV tasks including image classification,
object detection, semantic segmentation, and instance segmentation, and the main results of recent
studies on crop phenotype detection are discussed and summarized. Additionally, the challenges
and future trends of the phenotyping techniques in grain crops are presented.

Keywords: grain crops; convolutional neural network; computer vision; phenotype detection

1. Introduction

Global food security remains an important issue for human development [1]. By 2050,
the global population is likely to exceed 9 billion, which means that agricultural production
will need to increase by at least 70% from its current level to meet the growing demand
for food [2]. Grains are the main component of the human diet, and rice, wheat, corn, and
soybean account for more than 80% of global grain production [3]. Intelligent perception
of crop phenotypic information helps to achieve precise field management, such as the
selection of new varieties of high-yield and high-quality crops, and the minimization of
agricultural inputs without affecting crop output. Plant phenotypes are the recognizable
morphological, physiological, and biochemical characteristics and traits resulting from
gene-environment interactions, including plant structure, composition, growth, and devel-
opment [4]. This means that phenotypic assessment not only involves the traits expressed
by crop genes, but also reflects complex traits such as physiology, biochemistry, quality,
stress resistance, or ones that are influenced by the external environment.

Computer vision (CV), when combined with pattern recognition algorithms and auto-
matic classification tools, exhibits outstanding performance. Traditional plant phenotype
detection relies on manual observation and measurement to obtain a description of the
external morphology of the plant, and then assess the relationship between genes or ex-
ternal environment and phenotype. However, this approach can only detect individual
traits from a small sample of crops, thus the acquisition process is inefficient and the
amount of data available is very limited. With the increasing demand for high-volume
plant phenotypic information, researchers urgently need high-precision, high-throughput,
and low-cost techniques to replace traditional manual methods of obtaining relevant data.
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A variety of imaging techniques are available to collect complex traits related to growth,
yield, and adaptation to biotic or abiotic stresses (e.g., diseases, insects, water stress, and
nutrient deficiencies), including color imaging (e.g., machine vision), imaging spectroscopy
(e.g., multi-spectral and hyperspectral remote sensing), thermal infrared imaging, fluores-
cence imaging, 3D imaging, and laminar imaging [5].

Over the past few decades, computer vision has been widely applied to analyze the
phenotypic characteristics of grain crops and thus ease the food supply problem. Although
a review of the phenotypic assessment of grain crops based on computer vision was
published in 2018, the research mainly summarized the application of traditional machine-
learning algorithms such as the support vector machine (SVM) and the back-propagation
neural network (BPNN) [6]. In addition, some researchers have reviewed the research
on pest and disease analysis of crops [7], crop and weed identification [8], and physical
and chemical phenotypic characteristics of crops [9], but they only mentioned a particular
phenotyping task. Importantly, some new network architectures and strategies applied
to the field of the convolutional neural network (CNN) and computer vision are rarely
covered in the extensive reviews covering crop phenotype detection since2019. Several
papers have been published in the last three years that provide comprehensive reviews of
deep learning techniques for such computer vision tasks as image classification [10], object
detection [11], and semantic and instance segmentation [12]. These reviews effectively
summarize the basic principles, development history, and future trends for the latest CNNs
in computer vision, but none of them provide information related to agriculture, which
highlights a gap between these technological theories and phenotyping applications.

Focusing on the state-of-the-art CNN algorithms rather than traditional machine
learning (the specific differences are shown in Figure 1), this study is an important early
step in the search for phenotyping of grain crops. Given the importance of the four
most productive grain crops (rice, wheat, maize, and soybean) in the world, the related
work on computer vision-based CNN models for the detections of crop organs, crops in
weeds, plant diseases, insect infestations, abiotic stresses, and grain varieties since 2019 has
been reviewed. The goal is to provide a comprehensive overview of novel CNN models
combined with CV for phenotype detection in grain crops and to provide researchers and
breeders with clear guidance for related decisions. This will greatly boost the productivity
of grain crops.

Agronomy 2022, 12, x FOR PEER REVIEW 3 of 24 
 

 

 
Figure 1. Key differences between machine learning (ML) and deep learning (DL) paradigms [13]. 

2. Computer Vision (CV) and Convolutional Neural Networks (CNNs) 
2.1. CV 

In recent years, both the hardware and software of CV systems have been signifi-
cantly developed. The hardware, including cameras, lights, and communication devices, 
is the foundation of CV, while the software, such as image processing algorithms, is the 
core of the system. A typical image acquisition system is indispensable to illumination 
devices. The illumination devices can be divided into point light sources, strip light 
sources, ring light sources, backlight light sources, structure light sources, and combined 
light sources. These light sources can be further classified as light-emitting diode (LED) 
light sources, halogen light sources, and high-frequency fluorescent light sources. In ad-
dition, the camera can be characterized as a global shutter or a roll-up shutter camera. 

2.2. CNN 
Since 2012, CNNs have dominated solutions to CV tasks, showing superior perfor-

mance over traditional machine-learning methods [14]. CNNs are deep learning archi-
tectures with spontaneous feature learning for image processing and image recognition. 
After the parameter optimization of training and learning, the CNN performs multiple 
layers of nonlinear transformations on the input data, continuously coupling the low-
level features, and finally obtains a high-level semantic representation. Compared with 
traditional machine learning, a CNN can use a deeper neural network model to train the 
input data to simplify the data processing process. 

A typical CNN consists of a convolutional layer, a pooling layer, and a fully con-
nected layer [15]. The neurons in the convolutional layer are arranged in a matrix to 
form a multi-channel feature map. A neuron in each channel is connected to only a part 
of the feature map before that layer [16]. The final input of the neuron is obtained by 
convolving it with a convolution kernel and then using an activation function. CNNs 
emphasize weight sharing as a key component. Neurons located on the same channel 
feature map of the same convolutional layer are obtained by applying the same convolu-
tional kernel to the previous feature map of the layer. Guided by local features in higher 
feature maps, the convolutional layer searches for links between them, while pooling 

Figure 1. Key differences between machine learning (ML) and deep learning (DL) paradigms [13].



Agronomy 2022, 12, 2659 3 of 25

2. Computer Vision (CV) and Convolutional Neural Networks (CNNs)
2.1. CV

In recent years, both the hardware and software of CV systems have been significantly
developed. The hardware, including cameras, lights, and communication devices, is the
foundation of CV, while the software, such as image processing algorithms, is the core of
the system. A typical image acquisition system is indispensable to illumination devices.
The illumination devices can be divided into point light sources, strip light sources, ring
light sources, backlight light sources, structure light sources, and combined light sources.
These light sources can be further classified as light-emitting diode (LED) light sources,
halogen light sources, and high-frequency fluorescent light sources. In addition, the camera
can be characterized as a global shutter or a roll-up shutter camera.

2.2. CNN

Since 2012, CNNs have dominated solutions to CV tasks, showing superior perfor-
mance over traditional machine-learning methods [14]. CNNs are deep learning architec-
tures with spontaneous feature learning for image processing and image recognition. After
the parameter optimization of training and learning, the CNN performs multiple layers of
nonlinear transformations on the input data, continuously coupling the low-level features,
and finally obtains a high-level semantic representation. Compared with traditional ma-
chine learning, a CNN can use a deeper neural network model to train the input data to
simplify the data processing process.

A typical CNN consists of a convolutional layer, a pooling layer, and a fully connected
layer [15]. The neurons in the convolutional layer are arranged in a matrix to form a
multi-channel feature map. A neuron in each channel is connected to only a part of the
feature map before that layer [16]. The final input of the neuron is obtained by convolving it
with a convolution kernel and then using an activation function. CNNs emphasize weight
sharing as a key component. Neurons located on the same channel feature map of the same
convolutional layer are obtained by applying the same convolutional kernel to the previous
feature map of the layer. Guided by local features in higher feature maps, the convolutional
layer searches for links between them, while pooling layers combine data with the same
semantics. Because the graphical information formed by adjacent positions may be slightly
jittered, the pooling operation extracts the main information from the upper feature map.
Maximum pooling and average pooling are common pooling operations. The model is able
to keep translation and rotation invariant while preserving features [15]. After alternating
between convolution and pooling, a fully connected layer often appears. Each neuron in the
fully connected layer is connected to every neuron in the upper layer. All the information
is combined to turn the multi-dimensional features into one-dimensional features, which
are handed over to the final regressor and classifier to produce the final result.

2.3. CNNs Combined with CV Tasks
2.3.1. Image Classification

Image classification aims to assign predefined class labels to images. The CNN is
currently the most popular neural network that combines a set of mathematical operations
(e.g., convolution, pooling, and activation), using various connection schemes, such as plain
stacking, start, and residual connections, to learn operational parameters from annotated
images in order to classify image datasets (Figure 2). The current development of modern
CNNs for image classification can be divided into three phases: (1) the appearance of
modern CNNs (2012–2014); (2) the development and refinement of CNN architecture
intensification (2014–2017); and (3) the introduction of reinforcement learning and artificial
intelligence for CNN architecture design (start of 2017).

In 2012, the first modern CNN architecture named AlexNet was proposed. The
algorithm demonstrated strong performance in image classification in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC 2012) competition in that year [17]. The
report of this model introduces a new era of image classification and other CV tasks using
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CNNs. From 2014 to 2017, researchers developed several representative CNNs such as the
residual neural network (ResNet) [18], the visual geometry group network (VGG) [19], and
the dense convolutional network (DenseNet) [20] for image classification. These CNNs
significantly improved the learning ability and recognition complexity by using efficient
computational algorithms and modified connectivity schemes. From 2017, more studies
focused on the use of reinforcement learning to search for the best CNN architecture that
could yield higher performance [21]. This process introduces a reinforcement learning
framework to find the optimal convolutional image elements on small datasets, followed
by stacking and transferring the resulting image elements in a different way to a large
unknown dataset.

Researchers have investigated the mechanisms of CNNs for image classification. A
recent study improved AlexNet to create a new variant (ZFNet) using a visualization
tool. This tool is a framework integrated with CNNs that can map neuronal activity
back to the input pixel space. Thus, pixel-level activations can be visualized after each
convolutional layer, which is particularly useful for understanding the CNN mechanism
for further upgrades. CNNs can learn general representations of images rather than
features solely for classification. Subsequent research developed various gradient-based
methods, including guided backpropagation, gradient-weighted class activation mapping
(Grad-CAM), and layer-by-layer relevance propagation (LRP). Meanwhile, some general
frameworks (e.g., LIME and occlusion maps) can also be used to display important image
regions for classification results [22,23].

2.3.2. Object Detection

Object detection is defined as determining the location of objects in a given image and
the class to which each object belongs. As shown in Figure 2, object detection using CNNs
can be divided into two categories: single-level and two-level CNN architectures. In the
early framework development, OverFeat is the most representative model [24], and won
the localization task of the 2013 ILSVRC competition. Then, a series of region-based region-
convolution neural network (R-CNN) frameworks was introduced, including the original
R-CNN [25], Fast R-CNN [26], and Faster R-CNN [27]. There are three key techniques in
the RCNN architectures, including the region proposal network (RPN), region of interest
(ROI) pooling operation, and multi-task loss function. The R-CNN family has been widely
adopted as object detectors for various domain datasets.

2.3.3. Semantic and Instance Segmentations

Semantic segmentation aims to assign a class to each pixel in an image, but objects
in the same classes are not distinguished. Instance segmentation outputs the mask and
class of the target. Typically, CNN architectures for semantic and instance segmentations
can be divided into two categories, including encoder-decoder-based frameworks and
detection-based frameworks, as shown in Figure 2. The encoder-decoder-based model is
the most primitive intelligent image segmentation network for improving segmentation
accuracy. In the encoder stage, the CNN extracts semantic features from input samples.
In the decoder stage, deconvolution is used to assign the extracted features to the label of
each pixel. Representative models based on encoder-decoder include full convolutional
networks (FCNs) [28], DeepLab [29], and U-Net [30]. Frameworks including R-CNN, Faster
R-CNN, and Mask R-CNN have been widely used for instance segmentation [31,32].
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3. Advances in Phenotyping of Four Grain Crops Based on CV and CNN

In grain crops, conventional inbreeding and artificial breeding based on molecular
and genomic engineering are closely dependent on phenotypic information, which remains
a bottleneck limiting crop breeding [34,35]. From field to table, grain crop phenotypes play
an important role in enhancing crop germplasm, strengthening breeding, and evaluating
commercial performance. Related researchers have invested a lot of effort in developing
high-throughput and low-cost advanced phenotyping techniques. Particularly widely
acknowledged is the development of CNNs combined with CV technology, which marks
a new stage in crop phenotype detection. One of the challenges in breeding grain crops
is to improve yield potential and quality stability [36]. However, traditional phenotyping
methods based on manual measurements are typically labor-intensive and time-consuming
when assessing multiple traits of crops [37]. The combination of cutting-edge CNNs and CV
technology can achieve high-throughput screening of high-quality crop varieties, accurate
yield prediction, automatic field weed detection, and early automatic diagnosis of pests
and diseases, all of which are essential for the study of crop yield and quality enhancement.

3.1. Crop Organ Detection and Counting

Recent advances in CV and breakthroughs in deep learning have created new op-
portunities for the detection and counting of crop organs [38]. Traditional crop organ
phenotypic information was obtained by manual measurement, such as measuring crop
height and leaf width with a straightedge or counting using the naked eye. This is not only
time-consuming and labor-intensive, but also has a limited variety of extracted features and
low precision. CNN-based methods have shown promising results compared to traditional
methods for crop selection in breeding programs [39]. Three methods, including object
detection, semantic segmentation, and instance segmentation, are proposed for recognizing
and counting the organs of the four major grain crops.

An object detection method which integrates the feature pyramid network (FPN) into the
Faster R-CNN network has been successfully used for counting rice spikes [40]. Li et al. [41]
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investigated the performance of Faster R-CNN and RetinaNet in predicting the number of
wheat spikes at different growth stages. The RetinaNet model achieved higher accuracy for
wheat spikes at the filling and maturity stages. Compared to Faster R-CNN and RetinaNet,
Cascade R-CNN obtained a higher average precision (AP) of 89.6 for the detection and counting
of soybean flowers and seeds [42]. You only look once (YOLO)v4 architecture was used to
improve the detection speed and accuracy of wheat spikes [43]. TasselNet (ResNet34) was then
established to detect the tassels of maize at different stages [44]. The backbone part of YOLOv4
was enhanced by adding a dual spatial pyramid pool (SPP) network to boost feature learning
and broaden the perceptual domain of the convolutional network. The results obtained showed
the superiority of the detection module compared to the early methods using SVM classifiers
(Lu et al. [45], 2015) and neural network intensity model (Lu et al. [46], 2016).

Many studies investigated semantic segmentation based crop organ detection and
counting. Sadeghi-Tehran et al. [47] not only successfully identified and quantified the
number of wheat spikes in RGB images taken under initial natural field conditions, but also
developed an efficient CV and CNN system based on DeepCount. The method used simple
linear iterative clustering (SLIC) to segment images into super pixels and constructed
a reasonable feature model for the semantic segmentation of wheat spikes. The results
indicated that the model was able to detect the total number of wheat spikes in an image
and estimate the number of spikes per square meter with a maximum accuracy of 98%. In
another study, Xiong et al. [48] proposed a simple and effective contextual extension of
TasselNet-TasselNetv2-that could significantly improve the performance of local regression
networks. Experiments showed that TasselNetv2 was faster than TasselNet. Meanwhile,
the classical model of semantic segmentation based on CNNs was used to detect the corn
cob (Kienbaum et al. [49]). The Mask R-CNN model was used to extract shape parameters
including asymmetry, ellipticity, and length of cobs, achieving an accuracy of about 100%
for maize cob phenotypic parameters. It was found that the number of kernels in a corn
cob image can be accurately estimated by DeepCorn (Khaki et al. [50]). In their work,
DeepCorn uses VGG-16 as the backbone for feature extraction to merge elemental maps
from multiple scales of the network, making it robust to image scale variations. DeepCorn
successfully counted the kernels on a cob, regardless of their orientation and illumination
conditions. In addition to this, Yang et al. [51] proposed a novel synthetic image generation
and enhancement method based on domain randomization. The study used the Mask
R-CNN model combined with transfer learning to perform the semantic segmentation
of soybean seed images and successfully obtained specific organ phenotype parameters,
which further deepens the application of CNNs in semantic segmentation tasks.

A noticeable concern is that although CNNs could provide accurate semantic masks,
the counting accuracy can still suffer from inaccurate postprocesses. To address this concern,
studies explored the use of instance segmentation CNNs that can directly segment individ-
ual objects in images [52]. For instance, a sophisticated soybean phenotypic measurement
algorithm, named soybean phenotypic measurement instance segmentation (SPM-IS), was
developed, enabling more rapid and accurate acquisition of phenotypic data for soybean
stems, pods, and seeds (Li et al. [53]) This study used the Resnet-101-FPN model and
SPM-IS algorithms to perform instance segmentation on images to measure the length and
width of target objects to extract soybean phenotypic data. The test results showed that the
mask MAP of pods, stems, and seeds were 95.7%, 93.5%, and 94.6%, respectively.

Faster R-CNN, Mask R-CNN, RetinaNet, and VGG have been widely studied with
regard to the detection and counting of organs of grain crops, as shown in Table 1. Some
strategies such as SPP, SLIC, and domain randomization have been added to the model
training for the first time to achieve feature enhancement. In general, object detection
is more widely used than semantic and instance segmentation in this area, but image
classification was used less often in crop organ identification and counting. It is encouraging
that some counting methods based on 3D image sequences or videos are emerging to
provide a strategy to solve the above problems [54].
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Table 1. Summary of major CNN-combined-with-CV tasks for crop organs images.

Vision Task Crop Phenotyping Task Image Type Model Number of
Total Samples Accuracy References

Object
detection

Rice Counting of grain
per panicle RGB Faster R-CNN

with FPN 796 99.4% Deng et al. [40]

Wheat Ear recognition RGB RetinaNet
with FPN 52,920 98.6% Li et al. [41]

Wheat Detection of head RGB YOLOv4 with dual SPP 3432 94.5% Gong et al. [43]

Maize Tassel counting RGB TasselNet
(ResNet34) 361 88.97% Zou et al. [44]

Soybean Flower and
seedpod detection RGB

Cascade R-CNN,
RetinaNet,

Faster
R-CNN.

76,524
AP = 89.6%
AP = 83.3%
AP = 88.7%

Pratama et al. [42]

Soybean Seed counting RGB TCNN 32,126 MAE = 13.21
MSE = 17.62 Li et al. [55]

Soybean Counting of seeds RGB VGG-Two 37,563 MAE = 0.6
MSE = 0.6 Ying et al. [56]

Semantic
segmentation

Wheat Counting of spikes RGB TasseINetv2 675,322 91.01% Xiong et al. [48]
Wheat Quantification of spikes RGB VGG 580,000 98% Sadeghi-Tehran et al. [47]
Maize Corn kernel counting RGB VGG-16 19,848 90.48% Khaki et al. [50]

Maize Analysis of cob geometry RGB Mask R-CNN 19,867 100% for length
99% for diameter Kienbaum et al. [49]

Instance
segmentation Soybean Phenotype measurement RGB ResNet-101 with FPN 3207 MAP = 95.7% Li et al. [53]

RGB—red, green, blue; CNN—convolution neural network; R-CNN—region-convolution neural network; FPN—feature pyramid networks, YOLO—you only look once;
ResNet—residual neural network; VGG—visual geometry group network; TCNN—two-column convolution neural network; SPP—spatial pyramid pooling; AP—average pre-
cision; MAE—mean absolute error; MSE—mean squared error; MAP—mean average precision.
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3.2. Weed and Crop Recognition and Segmentation

Weeds in a field compete with crops for nutrients, sunlight, and growing space. They
need to be removed in time to avoid affecting crop yields [57]. Early applications of
machine-learning methods to solve weed recognition problems generally used the color co-
occurrence matrix (CCM) to extract features in terms of hue, color saturation, and intensity,
or morphological and color features as input to the classifier [58]. However, the leaves of
different plants often have the same color and shape, and it is challenging to identify weeds
by the difference of leaf features. Traditional methods select artificially designed features to
be extracted for distinction, which only performs well on specific datasets. With advances
in intelligent sensing technology, the CNN-combined-with-CV technique has emerged as a
promising tool for accurate and real-time detection of weeds and crops in the field

Rice is a crop with fixed rice row spacing, which can be identified by the location
identification method. Lin et al. [59] developed a Faster R-CNN model to determine the
specific row spacing parameters and successfully detected rice seedlings from weeds with
an accuracy of 89.8%. Wang et al. [60] proposed a new method for the recognition of
rice seedling rows based on row vector grid classification. In their research, seedling
feature extraction and row vector grid classification were built into an end-to-end CNN
model. The method successfully realized crop recognition in complex weed scenarios. The
Faster R-CNN model was also used to distinguish between weeds and maize [61]. This
study proposed an architecture using a VGG19 pre-trained network for distinguishing
maize seedlings from weeds under complex field conditions. The results revealed that
Faster R-CNN model has great potential for plant detection. Additionally, Jiang et al. [62]
proposed a graph convolutional network (GCN) recognition method based on a similar
approach. The GCN graph was constructed using the extracted CNN features of weeds
and their Euclidean distances for maize and weed recognition. The results show that the
GCN-ResNet-101 method achieved an accuracy score of 97.80%, which was better than
state-of-the-art methods including AlexNet, VGG16, and ResNet-101.

Semantic segmentation has also been applied to the management of weeds. In a recent
study, a multi-task semantic segmentation-convolutional neural network (MTS-CNN) model
was designed for detecting crops and weeds using one-stage training [63]. This approach has
heightened the correlations between the crop and weed classes, so that the object (crop and
weed) region is trained intensively with the highest segmentation accuracy. Weirong et al. [64]
proposed an improved Mask R-CNN-based algorithm for maize seedling segmentation. The
model was trained using ResNeXt50/101-FPN as a feature extraction network. The average
recognition accuracy of the model was higher than 94.7%. Furthermore, Zhang et al. [65]
developed a weed classification model based on the YOLOV3-tiny network. In the study, a
real-time detection system for field weeds based on unmanned aerial vehicles (UAVs) and
mobile devices was designed to detect five kinds of weeds. Furthermore, Haq [66] and Babu
and Ram [67] have conducted taxonomic studies on grasses and broadleaf weeds in soybean.
The network architectures used were CNNs with learning vector quantization (LVQ), and
a deep residual convolutional neural network (DRCNN). Both methods achieved over 97%
accuracy for the individual targeting of two weed species.

In summary, the discrimination of crops such as rice and maize from complex weeds
depends on the correct identification and localization of the plant by the model. Researchers
have proposed many CNN-based solutions, most of which are implemented using ob-
ject detection and semantic segmentation (the related studies are tabulated in Table 2).
All of these results far exceed the accuracy achieved by a wide range of methods with
artificially designed features. In recent years, researchers have achieved high recogni-
tion and segmentation accuracies on rice and maize image datasets by using classical
networks such as ResNet and Faster R-CNN, or by building other shallow networks. Other
studies were carried out on the classification of weed species based on supervised and
semi-supervised learning methods [68,69]. In the future, advanced network models and
more comprehensive datasets are needed to enable the identification of multiple crops and
common weeds [70].
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Table 2. Summary of major CNN-combined-with-CV tasks for weed and crop images.

Vision Task Crop Phenotyping Task Image Type Model Number of Total
Samples Accuracy References

Image classification
Wheat Identification of

weed species RGB YOLOv3-tiny 2000 mAP = 72.5% Zhang et al. [65]

Soybean Weed detection RGB CNN-LVQ 15,000 99.44% Haq [66]
Soybean Weed classification RGB DRCNN 15,336 97.25% Babu and Ram [67]

Object detection

Rice Seedling rows
recognition RGB ResNet-18 4500 88.54% Wang et al. [60]

Rice Location of seedlings RGB Faster R-CNN 240 89.8% Lin et al. [59]

Maize Seedling detection RGB Faster R-CNN
(VGG19) 32,354 97.71% Quan et al. [61]

Maize Weed recognition RGB GCN-ResNet-101 6000 97.8% Jiang et al. [62]

Maize Plant detection RGB Faster R-CNN 211
99.8% at

0.5 Intersection
over Union

Zhang et al. [71]

Semantic
segmentation

Rice Segmentation of weeds RGB MTS-CNN 224 96.48% Kim and Park [63]

Maize Seedling and
core detection RGB Mask R-CNN

(ResNet50/101-FPN) 1800 94.7% Weirong et al. [64]

GCN—graph convolutional network; CNN-LVQ—convolutional neural network-learning vector quantization; DRCNN—deep residual convolutional neural network;
MTS-CNN—multi-task semantic segmentation-convolutional neural network.
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3.3. Crop Disease Detection and Classification

The intelligent detection of plant diseases has received increasing attention in recent
years. Crop diseases negatively affect agricultural production [72]. Early detection and con-
trol of crop diseases play a crucial role in the management of and decision making involved
in agricultural production. Traditional machine learning approaches to feature analysis of
crop photographs can detect diseases earlier than human observation. Nevertheless, such
methods focusing on a limited number of crops were usually performed on small data sets.
In recent years, methods based on deep learning and image technologies have been widely
used in plant pathology.

CNNs have been successfully used for the classification and detection of crop diseases.
Sharma et al. [73] developed a CNN model based on transfer learning to classify diseases
in rice leaf images. Based on the disease features, Krishnamoorthy et al. [74] successfully
distinguished three invasive rice diseases, including leaf blast, white leaf blight, and brown
spot, from healthy rice leaves, with an accuracy of 95.67%. Singh and Arora [75] and
Kumar and Kukreja [76] developed seven CNN models to classify wheat diseases including
powdery mildew, stem rust, and leaf rust. Compared with VGG16, VGG19, AlexNet,
ResNet-34, ResNet-50, and ResNet-18, ResNet101 achieved the highest accuracy of 98.6%.
Similarly, Jiang et al. [77] adopted the PlantVillage dataset to pretrain several CNN models
based on transfer learning. Figure 3 shows the comparison of CNNs used in this study in
terms of accuracy, memory, and processing time, which will provide a reference direction
for other disease diagnosis.
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Object detection combined with the classical Faster R-CNN model plays a great role in
the detection of grain crop diseases. Bari et al. [78] found a solution for the real-time detec-
tion of rice leaf diseases using Faster R-CNN to precisely localize the target. Results showed
that the approach has accuracies of 98.09%, 98.85%, and 99.17% for automatic detection
of three rice blast, brown spot, and hispa, respectively. In another study, Zhou et al. [79]
proposed a fast rice disease detection method based on the K-mean clustering algorithm
(FCM-KM) and fast R-CNN. FCM-KM was optimized using the chaos-based dynamic
population firefly algorithm and maximum minimum distance. Zhang et al. [80] designed a
multi-feature fusion faster R-CNN (MF3R-CNN) model for the detection of soybean leaf dis-
ease, with an average accuracy of 83.34%. Compared to the studies of Shrivastava et al. [81]
(2017) and Pires et al. [82] (2016) using the k-nearest neural network and local descriptors to
distinguish the diseased from the healthy, the model has practical implications for multiple
disease identifications.

Grain crop diseases in complex environments have been successfully detected based
on semantic segmentation. For instance, Ennadifi et al. [83] conducted a mask R-CNN
to segment wheat spikes from the background. Then, a DenseNet121 model combined
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with gradient-weighted class activation mapping (GradCAM) was used for localizing the
diseased areas on wheat spikes in an unsupervised manner, yielding an accuracy of 93.47%.
Nevertheless, wheat disease classification is susceptible to various visual disturbances.
Lin et al. [84] proposed an M-bCNN model for the classification of wheat leaf diseases,
achieving a test accuracy of 90.1%. Su et al. [85] developed a Mask-RCNN model to evaluate
Fusarium head blight (FHB) severity with an accuracy of 77.19% (Figure 4). In their study,
a ResNet-101 network-based FPN was used as the backbone of Mask-RCNN to segment
wheat spikes and diseased areas, yielding accuracies of 77.76% and 98.81%. On this basis,
the FPN based on the ResNet network was further upgraded as the backbone of BlendMask
networks for the severity assessment of wheat FHB [86]. The newly constructed model
demonstrated outstanding performance in the identification of wheat spikes occluded by
awns, which is more concise and efficient than the Mask R-CNN.
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Figure 4. The architecture of the mask region convolutional neural network (Mask-RCNN) approach
for wheat Fusarium head blight (FHB) disease assessment [85].

In general, image classification has more comprehensive applications than object
detection and segmentation tasks in crop disease detection. The Mask R-CNN model not
only allows for semantic segmentation, but also allows for more efficient analysis of disease
severity levels. Faster R-CNN, when used as a tool for object detection, focuses more
on spot location identification. When combined with FCM-KM, the results obtained are
more comprehensive and convenient. Detailed comparison results are shown in Table 3.
The CNN model combined with FCM-KM, GradCAM, and other strategies have been
groundbreakingly optimized to provide new idea for crop disease detection. In addition,
it has been found that a transfer-learning method employing retuning of all parameters
produced the highest accuracy [77].
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Table 3. Summary of major CNN-combined-with-CV tasks for crop disease images.

Vision Task Crop Phenotyping Task Image Type Model Number of
Total Samples Accuracy References

Image classification

Rice Hispa disease
classification RGB CNN 1000 94% Sharma et al. [73]

Rice Leaf disease
recognition RGB InceptionResNetV2 5200 95.67% Krishnamoorthy et al. [74]

Wheat
Classification
of powdery

mildew disease
RGB N-CNN 450 89.9% Kumar and Kukreja [76]

Wheat Detection of healthy
and unhealthy wheat RGB

ResNet101,
VGG-19,
AlexNet

750
98.6%
96.6%
92.6%

Singh and Arora [75]

Maize Leaf disease
identification RGB GoogleNet 8604 98.55% Krishnamoorthi et al. [87]

Maize Detection of
leaf diseases RGB MAF-ResNet50 59,778 97.41% Zhang et al. [88]

Maize Disease classification RGB CNN with BiLSTM 29,065 99.02% Hasan et al. [89]

Maize Classification of
leaf diseases RGB DeepForest (gcForest) 400 96.25% Arora et al. [90]

Soybean Leaf disease
classification RGB SoyNet 17,240 98.14% Karlekar and Seal [91]

Object detection

Rice Leaf disease
detection RGB Faster R-CNN

with RPN 16,800 98.09% for blast, 98.85% for
brown spot, 99.17% for hispa. Bari et al. [78]

Rice Disease detection RGB Faster R-CNN with
FCM-KM 3010 96.71% for blast, 97.53% for

bacterial blight, 98.3% for blight. Zhou et al. [79]

Soybean Leaf disease
detection RGB Muti-feature fusion

Faster R-CNN 2230
96.43% for virus, 87.76% for

frogeye spot, 65.63% for
bacterial spot.

Zhang et al. [80]
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Table 3. Cont.

Vision Task Crop Phenotyping Task Image Type Model Number of Total
Samples Accuracy References

Semantic
segmentation

Wheat Classification of
leaf diseases RGB M-bCNN 83,260 96.5% Lin et al. [84]

Wheat Disease classification
and localization RGB Mask R-CNN

(DensNet12) 1163 93.47% Ennadifi et al. [83]

Wheat Ear disease
identification RGB SimpleNet 1205 93% for blotch

93% for scab Bao et al. [92]

Wheat Yellow rust disease
recognition RGB PSP Net 5580 98% Pan et al. [93]

Maize Detection of gray leaf
spot severity levels RGB CNN 1500 95.33% Baliyan et al. [94]

Instance
segmentation

Wheat

Evaluation of
resistance to

fusarium head
blight (FHB)

RGB
Mask-RCNN
(ResNet-101,
FPN, RPN)

17,340
77.76% for spike,

98.81% for diseased area,
77.19% for FHB severity.

Su et al. [85]

Wheat Severity assessment
of FHB RGB

Tandem Dual
BlendMask

(ResNet-50, FPN)
3754

85.56% for spike,
99.32% for diseased area,
91.80% for FHB severity.

Gao, Wang, Li and Su [86]

N-CNN—neonatal convolutional neural network; MAF—multi-pathway activation function; M-bCNN—matrix-based convolutional neural network; RPN—region proposal network;
PSP Net—pyramid scene parsing network; BiLSTM—bi-directional long short-term memory.
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3.4. Crop Insect Infestation Detection

Pests have a significant impact in crop destruction [95]. However, the extensive use of
chemicals such as pesticides to control pests has had adverse effects on agro-ecosystems [96].
Traditional methods use chlorophyll histograms to detect discoloration caused by pests,
or SVM combined with special algorithms to identify the presence of pests [97,98]. For
these methods, segmentation becomes difficult if the background contains distractions
such as other leaves and plants. In addition, designing artificial features such as color
histograms and texture features requires expertise, which is difficult to apply universally.
Lately, numerous CNN-based pest identification methodologies have been presented in the
computer vision field, which have showed brilliant execution in early pest control.

For insect infestation classification tasks, many cutting-edge models and strategies
have been continuously developed in recent years, which in turn resulted in the proposal
of more efficient deep networks. For example, four different CNN models, including
VGG16, VGG19, InceptionV3, and MobileNetV2, were applied to the detection of maize
leaves infected by fall armyworms (faw) [99]. The study found that InceptionV3 and
MobileNetV2 performed better than the other models, with identification accuracies of
100%. Moreover, Tetila et al. [100] and Abade et al. [101] innovatively used the simple
linear iterative clustering (SLIC) strategy and the NemaNet model, respectively, to classify
pest-infested soybean images and both showed extremely promising results

Object detection is a computer vision task that involves the identification of an object
class with its location in the image. On this basis, Li et al. [102] developed a Resnet-50 with
the region proposal network (RPN) for pest identification in wheat fields, achieving the
accuracies of 90.88%, 88.76%, and 70.2% for wheat sawfly, wheat aphid, and wheat mite,
respectively. In addition, the Faster R-CNN model was effectively applied to detect pest
infection in grain crops [103]. Furthermore, Verma et al. [104] developed three popular
CNN models to identify pests in soybean. YOLO v5 exhibited better performance than
YOLOv3 and YOLOv4 in pest detection and recognition.

In summary, CNN-based network models including VGG, Faster R-CNN, and YOLO
were effectively used for the detection of crop insect infestations. The VGG model mainly
focuses on the species of the insect infestations, while Faster R-CNN and YOLO models are
more often used for the identification and localization of the sites of infection, as shown in
Table 4. The development of models using SLIC and models with RPN, or models that are
currently popular but not used in this field, is a new direction for solving pest problems.
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Table 4. Summary of major CNN-combined-with-CV tasks for crop insect infestations images.

Vision Task Crop Phenotyping Task Image Type Model Number of
Total Samples Accuracy References

Image classification

Maize Identification of leaves infected
by fall armyworms RGB InceptionV3

MbileNetV2 11,280 100%
100% Ishengoma et al. [99]

Soybean Classifying and counting of
insect pests RGB

DensNet-201
ResNet-50

Incetion-Resnet-v2
10,000

94.89%
93.78%
93.40%

Tetila et al. [100]

Soybean Identification of nematodes RGB NemaNet 3063 96.76% for FS
98.82% for TL Abade et al. [101]

Object detection

Wheat Pest localization RGB Resnet-50 with RPN 519,752 83.23% Li et al. [102]

Wheat Recognition and
counting of mites RGB ZFnet-5 VGG-16 546 94.6%

96.4% Chen et al. [105]

Maize Pest detection RGB Faster R-CNN
with RPN 15,000 97.53% Sheema et al. [103]

Soybean Insect identification RGB YOLO v3, v4, and v5 3710 99.5% for the best AP Verma et al. [104]

FS—full-scale; TL—time limit.
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3.5. Abiotic Crop Stress Phenotype Assessment

Abiotic stresses, such as nutrient deficiency, drought, temperature, and salinity stresses,
are major challenges for agriculture, and they lead to a significant reduction in crop growth
and productivity [106]. The stress phenotyping assessment is an important tool for im-
proving crop stress resistance, which can be divided into four stages: (1) identification
(presence of stress); (2) classification (type of stress); (3) quantification (severity of stress);
and (4) prediction (likelihood of stress occurrence) [13]. Although traditional machine-
learning methods such as SVM, artificial neural networks (ANN), and Random Forests
are often used to study abiotic stress phenotypes of crops [107], the development of deep
CNN offers new opportunities to advance in this field. Image classification combined with
CNN can be effectively used for abiotic crop stress detection. For rice crops, Nitrogen (N)
concentration is a key indicator of health status. Sethy et al. [108] proposed a CNN-based
method for predicting N deficiency stress in rice. They used six leading CNN architectures
including ResNet-18, ResNet-50, GoogleNet, AlexNet, VGG-16, and VGG-19 to predict
nitrogen deficiency. ResNet-50 +SVM outperformed the other five CNN-based classification
models with an accuracy of 99.84%. Additionally, Wang et al. [109] and Rizal et al. [110]
developed the Densenet-121 model and the ResNet-50 model respectively to evaluate the
nutrient deficiencies of the rice leaves affected by three different types of nutrient defi-
ciencies including N, phosphorus (P), and potassium (K), with an accuracy of over 97%.
Furthermore, water stress affects the normal growth of grain. Zhuang et al. [111] developed
a multi-scale CNN architecture with 2-Covs Units for the assessment of the water stress
severity of maize, which realized automatic detection and severity quantification of water
stress through computer vision techniques in a non-destructive way.

To sum up, in the current research results as shown in Table 5, image classification is
more widely used for abiotic stress assessment than other computer vision tasks. Advanced
CNN models such as VGG, YOLO, and Mask R-CNN have not been developed for this
research area. It is worthwhile to expect that imaging modalities (e.g., hyperspectral
imaging) combined with CNN will provide a new idea for phenotypic stress detection [112].

Table 5. Summary of major CNN-combined-with-CV tasks for abiotic crop stress images.

Vision Task Crop Phenotyping Task Image Type Model Number of
Total Samples Accuracy References

Image
classification

Rice Prediction of
nitrogen deficiency RGB ResNet-50 +SVM 5790 99.84% Sethy et al.

[108]

Rice Classification of
nutrient deficiency RGB Densenet-121 1500 97% Wang et al.

[109]

Rice Nutrient deficiency
evaluation RGB ResNet-50 1156 98% Rizal et al.

[110]

Maize Water stress
recognition RGB CNN +SVM 18,040 88.41% Zhuang et al.

[111]

SVM—support vector machines.

3.6. Crop Seed Variety Classification

As a key input for crop production, seed is of great economic value, and its varietal
classification is crucial for maintaining crop yield and varietal purity [113]. However,
the phenotypic characteristics of different varieties of grain crop seeds are very similar,
with significant overlap in morphology and color. Traditional seed variety classification
usually requires manual annotation and judgment by experts in the agricultural field,
which is very inefficient. Therefore, it is necessary to explore reliable methods to improve
classification efficiency.

In the current research results, crop seed varieties can be classified effectively based on
CNN technology. For example, Laabassi et al. [114] utilized five standard CNN structures
(such as DensNet201, Inception V3, and MobileNet) trained based on transfer learning to
classify wheat seeds into four varieties (Simeto, Vitron, ARZ, and HD), with the best classi-
fication accuracy of 95.68% attributed to DensNet201 architecture. Javanmardi et al. [115]
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successfully classified nine corn seed varieties based on a VGG-16 pre-trained CNN model.
Gao et al. [116] proposed a CNN based variety classification model for multiple growth
periods of wheat. In the study, the CMPNet achieved high classification precision at the
seed stage of wheat (Specific performance index shown in Figure 5) based on ResNet and
SENet. In addition, Velesaca et al. [117] utilized a Mask R-CNN architecture to perform
instance segmentation of maize seed samples. Meanwhile, some other typical models were
then developed in the study, which showed that the CK-CNN achieved the best robustness
and stability compared with VGG16 and ResNet50.
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It is worth mentioning that the newly improved model architectures combined with
transfer learning such as P-ResNet showed the best accuracy to classify maize seeds in
a non-destructive, fast and efficient manner [118]. The process is given in Figure 6. The
result highlighted the advantages of transfer learning and its potential in deep learning,
providing new solutions for CNN-based computer vision and spectroscopic techniques for
seed classification and detection.
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In conclusion, various CNN models all have advantages and disadvantages for classi-
fying crop seed varieties (the results of comparison are tabulated in Table 6). The classic
DensNet and the novel corn kernel-CNN (CK-CNN) have higher accuracy than other mod-
els. Furthermore, the proposed methods, such as transfer learning and gradient-weighted
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class activation mapping (Grad-CAM) techniques, provide new perspectives to maintain
the classification accuracy and robustness of the model. In addition to computer vision,
thermal imaging [119] and hyperspectral detection techniques [120] have also achieved
great success in variety identification based on CNNs over the last decade.

Table 6. Summary of major CNN-combined-with-CV tasks for crop seeds images.

Vision Task Crop Phenotyping Task Image Type Model Number of
Total Samples Accuracy References

Image
classification

Wheat Varieties
identification RGB

DenseNet
InceptionV3
MobileNet

31,606
95.68%
95.62%
95.49%

Laabassi et al. [114]

Wheat Identification of
cultivars RGB

ResNet-50
SE-ResNet

SE-ResNeXt
4540 92.07% Gao et al. [116]

Maize Maize seed
classification RGB P-ResNet 8080 99.7% Xu et al. [118]

Object
detection Maize Classification

of varieties RGB VGG-16 9000 98.1% Javanmardi et al. [115]

Instance
segmentation Maize Seed variety

classification RGB

Mask R-CNN
VGG16

ResNet50
CK-CNN

16,500

64.7%
89%

92.5%
95.6%

Velesaca et al. [117]

SE—squeeze and excitation; CK—corn kernel.

4. Discussion

With the development of computer vision and deep learning, image processing has
achieved great success over the last decade. One of the key techniques leading to this
success is that of CNNs [121]. CNNs are often used as algorithmic tools for analyzing
data. As a technique for automatic feature extraction, the CNN can be used for automatic
acquisition of crop phenotype information. On the basis of that, the CNN technology,
when combined with different computer vision tasks, can perform various phenotype
detections of grain crops. For crop organ detection, CNN can not only count flowers, seeds,
and spikes, but can also detect organ length, width, and other shape parameters, with an
accuracy of over 90%. The technology can also implement effective recognition of weeds
and crops by extracting leaf features. In terms of accuracy, CNNs have achieved more than
94% recognition rate for maize plants. The overall recognition rate is roughly the same as
previous work when the dataset is larger, the crop growth stages are more diverse, and the
background is more complex. Furthermore, CNN-based crop pest research involves a wide
range of diseases, including common rusts, powdery mildew, and blast, and insect pests
such as mites, wheat aphid, and corn borers. The tasks not only include basic tasks such as
pest and disease classification and detection, but also refer to more complex tasks such as
determination of infection levels. In addition to biotic stresses, abiotic stress phenotypes,
such as nutrient deficiency and water stress assessment, showed high accuracies. It is worth
mentioning that the method has potential in seed variety identification. With the limited
phenotypic information of seeds, the proposed CNN models were able to classify seeds
effectively with an accuracy of more than 95%. In general, CNN combined with CV has
been widely used in grain crop phenotypic research.

The performance of different CNNs In the phenotype detection of grain crops is
influenced by several factors. The main factor is the network architecture. Generally, deep
CNN models have higher accuracy than shallow networks [20]. For example, researchers
found that DenseNet-121 (with 121 layers) and ResNets (with 50 and 101 layers) had
accuracies over 95% [63], while the ResNet net with 18 layers only achieved an accuracy of
88.54% for weed and crop recognitions [60]. Similarly, as an upgraded version of Faster
R-CNN [85], Mask R-CNN allows simultaneous target detection, image classification
and instance segmentation in a neural network due to its performance improvements in
architecture. In addition to this, the performance of CNNs is also affected by the training
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strategy used. Jiang et al. [77] found CNNs trained from scratch had slow convergence. In
contrast, the CNNs trained by fixed feature extraction converged more rapidly but had the
lowest accuracy. Furthermore, the input dataset is crucial for training CNNs, because it
is the basic source of information. By providing geometrically transformed replicates of
the sample images to provide a larger and more general dataset, the accuracies of CNNs
were improved [55,89,90]. In addition, image quality can interfere with crop phenotyping
detection results. In particular, images collected in field conditions can be affected by
environmental factors such as complex backgrounds, unstable lighting, and image blur,
all of which might lead to misanalysis [60,79]. Therefore, annotated datasets of large
size and rich variety will always be required for CNNs. In summary, the development
of different CNN model architectures with appropriate strategies and datasets can solve
various phenotypic tasks. Object detection based on Fast R-CNN was more universal when
crop organ was the object of counting, while Mask R-CNN showed better performance,
with accuracies as high as 99%. Image classification was not widely used for the recognition
of weed and crops, but it is favored by biotic and abiotic stress assessment. The performance
of YOLO, GoogleNet, and Inception models were outstanding in classifying images of crops
infected with pests and diseases, with accuracies of over 95% in different cases. In addition,
the VGG-16 model combined with different strategies and datasets successfully completed
the tasks of target detection and instance segmentation, respectively, with accuracies as
high as 98% [115,117].

5. Challenges of CV and CNNs in Grain Crops and Future Trends

The annotation of datasets is a crucial factor in building robust CNN models. As
CNNs need to perform different CV tasks, the relevant datasets require instance-level
(bounding box) and pixel-level (mask) annotations. Both of these are very time-consuming
tasks [122]. Therefore, in future work, it will be necessary to continue developing semi-
supervised learning (SSL) and unsupervised learning (UL) to lower the cost and time of
data labeling [123]. Advanced SSL and UL on CNN methods, such as K-means, transfer
learning, and generative adversarial networkgan (GAN) [124], have permeated multiple
areas of crop phenotyping study. Moreover, a number of promising approaches, such
as reinforcement learning [125] and contrastive learning [126], which have succeeded in
other areas to reduce the computational and energy costs, need further exploration in crop
research. There is no doubt that the increasing application of advanced algorithms will
effectively alleviate the problems of insufficient training data and scarcity of labeled data in
grain crops.

All studies mentioned in this review used RGB images for grain crop phenotype
detection. In addition to RGB cameras, more-informative sensors (e.g., multi-spectral
or hyperspectral sensors) are opening new possibilities [127]. These sensors have been
mounted on UAVs and autonomous robots to obtain more information, covering a larger
area of crop phenotypes [123,128,129]. Especially, UAVs could help farmers to monitor
their agricultural fields and apply agrochemical products to crops with ease and high
precision [130]. Chemical control can be conducted more effectively.

The development of lightweight CNNs on mobile devices (e.g., cell phone and com-
puter software) is of great practical relevance to help farmers in agricultural management.
In addition, given that GPU performance on mobile devices is not inferior to GPUs on
computers, processing is slower when lightweight CNNs are deployed to mobile devices.
Hence, the tradeoff between accuracy, time, and memory should be considered in the
model design.

It is worth mentioning that Transformer is not inferior to CNNs as another mainstream
deep learning architecture in some detection studies. Compared to CNNs, Transformer
has the strong advantage of a self-attention mechanism, which allows it to make exciting
progress on various vision tasks, including the four tasks mentioned above, multi-modal
tasks, video processing, low-level vision, and three-dimensional analysis [131,132]. Many
recent studies have tried to introduce Transformer encoders into the improved model as a
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convolution operation, such as to identify field crop diseases [133] and split crops of remote
sensing images [134]. Numerous results show that this combined model outperforms a
single CNN or Transformer approach with good generalization capabilities. This provides
possibilities for transferring deep learning models to mobile phenotype detection devices.
Although spectroscopic techniques based on machine learning have been extensively
studied during the past few years, CV techniques based on CNNs will show greater
potential in agricultural production [135–142]. Finally, it is clear that much work has been
conducted on phenotyping of rice, wheat, maize, and soybean, but other species of grains
and even other types of crops (e.g., fruits and vegetables) have also been explored, both to
demonstrate interest in the phenotypic problem and to show the potential of CNN-based
CV techniques to address it efficiently.

6. Conclusions

CNNs are widely used for phenotype detection of four grain crops. Different CNN
models including VGG, YOLO, Fast R-CNN, and Mask R-CNN have been used for image
classification, object detection, semantic segmentation, and instance segmentation. In
this paper, we reviewed the latest CNN networks pertinent to organ counting, weed
segmentation, biotic and abiotic stress assessment, and seed variety classification. The
results demonstrate the importance of network architecture, development strategy, and
annotated datasets in the model design for different tasks, which can directly affect the
performance of CNNs. To benefit from the great potential of CNNs, high-quality sample
images remain a crucial element for crop phenotyping, and robust CNNs on mobile devices
are desired for practical applications. Given the recent boom in the development of CNNs
combined with CV technology, it is anticipated that the method will become widespread
for obtaining crop phenotype data in real time, leading to more impactful results that will
contribute to precision agriculture and food security in the future.
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