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Convolutional Neural Networks

to Enhance Coded Speech
Ziyue Zhao , Huijun Liu, and Tim Fingscheidt , Senior Member, IEEE

Abstract—Enhancing coded speech suffering from far-end
acoustic background noise, quantization noise, and potentially
transmission errors is a challenging task. In this paper, we pro-
pose two postprocessing approaches applying convolutional neural
networks either in the time domain or the cepstral domain to en-
hance the coded speech without any modification of the codecs. The
time-domain approach follows an end-to-end fashion, whereas the
cepstral domain approach uses analysis–synthesis with cepstral do-
main features. The proposed postprocessors in both domains are
evaluated for various narrowband and wideband speech codecs in
a wide range of conditions. The proposed postprocessor improves
perceptual evaluation of speech quality by up to 0.25 mean opinion
score listening quality objective points for G.711, 0.30 points for
G.726, 0.82 points for G.722, and 0.26 points for adaptive multi-
rate wideband codec. In a subjective comparison category rating
listening test, the proposed postprocessor on G.711-coded speech
exceeds the speech quality of an ITU-T-standardized postfilter by
0.36 CMOS points, and obtains a clear preference of 1.77 CMOS
points compared to legacy G.711, even better than uncoded speech
with statistical significance. The source code for the cepstral domain
approach to enhance G.711-coded speech is made available.1

Index Terms—Convolutional neural networks, speech codecs,
speech enhancement.

I. INTRODUCTION

S
PEECH signals being subject to speech encoding, transmis-
sion, and decoding are often called transcoded speech, or

simply: coded speech. Coded speech often suffers from far-end
acoustic background noise, quantization noise, and potentially
transmission errors. To enhance the quality of coded speech,
postprocessing methods, operating just after speech decoding
can be advantageously employed.

To combat quantization noise at the receiver, a postfilter based
on classical Wiener theory of optimal filtering has been standard-
ized for the logarithmic pulse code modulation (PCM) G.711
codec [1]. It is part of the G.711 audio quality enhancement
toolbox [2], described in detail in the appendix of G.711.1 [3],
a wideband extension of G.711. This postfilter uses a priori
information on the A- or µ-law properties to estimate the quan-
tization noise power spectral density (PSD), assuming the quan-
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tization noise to be spectrally white [4], [5]. Then, a Wiener filter
is derived by the estimation of the a priori signal-to-noise-ratio
(SNR) based on a two-step noise reduction approach [6]. After
the filtering process, a limitation of distortions is performed to
control the waveform difference between the original signal and
the postprocessed coded signal.

However, as the bitrates go down for most of the modern
codecs, it becomes more difficult for the classical Wiener filter
to effectively suppress the quantization noise, while maintaining
the speech perceptually undistorted, since the SNR drops and
more importantly, only the mean squared error (MSE) is min-
imized in the Wiener filter [7]. Therefore, some perceptually-
based postfilters have been proposed to reduce the perceptual
degradation caused by low bitrate codecs. Formant enhancement
postfilters [8], [9] emphasize the peaks of the spectral envelope
while further suppressing the valleys to reduce the impact of
quantization noise in coded speech, since the formants are per-
ceptually more important than the spectral valleys. This type of
postfilter typically consists of three parts [9]: The core short-
term postfilter to enhance the formants, a tilt correction filter to
compensate the low-pass tilt caused by the core postfilter, and
an adaptive gain control to compensate the gain misadjustment
caused by parts one and two.

In addition to modifying the spectral envelope of the speech
signal, the spectral fine structure of voiced speech is improved
by a pitch enhancement postfilter, aiming to emphasize the har-
monic peaks and attenuate the gaps between the harmonics [9].
In practice, this long-term postfilter is always applied to low
frequencies, where harmonic peaks are more prominent, which
actually forms a bass postfilter [10]. This bass postfilter and the
formant enhancement postfilter are used either together or sepa-
rately in the decoders of some standard codecs, e.g., in adaptive
multi-rate (AMR) [11], wideband AMR (AMR-WB) [12] and
enhanced voice services (EVS) [13].

For speech codecs using the so-called algebraic code-excited
linear prediction (ACELP) codebooks, e.g., AMR and AMR-
WB, an anti-sparseness postprocessing procedure is applied,
aiming to suppress the perceptual artifacts caused by the sparse-
ness of the algebraic fixed codebook vectors with only a few non-
zero pulses per subframe, especially in low bitrate modes [11],
[12]. A modification of the fixed codebook vector is adaptively
selected based on the quantized adaptive codebook gain [14].

In an attempt to combat quantization noise, it has been shown
that if residual correlation exists in coded signals [15]–[17] or
more specifically, coded speech [18], a time-variant receiver-
sided codebook or a shallow neural network can provide some
gains in a system-compatible fashion.

Apart from the aforementioned quantization noise, also far-
end acoustic background noise can degrade the quality and in-
telligibility of coded speech. In most cases, noise reduction
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Fig. 1. General flow chart of postprocessing for enhancement of coded speech.

approaches are conducted as a transmitter-sided preprocessing
step to suppress the background noise before the speech signal
is coded and transmitted [19]. However, since the noise usually
cannot be entirely suppressed and therefore speech with some
residual noise is coded and transmitted to the receiver side, one
can aim to further reduce the noise of the coded speech in the
postprocessing procedure. To accomplish this, a modified post-
filter has been proposed for speech quality enhancement, where
the parameters corresponding to the formant and pitch emphasis
are adaptively updated based on the statistics of the background
noise [20]. Furthermore, in adverse noise conditions, also post-
filtering methods to improve the speech intelligibility have been
studied [21]. Additionally, a kind of postprocessing to enhance
the coded speech in transmitter-sided noisy environments by
restoring the distorted background noise while masking main
coding artifacts for low bitrate speech coding is proposed and
standardized in EVS as comfort noise addition [13]. An artificial
comfort noise is generated and added to the coded speech signal
after the level and the spectral shape of the background noise
are estimated [22].

Recently, speech enhancement based on neural networks
has been intensively studied [23]–[37]. Deep neural networks
(DNNs) are used as a classification method to estimate the ideal
binary mask [23] or smoothed ideal ratio mask [24] for noise
reduction. Also, some regression approaches based on DNNs to
learn a mapping function from noisy to clean speech features
have been proposed [25], [26]. Furthermore, a deep denois-
ing autoencoder is applied for noise reduction, with either both
clean pairs [27] or noisy and clean pairs [28] as inputs and tar-
gets to train the autoencoder. Besides, recurrent neural networks
(RNNs) are used for speech enhancement, e.g., a recurrent de-
noising autoencoder for robust automatic speech recognition
(ASR) [29] and long short-term memory (LSTM) structure for
noise reduction [30], [31].

In addition to the DNNs and RNNs, convolutional neural net-
works (CNNs) are achieving increasing attention for the speech
enhancement task [32]–[37]. The CNNs are trained to learn
a mapping between the noisy speech features and the clean
speech features, e.g., log-power spectrum [32]–[34] or complex
spectrogram [35], or a mapping directly between the noisy raw
speech waveform and clean raw speech waveform [36], [37].
The convolutional layers in the CNNs have the property of local
filtering, i.e., the input features share the same network weights,
resulting in translation invariance for the output of the network,
which is a desired property for the modeling of speech [38].
This local filtering property makes the CNNs have the ability
to characterize local information of the speech signal, which
clearly provides benefits for the task of speech enhancement.
It is also because of this property that the number of the train-
able weights is reduced in a large scale compared to DNNs and
RNNs with fully-connected structures, making it more efficient
to train the network [32].

In this work, we use CNNs to enhance coded speech, so that
this operation can be seen as a postprocessor after speech de-
coding (or anywhere later in the transmission chain) aiming at
improving speech quality at the far-end, which is different to
the aforementioned noise reduction approaches. Fig. 1 shows

Fig. 2. The postprocessing flow chart of the G.711 Amendment 2: New
Appendix III audio quality enhancement toolbox (see [2]).

the general flow chart of postprocessing for coded speech. Mo-
tivated by the successful application of CNNs to the image
super-resolution problem in computer vision [39]–[42], aiming
at restoring the missing information from the low-resolution im-
age, we propose to use similar convolutional network structures
to restore improved speech from speech being subject to encod-
ing and decoding. In terms of the topology, we adopt the deep
convolutional encoder-decoder network topology [40], which is
a symmetric structure with multiple layers of convolution and
deconvolution [43], [44], in order to firstly preserve the major
information of the input features and meanwhile reduce the cor-
ruption and then recover the details of the features [40], [41].
Furthermore, skip-layer connections are added symmetrically
between the convolution and deconvolution layers to form a
residual network for an effective training [42], [45].

The contribution of this work is threefold: First, based on
the CNN topology, we propose two different postprocessing ap-
proaches in the time domain and the cepstral domain to restore
the speech either in an end-to-end fashion or in an analysis-
synthesis fashion with cepstral domain features. To our knowl-
edge, it is the first time that deep learning methods are used
to enhance coded speech. Second, we show by objective and
subjective listening quality assessment that both proposed ap-
proaches show superior performance compared to the state of
the art G.711 postprocessing. Finally, both proposed approaches
are system-compatible for different kinds of codecs without any
modification of the encoder or decoder. The simulation results
in clean and noisy speech conditions, tandeming, and frame loss
conditions show their effectiveness for some widely used speech
codecs in narrowband and wideband.

The article is structured as follows: In Section II we briefly
sketch state of the art G.711 postprocessing, which serves as a
baseline method in the evaluation part. Next, we describe the
proposed CNN postprocessing approaches in both time domain
and cepstral domain in Section III. Subsequently, the experi-
mental setup and the instrumental metrics for speech quality
evaluation are explained in Section IV. Then, in Section V, we
present the evaluation results and discussion. Finally, we con-
clude our work in Section VI.

II. THE G.711 POSTPROCESSING BASELINE

In Fig. 2 the G.711 postprocessing aiming at attenuation of
quantization noise is depicted. It has originally been proposed
in [4] and standardized in [2], basically following the clas-
sical framework of noise reduction, comprising: quantization
noise power spectral density (PSD) estimation, a priori SNR
estimation, spectral weighting rule using the Wiener filter, and
finally a quantization constraint. In the following subsections,
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this G.711 postprocessing is briefly reviewed as our baseline for
enhancement of G.711-coded speech.

A. Quantization Noise PSD Estimation

At first the coded speech s(n) is subject to a periodic Hann
window and then being transformed to the frequency domain
representation S(ℓ, k) via the fast Fourier transform (FFT), with
ℓ being the frame index and k being the frequency bin index.
Since the quantization noise of G.711 is assumed to be spectrally
white, the estimate of the quantization noise variance σ2

n (ℓ) is
sufficient for the quantization noise PSD estimation. To achieve
this, an estimate of the (uncoded) source speech signal vari-
ance σ̂2

s̃ (ℓ) is needed first, and subsequently an estimate of the

load factor, defined as Γ̂(ℓ) = 1/σ̂s̃(ℓ) denoting how the signal
exploits the quantizer dynamic, is achieved. Interestingly, the
estimate of the uncoded signal variance σ̂2

s̃ (ℓ) is actually ob-
tained by estimating the coded signal variance σ̂2

s (ℓ), assuming
the variance of the quantization noise to be very low compared
to the uncoded signal most of the time [4]:

σ̂2
s̃ (ℓ) ≈ σ̂2

s (ℓ) =
1

|Nℓ |

∑

n∈Nℓ

s2(n). (1)

The set Nℓ contains all sample indices n belonging to frame
ℓ and |Nℓ | is the number of samples in the frame. Then the
signal-to-quantization-noise ratio is obtained according to the

estimated load factor Γ̂(ℓ) and the A- or µ-law function. Finally,
the estimate of the (spectrally white) quantization noise variance
σ̂2

n (ℓ) is obtained.

B. A Priori SNR Estimation and Wiener Filtering

After estimation of the noise PSD, the a priori SNR is ob-
tained by a two-step noise reduction technique [6] and subse-
quently the Wiener filter results. In order to estimate the a priori
SNR, the a posteriori SNR is computed first as

γ(ℓ, k) =
|S(ℓ, k)|2

σ̂2
n (ℓ)

. (2)

Then, the first-step spectral gain function G1(ℓ, k) from the
Wiener filter can be expressed as

G1(ℓ, k) =
ξ̂1(ℓ, k)

1 + ξ̂1(ℓ, k)
, (3)

where the first-step a priori SNR estimate ξ̂1(ℓ, k) from the
decision-direction approach [46] is

ξ̂1(ℓ, k)=β
|Ŝ1(ℓ−1, k)|2

σ̂2
n (ℓ−1)

+ (1−β)max
(

γ(ℓ, k)−1, 0
)

, (4)

with Ŝ1(ℓ−1, k)=G1(ℓ−1, k)S(ℓ−1, k) and β being a weight-
ing factor. In the second step, an updated spectral gain function
is computed as

G2(ℓ, k) = max

(

ξ̂2(ℓ, k)

1 + ξ̂2(ℓ, k)
, Gmin

)

, (5)

where Gmin is the lower limit to avoid over-attenuation and

ξ̂2(ℓ, k) =
|G1(ℓ, k)S(ℓ, k)|2

σ̂2
n (ℓ)

(6)

is the updated a priori SNR estimate. Finally, a causal filter
impulse response g2(n) is obtained from this updated spectral
gain function (5) by inverse FFT (IFFT) and imposing a linear

Fig. 3. CNN-based postprocessing for time domain approach (upper) and
cepstral domain approach (lower). More details of the cepstral domain pro-
cessing can be found in Figs. 4, 5, and 6.

phase, and the coded speech s(n) is time-domain-filtered and the
overlap and save (OLS) method provides the enhanced speech
ŝ2(n). Note that due to its frame structure, the G.711 postfilter
baseline has an algorithmic delay of 2 ms.

C. Quantization Constraint

In order to avoid extra distortion introduced by the above
postprocessing, finally a limitation of potential distortions is
performed. Since the quantization interval of each coded speech
sample s(n) is known, this idea is to limit the postprocessed sam-
ples ŝ(n) to lie within the respective interval. If an outlier sam-
ple (outside the certain quantization interval) is detected, the
constraint will replace it by the closest decision boundary of
this respective quantization interval. After application of this
constraint, the final postprocessed speech ŝ(n) is obtained.

III. CONVOLUTIONAL NEURAL NETWORK (CNN)

POSTPROCESSING

In this section, we present the proposed CNN-based postpro-
cessing for coded speech alternatively in the time domain and
in the cepstral domain. Fig. 3 depicts the high-level block di-
agram. At first, for both approaches, the coded speech s(n) is
assembled to frames s(ℓ), applying a window function. Then,
the frame is processed either in the time domain resulting in
ŝt(ℓ), or in the cepstral domain resulting in ŝc(ℓ). Finally, the
enhanced speech ŝ(n) is obtained via either a direct concatena-
tion of the processed frames ŝt(ℓ) for the time domain approach,
or some waveform reconstruction of the processed frames ŝc(ℓ)
for the cepstral domain approach, as outlined in the following.

A. Time Domain Approach: Processing

For the time domain approach, we choose a quite straight-
forward framework structure (i.e., windowing and waveform
reconstruction) which fits to most speech decoders: a 10 ms
rectangular window without overlapping. The windowed frame
s(ℓ) then serves directly as the input of the CNN with the tar-
get being s̃(ℓ), which is the noise-free undistorted (uncoded)
windowed speech frame. Details of the CNN topology will be
presented in Section V-A. After CNN processing, the enhanced
frame ŝt(ℓ) is directly concatenated to reconstruct the waveform
ŝ(n). The motivation of this end-to-end time domain approach
is to learn a mapping from the coded speech frame to the undis-
torted speech frame via the CNN, exploiting the temporal re-
dundancy in terms of speech signal correlation in the decoder,
to directly enhance the waveform of the coded speech. Beyond
framing, no additional algorithmic delay is incurred. Note that
this allows effectively latency-free postfiltering if the frame size
matches the frame size of the speech decoder or if it matches
the voice-over-IP packet size.
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Fig. 4. Framework structures for windowing, (cepstral domain) processing, and waveform reconstruction. In the upper part of the figure, all signal portions
necessary to be available for computing the first frame ℓ of ŝ(n) are marked as white boxes [***] , as is the current output frame ŝ(n), n ∈ Nℓ , in the bottom part
of the figure. OLA stands for overlap-add of all upper-part white windowing boxes for current frame ℓ.

TABLE I
DETAILED SETTINGS OF THE FRAMEWORK STRUCTURES FOR THE CEPSTRAL

DOMAIN APPROACH

B. Cepstral Domain Approach: Framework Structures

This subsection presents the various framework structures
for the cepstral domain approach, shown in Fig. 4. On the one
hand, since FFT and discrete cosine transform (DCT) are per-
formed in the cepstral domain approach to obtain the cepstral
coefficients (explained in detail in Section III-C), an appropri-
ate frame length and overlapping setting are important. On the
other hand, since the postprocessor follows the speech decoder,
the frame lengths of typical decoders are also taken into con-
sideration to design the framework structures. As a result, we
investigate six framework structures to offer broad selections
for various possible application scenarios. These structures can
be divided into three groups: structures I, II and III are designed
for codecs with 10 ms frames, IV and V are designed for codecs
with 20 ms frames, while structure VI is for delay-insensitive
off-line usage with 16 ms frames, one frame lookahead, and
50% overlap.

First of all, windowing of the coded speech s(n) is imple-
mented to form frames for processing, which can be denoted as

s(ℓ) =
[

s
(

(ℓ−1)Ns

)

, . . . , s
(

(ℓ−1)Ns + Nw−1
)]

◦ w, (7)

where Ns is the frame shift, Nw is the length of window
function, w is the window function vector, and ◦ denotes
the sample-wise multiplication. As shown in Fig. 4, all six
frameworks require a few initial zeros to be padded to the coded
input speech. The detailed settings of the framework structures
are listed in Table I. It is worth noting that if the processing
length is longer that the window length, a zero-padding is
performed also after windowing.

After processing of the windowed frames, the speech wave-
form needs to be reconstructed, which is also illustrated in Fig. 4.
In structure I and structure IV, only the latest samples of the pro-

cessed frame are kept and the other samples are dropped, which
means that beyond framing (10 ms and 20 ms, respectively)
no additional algorithmic delay coccus. If used in conjunction
with speech decoders operating with this frame size, or if used
in conjunction with, e.g., G.711, G.726, or G.722, assembled
to 10 ms voice-over IP packets, the entire postprocessing is ef-
fectively free of algorithmic delay (as is the case in the time
domain approach, cf. Section III-A). In structures II, III and
VI, since periodic Hann windows are employed, the processed
frames overlap and need to be added after time alignment. As
a result, additional algorithmic delay is introduced for each of
these three structures. Structure V aims at low complexity by
using a flat-top periodic Hann window with low overlap ratio.
In this structure, the output signal will be delayed by only 5 ms,
i.e., the output starts with 5 ms of zeros.

C. Cepstral Domain Approach: Processing

As we have learnt from the aforementioned formant postfil-
ters, an emphasis of the spectral envelope peaks can reduce the
impact of the coding distortion. By using cepstral domain en-
velope features, the dimension of the input vector to the CNN
will be largely reduced compared to the time domain approach,
which makes the CNN able to concentrate on the more percep-
tually relevant information, i.e., the formant structure.

Our cepstral domain approach uses a CNN to restore the
cepstral coefficients responsible for the spectral envelope and
then synthesizes the speech frame using the enhanced envelope
cepstral coefficients, as well as the residual cepstral coefficients
and the phase information, the two latter both being acquired
from the coded speech frame. The whole processing structure
is shown in Fig. 5.

At first, the windowed frame is transformed to the frequency
domain as vector S(ℓ) using the K-point FFT. Subsequently,
the cepstrum (cepstral coefficients) is computed by applying the
discrete cosine transform of type II (DCT-II) to the logarithmic
magnitude spectrum, which can be expressed as

c(ℓ,m) =
∑

k∈K

log(|S(ℓ, k)|) · cos
(

πm(k + 0.5)/K
)

, (8)

where k∈K={0,· · ·,K−1} is the frequency bin index and
m∈M={0,1,· · ·,K−1} is the index of cepstral coefficients.
Then, the cepstrum is lowpass liftered (i.e., taking only the lower
part of the cepstrum) to obtain the cepstral coefficients respon-
sible for the spectral envelope, which is denoted as cenv(ℓ,m)
with m∈Menv. In this work, we regard the first 6.25% cep-
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Fig. 5. Processing structure of the cepstral domain approach. The topology of the CNN block is identical in the time domain and the cepstral domain
approach and is depicted in Fig. 6.

stral coefficients as the coefficients responsible for the spectral
envelope2, resulting in |Menv|=6.25%·|M|.

This vector cenv(ℓ) serves as the input to the CNN, which
then provides the restored cepstral coefficients responsible for
the spectral envelope ĉenv(ℓ). After that, the residual cepstral
coefficients from the liftering, denoted as cres(ℓ,m) with m∈
Mres, are concatenated to ĉenv(ℓ) to constitute the complete
cepstral coefficient vector ĉ(ℓ). Then the logarithmic magnitude

of the processed spectrum Ŝ(ℓ) is calculated by inverse DCT-II
(IDCT-II) as

log

∣

∣

∣
Ŝ(ℓ, k)

∣

∣

∣
=

1

K

[

ĉ(ℓ, 0)+2

K−1
∑

m=1

ĉ(ℓ,m)·cos

(

πm(k + 0.5)

K

)

]

.

(9)

Finally, the elements of Ŝ(ℓ) are subsequently obtained by

Ŝ(ℓ, k) =
∣

∣

∣
Ŝ(ℓ, k)

∣

∣

∣
exp(j · α(ℓ, k)), (10)

where α(ℓ) is the phase information from S(ℓ). The processed

frame ŝc(ℓ) is obtained by performing the IFFT of Ŝ(ℓ).

D. Both Approaches: CNN Topology

The CNN topology, both in the time domain approach or in
the cepstral domain approach, is a deep convolutional encoder-
decoder network, which is shown in Fig. 6. This topology is
motivated from [40] and three different kinds of layers are used
in this topology which will be explained in the following.

The convolutional layers are defined by the number F or
2F of feature maps (filter kernels) and the kernel size (a×
b). The number of trainable weights, including the bias, of a
convolutional layer denoted as, e.g., the first layer (Conv(F,N×
1)), results in F×(N×1)+F . It is worth noting that in each
convolutional layer, the stride is 1 and zero-padding of the layer
input is always performed to guarantee that the first dimension
of the layer output is the same as that for the layer input. In
max pooling layers, a 2×1 maximum filter is applied in a non-
overlapping fashion, resulting in a 50% reduction of the layer
input along the first dimension. On the contrary, the upsampling
layers simply copy each element of the layer input into a 2×1
vector and stack these vectors just following the original order,
which actually doubles the first dimension of the layer input.

2As we have K =512 for narrowband speech, the 0.0625 ·K -th=32nd cep-
stral coefficient represents the frequency 1/(32× 1

16 ms)= 500 Hz (check (8) !).
Using 500 Hz as cepstral lowpass liftering cutoff frequency, the fundamental
frequency (F0) will be excluded in most cases. This is because the fundamental
frequency can vary from 40 Hz for a very low-pitched male voice to 600 Hz
for a very high-pitched female or child voice [47]. As a result, the pitch peri-
odicity from speech is removed, while the information of the spectral envelope
representing the formants is kept for further processing.

Fig. 6. Detailed view of the CNN structure in both time domain (L equals
10 ms of speech samples) and cepstral domain (L= |Menv|). The opera-
tion Conv() stands for convolutional layers containing two parameters, which
are the number of feature maps (filter kernels) F or 2F , and the kernel size
(a×b). The max pooling and upsampling layers are described by the kernel size
(2×1). The input and output dimensions of each layer are also given. The light
gray areas contain two symmetric procedures.

As can be seen in Fig. 6, two light gray areas include two
symmetric procedures, respectively. In the first procedure, the
convolutional layers and the max pooling layers are used to-
gether to extract the relevant information and to discard the
corrupted parts of the CNN input feature vector, resulting in a
compression of the vector length. The second procedure is de-
signed to recover the detail information via the combination of
upsamping layers and convolutional layers. Meanwhile, the vec-
tor length is increased back to the original dimension by using
two times the upsampling layer. In the last convolutional layer, a
linear activation function is used and the final output has exactly
the same dimension L as the input of the CNN. Furthermore,
two skip connections are utilized to add up the corresponding
layer outputs, in order to ease the vanishing gradient problem
during the training of this deep CNN [40].
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Fig. 7. Training and validation preprocessing.

Fig. 8. Test processing for various codecs and postprocessors in clean, error-
prone transmission, and noisy conditions.

IV. EXPERIMENTAL SETUP AND METRICS

A. Speech Database

Speech data used in this work is from the NTT wideband
speech database [48], containing 21 different languages, and
4 female and 4 male speakers for each language. Each of the
speakers is represented by 12 speech utterances of about 8 sec-
onds duration. American English and German are used for test,
and for each language, the test set contains 30 speech utter-
ances, in which 3 female speakers and the 3 male speakers
are represented by 5 different speech utterances, respectively.
For the training set, all speech utterances from 3 female speak-
ers and 3 male speakers in all other 19 languages are chosen,
while 9 speech utterances from each of the remaining speak-
ers (female speaker f4 and male speaker m4 per language) in
the same 19 languages are used as validation set. Thereby we
provide (partly3) language-independent but completely speaker-
independent results throughout.

B. Preprocessing for Training and Validation

The training and validation data pairs (i.e., input and target)
are obtained following the training and validation preprocessing
illustrated in Fig. 7, and the test experiments follow the test pro-
cessing in Fig. 8. Our training and validation preprocessing and
test processing are based upon the original quality assessment

3It should be mentioned that British English is one of the 19 training and
validation languages, while American English is used in the test. The subjective
listening test, however, will be conducted with German samples only, thus being
completely language-independent.

plans [49]–[52] for the codecs evaluated in this work and the
respective processing functions employed in Figs. 7 and 8 are
from the ITU-T software tool library G.191 [53].

The speech utterances are firstly processed by different fil-
ters (i.e., FLAT for narrowband codecs4 and P.341 for wideband
codecs). Then, for narrowband codecs the speech signal is deci-
mated from 16 kHz to 8 kHz using the high quality finite impulse
response (FIR) low-pass filter HQ2 from [53], while for wide-
band codecs this downsampling function is bypassed. Then, the
active speech level is adjusted to −26 dBov [54].

After this, to obtain the frame indices for the training and
validation a very simple frame-based voice activity detection
(VAD) is executed as

VAD(ℓ) =

⎧

⎨

⎩

1, if
1

|Nℓ |

∑

n ∈Nℓ
s̃2 (n)

1
|N |

∑

n ∈N s̃2 (n)
> θVAD

0, else,
(11)

where θVAD is the VAD threshold, Nℓ and N are the sets of
sample indices belonging to frame ℓ and the whole speech file,
respectively. The frames marked with VAD(ℓ)=1 are regarded
as active speech frames and the corresponding frame indices are
denoted as a set LVAD ={ℓ |VAD(ℓ)=1}. These active speech
frames are further used for training and validation, while the
other frames are regarded as speech pause and not used in this
stage. Then, the target and input for training and validation are
obtained as follows:

The target data is obtained after the data preparation, in which
the windowing w.r.t. the selected time domain or cepstral domain
approach is applied to the active speech frames ℓ∈LVAD.

For the input data of training and validation, the level-
adjusted speech is subject to coding. We examine in total four
different speech codecs: two narrowband codecs, which are
G.711 [1] and the adaptive differential pulse-code modulation
(ADPCM) Recommendation G.726 used for digital enhanced
cordless telephony (DECT) at 32 kbps [55], two wideband
codecs, which are the wideband ADPCM G.722 used for wide-
band DECT at 64 kbps [56], and AMR-WB at 12.65 kbps [12]
in fixed-point implementation [57] without DTX. The function
“ENC” comprises a delay compensation function in case of
wideband codecs (cf. assessment plan [52]), a bit conversion
function from 16 bits to 14 bits (only for wideband codecs) and
the speech encoder from any of the above four codecs. Then, the
corresponding function “DEC” is conducted, which comprises
the speech decoder, a bit conversion function from 16 bits to
14 bits (only for wideband codecs), and a delay compensa-
tion function (only for wideband codecs). Finally, the coded
frames with ℓ∈LVAD form the input data to the data prepara-
tion function, which again performs windowing and potential
transformation to the cepstral domain.

C. Processing for Training and Validation

In the training processing, we always train codec-individual
CNN models which are then used later on in test. The prepared
input data in the respective domain according to Fig. 7 is at
first normalized towards zero mean and unit variance, then this
normalized input data and target data is fed into the CNN to
train the weights in each convolutional layer. This is achieved

4Note that for bandwidth consistency reasons, we decided to use the FLAT fil-
ter also for G.726 transmission, although typically here an MSIN filter response
is used [51], [52].
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by minimizing the cost function, which is the mean squared
error (MSE) between the outputs of the CNN and the target
data. Instead of using the traditional stochastic gradient descent
(SGD) algorithm for the trainable weights updating, Adam [58]
is used as the learning method to obtain a faster training con-
vergence [40]. In this work, the weights update is performed in
each minibatch consisting of 16 frames, being a good trade-off
between training speed and performance. At the beginning of
each epoch, the training data is shuffled so that the 16 frames of
each minibatch are randomly selected from the training data.

In order to train the CNN in an efficient way and to avoid
overfitting, the strategies for the learning rate and the stop cri-
teria are the following: The initial learning rate is 5×10−4 and
it is halved once the MSE on the validation set does not de-
crease for two epochs. The training stop criterion is checked
after each epoch, i.e., after all minibatches have been used, and
the training stops if either the MSE on the validation set does
not decrease for 16 epochs, or if the number of epochs ap-
proaches 100. Finally, the weights are saved as the result of that
epoch, after which the lowest MSE on the validation set has been
achieved.

D. Processing for Test

In Fig. 8, the test processing functions of filtering, down-
sampling, level adjustment, “ENC” and “DEC” are identical to
those in Fig. 7. Since the proposed postprocessing approaches
are evaluated in four conditions, i.e., clean, noisy, tandeming,
and error-prone transmission conditions, the test processing is
also described for these four conditions. We always select the
CNN model that refers to the last employed speech decoder. In
most practical applications the last decoder can be assumed to
be known, even if in many cases tandem conditions are observed
with G.711 being such “last employed decoder”. Please note that
for the sake of conciseness, we did not include in our simulation
the condition when the last decoder is unknown; this could be
practically solved by a multi-codec-trained CNN model.

For the clean condition, the level-adjusted speech utterances
are concatenated to a long speech signal, in which the utterances
from female and male speakers are alternately concatenated.
After this, the reference speech, coded speech and enhanced
speech are obtained as follows:

The reference speech is obtained after segmentation, which
cuts the concatenated speech signal back to the original signal
portions/durations. Note that this reference speech is also used
for the other three conditions.

To obtain coded speech, the function “ENC” and “DEC” are
conducted and then the coded speech results after segmentation.

To obtain enhanced speech, the functions “ENC” and “DEC”
are conducted and then any of the postprocessors afterwards.
Finally the enhanced speech files results after segmentation.

In the noisy conditions, three types of noise from the ETSI
background noise database [59] are applied in the evaluation
part, which are cafeteria noise, car noise at the velocity of
100 km/h, and outside traffic road noise. Similar to the process-
ing of speech utterances in Fig. 8, the noise data is filtered and
downsampled or bypassed depending on the codec bandwidth.
Then the root mean square (RMS) level of noise is adjusted
based on the desired SNR in dB [54]. After this, the adjusted
noise is added to the concatenated speech for further processing.
Finally, the coded and enhanced speech in the noisy condition
are obtained with the same functions as in the clean condition.

In error-prone transmission conditions, e.g., mobile and wire-
less systems, frame losses are inserted to the bitstream after the
encoder by using error insertion device (EID) [53], which is
placed between the “ENC” and “DEC” in Fig. 8. The coded
and enhanced speech in the error-prone transmission conditions
are obtained with the other functions being the same as in the
clean condition. Two kinds of frame losses are taken into con-
sideration: random frame erasure, which is based on a Gilbert
model and burst frame erasure, in which the occurrence of the
bursts is modeled by the Bellcore model [53], [60]. Both kinds
of frame erasures are characterized by the frame erasure ratio
(FER), which is the ratio of the number of distorted frames vs.
the number of all transmitted frames.

In tandeming conditions we employ a receiver-sided post-
processor for G.711 A-law (narrowband) or the AMR-WB,
with various previously mentioned codecs as former codecs,
but also the narrowband AMR codec at 12.2 kbps [11], wide-
band codecs G.711.1 with mode R3 at 96 kbps [3], and EVS-WB
at 13.2 kbps [13]. The “EID” block in Fig. 8 is simply replaced
by “DEC” and the subsequent “ENC”, resulting in a serial con-
nection of two codecs.

E. Metrics of Speech Quality

To instrumentally evaluate the enhanced speech ŝ(n), the
mean logarithmic spectral distance (LSD) averaged over frames
is employed [61]. The LSD is calculated as

LSD(ℓ) =

√

√

√

√

1

khigh − klow

khigh
∑

k=k low

[

10 log10

(

|S̃ (ℓ,k)|
2

|Ŝ (ℓ,k)|
2

)]2

, (12)

where S̃(ℓ, k) and Ŝ(ℓ, k) and the k-th FFT coefficient of the un-
coded and the processed (can be either coded or postprocessed)
speech signal in frame ℓ, respectively, and khigh and klow are the
indices of the upper and lower frequency bin bounds taken into
account. The frames used for the mean LSD are from the active
speech frame set LVAD (from equation (11)) and each frame is
formed by employing a 32 ms periodic Hann window with 50%
overlap.

To measure the speech distortion, the segmental speech-to-
speech-distortion (SSDRseg) [62] is calculated as

SSDRseg =
1

|LVAD|

∑

ℓ∈LVAD

SSDR(ℓ), (13)

where SSDR(ℓ) is limited from Rmin =−10 dB to Rmax =
40 dB by SSDR(ℓ)=max {min {SSDR′(ℓ),Rmax},Rmin}. The
term SSDR′(ℓ) is actually calculated as

SSDR′(ℓ) = 10 log10

[

∑

n ∈Nℓ
s̃2 (n)

∑

n ∈Nℓ
(ŝ(n)−s̃(n))2

]

, (14)

where Nℓ is the set of sample indices n belonging to frame ℓ,
s̃(n) and ŝ(n) are the uncoded and time-aligned processed (can
be either coded or postprocessed) speech signal, respectively.
Each frame is also 32 ms with 50% overlap. Note that at some
point we will also report on a global SSDR measure, which is
simply obtained by (14) with setting Nℓ =N , meaning that all
samples in each file contribute to each of the sums in (14). We
will call this measure simply SSDR.

For instrumental assessment of speech quality, perceptual
evaluation of speech quality (PESQ) [63], [64] for the narrow-
band speech and WB-PESQ [65] for the wideband speech are
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TABLE II
MEAN LOGARITHMIC SPECTRAL DISTANCE (LSD) [DB] ON THE VALIDATION

SET. THE BEST SETTING IS WRITTEN IN BOLD FACE

used. The output of the two metrics is the mean opinion score
(MOS) listening quality objective (LQO), which is denoted as
MOS-LQO. A mean value over all test speech utterances for
each respective language is reported in the evaluation. In addi-
tion to (WB-)PESQ, we also perform perceptual objective lis-
tening quality prediction (POLQA) [66]. This is done in only a
few conditions, checking, whether both measures lead to similar
conclusions.

In addition, for the most promising approaches, we conduct an
semi-formal comparison category rating (CCR) subjective lis-
tening test according to the ITU-T Recommendation P.800 [67].
In a CCR test, a pair of two speech samples is presented to the
listeners, and the quality judgment of the second sample com-
pared to that of the first is made and rated on the comparison
MOS (CMOS) scale ranging from −3 (much worse) to +3
(much better).

V. EXPERIMENTAL EVALUATION AND DISCUSSION

In Section V-A, a preliminary experiment is implemented to
investigate the CNN topology on the validation set. Then, the
optimal setting will be used for the subsequent experiments.

A. Preliminary Experiment on CNN Parameters

In a preliminary experiment the optimal CNN topology set-
tings with the framework structure III of the cepstral domain
approach for G.711 postprocessing are selected. The number of
feature maps F , the length of the CNN kernels N , and the ac-
tivation function (the last layer is always linear) are examined.
We investigate both leaky rectified linear unit (ReLU) [68] and
scaled exponential linear unit (SELU) [69]. Since narrowband
speech is used in this preliminary experiment, a frequency re-
gion from 50 Hz to 3.4 KHz is taken into account, resulting
in khigh =

⌊

K
8000 ·3400 Hz

⌋

=217 and klow =
⌊

K
8000 ·50 Hz

⌋

=3 in
equation (12) with the 512-point FFT.

The results are shown in Table II, in which we can see that the
performance of the CNN in our proposed approach is mainly
depending on the kernel length N , and only weakly on the choice
of the activation function and the number of feature maps F .
Note that only a small fraction of the actually used (N,F ) search
space is shown in Table II: The dependence on F regarding to
the optimum is rather flat, however, for much smaller values of
F the performance deteriorates significantly.

As a result, the CNN topology with the minimum mean LSD
value of 8.29 dB recommends the choices Fopt =22, Nopt =6,
and the leaky ReLU activation function. It is interesting to know
that the legacy G.711 has a mean LSD being 16.15 dB which is

TABLE III
LSD [DB] VALUES ON THE VALIDATION SET AND THE NUMBER OF TRAINABLE

PARAMETERS (# OF PARAM.) FOR THE OPTIMAL CNN WITH (Fopt , Nopt ) AND

FOUR DIFFERENT FULLY-CONNECTED NEURAL NETWORKS WITH OR WITHOUT

DROPOUT (DROPOUT RATE r) IN TIME DOMAIN AND CEPSTRAL DOMAIN. THE

TOPOLOGIES YIELDING THE LOWEST LSD VALUES ARE WRITTEN IN

BOLD FACE

almost halved by applying this optimal topology. Note that Fopt

and Nopt selected from the above preliminary experiment are
specific to the framework structure III with the length L=32 of
the CNN input vector. In order to obtain also reasonable param-
eter settings for the other framework structures, we note that the
length L changes for the various postprocessing approaches with
L= |Menv|=6.25% · K in the cepstral domain approaches, and
L=80 for narrowband codecs and L=160 for wideband codecs
in the time domain approach. Note that for simplicity of presen-
tation, whenever L changes with a certain framework structure
(time domain, cepstral domain I–VI), the value of Fopt and Nopt

are simply increased or decreased proportionally at the same
time.

Now, as we have fixed the number of trainable parameters, we
briefly want to check whether a straight-forward fully-connected
neural network (FCNN) performs equally well. As shown in
Table III, we simulated four different FCNN topologies without
dropout or a dropout rate r=0.1 for both the time domain ap-
proach and the cepstral domain approach of structure III, while
keeping the same number of input nodes (L=80 for the time
domain approach and L=32 for the cepstral domain approach).
The number of trainable parameters is about the same as (or a bit
higher than) the optimal CNN topology with (Fopt, Nopt). It can
be seen that the optimal CNN topology achieves the best LSD
performance compared to all listed FCNN structures for both
the time domain approach and the cepstral domain approach.
Accordingly, in the following we stick to the CNN topology as
it seems to be an advantageous choice.

B. Major Instrumental Experiments

In this subsection, the experiments of the proposed postpro-
cessing approaches for the various codecs in different conditions
are implemented and evaluated instrumentally following the test
processing in Fig. 8.

1) Clean Condition: A comprehensive evaluation of all the
proposed postprocessors is conducted for four different codecs
in both American English and German language, in which
legacy codecs and the postfilter for G.711 serve as baselines.
PESQ results are shown in Table IV with ∆MOS-LQO being
the MOS-LQO difference between the postfilter or the postpro-
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TABLE IV
MOS-LQO (PESQ AND WB-PESQ) FOR LEGACY CODECS AND CODECS WITH VARIOUS POSTPROCESSORS. THE TOP TWO RESULTS IN EACH COLUMN ARE

WRITTEN IN BOLD FACE

TABLE V
MOS-LQO (POLQA) FOR LEGACY CODECS AND CODECS WITH ITU-T POSTFILTER [2] AND THE STRUCTURE III CEPSTRAL DOMAIN POSTPROCESSOR. THE BEST

RESULTS IN EACH COLUMN ARE WRITTEN IN BOLD FACE. COMPARE TO THE RESPECTIVE (WB-)PESQ RESULTS IN TABLE IV

cessor and the respective legacy codec. We find that most of
our proposed postprocessors perform better than the respective
legacy codecs. For G.711 our proposed postprocessors in most
cases show better performance when no quantization constraint
is performed. Comparing the various proposed postprocessors
with no quantization constraint, the time domain postprocessor
and the cepstral domain postprocessors with structures II, III,
V, and VI (the ones with delay, see Table I) show better perfor-
mance than all legacy codecs and they all perform better than
or equal to the G.711 postfilter [2] for both languages (only
the time domain postprocessor has the same MOS-LQO as the
postfilter for American English). The cepstral domain postpro-
cessor with structure VI performs best for both languages and
for all codecs, exceeding the legacy codecs on average over both
languages by 0.25 MOS points for G.711, 0.3 MOS points for
G.726, and 0.26 MOS points for AMR-WB. Note that structure
VI exceeds the G.722 legacy codec by an impressive 0.82 MOS
points, where roughly 0.3 MOS points can be dedicated to the
rather simple suppression of frequencies beyond 7 kHz, and the
major rest can be dedicated indeed to the improvement of the
early cepstral coefficients.

For a limited set of conditions in Table IV, we provide also
POLQA [66] results in Table V. Note that very similar improve-
ments of our postprocessor (structure III) w.r.t. all legacy codecs
in both languages can be seen, with the AMR-WB postprocessor
performing even better in POLQA than in WB-PESQ. However,
since simulation of PESQ was much easier to perform due to
the availability of a batch mode to us, the remainder of our work
uses PESQ and WB-PESQ.

In order to obtain a better understanding of how the coded
speech signal is enhanced by the cepstral domain approach,
spectral and cepstral analysis examples of the enhanced speech,
along with the coded and reference speech, are presented for
interested readers in the Appendix.

Since the algorithmic delay might be critical in practical ap-
plications, we see that the zero-latency time domain postproces-
sors can improve the speech quality for all listed codecs in both
languages. For cepstral domain postprocessors, the zero-latency
structures I and IV still can consistently improve speech quality
of G.726 and particularly of G.722. Since G.711 and AMR-WB
ask for some delay in the postprocessor, a good compromise
for these codecs would be the structure III, providing second
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Fig. 9. The MOS-LQO (PESQ) of various postprocessors for G.711 with
different amounts of additional delay. Note that structure II has a different model
topology than the other cepstral domain structures I, III–VI; see Table XII.

ranked speech quality in both languages. At the cost of only
10 ms algorithmic delay, structure III exceeds the legacy codecs
on average over both languages by 0.25 MOS points for G.711,
0.25 MOS points for G.726, 0.81 MOS points for G.722, and
0.2 MOS points for AMR-WB.

To further illustrate the influence of the additional delay on the
performance improvement, we compare in Fig. 9 the MOS-LQO
of the postfilter and the postprocessors both in time domain and
cepstral domain for G.711, sorted by the additional delay. The
MOS-LQO is an average of American English and German. For
the proposed postprocessors in the cepstral domain, it becomes
obvious that the performance improvement grows with the in-
crease of the additional delay, as the model topology is exactly
the same (except for structure II,5 see Table XII). With longer
additional delay for the postfilter [2], it may also achieve some
further performance gains. However, our proposed zero-latency
postprocessor in the time domain already shows superior per-
formance compared to the ITU-T postfilter with 2 ms additional
delay.

Comparing the bold face (i.e., top-two) results in Table IV,
we see that there is hardly a language dependency in the rank
order of the best approaches.

To intuitively show the potential of the postprocessor with
structure III we performed a comparison to different modes (i.e.,
bitrates) for the AMR-WB codec in Fig. 10. One can easily see
that the MOS-LQO of the postprocessor after the AMR-WB
codec at 12.65 kbps for both American English and German ex-
ceeds the legacy AMR-WB at 15.85 kbps and it even approaches
a comparable quality for German at 18.25 kbps. Therefore, the
postprocessor with structure III shows its ability to significantly
improve the speech quality during transmission with a relative
low bitrate towards a much higher bitrate transmission.

In order to see the waveform distortion of speech after the
postprocessing, SSDRseg measure (13) for G.711 A-law in
American English and German is shown in Table VI. It is
straightforward that the legacy G.711 already achieves a rel-
atively high SSDRseg, with 37.12 dB for American English
and 37.11 dB for German, since it is a high bitrate waveform
coding. For the time domain postprocessor, it achieves even

5This is because structure II has a different topology in terms of the number
of input nodes L, feature maps F , and kernel size N (see Table XII).

Fig. 10. MOS-LQO (WB-PESQ) points of the test speech utterances for the
legacy AMR-WB at various bitrates (solid curves from 12.65 to 23.85 kbps)
as well as for our postprocessor with structure III at 12.65 kbps (dashed lines).
Results are shown for American English (∗) and German (◦).

TABLE VI
THE SSDRSEG [DB] VALUES FOR THE G.711 LEGACY CODEC AND G.711 CODEC

WITH VARIOUS POSTPROCESSORS. THE BEST APPROACH IS WRITTEN IN

BOLD FACE

higher SSDRseg which is the best performance among all the
proposed postprocessors, since it focuses on the waveform do-
main. All proposed postprocessors with quantization constraint
show equal or better SSDRseg than without it, but it brings no
positive effect to speech quality for the proposed postprocessors
in terms of MOS-LQO (see Table IV). For the postprocessor
with structure VI, which achieves the best speech quality (see
Table IV), a mean SSDRseg of only 24.04 dB over both lan-
guages is measured. Comparing SSDRseg and MOS-LQO, we
once again see that waveform similarity and speech quality are
not necessarily positively correlated, in this case also question-
ing the quantization constraint.

Evaluating the global SSDR measure in Table VII, it turns
out that the rank order of approaches is very similar to the
SSDRseg in Table VI: The proposed time domain approach is the
best, followed by the G.711 legacy codec, the cepstral domain
approaches, and finally the ITU-T postfilter [2]. Interestingly,
the advantage of using the constraint is higher with the SSDR
measure, which might be due to some very slight residual noise
for the cepstral domain approaches in speech pauses; an effect
that has been disregarded in SSDRseg through the inherent voice
activity detection in (13), and which will motivate some small
extra processing in Section V-C.
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TABLE VII
THE SSDR [DB] VALUES FOR THE G.711 LEGACY CODEC AND G.711 CODEC

WITH VARIOUS POSTPROCESSORS. THE BEST APPROACH IS WRITTEN IN

BOLD FACE

2) Tandeming Conditions: In order to evaluate the perfor-
mance of the proposed postprocessors in tandeming conditions,
G.711 A-law and AMR-WB are selected as the last codec for
narrowband and wideband, respectively, while several other
codecs form some common tandeming conditions. The CNN
model matches the last codec since only this codec is known at
the receiving point. It is worth noting that all further experiments
in this subsection are only conducted in American English. The
PESQ results are shown in Table VIII and we can see the perfor-
mance of our time domain postprocessor and the postprocessor
in the cepstral domain with structures III and VI. While in nar-
rowband tandem conditions structure III achieves a MOS-LQO
improvement in the range 0.11...0.20 points (in all cases the
postprocessor has been just trained for the receiving-sided A-
law G.711), the structure III in wideband tandeming conditions
improves by 0.20...0.37 PESQ MOS points (the postproces-
sor has been only trained for the receiving-sided AMR-WB).
Note that the G711.1 A-law + AMR-WB tandeming and the
G.722 + AMR-WB tandeming, followed by structure III both
achieve around 3.7 PESQ MOS points, which is even more than
only AMR-WB with 3.6 points (see Table IV). With the best
postprocessor of structure VI from Table IV, even slightly better
speech quality is achieved in all cases for the price of a large
algorithmic delay. All of the postprocessors in Table VIII exceed
the shown legacy codecs under tandeming, even if the legacy
codec (G.711 A-law) is followed by the postfilter from [2].

3) Error-Prone Transmission Conditions: For the evaluation
of the proposed postprocessors in error-prone transmission, ran-
dom and burst frame losses are inserted to the bitstream of G.711
and AMR-WB with the FER being 3% and 6%and the PESQ
results are shown in Table IX. It is worth noting that the er-
ror concealment measures are applied in all conditions for both
codecs: the packet loss concealment for G.711 from Appendix I
[70] and the error concealment of erroneous or lost frames for
AMR-WB from 3GPP TS 26.191 [71]. Note that AMR-WB in
this condition requires DTX to be switched on. The time do-
main postprocessor has better or equal performance compared
to the postfilter [2] for G.711 for both random and burst frame
losses, and is very slightly better in the case of AMR-WB. The
cepstral domain postprocessors with structures III and VI both
perform even better in all cases and structure III with less delay
improves the legacy codecs by 0.06...0.16 PESQ MOS points
in narrowband frame loss and 0.14...0.19 PESQ MOS points

in wideband frame loss. Accordingly, all of the postprocessors
in Table IX can be advantageously employed after the legacy
codecs in frame loss conditions.

4) Noisy Speech Conditions: In order to evaluate the per-
formance of the proposed postprocessing approaches for noisy
speech, different types of background noise are added to the
speech signals at an SNR of 15 dB or 20 dB, followed by G.711
and AMR-WB. The PESQ results are shown in Table X, while
the mean of the noisy conditions and also the clean conditions
for both codecs are listed. For the G.711-based narrowband
experiments with noisy speech, both the postfilter [2] and the
proposed postprocessors hardly have an influence on the coded
speech, with MOS-LQO differences being less than 0.04, and
two insignificant degradations of only 0.01 MOS points being
observed. On average, the postfilter and the proposed postpro-
cessors have a MOS-LQO improvement in the range 0...0.02
points. For AMR-WB in noisy conditions, the cepstral domain
postprocessors can improve or maintain the speech quality for
most of the cases, with two exceptions: cafeteria noise (0.01
MOS points decrease) and road noise (0.03 MOS points de-
crease) both at 15 dB SNR. For car noise at both 15 and 20 dB
obviously a speech quality improvement has been observed:
0.13 and 0.16 MOS points for structure III, 0.17 and 0.24 MOS
points for structure VI. The means over the noisy conditions
show a MOS-LQO improvement of 0.05 points for structure III
and 0.10 points for structure VI. In summary and on average,
both the G.711 postfilter and our proposed postprocessors do
neither significantly improve nor distort noisy speech quality at
the receiver.

Finally, in order to increase the robustness of the approach,
we also trained the structure III model jointly with clean and
noisy speech data. Four noise types6 from the QUT-NOISE
database [72] (noise types are different to the test data) are used
to generate the 20 dB noisy training data, with the amount of the
noisy data being one quarter of the clean data. As can be seen in
Table X, the model trained with noisy data (in the grey-shaded
rows) achieves best performance on average and over the noisy
conditions for both G.711 and AMR-WB. A test on clean data
expectedly shows some reduced performance improvement. In
summary and on average, the proposed postprocessor trained
with additional noisy data can provide even some improvements
in noisy conditions.

C. Subjective Experiment

In our CCR subjective listening test, 2 female and 12 male
listeners participated, who are native German speakers stating
to have no hearing impairment. An amount of 16 utterances
from 4 speakers (2 female and 2 male) of the NTT speech
database in German are subject to four test conditions following
the processing plan in clean condition of Fig. 8: The first is
the direct condition, resulting in the reference speech. The sec-
ond is the legacy G.711 condition, providing speech transcoded
by the G.711 codec. The third is the postfilter condition, where
G.711-transcoded speech has been enhanced by the ITU-T post-
filter [2]. The fourth is the proposed postprocessor condition,
where G.711-transcoded speech has been enhanced by our pro-
posed postprocessor of structure III in the cepstral domain. Fi-
nally, all speech signals are converted to 48 kHz sampling rate.

6The four noise types are: HOME-KITCHEN, HOME-LIVINGB, REVERB-
POOL, and REVERB-CARPARK.
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TABLE VIII
MOS-LQO (PESQ AND WB-PESQ) FOR LEGACY CODECS AND CODECS WITH DIFFERENT POSTPROCESSORS IN TANDEMING CONDITIONS.

THE RESULTS OF THE BEST APPROACH IS WRITTEN IN BOLD FACE

TABLE IX
MOS-LQO (PESQ AND WB-PESQ) FOR G.711 AND AMR-WB LEGACY CODECS AND CODECS WITH DIFFERENT POSTPROCESSORS IN ERROR-PRONE

TRANSMISSION CONDITIONS. THE RESULTS OF THE BEST APPROACH IS WRITTEN IN BOLD FACE

TABLE X
MOS-LQO (PESQ AND WB-PESQ) FOR G.711 AND AMR-WB LEGACY CODECS AND CODECS WITH DIFFERENT POSTPROCESSORS IN NOISY SPEECH CONDITIONS.

THE RESULTS OF THE BEST APPROACH IS WRITTEN IN BOLD FACE AND THE MODEL TRAINED WITH 20 DB (UNSEEN) NOISY DATA IS GREY-SHADED
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TABLE XI
CCR SUBJECTIVE LISTENING TEST RESULTS WITH THE BASELINE

POSTFILTER [2], THE PROPOSED POSTPROCESSOR OF STRUCTURE III, THE

LEGACY G.711 CODEC AND THE DIRECT CONDITION. THE WINNING

CONDITION IS WRITTEN IN BOLD FACE

These four conditions result in six comparison cases in the sub-
jective listening test (cf. Table XI).

In a preliminary informal subjective listening test we ob-
served that an ideally very low 0-th cepstral coefficient turns
out to assume slightly higher values after the CNN estimation,
resulting in somewhat noisy speech pauses. Therefore, for the
subjective listening test, we very slightly manipulate the CNN
output as follows7

ĉenv(ℓ, 0) →

{

ĉenv(ℓ, 0), if ĉenv(ℓ, 0) � C0

ĉenv(ℓ, 0) − γ0 , else,
(15)

with C0 =−1650 and γ0 =1000.
The participants of the subjective listening test rated the

speech using an AKG K-271 MKII headphone from a com-
puter with external RME Fireface 400 sound card. The
participants were equally assigned to one of two disjoint sets,
where the speech is balanced over the comparison cases and
the speakers. Each participant familiarized himself with all the
comparison cases and was asked to choose a proper volume
on the basis of 12 sample pairs in the familiarization phase.
Then, each participant evaluated 72 sample pairs in the main
test phase, where 36 sample pairs are presented in both sample
orders.

In Table XI, the CMOS and respective 95% confidence in-
terval (CI95) for the six CCR comparison cases are shown. All
results turned out to be significant. We can see a clear 1.76
CMOS points advantage for the comparison of legacy G.711
vs. direct. For the cases where the direct condition is compared
to the postfilter [2] and the proposed postprocessor of struc-
ture III in the cepstral domain, 0.28 and −0.18 CMOS points
are obtained, respectively. This means that the speech enhanced
by the proposed postprocessor is more similar to the uncoded
speech (in direct condition), and even slightly but significantly
preferred to uncoded speech. To the best knowledge of the au-
thors, such a result has never been reported before. For details,
however, see [73]. Our only explanation is the very low-energy
in speech pause during the direct condition, which, of course,
we are not allowed to manipulate. Relative to the legacy G.711
condition, the ITU-T postfilter [2] already shows a significant
1.45 CMOS points advantage, while the proposed postproces-
sor performs even better, obtaining 1.77 CMOS points above the
legacy G.711 condition. When the proposed postprocessor is di-
rectly compared to the ITU-T postfilter [2], a better performance

7Note that this manipulation naturally also degrades the instrumental values
as given in Section V-B1. For structure III in Table IV, e.g., we observed
deviations in the range [−0.12 ...+0.02] over languages and codecs, however,
still exceeding all legacy codecs and the postfilter [2] in instrumental metrics.

TABLE XII
COMPUTATIONAL COMPLEXITY IM MIPS FOR THE DOMINANT

CONVOLUTIONAL OPERATIONS IN THE CNN OF EACH PROPOSED FRAMEWORK

STRUCTURE IN NARROWBAND. THE NUMBER OF FRAMES PER SECOND AND

THE PARAMETERS OF THE CNN FOR ALL THE PROPOSED FRAMEWORK

STRUCTURES (L, N , AND F ) ARE ALSO LISTED

of 0.36 CMOS points is obtained. Finally, we conclude that the
proposed postprocessor improves the quality of G.711-coded
speech more effectively as the ITU-T postfilter [2] does.

D. Complexity Analysis

The complexity of the time domain approach basically lies
in the computations for the CNN. Neglecting the operations in
Fig. 6 of max pooling, upsampling and skip connection addition,
the complexity-dominant convolutional operations of the CNN
amount to about 10.5·NLF 2 +2·NLF multiply/accumulates
(MACs) per frame of the time domain approach, with L being
the frame length (i.e., 10 ms of speech samples) and N , F being
the parameters of CNN. For the cepstral domain approaches, the
number of MACs in the CNN follows the same expression as
the time domain approach, with L= |Menv|=6.25% · K. More-
over, some operations are required besides the computations in
the CNN: FFT, IFFT, DCT-II, and IDCT-II all have a computa-
tional complexity of O(KlogK) [74], [75].

In order to show the complexity of the proposed CNN-
based postprocessors, the million instructions (= MACs) per
second (MIPS) for the convolutional operations in the CNN of
each proposed framework structure in narrowband are shown
in Table XII. Note that the values of L, N , and F are doubled
in wideband, resulting in a larger number of MACs per second
compared to that in narrowband. We see that the time domain
postprocessor requires a lot of computations, while the cepstral
domain postprocessors have moderate complexity in terms of
MIPS, roughly in the order of magnitude of a modern speech
codec. As an outlook to future work, however, it might be attrac-
tive to reduce the complexity of the models further by methods
such as teacher-student learning.

VI. CONCLUSION

In this work, we propose two different CNN-based postpro-
cessing approaches in the time domain and the cepstral do-
main, including six different framework structures for the lat-
ter, to enhance coded speech in a system-compatible manner.
The proposed postprocessors in both domains are evaluated
for various narrowband and wideband speech codecs in clean,
tandeming, error-prone transmission and noisy conditions, and
they are compared to an ITU-T postfilter [2] as postprocess-
ing baseline for G.711. The proposed postprocessor improves
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Fig. 11. Narrowband spectrograms of an utterance: reference speech (top),
G.726-coded speech (center), and postprocessed speech (bottom). Characteristic
time-frequency regions and frame ℓ=490 are marked.

speech quality in terms of PESQ by up to 0.25 MOS-LQO
points for G.711, 0.30 points for G.726, 0.82 points for G.722,
and 0.26 points for AMR-WB. In a subjective CCR listening
test, the proposed postprocessor on G.711-coded speech ex-
ceeds the speech quality of an ITU-T-standardized postfilter
by 0.36 CMOS points, and obtains a clear preference of 1.77
CMOS points compared to G.711, even significantly exceeding
the quality of uncoded speech. The source code for the cepstral
domain approach to enhance G.711-coded speech is available
at https://github.com/ifnspaml/Enhancement-Coded-Speech.

APPENDIX

In this Appendix we will provide some further detailed anal-

ysis of our postprocessor in certain conditions.

We take the speech file am02f065 from the NTT speech

database in American English as an example, and plot the spec-

trograms for preprocessed speech (i.e., reference speech, see

Fig. 8), G.726-coded speech, and enhanced speech by the cep-

stral domain approach with structure III in Fig. 11. The spectral

analysis settings are identical to the framework structure III (see

Table I). Comparing top and center subplots, the G.726 coding

adds signal contents to the high frequencies (marked by rectan-

gles) and distorts/weakens spectral envelope (marked by ovals).

For the enhanced speech in the bottom, the high frequency cod-

ing noise is effectively eliminated, and the spectral envelope is

somewhat being restored and enhanced towards the reference

speech spectral envelope.

In order to show that the improvement of the postprocessor is

not only based on a trivial postfilter simply suppressing frequen-

cies beyond 3.5 kHz, we did a brief PESQ MOS measurement

of coded speech with high frequencies simply removed: A low-

pass filter cutting off at 3.5 kHz is applied to the coded speech.

The FLAT filter is used here, along with the up- and downsam-

pling, since the FLAT filter works at 16 kHz. It turns out that

the PESQ MOS scores did not even change after this trivial

postfiltering for both narrowband codecs (G.711 and G.726) for

both languages. This maybe surprising result shows that the ma-

jor speech quality improvement does not at all come from the

Fig. 12. Amplitude spectrum (top), spectral envelope (center), both on a log-
arithmic scale, and DCT-II type of cepstral coefficients (bottom) for frame
ℓ=490 (see Fig. 11) of the narrowband reference speech, G.726-coded speech,
and postprocessed speech, respectively.

trivial filtering, but supports our proposed postprocessor which

also acts on lower frequencies.

As the proposed cepstral domain approach intends to improve

the spectral envelope, we zoom into the frame ℓ=490 (dashed

line in Fig. 11) to have a clear view of the spectral envelope. In

Fig. 12, the logarithmic spectrum 10log(|S(k)|2) of the selected

frame is drawn in the top, and of the spectral envelope in the

middle, obtained by keeping the first 32 cepstral coefficients

and setting the other cepstral coefficients to zero, i.e., lowpass

liftering. As we can see, the spectral envelope of the enhanced

speech is closer to the reference speech as is the coded speech.

This holds particularly for higher frequencies, which shows the

efficacy of the proposed cepstral domain approach. Finally, we

take a look on the cepstral coefficients in the bottom of Fig. 12.

It can be seen that the cepstrum of the postprocessed speech

is also closer to the reference speech, enhancing the cepstrum

of coded speech not only into the same direction (e.g., m=2
and m=4), but even reversing the sign to better approach the

reference cepstrum (e.g., m=10 and m=24).
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