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Abstract

Deep neural nets mainly rely on convolutions to generate feature maps and transposed
convolutions to create images. Rank filters are already critical components of neural nets
under the disguise of max-pooling, rank-pooling, and max-Unpooling layers. We propose a
framework that generalizes them, and we apply the novel layers successfully in convolution
and deconvolution while combining them with linear convolutional feature maps. We call
this class of layers rank filters. We explore the robustness, training, and testing performance
under different types of noise. We provide analysis for their proper weight initialization,
and we explore different architectures to discover where and when the rank filters could be
advantageous [1]. We also designed transposed versions of the non-linear filter that doesn’t
generate artifacts. We propose the use of stochastic algorithms to sample sparse random real
weights using the Gumbel max-trick. We compare the novel architectures with the baseline
linear architectures. We recommend viewing histogram-based methods as potential deep
learning models.
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Chapter 1

Introduction

The successes of AI were triggered by convolutional networks. These are based on an old
concept: convolution i.e., applying a filter on an image so extract specific information from
an image. The idea exploited in machine learning is that it is possible to automatically learn
which filters are most likely to perform a given task, for example recognizing a human face.

Deep learning has demonstrated that it is possible to create a vast network of such filters
which cascaded together allow achieved performance levels that may exceed what a human
can achieve. This high performance is possible, provided sufficient examples to train this
network, and earn the millions of parameters of all these filters. But convolution is a linear
operation, and so that applying a cascade of filters is more than just one filter, between each
convolution operation, use a non-linearity such as the Rectified Linear Units (ReLU)[24]
activation.

The convolutional network, therefore, includes different convolutional layers followed
by non-linearity. But to make the network more robust and more invariant to the spatial
variations of pooling layers are also added. The purpose of this operation is to integrate local
information to bring out the relevant features in a specific neighborhood. Besides, pooling is
generally also used to reduce the amount of data going from one layer to another. By far,
the most popular pooling operation used is max-pooling. This Max-pooling is a specific case
of a more general type of pooling: Rank pooling[38], which in turn is an instance of Rank
filters, as shown in Section 2.1.2.

CNN’s, unfortunately, had the consequence of yielding results that a human would
never have done. Miss-classifying a scrambled face1 as a face (see Figure2.9). Anyone with
experience in false-negative data mining from face detection will recognize this. Neural nets
learn non-local patterns and textures and can have inevitable high probability classification
errors. But what was the cause of these specific adversarial examples?

The culprit identified by Geoffrey Hinton and his team was partly Max-Pooling [33] (The
paper that introduced Capsule-Nets). Max-pooling isn’t the cause of all adversarial examples.
It just caused a specific type of “scrambled face” type false-positives. Let’s not use it as a
scapegoat for all neural network problems. However, note that already in 2015, Springenberg
et al. [43] proposed simplicity, i.e., neural networks without max-pooling. The idea is simple;
indeed, we can achieve downsampling with strided convolutions and voilà you’ve achieved

1 An image with eyes, mouth, and nose anywhere on skin texture.
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CHAPTER 1. INTRODUCTION

downsampling without max-pooling, and you have a neural network that performs better.
What about average pooling? Average pooling can be reached with a convolutional layer.
Hence you can always replace an average pooling with a strided convolutional layer with a
FoV equal to the stride. If the optimal weights for this layer average activations together,
then effectively, the convolutional layer became an average pooling layer. But again, with or
without pooling layers, you will still get classification errors that a human would never make.

Capsule-Nets [33] was designed as an object rendering black box. It comprises two main
innovations. Firstly, it has “capsules”, which are vector features instead of a feature pixel.
Secondly, it has a robustness property analogous to max-pooling. The robustness stems from
the Routing-by-Agreement procedure that attenuates the information of capsules that didn’t
have the maximal agreement probability. In other words, since information is discarded
(“softly” because it is not fully ignored as in max-pooling), we necessarily will have robustness.

What are the causes of the mistakes caused by max-pooling? To answer this question, we
need to take a closer look at the main disadvantage of max-pooling. It discards too much
information. The robustness advantage is directly caused by throwing away information
from activations that weren’t maximal.

What if we designed a layer that didn’t discard all information but learned to use, in
addition to the maxima, the second maximum, the third-largest, etc.? This is effectively what
a rank filter is designed to process. Rank filters are much more potent than max-pooling
layers to encode information in the same way that convolutional layers are more powerful than
average pooling. Max-Pooling layers are an instance or a realization of the Adaptive Rank
filter. The novel filter presented in this thesis is adaptive because it can learn to combine
ranks optimally. We name them Rank Filters for short.

This thesis aims to explore the advantages and disadvantages of using rank filters system-
atically. The main goal of this study is to learn the properties of this family of layers that
include Max-Pooling layers as a realization in order to understand it better. This property
analysis will provide valuable insight enabling future architectures with more informed use of
rank filters as a critical component of neural network design.

In addition to max-Pooling layers, you have their “reversed” version named Max-Unpooling
[50] layers typically used in deconvolutional neural networks. Deconvolutional Neural Networks
usually have a bottleneck structure. They have a wide range of applications, such as pixel
labeling and denoising. Transposed Rank Filters generalize max-unpooling layers, and we
will study them in this thesis since they are intimately linked to Rank filters.

Specific instances of Rank filters were used before, and hence we already know some of
their properties. For example, max-pooling leads to a region distortion where high-intensity
pixel regions inflate and replace low-intensity pixels (see figure 2.2). This can potentially
create artifacts since it is not robust to high-intensity erroneous values2. Median filters
are also an instance of rank filters. We know that they are robust to outliers and that
they preserve edges [10]. Perhaps they could be helpful if used in image reconstruction
architectures such as convolutional autoencoders[39], deconvolutional networks[28], or pixel
labelling[6, 30]? Although both median and max filters are referred to as robust statistics,
the term robust has different properties depending on which a single specific rank is kept.

In [28], the authors completely dropped pooling layers because, in the decoding process,

2 This is the same class over-exaggeration problem that motivated the use of Capsule Networks.
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CHAPTER 1. INTRODUCTION

there is information loss. This reconstruction problem follows from having pooling derivatives
(Unpooling layers) that are too sparse i.e., the “only one switch per patch” Unpooling layer
loses too much information for proper image reconstruction. Rank-Pooling was introduced
in [38], and the pooling layer can learn the optimal rank by using a soft rank selection
parametrization. Rank-Pooling [38] is for pooling only and not for general filtering and are
not implemented in transposed versions for deconvolution. Rank-Pooling is not sparse3 and
it follows that transposed rank pooling shouldn’t be sparse, and yet they aren’t investigated.
Now since they belong to the much more general class of transposed rank filters proposed,
we have to explore their properties.

Even though median filtering is more expensive than max-pooling, it can be very quickly
computed on a GPU since we sort many small arrays. For a general rank filter we need a
sorting algorithm which is very expensive. However, it is fine to use provided the number of
elements to sort is not too large. Typically, Field of Views (FoV) of convolutional layers are
small (smaller than or equal to 3× 3) and hence can quickly be executed on a GPU.

Please follow the non-refereed “publication” rank filter video link on . This is my
effort in disseminating the research ideas. This video is very helpful to follow the thesis.

Thesis Organization

The thesis is organized in the following chapters:

1. Chapter 2 is the literature review.

(a) Rank filters are presented as a family generalizing multiple layers and filters in
Sections 2.1 and 2.1.1.

(b) We show in Section 2.2 that Rank filters belong to a broader family of data-
dependent filters that is related to Histogram based methods. This is shown for
theoretical purposes to show where rank filters belong.

(c) In Section 2.3, we highlight that Capsule-networks solve the “scrambled face”
problem. We highlight the conceptual similarities between max-pooling
and the routing by agreement procedure. Therefore, it explains why ro-
bustness properties are inherent to Capsule networks. We argue that it’s because
the underlying intuition for picking the highest agreement probability is a biased4

assumption. The term “highest” automatically refers to a rank and it’s relevant
to study the general rank properties in order to understand the effects of such
design components.

(d) Deconvolution layers are presented in Section 2.4.

(e) We show that Max-Unpooling can be generalized as a transposed rank filters in
Section 2.5.

3 This means that the weights in the dot product in order to produce the output are not 0 as shown in
Table 2.1.

4 Biased because we are constrained to discard information. Why not using linear layers? What about
using other agreement probabilities(second highest, third highest etc...)?

3
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CHAPTER 1. INTRODUCTION

2. We discuss Questions & Hypothesis that motivate further the use of rank filters in
Chapter 3.

3. The proposed layers are described In chapter 4.

(a) Rank filters & variants are presented in Section 4.1, we also include derivation of
optimal weights when no activation is used in Section 4.1.3.

(b) Joint Linear-Rank Filters are presented in Section 4.2 & their stochastic variants
are presented in Section 4.2.1.

(c) We present Rank+Linear convolutions in Section 4.3.

(d) We propose Transposed Rank Filters in Section 4.4 & we explain how we designed
our algorithm in order to avoid upsampling artefacts in Section 4.4.1.

(e) We very briefly aboard the subject of Transposed Rank+Linear Filters in Section
4.5 for symmetry5 purposes.

4. We show how other non-linear data dependent filters could be potentially used in deep
learning in Chapter 5. More precisely, we show how Histogram filters can be modelled
as layers for a graphical model, and we show the resemblances of the structures to
existing neural network architectures.

(a) We relate Histogram Of Gradients(HOG) features with a deep learning perspective
in Section 5.1.

(b) We relate Histogram Equalization features to autoencoders in Section 5.2.

(c) We show that ReLU and Concatenated ReLU (CReLU)[37] are linked6 to histogram
filters and we show that it is a convenient way of backpropagating through the
layers derivatives that are histogram filters in Section 5.3.

5. We present the general guidelines of our methodology in Chapter 6. Note that
since we explore, we included a methodology section for every experiment since every
methodology differs from experiment to experiment.

(a) We briefly show what initialization we use in our experiments for Batch Normali-
sation and Filters(linear/transposed or not) in Section 6.1.4.

(b) We recapitulate on the notation used for the experiments in section 6.1. Note that
in some experiments we further abbreviate the notation for “ease” and concision
of reading so that deeper layers architecture descriptions fit in a single short table
cell.

6. In Chapter 6, we conduct 7 experiments each containing various case studies7.

5 For every layer there is a transposed version of it (It may happen that the transposed layer is the same
as the original layer, for example the ReLU layer).

6 The histogram filters derivatives yield Dirac delta functions which conveniently vanish. Thus we do not
need to back-propagate though these.

7 In other words, per experiment section, we test various architectures and various Losses depending on
the task assigned(A task could be image restoration or classification)

4



CHAPTER 1. INTRODUCTION

(a) In Section 6.2, we conduct 5 experiments related to image restoration.

(b) In Section 6.3, we conduct 2 more experiments for image classification. The first
experiment is to show the “value” of the capacity of rank filters compared to the
capacity of convolutional filters(geometry related features). The second experiment
is to test joint Linear-Rank filters, and other “weak”8 stochastic variants.

7. We discuss our results in Chapter 7.

8. We conclude our thesis and open up the subject proposing further work on other
data-dependent non-linear filters that were shown in Chapter 5.

9. In the appendices we put in “hardcore” derivations, formulas and other “slightly off
topic” work that we think is superfluous and helps in the readability of the thesis.

(a) In appendix A, we show the derivation of the Kernel for the rank filtering process.
We show that it yields kernel functions (elements of the Kernel matrix) that are
similar to the ReLU activation when we sort 2 values9 and we show that for more
than 2 elements, the Kernel matrix elements becomes very difficult to express in a
closed form. We use the results of this appendix to determine optimal weights in
Section 4.1.3.

(b) In appendix B, we include a new theoretical parallel algorithm for sorting(with little
to no implementation value) that has interesting theoretical value in mathematics.

(c) In appendix C, we list formulas used in various derivations. The formulas are
related to multivariate continuous probability distributions.

Novel Contributions

The main contributions of this thesis are:

1. Generalize rank filters and to use them analogously to linear convolutions.

(a) Use of CUDA code10 to implement novel APIs for forward and back-
propagation. More specifically we implemented on the GPU the channel-slice
block sorting (forward propagation in Section 4.1) and un-sorting (for the back-
propagation).

(b) Derive the optimal initialization of the rank weights within a network
with no element-wise activation in Section 4.1.3.

8 By “weak” we mean a stochastic sampling of weights that is identical for batch samples. For a “strong”
sparse stochastic variant to be possible, we would need to uniquely sample random weights for every batch
sample. But this scenario is not easily implemented with current GPU hardware.

9 This occurs when FoV for Rank filtering of 2× 1 or 1× 2.
10 As a side project while working on parallel sorting algorithms, we investigated a novel ranking algorithm

based on partitioning an input sequence of length N into sub-sequences of length equal to the largest and
smallest divisor of N . See Appendix B.2.2 for more info. We then apply the divide and conquer method to
devise a second novel ranking algorithm based on subdividing an input sequence of length N into sub-sequences
of length equal to the prime factors of N , in Appendix B.2.2.

5



CHAPTER 1. INTRODUCTION

• In this investigation, we derived many properties of the Kernel matrix
when we view the rank filter as a process. Many derivations are included in
AppendixB.2.3

2. We present transposed rank filters in analogy to deconvolution(transposed convolu-
tions), in Section 4.4).

(a) Use of CUDA code to implement novel API for forward and back-propagation
of the transposed rank filters.

(b) A compensation method is designed in order to avoid artefacts generation
after the rank transposed filter, in Section 4.4.1.

3. Discover empirically the novel layers best possible architectures.

4. Propose a stochastic algorithm in order to generate sparse random weights. The
sampling method is based on the Gumbel max-trick, as shown in Section 4.2.1.1.

• The technique can be used to generate weights that don’t necessarily encode
probabilities (sum to 1 and positive). We present an algorithm to generate
sparse magnitudes, in Section 4.2.1.2.

Other Minor Contributions

Those are not really novel since we are simply explicitly showing a perspective on viewing
histogram based methods as potential building blocks in deep learning. Other contributions
of this thesis include:

1. Propose a systematic view of histogram based methods (as non-linear data
dependent filters) in order to view them as potential building blocks for architectures
in deep neural nets, in Chapter 5.

(a) We also show examples that transposed histogram filters have been used in decoder
type layers (in Histogram Equalization).

(b) We relate the non-linear filters with ReLU activation and CReLU activations.

(c) We show how HOG features have building blocks that are very similar to neural
nets building blocks.

6



Chapter 2

Literature Review

The success in neural nets in machine vision is partly attributable to the convolution layer
[23]. To be brief, it combines dot products between an input patch x with weights wl and a
bias b is added to form an output y i.e. y = wTx+ b as depicted in Figure 2.1.

x

wl

y

b

Figure 2.1: Rank filter feed-forward connection graph.

The convolutions generate feature maps that are used by subsequent layers, and the
weights have many parameters. In contrast, other layers can take very few parameters and
have a non-linear function, for example, the Rank-Pooling[38] combine ranks to generate a
pooling layer. When you think about it, there isn’t much of a difference in purpose between
Convolutional layers and Rank-Pooling. One generates feature maps, and the second is a
strided rank filter where the filter itself has very few parameters. Ranks are a type of feature
map (see Figure 2.2), and their combination yield even more, but how much more? The
feature maps generated by them were studied in [19], there it was shown that rank filters
have edge preserving and shifting properties depending on the rank selected in addition to
edge detection, low-pass, band-pass and high-pass filtering that preserves edges. In the new
capsule network [33] article the authors show that some transformations learned by capsules
were dilations. Rank filtering can do dilations very well as in Figure 2.2, maybe rank filters
could have an application there? We may argue that the feature maps may not generate as
much as the linear ones because the ranks are highly correlated more so than the input. This
high correlation is especially true for large rank arrays1, and it is a well-known result for
order statistics[29].

Robustness to noise is an ability of a method to be utterly impervious to a type of noise.
For example, median filters are robust to salt and pepper noise if the noise content isn’t too
high. Convolutional filters can also be robust to noise if the filter is sparse, and the noise is

1 The more we increase the number of samples, the more the variance of the middle values increases. The
minimum and maximum usually exhibit a higher variance than any other rank.

7



CHAPTER 2. LITERATURE REVIEW

Figure 2.2: At the bottom of the figure are Max, Median and Min (rank) features respectively
on the “cameraman”. We see on the bottom left that the max filter dilates high values
and contracts low intensity values if they are next to a high one. Median filters acts
similarly and dilates median values over others locally but to a lesser degree than the
extreme value filters. Note that edges can be found if we use for example a range filter, i.e.
Max-Min. Note that we scaled the images below to exaggerate the intensities for display
purposes.

always located at the same zero filter parameter (The noise is located at every pixel with the
same stride as the filter). So sparsity can yield pure robustness if we can find a dimension
where we can separate the noise from the signal2. Since sparsity may be desirable, we use
the ℓ1 constraint in the gradient descent algorithm. Note that it would be better to use the
LASSO algorithm[46]; however, the algorithm is not implemented in Convolutional deep
neural nets. The ℓ1 criterion helps in keeping multiple parameters very small3 and a few
large. The use rank filters may protect against adversarial attacks, or on the contrary, they
may add flexibility to adversarial attacks and make them more successful.

When we use filters at the reconstruction in a decoder, we can get chequerboard artefacts[2].
The artifacts are remedied in the article [45]. We would like to see if an analogous type of

2 Separating the noise from the signal is analogous from separating useless features from useful ones.
3 By “Very small” we mean it should be 0 but, in practice, when we use the ℓ1 constraint in SGD they are

not.

8



CHAPTER 2. LITERATURE REVIEW

artifact can arise from a decoder using inverse filter ranks. What would these filters look like?

2.1 Rank Filtering instances present in the Literature

2.1.1 Historical Note

Skipped connections for rank filters is an old idea, historically when rank filters were proposed
and studied in the seminal paper [19], some equations could with modelled as in figure 2.3.
Additionally, the older Batchelor’s streak and spot detector [7] can be represented as a double
skip connection in Figure 2.4. In the figures, rk is a Sort operation followed by filtering (see
Equation 4.8).

X rk
+

+ Y

Figure 2.3

X rk rk
+

+ Y

Figure 2.4

Both of these older ideas are valid in neural net language as the rank filter itself is
non-linear. However, we could instead use a block that uses an activation or a block that is a
shallow autoencoder. We will explore this in experiment 5 in section 6.2.5.

Theory Behind Rank Filters & Links with Existing Lay-

ers

Overfitting reduction techniques include Dropout[44], Spatial Dropout [47]. Many more
stochastic techniques are used for regularisation, including the stochastic pooling algorithms, in
particular the Fractional pooling layer [15]. There are striking similarities in these algorithms
that permits to group them into a family. This will provide cues to derive the generalization

2.1. RANK FILTERING INSTANCES PRESENT IN THE LITERATURE 9



CHAPTER 2. LITERATURE REVIEW

of the layers. Let an input x ∈ RN×1 have a sorted sequence s where s0 ≤ · · · ≤ sN−1. Then,
if we filter s with w, then the output is defined by the dot product4:

y = wTsx (2.1)

The matrix that sorts the sequence is a permutation matrix P x that depends on the data
itself, i.e.

sx = P T
xx (2.2)

Sorting a sequence is thus non-linear process. We will drop the data dependence subscript for
brevity so P x = P and sx = s, unless stated otherwise in potentially ambiguous formulas.
Furthermore,

P =
[

δπ0
. . . δπN−1

]

(2.3)

where δi is a zero N × 1 vector except the ith entry equals 1. Hence if we define nN×1 to be:

nN×1 =
[

0 1 . . . N − 1
]T

(2.4)

then we can rewrite the permutation order vector(rank vector) π ∈ NN×1
0 as

π = P Tn (2.5)

where π =
[

π0 . . . πN−1

]T
. In MATLAB notation, equation 2.2 is equivalent to

s = x (π) (2.6)

Table 2.1: Pooling layers under a rank filtering perspective

Pooling Filter

Functions Parametrization Output refs

Average5 w = 1/N y = wTx

y = wTs [9]

Max w = δN y = wTs [22, 9]

Fractional pooling w = δÑ ;w ∈ RÑ×1 y = wTs [15]

Stochastic pooling 5 w̃;w = x/1Tx;x ∈ RN+1
≥0 y = w̃Tx

w̃;w = s/1Ts y = w̃Ts [49]

Rank-based average pooling w = [u (πi − t)]i /(N − t), y = wTs [38]

t ∈ [0, N − 1] , u(x) = 1; x ≥ 0

Rank-based stochastic pooling w̃;w ∝ α · (1− α1)◦nN×1 y = w̃Ts [38]

We have made a small list of layers in table 2.1 trying to shed light with a rank filter
perspective. It is by no means exhaustive. The pooling filters in the table, other than the

4 This is a parametrized L-estimator[16]. Other interesting estimators belonging to this group include the
Harrell-Davis estimator [48]

5 In Average and Stochastic pooling, the use of the input or the sorted sequence are equivalent.

2.1. RANK FILTERING INSTANCES PRESENT IN THE LITERATURE 10
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average and stochastic ones, have non-linearities. They are activations on a region larger
than a single element of the input tensor.

The fractional pooling layer is interesting because the regularisation is done by averaging
out multiple models at test time. The randomness of that layer is not in the filter itself. Rather,
it is the field of view and the length of the filter Ñ that is “random”. Since it’s output is
w = δÑ , it is essentially a maximum rank filter. Stochastic layers have generalization benefits,
and it would be interesting if we could combine linear and rank information simultaneously.

2.1.2 Pooling layers as Rank filter instances

In this section we will show various features of pooling layers and show how they are instances
of a broader rank filtering family. Pooling layers all have the following characteristics in
common:

• For all pooling filters, the window FoV is equal to the stride and there is no
overlap between windows.

• The number of output channels is always equal to the input channels.

• Pooling layers are designed to downsample. The stride is always greater than 1.

In the following table, we show an analogy table to highlight resemblances and differences
of three pooling filters.

Table 2.2: Pooling layers features

Pooling Intuition &

Layers Parameters Function Advantages Disadvantages refs

Max-Pooling �No learning Pass highest Robust �Discards [22, 9]

possible activation information

Rank-Pooling �“Soft” rank A rank �Can learn �Partially [38]

selection bandpass robustness discards

learning �dilation & information

contraction �Constrained

features parametrization

Rank filters are similar to Rank-Pooling (Rank-Pooling with linear weights instead of a
positive band-pass filter), however the number of output feature maps (output channel) can
be whatever the designer wants it to be. It doesn’t have to be equal to the number of input
feature maps. A general rank filter shares the following characteristics with convolutional
layers:

• The window FoV is not necessarily equal to the stride. There could be an overlap
between windows.

• The number of output channels are output feature maps. This number is
chosen by the designer.

2.1. RANK FILTERING INSTANCES PRESENT IN THE LITERATURE 11
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• Downsampling is an option. The stride is can take on any value.

In Figure 2.5, we show how the methods fall within the scope of rank filters. Each
highlighted area correspond to a block. Values highlighted in orange are the input blocks.
In the middle, the values are sorted within the block highlighted in red. Each element is
then multiplied by weights in blue to form an element in the output (in green). In the
following figure, the weights have a 1 at the last position. This means that only the maxima
is considered. Note that this figure is for illustrative purposes only, there is no learning
occuring, in other words, the weights are static.

Linear Conv. Rank Filter

AvgP

Max-Pooling

Median filter

Min filter

Rank-Pooling

Figure 2.5: Venn diagram showing which method can be reached by rank filters and linear
filters. Average pooling can both be reached by convolutional layers and Rank layers if
all weights equal to 1/din, where din is the total size of the weight. Average pooling and
Max-pooling are static and hence can’t learn.

In Figure 2.6, we show how Max-Pooling the methods fall within the scope of rank filters.

2.1. RANK FILTERING INSTANCES PRESENT IN THE LITERATURE 12
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Figure 2.6: Max-Pooling with downsampling of 2 viewed under rank filtering perspective.
The Field of View(FoV) is 2× 2 so the is stride always equals to the FoV for pooling layers.
The weights in blue, can’t be learned and are fixed to the matrix with values 0, 0, 0, 1. The
last 1 in the weights mean that the max value is kept. The values highlighted in red in the
middle show the ranks, i.e. the values are sorted from smallest to largest in column order.
The input is on the left and the output is on the right.

In Figures 2.7 and 2.8, we show how Average-Pooling fall within the scope of rank filters
but also that it can be reached by the subspace of convolutional layers which explains why
we placed it in the overlap in the Venn diagram in Figure 2.5. In the Figures Figures 2.7 and
2.8, the weights are equal to the normalizing factor. This equal weight initialization means
that the average is computed. Since the average of ranks is equal to the average of input
values, both figures are equivalent.
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Figure 2.7: Average-Pooling with downsampling of 2 viewed under rank filtering perspective.
The Field of View(FoV) is 2× 2 and the stride always equals to the FoV for pooling layers.
The weights (in blue) can’t be learned and are fixed to 1/4.
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Figure 2.8: Average-Pooling with downsampling of 2 viewed as a fixed Convolutional layer of
stride 2. The weights (in blue) can’t be learned and are fixed to 1/4.

2.1.3 Single-Element Patch Rank Filtering

Define the zero augmented data vector xz =
[

0 xT

]T

, and it’s corresponding sorted sequence

sz = P Txz. In the layers in table 2.3, the activation layers and the linear layers are applied
to a single tensor element.

Table 2.3: Dropout/ReLU type layers under a rank filtering perspective

Dropout/ReLU Filter Layer

Functions Parametrization Output type refs

ReLU w2×1 = δ2 y = wTsz Activation [24]

Dropout w̃;w2×1 = [p− 1 p]T ytest = wTxz, Stochastic

ytrain = w̃Txz and linear [44]

PReLU w2×1 = [a 1]T y = wTsz Activation [18]

Looking at the above table, we see that the activations non-linearities are essentially caused
by the term P T

xz in the expansion of sz. The Dropout layer is not a rank filter, it is stochastic
and linear in xz, it was shown in the table for comparison purposes. There are degenerate
cases where there is no difference between using s or x because of the parametrization of the
filter. For example, when PReLU with a = 1, the nonlinearity vanishes. This means that
using a dot product on s doesn’t guarantee that there will be a non-linearity in terms of
ranks.

2.2 Other Data-Dependent Non-Linear Filters

Recall equation 2.2, i.e. s = P T
x x. The permutations needed to sort x depend on the data

itself. Hence, P T is a data dependent-transformation. It is non-linear even though there is
some form of linearity. It is a special matrix product and hence we can view P as a type of
selection “filter”. For a general data-dependent matrix that multiplies an input you have:

y = F T
x x (2.7)

We thus call it a non-linear filter because it is a “linear” transformation with a matrix whose
elements depend on input vector x. Histogram based methods can be modelled with the

2.2. OTHER DATA-DEPENDENT NON-LINEAR FILTERS 14
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presence of such a data-dependent matrix F T
x from equation 2.7. Even ReLU layers can be

modelled as such.
Note that rank filters are one of them and we will only implement them in this thesis. We

will explicitly show the details in how to model Histogram based algorithms using a graphical
model perspective for neural networks in Chapter 5. This is for theoretical purposes. In the
Conclusion in Chapter 8, we propose to continue the research on this subject.

2.3 Capsule Networks property overview

This section is a very brief reference to the work of Geoffrey Hinton’s team in [33]. It aimed
in solving the classification problematic that his team identified as a consequence of using
max-pooling layers. The problematic is that neural nets seem to encode features related to a
class non-locally as depicted in the following figure:

Figure 2.9: A convolutional neural net will generally classify this image as a face with very
high probability. Typical CNNs do not encode features locally(geometrically). Capsule net
are designed as an inverse object rendering function.

The team proposes a routing procedure as an alternative to max-pooling. This routing
procedure is similar to max-pooling in the sense that it selects6 the capsule (vector feature)

6 Not a pure selection per se of the vector feature that agree with other capsules with high probability, it

2.3. CAPSULE NETWORKS PROPERTY OVERVIEW 15
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that agrees with other capsules with high probability. This idea is a great leap forward.
However, there are CNNs without max-pooling that have the same non-local classification
problem. Surely max-pooling can’t have the whole blame. Then what makes a neural net
encode feature structures?

This is what the team working on Pure-Capsule networks [12] are trying to elucidate.
They are trying to show that it’s a generalized higher-order convolution that is present in
Capsule nets that solve the scrambled face problem. Remember the article [43] that proposes
to use all-convolutional networks instead of using CNNs with max-pooling nets? Well, you can
see the Pure-Capsule networks as an extension of this article for networks with a generalized
higher dimensional convolution.

The routing procedure possibly has the same weakness7 as max-pooling layers although it
is less apparent because it is hidden in an extra dimension. It discards information
much like max-pooling does and thus has similar robustness properties. Why not use
all the information? In this thesis, we are going to show the properties of rank filters and
systematically compare them with all-convolutional nets. We can then deduce if intuition
based on the highest activation or, by extrapolation, the highest inter-capsule agreement
probability will have similar advantages and disadvantages. The highest value is rank. And it
follows that it falls within the scope of properties of rank filters(albeit on an extra dimension).

2.4 Transposed Filters & Deconvolution Blocks

Deconvolution layers have nothing to do with the deconvolution method used to unblur with
Fourier analysis and the Wiener filter. In deep neural net community “deconvolution” is
synonym to a transposed convolution. It is mainly used in decoders in autoencoders and it is
meant to upsample so as to reflect the coder’s convolution downsampling.

The authors of the paper [39] have generated saliency maps using neural nets with
decoders that used gradient-based reconstruction and compared them with deconvolutional
networks that were presented in the article [50] that introduced Max-Unpooling layers(which
is a gradient-based method as pointed to in [39]). Additionally, the authors of [6] also have
worked with decoders and made significant observations in the use of pooling window sizes,
thus complementing the work of [50].

The authors in [39] pointed out that gradient-based reconstruction is slightly different from
the deconvolution net used in [50], primarily because the ReLU layer is applied differently.
Adequately, the authors of [50] did consider gradient-based reconstruction8 since they wrote
“We also tried rectifying using the binary mask imposed by the feed-forward ReLU operation,
but the resulting visualizations were significantly less clear.". What defines clearness in
this context? What qualities are desirable for a reconstruction? The observation of [50] is
analogous to one from the authors of [6] i.e. small pooling windows reduces spacial context
but preserve thin structures as opposed to large pooling windows. Perhaps the “less clear”
reconstruction mentioned in [50](Explicitly shown in quotes above) when using gradient based

is rather an attenuation of other vector features that don’t agree together with the highest probability. This
routing step is iterated three times. The more we iterate, the more we discard outlying information.

7 Weakness that follows from discarding information that could potentially be useful for subsequent layers.
8 Gradient based reconstruction for a ReLU layer is the DeReLU operation.

2.4. TRANSPOSED FILTERS & DECONVOLUTION BLOCKS 16
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reconstruction is because ReLU layer reduce spatial context(as mentioned earlier in [6]), since
from Table 2.3 a ReLU layer can be modelled as a small max-pooling type layer but with a
1× 1 stride applied on a zero-augmented patch xz9.

Since gradient-based reconstruction for a ReLU layer is the DeReLU operation, from
the observations consensus previously discussed, we can state that DeReLU is not desirable
for deep decoders. But does this apply for all types of layers? What about gradient-based
reconstruction quality for pooling layers (Unpooling layers)? We answer a more general
question involving transposed rank filters in Chapter 7.

2.5 Unpooling Layers are Constant Weight (no learn-

ing) Transposed Rank Filters

The authors that have implemented the max-Unpooling layers [50] use “switches” as depicted
in Figure 2.10 taken from the article [11](We used this article simply because they have a
figure that we can use by courtesy). These correspond to an index from where the maximum
came from. In a decoder theses switches are used to reverse the process of pooling layers
placed in coders. In the following figure, the “switches” are the indices from where the
maximum intensity value came from. The Unpooling layer “undoes” the pooling operation
by putting the pixel of the Unpooling layer’s input to the position from where the maximum
value was picked in the pooling layer at the encoder level.

Figure 2.10: This image is taken from [11] under Creative Commons Attribution 4.0 Interna-
tional. It depicts the pooling layer and the corresponding Unpooling layers at the decoder
level.

Unpooling are in fact transposed rank filters with constant weights W 2×2×Cin×Cin
as

shown in Figure 2.11 and illustrated with an example in Figure 2.12. In Figure 2.12, you
have Max-Pooling & Max-Unpooling layers with downsampling of 2 Viewed under rank &
transposed rank filtering perspective. The Field of View(FoV) and stride is 2 × 2. The
weights of both the Max-Pooling and Max-Unpooling layers can’t be learned and are fixed
to the matrix with weights 0, 0, 0, 1. The last 1 in the weights mean that the max value is

9 Refer to Table 2.3 where we explicitly show that a ReLU layer is an element-wise operation ReLU(x) =
max (x, 0).

2.5. UNPOOLING LAYERS ARE CONSTANT WEIGHT TRANSPOSED RANK
FILTERS
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Deconvolution.
Transposed

Rank Filters

Max-Unpooling

Figure 2.11: Venn diagram showing how Max-Unpooling falls in the space reached by
transposed rank filters. The transposed convolution (deconvolution) circle is on the left by
analogy.

kept. The input to the decoder or Max-Unpooling layer is φ in the middle (with the
active patch highlighted in orange). In this context, φ denotes a random operation (it may
or not be an activation). The input to Max-Unpooling layer is upsampled by the weights
0, 0, 0, 1 arranged as a matrix. Then, the values are permuted back from where they came
from. This is done by using the permutations highlighted in blue at the top left that were
saved from the coder (in this case the Max-Pooling layer). Note that this is overkill, since
the weights are fixed and sparse you really do not need to remember all permutations, this is
just for illustrative purposes. The useful permutations is really those associated to the max
value. This is what Matthew Zeiler and his team [50] refer to as “Switches”. The output is
on the top right highlighted in green. In Pooling layers only a single 1 is present per output
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Figure 2.12: Max-Pooling & Max-Unpooling layers with downsampling of 2 Viewed under
rank & transposed rank filtering perspective.

channel dimension per input channel slice(at the maximum rank position). The weights are
constant, and so, they can’t learn to combine ranks optimally. This learning deficiency also

2.5. UNPOOLING LAYERS ARE CONSTANT WEIGHT TRANSPOSED RANK
FILTERS
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applies to Max-Unpooling layers in the same manner.
How do the switches affect the reconstruction? If we generalize to rank filters, how remem-

bering all permutations affect the reconstruction “clearness”? If we ignore the permutations,
how will it affect the reconstruction quality? If gradient-based reconstruction is desirable in
the case of the Unpooling layer then shouldn’t it be the same for the generic transposed rank
filters?

2.5. UNPOOLING LAYERS ARE CONSTANT WEIGHT TRANSPOSED RANK
FILTERS
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Chapter 3

Questions to be answered &
Hypothesis

3.1 General Behavior of Rank Filters & Transposed

Rank Filters

In figure 3.1, we see that saving switches or permutations (in the context of rank filters)
correspond to gradient-based reconstruction. However, since the activations used in the
decoder are not gradient-based, then why should we bother saving the permutations? In other
words, since it is no longer gradient-based, why should we continue the trend with the different
permutations? The deeper the coder, the deeper is the decoder, and consequently, the decoder
block activations make the total reconstruction even less gradient-based. Accordingly, the
permutations shouldn’t be able to yield any benefits for the reconstruction using a deep
decoder. The following hypothesis is not ours, it follows from the observations previously
discussed in Section 2.5.

Hypothesis 1 (H1). Unpooling layers with large Field of View (FoV) should not be useful for
deep decoders using permutations from the coder but should be suitable for shallow decoders.
The reconstruction using small FoV should be less of a problem in deep decoders since permuted
pixels are (usually) more correlated in a small window.

Under another perspective if we relax 1 by simply allowing all ranks to serve in the
decoder then an analogous Hypothesis would be:

Hypothesis 2 (H2). Transposed rank layers with large Field of View (FoV) should not be
useful for deep decoders using permutations from the coder but should be less problematic for
shallow decoders since they use a smaller neighborhood (more correlation).

We are going to verify this Hypothesis 2 with the full rank filter transpose generalization
proposed. Recall that in [6], it is mentioned that small pooling windows reduce spacial
context but preserve thin structures as opposed to large pooling windows. It is true that
large pooling windows reduce spacial context because it is a maximally sparse rank filter (a
lot of information is thrown away). Suppose now that we use all ranks in an optimal way

20
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and that Hypothesis 1 does not cause any issues, then we are no longer throwing everything
out, and so we should be able to preserve thin structures especially for large window sizes1.
We must verify if the thin structures reconstruction potential of the decoder depends on the
depth. We must also check if some activations are better suited than others in this case.
If we use shallow or deep decoders that use the reverse-sorting process, would it still be
able to preserve thin structures? If so, would it be able to discern which thin structures
are spurious? It is tough to disprove or prove 1 or 2 simply because we can’t conduct an
experience that would show without any doubt that the large permutations would cause
reconstruction problems for a vast decoder. If indeed rank filtering is a bad idea for large
decoders, maybe this is simply because the optimization algorithm didn’t find a solution. In
other words, perhaps rank filtering makes the learning curve more rugged, but that doesn’t
mean that the minimums didn’t sink deeper in the loss function. Or on the contrary, maybe
the feature maps generated by deep rank coders aren’t good because they become highly
redundant. Maybe it’s both, the learning curve becomes jagged or flattened without good
minima (meaning that the deep rank feature maps are useless). True or not, we’d better
verify the hypothesis for shallow rank autoencoders only. In this case, there shouldn’t be any
filter redundancy issue, and permutations should be correlated for the coder is right next to
the decoder. In other words, transposed rank filters can efficiently use locations where the
pixels came from in order to fill the corrupted ones by a learned weight part of a feature map
only if the permutations came from an adjacent coder. Hence we can state our hypothesis
that:

Hypothesis 3 (H3). We may expect that shallow rank autoencoders perform well in preserving
fine structures.

We can add that the window size has an effect on the fine structure. The extent of it’s
effects are a subject of investigation.

In c1 c2 c3 . . . dN−2 dN−1 dN Out

P3

P2

P1

Figure 3.1: Each coder block ci save the permutations needed to sort a channel slice that will
be used for their corresponding decoder block. This is the same for max-Unpooling where
switches are saved from the coder to be subsequently used in the decoder. This is considered
part of a gradient based reconstruction.

1 It is reasonable to guess that thin structure preservation is a problem akin to edge preservation in median
filters. The edge preservation capacity of a median filter depends on the window size(the more significant,
the better). So we are inclined to believe that a similar phenomenon might incur in a reconstruction.

3.1. GENERAL BEHAVIOR OF RANK FILTERS & TRANSPOSED RANK FILTERS21



CHAPTER 3. QUESTIONS TO BE ANSWERED & HYPOTHESIS

3.2 Problem Statement

This thesis details how rank filters are used in a deep neural net. With success, it has been
applied in a wide variety of architectures. We also show how rank filters include max-pooling
layers as a particular case. We develop a framework that generalizes max-pooling layers,
and it follows that rank-filters are nothing more than non-linear filters generating interesting
feature maps. We will test if a neural net can learn max-pooling as an optimal choice. We
will show when we can combine additively linear convolutions and rank filters to achieve
superior performance compared to if we used either one of the layers alone. This combination
will be studied too. Additionally, we will present a novel architecture that can be used to
regularise nets combining rank filters and linear ones multiplicatively.

We also aim to answer the following questions:

1. In classification, is a rank parameter worth the same as a linear parameter?

2. When is it advantageous of using rank filters in classification ?

3. What are the advantages and disadvantages of using rank filters in autoencoders ?

4. How remembering all permutations affect a decoder’s reconstruction “clearness”?

(a) If we simply ignore the permutations how will it affect the reconstruction quality?

5. If we use shallow or deep decoders that use the reverse-sorting process, would it still be
able to preserve thin structures?

(a) If so, would it be able to discern which thin structures are spurious?

(b) Does thin structures reconstruction better or worse with large versus small FoV
in shallow decoders?

(c) Does thin structures reconstruction better or worse with large versus small FoV
in deep decoders?

6. What forms do the rank filters and transposed filters take? What do the weights look
like?

7. Do transposed rank filters generate artefacts analogous to transposed convolutions?

8. Is a stochastic version of rank filters combined with linear filters beneficial?

3.2. PROBLEM STATEMENT 22



Chapter 4

Proposed layers

Here we will present adaptive rank filters and adaptive transposed filters & other variants
including other types of filters that mixes linear and rank features. This chapter is organized
as following:

1. Rank filters & variants are presented in Section 4.1.

(a) “Spatial” Rank filters are presented in Section 4.1. We explicitly show the forward
propagation algorithm.

(b) In Section 4.1.1, we present a complex algorithm that uses many local rank
statistics.

(c) In Section 4.1.1, we present how we can use rank statistics inside the channel
dimension with a FoV of 1. This filter1 is used in experiment 5 (see Section 6.2.5),
as a component within a larger network. It has no resolution loss that are caused
by the high correlation of the filters. However it has resolution loss within the
input feature map dimension.

(d) We derive optimal variance initialization when weights are sampled from a random
distribution. This derivation assumes no activation is used for rank filters in
Section 4.1.3. It relies on results from Appendix A.

2. Joint Linear-Rank Filters are presented in Section 4.2. We propose this filter to generate
a superfamily that includes linear layers and rank layers. In the last experiment, this
will serve to test if the joint-filter can serve better as a neural net component than
a convolutional layer2. We provide examples, and forward propagation algorithm. It
will also serve as a mathematical framework in order to derive stochastic sampling
algorithms that can be equally useful for linear layers and rank layers.

(a) Stochastic Joint Linear-Rank Filters are presented in Section 4.2.1. We present
the mathematical framework that can serve as a basis for stochastic training of a
neural network, using either the rank or linear space.

1 The filter is superset that includes the Max-Out layer.
2 If not, we can conclude that rank weights compete with linear weights.
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(b) In Section 4.2.1.1, we present how the Gumbel-Max trick can be used to sample
from a discrete distribution. We provide a technique to sample a probabilistic
weight vector(positive weights that sum to 1) with a desired degree of sparsity.
In Section 4.2.1.2, we make an important leap that has great potential where we
generate weights with a specified average degree of sparsity where the weights
can take any value( the weights magnitude no longer sum to 1 and they can take
negative values). In Section 4.2.1.3, we show how we can apply the sampling
techniques for Joint Linear-Rank Filters.

3. We present Rank+Linear convolutions in Section 4.3. This is a family that combine rank
features and linear features additively. We test it in experiment 6 for the Classification
task. It serves to compare information capacity of rank features versus linear features.

4. We propose Transposed Rank Filters in Section 4.4, .i.e. the transposed version of the
filter in Section 4.1.

(a) We explain the upsampling artefacts problem inherent to transposed layers in
Section 4.4.1, and we propose a solution.

(b) In Section 4.4.2, the clockwork of the transposed rank filter is explained. The
transposed filter includes the modification in order to prevent upsampling artefacts.
(This creates an asymmetry between the forward propagation algorithm of the
transposed filter and the back-propagation algorithms of the Rank Filter in Section
4.1.

5. We very briefly aboard the subject of Transposed Rank+Linear Filters in Section 4.5
for completion sake.

4.1 Rank Filters

A rank filter is simply the dot product of weights wr with sorted values x of an input patch
x added with a bias b as in the following equation:

y = wTs+ b. (4.1)

It’s feed-forward connectivity graph is shown in Figure 4.1. In the same figure, we have
permutations P that sort the values of the input i.e. s = P Tx. The dotted arrows in Figures
4.1 and 4.8 indicate that no derivatives propagate through P ’s path.

x s

wr

P

y

b

Figure 4.1: Rank filter feed-forward connection graph.
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In Figure 4.2, an example is shown on an input(left) and output(right). The filtering is
done with a stride of 1 with a 3× 3 window with weights given by the blue matrix. The top
left numbers inside active zone (show which numbers are to be sorted in red), these are sorted
and stored into S into the highlighted active zone in orange. Since the input is 3× 3 we have:

hS = 3

(⌊

4− 3

1

⌋

+ 1

)

= 3·2 = 6.

In the example, there are exactly 2× 2 blocks size 3× 3 in S hence S is 6× 6. Finally, we do
a convolution of stride (3, 3) on S which yields the 2× 2 final output (active zone highlighted
in green).
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Figure 4.2: Rank filter example with a 3× 3 field of view of stride 1. Each channel slice has
to be sorted within the window range. Once every channel slice is sorted we store the values
into S. The filter (in blue) is then applied exactly with a convolution of stride equal to the
window size(3 in this case). We do not rank all values in the channel dimensions together,
rather independently. Otherwise, they would be highly correlated.
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Figure 4.3: Example of an input X to a rank filter. The input is a 33 × 33 RGB image
X33×33×3.

Figure 4.4: Example of rank augmentation by using an FoV= 5 × 5 with stride ∆ = 1.
The rank augmented output pictured ShS×wS×Cin

has height and width dimensions wS =
hS = 5

(⌊

33−5
1

⌋

+ 1
)

= 145. The output is thus S145×145×3. The following convolution will
stride on the boxes only (∆ = 5, with FoV = 5) to yield an output (not depicted) with
hout = wout =

⌊

145−5
5

⌋

+ 1 =
⌊

33−5
1

⌋

+ 1 = 29 or Y 29×29×Cout
.
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Figure 4.5: Example of rank augmentation by using an FoV= 5× 5 with stride ∆ = 2. The
rank augmented output has height and width dimensions wS = hS = 5

(⌊

33−5
2

⌋

+ 1
)

= 75.
The output is thus S75×75×3. The ranks are stored in 5× 5 patches, the lowest intensity pixel
is stored at the top left and the highest intensity pixel is stored at the bottom right. The
final stage of the rank filter includes the convolution that will stride inside the boxes to yield
an output (not depicted) with hout = wout =

⌊

75−5
5

⌋

+ 1 =
⌊

33−5
2

⌋

+ 1 = 15 or Y 14×14×Cout
.
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Figure 4.6: Example of rank augmentation by using an FoV= 1 × 8 with stride ∆ = 1.
The rank augmented output has height dimension hS = 1

(⌊

33−1
1

⌋

+ 1
)

= 33 and wS =
8
(⌊

33−8
1

⌋

+ 1
)

= 208. The output is thus S33×208×3. The filter is then applied on the boxes
only to learn local optimal ranks (∆ = 1, with FoV = 1 × 8) to yield hout = 33 and
wout =

⌊

208−8
8

⌋

+ 1 =
⌊

33−8
1

⌋

+ 1 = 25 or Y 33×25×Cout
.
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If we would have used a strided rank filter of say 2, then the orange highlighted zones in
the left of Figure 4.2 would have moved by 2 instead of 1 (given that the input was padded
for this to be actually possible).

More generally, for a rank filtering with a filter W hwin×wwin×Cin×Cout
with input XH×W×Cin

with a stride of (∆H ,∆W ) and double sided padding of (padH , padW ). We first compute a
collection of sorted blocks arranged into a tensor ShS×wS×Cin

where:

hS = hout ·hwin, (4.2)

wS = wout ·wwin, (4.3)

hout =

⌊

H − hwin + 2padH
∆H

⌋

+ 1, (4.4)

and

wout =

⌊

W − wwin + 2padW
∆W

⌋

+ 1. (4.5)

The sorting is only done in every channel dimension, we do not sort across input channels. Fi-
nally, we compute the linear convolution with ShS×wS×Cin

with the filter W hwin×wwin×Cin×Cout

with a stride of (hwin, wwin). Hence, the output sides are, upon substituting in equations 4.2
and 4.3:

⌊

hS − hwin

hwin

⌋

+ 1 =

⌊

hout ·hwin − hwin

hwin

⌋

+ 1 = hout, (4.6)

⌊

wS − wwin

wwin

⌋

+ 1 =

⌊

wout ·wwin − wwin

wwin

⌋

+ 1 = wout. (4.7)

We shall abbreviate the rank filter with the sublayer models of block sorting (a non-
linear upsampling process where the output was labelled with Shouthwin×woutwwin×Cin

) and
a subsequent linear filter. In Section 6.1.5.1 we explain the convolution notation, where
Cwwin×hwin,↓(∆W ,∆H),(PadW,PadH),Cin→Cout

for a general filter size. Hence, a general rank filter is
described by:

rkFoV,↓∆,Pad,Cin→Cout
≡ Pad→BCS↓∆↑FoV→CFoV,↓(wwin×hwin),0,Cin→Cout

. (4.8)

In the preceding equation, the BCS layer stands for Block Channel-slice Sort (see Section
4.1) and it outputs Shouthwin×woutwwin×Cin

. Note that for back-propagation, we need the
permutations indices to permute the derivatives, so we need to save them (or recompute
them in the GPU) from a forward pass as in Figure 4.1. The convolution operation (ignoring
the bias and padding) is described by the following equation (correlation mode):

y[a][b][k][n] =
∑

i,j,c

ω[i][j][c][k] · x[i+ (a− 1) ·∆1][j + (b− 1) ·∆2][c][n] , (4.9)

where the sum indices ranges are i ∈ [hwin], j ∈ [wwin], c ∈ [Cin]. Our proposed filter is thus
described by the following steps:

Shwin×wwin
[a][b][c][n] = vec−1

hwin×wwin

(

P T
(

vec
(

Xslice[a][b][c][n]
)))

, (4.10)
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where vec is the vectorisation operator, vec−1 is the reshaping operation and the input block
channel slice Xslice[a][b][c][n] ∈ Rhwin×wwin

is

Xslice = x[1 + (a− 1)∆1 : hwin + (a− 1)∆1][1 + (b− 1)∆2 : wwin + (b− 1)∆2][c][n] .
(4.11)

The tensor of sorted slices is done by concatenating the matrices Shwin×wwin
[a][b][c][n] to form

the Tensor ShS×wS×Cin×N . Then (omitting the bias),

y[a][b][k][n] =
∑

i,j,c

ω[i][j][c][k] · s[i+ (a− 1) · hwin][j + (b− 1) · wwin][c][n] . (4.12)

4.1.1 Broad Rank filters

We explored the possibility of using a rank filter that used local rank statistics over a
broader region to replace the downsampling that occurs at the input (that may remove useful
information). By using information in the height and width dimension by using kh blocks
and kw blocks and then downsampling after the convolution. We will designate by k the
pair (kw, kh), k ◦Fov will mean (kwwwin × khhwin) and k ◦∆ will designate (kw∆W × kh∆H).
With this notation in hand, our broad version of rank filter is:

rkBroad
FoV,↓∆,Pad,Cin→Cout

brkk ≡ Pad→BCS↓1↑FoV→Ck◦FoV,↓k◦∆,0,Cin→Cout
. (4.13)

This filter suffers from using too much memory. Effectively, the downsampling is done in the
convolution, and thus we have to compute all permutations of all possible blocks. This limits
it’s applicability for only very small FoVs (though this can be an advantage in low noise cases).
Another problem with this design is that the filter is larger W khhwin×kwwwin×Cin×Cout

.We saw
no great improvement, after experimenting with it (although it may help if some regions are
less corrupted than others). We will not carry on analysis nor continue experiments on this
filter since it is not very fast and doesn’t seem particularly advantageous.

4.1.2 Cross-Channel Rank Filter

What about comparing ranks inside the channel? This inter-channel comparison is an
appealing option because when we use local statistics, we lose locality information within
the block even if we use a shallow autoencoder (see Experiment 4 in Section 6.2.4) with
the transposed rank filter of Section 4.4. For example, when we use a FoV that spans only
in height, the output filter distorts the input to look unnatural. To solve this problem, we
would need to compare this output with its input at a pixel level. Fortunately, the authors of
[4] introduced a 2D shuffling idea3 that will be useful. We will use a more straightforward
1D shuffling operation. The main reason why we used the shuffling process was not to
reimplement the CUDA code (except for the 1D shuffling operation). The 1D shuffling
operates in the following manner: say we have K inputs X1, X2, ...XK with dimensions

3 This was also studied in [45] and compared with other upsampling methods in the context of reducing
checkerboard artifacts.
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H ×W × Cin. Then we shuffle them across the width within the same channel and height
dimension, giving an output of Y of dimensions H ×K ·W × Cin giving:

Y:,:,ki =
[

X1
:,1,ki

· · · XK
:,1,ki

X1
:,2,ki

· · · XK
:,2,ki

· · · X1
:,W,ki

· · · XK
:,W,ki

]

; (4.14)

given ki ∈ [[] 1, Cin]. For example, if K = 3 and say our three inputs are labelled XR, XG,
...XB with dimensions H ×W × Cin, then in the channel ci the output is:

Y:,:,ki =
[

XR
:,1,ki

XG
:,1,ki

XB
:,1,ki

XR
:,2,ki

XG
:,2,ki

XB
:,2,ki

· · · XR
:,W,ki

XG
:,W,ki

XB
:,W,ki

]

.

After the shuffle operation, we perform rank filtering with a filter W

of size hwin ×Kwwin × Cin × Cout.
The number of comparisons within a channel slice is of K. Additionally, since we do not

want to augment our signal, as opposed to [4], we use a stride ∆ = (1, K). In our experiments
in section 6.2.5, this net was very beneficial in preserving local information given that we
used skip-dense connections carrying the input throughout different rank FoV resolutions.
Additionally, the 1D-shuffle was also beneficial for the baseline all-linear filtering. Overall,
1D-shuffling combined with dense skip connections is very helpful in many tasks both for
rank filtering and the classical convolutions.

4.1.3 Fully connected rank filters as a Gaussian process

In this section, we investigate a new family of kernels to compute the similarity of vector inputs
x,x′ ∈ RM×1 after activation. Comparing the ReLU layer to rank filtering is interesting
because it shows that the ReLU layer is a max operation of every single element in a tensor
compared to 0. This superficial similarity hints that when comparing two elements, the
ranks should have similar features to that of a ReLU activation. But, in the two elements
ranks, there are two different non-linearities i.e., the min and max operation. Each rank is a
distinct non-linear function. This means that the rank layer itself does not follow the same
paradigm as neural nets that usually use a single identical activation function on all elements.
The rank function uses different ones for each element, and hence we should not compute
a single function, but a matrix of kernel functions. The output of a linear combination of
ranks is for the two inputs Sort

(

W Tx
)

= φ
(

W Tx
)

and Sort
(

W Tx′
)

= φ
(

W Tx′
)

. The
weights are independent and random colj (W ) ∈ N (0, IM×M), and W ∈ RM×N . Here we
used the notation φ to stress the fact that the sorting process is a multiple output function
i.e. φ : RN×1 → RN×1. Then,

K (x,x′) = EW
(

φ
(

W Tx′
)

φT
(

W Tx
))

. (4.15)

Or, equivalently:

K (x,x′) =
1

(2π)N
2/2

∫

R2

φ
(

W Tx′
)

φT
(

W Tx
)

e− tr
(

WTW
)

/2 (dW )∧ . (4.16)

Remarkably, the integral depends only on the angle between the inputs x and x′ regardless
of the input dimension M .i.e.

θ = cos−1 xTx′

‖x‖ ‖x′‖ . (4.17)
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For N = 2, Equation 4.16 reduces to:

K (x,x′) =
‖x‖ ‖x′‖

π

[

π cos θ + sin |θ| − |θ| cos θ |θ| cos θ − sin |θ|
|θ| cos θ − sin |θ| π cos θ + sin |θ| − |θ| cos θ

]

. (4.18)

Refer to Equation A.40 in the Appendix for the proof. Following the notation in [26], the
kernel matrix at the layer ℓ is Kℓ (x,x′). Given that the first layer is an activated input we
have for first output:

zℓ=1
d1×1 (x) = W T

ℓ Φ
ℓ (x) + bd1×1; d0 = L0N0, (4.19)

where the activation vector Φ
ℓ
(

zℓ−1
)

∈ Rdℓ−1×1 consists of Lℓ−1 vector activations of size
Nℓ−1, and zℓ−1 = x. In other terms, the activation vector in Equation 4.19 is:

Φ
1
d0×1 (x) =











φ (x1:N0
)

φ (xN0+1:2N0
)

...

φ (xL0N0−N0+1:L0N0
)











, (4.20)

and more generally,

Φ
ℓ
dℓ−1×1

(

zℓ−1
)

=

















φ
(

zℓ−1
1:Nℓ−1

)

φ
(

zℓ−1
Nℓ−1+1:2Nℓ−1

)

...

φ
(

zℓ−1
Lℓ−1Nℓ−1−Nℓ−1+1:Lℓ−1Nℓ−1

)

















; dℓ−1 = Lℓ−1Nℓ−1. (4.21)

Then the output at layer ℓ is:

zℓ
dℓ×1 = W T

ℓ Φ
ℓ
dℓ−1×1

(

zℓ−1
)

+ bdℓ×1. (4.22)

We further suppose that the inputs are all i.i.d. x,x′ ∼ N (0, I). We will denote the
dependence of the output of the ℓth layer on the input x and test point x′ by zℓ (x) and
zℓ (x′) respectively. Then by using the Central Limit Theorem (CLT), we will have the
output zℓ ∼ GP

(

0, Kℓ
)

provided dℓ →∞. We can thus use Equation C.6 to compute:

E
(

zℓ
dℓ×1 (x)

(

zℓ
dℓ×1 (x

′)
)T
)

= Kℓ (x,x′) . (4.23)

Kℓ (x,x′) = σ2
bIdℓ + σ2

wIdℓtr
(

E
(

Φ
(

zℓ−1 (x)
)

Φ
T
(

zℓ−1 (x′)
)))

. (4.24)

The trace equals on the right hand side becomes

Lℓ−1−1
∑

k=0

tr
(

E
(

φ
(

zℓ−1
k·Nℓ−1+1:(k+1)Nℓ−1

(x)
)

φT
(

zℓ−1
k·Nℓ−1+1:(k+1)Nℓ−1

(x′)
)))

.
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If we assume that the angle between the same subsections of the vectors zℓ−1 (x) and zℓ−1 (x′)
to be constant on average and substtuting in equation A.19, then the above trace becomes

Lℓ−1



Nℓ−1

√

qℓ−1
x√

Lℓ−1

√

qℓ−1
x′

√
Lℓ−1

(

cos θℓ−1 +O
(

θ3ℓ−1

))





= Nℓ−1

√

qℓ−1
x qℓ−1

x′
(

cos θℓ−1 +O
(

θ3ℓ−1

))

,

where qℓ−1
x and cos θℓ−1 are the variance and correlation in the (ℓ− 1)th layer. It then follows

that

Kℓ (x,x′) = σ2
bIdℓ + σ2

w,ℓ−1Nℓ−1

√

qℓ−1
x qℓ−1

x′
(

cos θℓ−1 +O
(

θ3ℓ−1

))

Idℓ . (4.25)

This kernel recursion has a trivial fixed point when θ = 0 and by if the inputs have the same
variance qℓ−1

x′ = qℓ−1
x , the recursion becomes:

Kℓ (x,x′) = qℓx = σ2
bIdℓ + σ2

w,ℓ−1Nℓ−1q
ℓ−1
x Idℓ . (4.26)

The variance qℓ−1
x = qℓx = q has a fixed point when the following conditions are satisfied:

q =
σ2
b

1−Nℓ−1σ
2
w,ℓ−1

, (4.27)

or at the point
(

σ2
b , σ

2
w,ℓ

)

=

(

0,
1

Nℓ

)

. (4.28)

The latter condition makes the weight and bias variance independent of the layer variance
and it corresponds to the Edge Of Chaos (EOC) [17] point.

4.2 Joint Linear-Rank Filters

By combing Rank filters additively with Linear filters we get a more flexible space that is the
union of both inner circles in Figure 4.7.
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Linear Conv. Rank Filter

Linear⊗Rank Filter

Max-Pooling

Median filter

Min filter

Rank-Pooling

AvgP.

Figure 4.7: Venn diagram showing which method can be reached by rank filters, convolutional
layers and Rank+Linear Layers. Average pooling can both be reached by convolutional layers
and Rank layers if all weights equal to 1/din, where din is the total size of the weight. Average
pooling and Max-pooling are static and hence can’t learn.

However it would be better to combine them multiplicatively so as to truly unlock the
potential of ranks to generate an even richer space (the outer circle in Figure 4.7). Because
there is a high correlation between ranks it seems reasonable to use 2 ·N weights (N is the
number of elements in a patch x) instead of N2 to model the the joint rank and linear model.
To do this we use the following formula:

y = wT
r P

T
x (x ◦wl) + b, (4.29)

where P T
x are the permutations wrt to x and not x ◦ wl. The following feed-forward

connectivity graph is made by combining both graphs in Figures 2.1 and 4.1.

x

wl

f h y

P

wr b

Figure 4.8: Joint Linear-Rank filter feed-forward connection graph. Here, f = x◦wl, P = Px,
h = P Tf and y = wT

r h+ b.

Equation 4.29 is equivalent to

y = wT
l P (s ◦wr) + b. (4.30)
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Proof: We start by substituting in s = P T
x x into Equation 4.30. Then

y = wT
l Px

(

P T
x x ◦wr

)

+ b.

Permutation matrices distribute themselves on Hadamard products so

y = wT
l

(

PxP
T
x x ◦ Pxwr

)

+ b = wT
l (x ◦ Pxwr) + b

. We can exchange vectors wl and Pxwr again using a Hadamard product property: y =
(Pxwr)

T (x ◦wl) + b. The result follows when distributing the transposition.
This duality property may be exploited during forward and back-propagation and to simplify
gradient calculation. To illustrate the joint filter4 with wr = [ri] and wl = [li] we have:
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Sum−−→ y

Our proposed joint filter is thus described by the following steps. Let the blocks

Hhwin×wwin
[a][b][c][k][n] = vec−1

(

Pvec
(

Xslice
)

(

vec
(

wrank
:,:,c,k ◦ Shwin×wwin

[a][b][c][n]
))

)

, (4.31)

where the input block channel slice Xslice[a][b][c][n] ∈ Rhwin×wwin
is defined in Equation 4.11,

and the sorted slices Shwin×wwin
[a][b][c][n] are defined in Equation 4.10 . Then each output

element is (omitting the bias):

y[a][b][k][n] = Reduce
Dims:H,W,Cin

wlin
:,:,:,kHhwin×wwin×Ci

[a][b][k][n] . (4.32)

4.2.1 Stochastic Joint Linear-Rank Filters

To ensure a mean of 1 for one of the weight types (linear or ranks), we could pass either one
of the weights through a softmax layer S before the dot product. Adding the two possibilities,
we end up with:

y =
(

w(1)
r

)T
P T
(

x ◦ S
(

w
(1)
l

))

+
(

w
(2)
l

)T

P
(

s ◦ S
(

w(2)
r

))

+ b. (4.33)

The above formula is very interesting since it gives the possibility of using the Gumbel-Max
trick[27] to sample from a discrete distribution with probabilities S(w). Intuitively this
random sampling may lead to good generalization as other random algorithms did. Examples

4 This example refers to the second FoV in Figure 4.2

4.2. JOINT LINEAR-RANK FILTERS 35



CHAPTER 4. PROPOSED LAYERS

of random and pseudo-random algorithms include Dropout[44], and Fractional-MaxPooling
[15]. We are however only going to explore layers based on the following formulas:

y = (wr)
T
P T (x ◦ S(wl)) , (4.34)

y = (wl)
T
P T (x ◦ S(wr)) , (4.35)

y = (S (wl))
T
P T (x ◦ S (wr)) . (4.36)

The expected value of the gradient wrt the weights are:

∇wl
y = P (s ◦wr) = x ◦ (Pxwr) . (4.37)

∇wr
y = P T

x (x ◦wl) = s ◦
(

P T
x wl

)

. (4.38)

4.2.1.1 The Gumbel Max-Trick

Let u ∈ RA×1 and u ∼ U (0, 1). Then the discrete distribution sample gA×1 with probabilities
πA×1 can be sampled from the maximum index of a sample a Gumbel distribution zA×1 ∼
G (πA×1), where

z = πA×1 − ln(−ln(u)).
A sample point gA×1 has a 1 at the kth element and zeros for all other entries i.e. gA×1 = δk.
The value k is equal to the index of the maximum of z, in other words,

k = arg max
i∈[1,A]

zi.

The vector follows a Multinomial distribution, g ∼ M(π). We define π̃K a sample made
from the average of K independent discrete samples g(j) = δkj with average π. Hence,

π̃K =
1

K

K
∑

i=1

δki , (4.39)

where kj = arg max
k∈[1,A]

z
(j)
k , and j ∈ [1, K]. In the limit we have π∞ = π. We have now all we

need to describe our layers. Since a softmax layer can be interpreted as discrete probability
vector π, we set S(w) = π and approximate the softmax function with :

S(w) ≈ S̃K(w) = π̃K . (4.40)

The covariance matrix of π̃K is:

E
(

(π̃K − pi) (π̃K − pi)T
)

=
Diag(π)− ππT

K
. (4.41)

Why are we using averages of discrete samples, why not a Gaussian variable with an
average π? The reason is that there is a good chance that one of the elements of S(w) will
have 0 components provided K is not too large. If K is large, then effectively, we should use a
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Gaussian. Zero components are desirable to make sparse random derivative updates5, similar
to the Dropout concept. Random sparsity may be a good thing for training neural nets.
But how to choose K? To answer this question, we need to measure the average sparsity
given that the probabilities of activity (an input that is not equal to 0) are π. Carrying the
expectations, we get a function of the average sparsity wrt to K, and we can modify K to
obtain the desired sparsity. This method may suffer from having a probability that is too low.
Then activations may never go through effectively, making the neuron connection disappear.
This situation is analogous to the multi-armed bandit problem that has a learned probability
too small for the player to explore. Let us model an activity neuron as a realization of a
multinomial distribution g ∼M(π). Since, π̃K = 1

K

∑K

i=1 δki , the probability of π̃K having
exactly N − 1 zeros (if N is the length of the vector) is:

P(Z = N − 1) = 1
Tπ◦K = ‖π‖KK , for K ≥ 1, (4.42)

where Z equals the numbers of zeros in π̃K . if we denote P(Z = z), then

P(Z = N − 2) = K

K−2
∑

m=1

∑

1≤i<j≤N

πK−m
i πm

j . (4.43)

Generally, if P(Z = N − a), where a is the number of non-zero activations then

P(Z = N − a) =
∑

ki1+ki2+···+kia=K

1≤i1<i2<···<ia≤N
ki≥1

(

K

ki1 , ki2 , · · · , kia

)

π
ki1
i1

π
ki2
i2
· · · πkia

ia
. (4.44)

The average activation ratio is thus:

EZ
(

N − Z

N

)

=
N−1
∑

n=0

N − n

N
· P(Z = n) = 1−

N−1
∑

n=1

n

N
· P(Z = n) . (4.45)

The average activation ratio is the complement of the average sparsity ratio EZ
(

Z
N

)

:

EZ
(

Z

N

)

=
N−1
∑

n=1

n

N
· P(Z = n) . (4.46)

The expression above is rather complicated whenever N > 2, so we will focus rather on the
expected activity of an element independently from the others. Then the probabilities that
the ith element of π̃K is activated (larger than 0) is:

P
(

π̃
(i)
K

)

= 1− (1− πi)
K
. (4.47)

Thus if we want the probability of a neuron of being activated with a constant α, then

K =
ln(1− α)

ln(1− πi)
= O

(

α

πi

)

. (4.48)

5 This idea came after reading the articles recommended by Professor Yongyi Mao.
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This means that for small πi we may be forced to use a large K to ensure gradients update
its value,

K ≈ − ln(1− α)

πi

. (4.49)

Furthermore, the realizations for the weights need to be independent for each batch
element. This is intensive for the GPU, and hence we only implemented identical random
weights for each batch element6. This inefficiency is quite problematic since the average across
the batch dimension would be quite high, and thus would degrade the learning significantly.
To counteract this degradation, we would have to choose a large K, but this would guarantee
that there is no sparsity, and hence there would be no point in using the Gumbel max-trick
since we could use samples from a Gaussian distribution instead.

4.2.1.2 Application of the Gumbel Max-Trick for non-probabilistic vectors

The trick can also be applied in normalization contexts such as BN for example. Let a
normalization layer output y from an input w:

y =
w

1
T (abs ◦w)

=
w

‖w‖1
. (4.50)

Note the striking similarities with the Softmax operation:

S(w) =
(exp ◦w)

1
T (exp ◦w)

. (4.51)

Hence, we can reparametrize the absolute value of y with a Softmax operator:

y = (sign ◦w) ◦ S(ln ◦ abs ◦w), (4.52)

or to alleviate the notation:
y = (sign(w)) ◦ S(ln |w|). (4.53)

Since we already defined a way to generate sparse random positive outputs depending on K

(see Eq. 4.40), we have a formula to generate sparse random outputs for the training steps:

ỹ = (sign(w)) ◦ S̃K(ln |w|). (4.54)

This method can be extrapolated to any layer without normalization since

w = ‖w‖1 (sign(w)) ◦ S(ln |w|).

Then, at training time we can use anywhere in a neural net7:

w̃ = ‖w‖1 (sign(w)) ◦ S̃K(ln |w|). (4.55)

6 We could test the idea by generating the samples per batch element on the CPU. But this would be
highly inefficient and would increase the bandwidth used to process each batch element individually.

7 This equation is highlighted because it is very elegant and has a great potential. However, this is only a
theoretical formula for now ,and is not tested experimentally as it would require unique initializations per
batch.
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Note that S̃K(ln |w|) is associated to the sampled from max indices of the realizations of
the Gumbel distribution z ∼ G(ln |w|), where

z = ln
(

ln |w| ⊘ ln
(

u◦(−1)
))

.

Equations 4.54 and 4.55 do not generate outputs constrained be positive or sum to 1.
Unfortunately, it will not be studied in-depth as it requires preferably different instantiations
for every batch index, and thus, it considerably increases computation time on the GPU. We
did implement this idea in the next section, although in a simpler form where we didn’t
use (rather arbitrarily) the logarithm parametrization. It is interesting to note that the ℓ1
norm occurred here naturally in the context of generating sparse random vectors. There
is probably a link to the fact that an ℓ1 normalization is related to the ℓ1 regularisation
commonly used in LASSO, a technique aimed at generating a sparse regression.

4.2.1.3 Random magnitudes for Joint Linear-Rank filters

Now let the filter FoV area A = hwin · wwin. To make the softmax function have a mean of 1,
we can scale it by a factor of A. Let us define the block channel slice Softmax operation as
being:

Ss (w) = [S(w:,:,ci,co)]ci∈[1,Chin],ci∈[1,Chin]
, (4.56)

then, in the prediction step, we can replace S in Equations 4.34, 4.35 and 4.36. To compute the
forward pass at the training step, we use the approximation on Ss, note that an approximation
is preferably unique for every batch index n.

y[n] = (wrank)
T
P T
(

x ◦ S̃s
K(wlinear)[n]

)

. (4.57)

y[n] = (wlinear)
T
P T
(

x ◦ S̃s
K(wrank)[n]

)

. (4.58)

y[n] =
(

S̃s
K(wlinear)[n]

)T

P T
(

x ◦ S̃s
K(wrank)[n]

)

. (4.59)

In this section we use only the random approximation of S(w), so the normalizing factor
is 1

T (exp ◦w) = ‖exp ◦w‖1. If the gradients pushes the Softmax activation towards 0 and
negative values, then this may cause weights to grow to very large negative numbers. This is
an argument to use the stochastic generator of 4.55 instead.

4.3 Rank+Linear Convolutions

The joint linear-rank filter is complicated (at least in implementation) because of the multi-
plicative double filtering. The easier alternative is to additively combine Equation 4.1 with
the normal dot product. We call this Rank+Linear filters. In essence, the output is given by

y = wT
r s+wT

l x+ b. (4.60)

This is already used in [31] because the net evolved use an addition of max-pooling and
average pooling.
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X

rk FoV,∆,Pad,Chin→Chout
Conv FoV,∆,Pad,Chin→Chout

+ +

Y

Figure 4.9: The Channel output parameters for both the rank filtering and the convolutional
filtering may be different. In this case where we use an addition as the junction, the output
channel equals the maximum of the output channel parameters. If we concatenate, the output
channel is the sum of both channel output parameters.
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4.4 Transposed Rank Filters

We know that the authors in [50] have implemented the max-Unpooling layers where the
“switches” correspond to an index from where the maximum came from. We are going to go
through the same inverse process and use all of the permutation indices that were recorded
to compute the code (y).

×0
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×1

×0

3 7 0

6 8 4

−2 0 1

3 7 0 7

6 8 4 8

−2 6 0 4

0 8 1 8

0 4 12 8

1 5 13 9

6 7 15 14

2 3 10 11

13 11

6 5

ϕ1 ϕ3

ϕ2 ϕ4

ϕ1 ·

[

w1 w3

w2 w4

]

ϕ3 ·

[

w1 w3

w2 w4

]

ϕ2 ·

[

w1 w3

w2 w4

]

ϕ4 ·

[

w1 w3

w2 w4

]

ϕ1 ·w1 ϕ1 ·w3 ϕ3 ·w3 ϕ3 ·w1

ϕ1 ·w2 ϕ1 ·w4 ϕ3 ·w4 ϕ3 ·w2

ϕ2 ·w3 ϕ2 ·w4 ϕ4 ·w4 ϕ4 ·w3

ϕ2 ·w1 ϕ2 ·w2 ϕ4 ·w1 ϕ4 ·w2

ϕ1w1 ϕ1w3 + ϕ3w3 ϕ3w1

ϕ2w2 + ϕ2w3 ϕ1w4 + ϕ2w4 + ϕ3w4 + ϕ4w4 ϕ3w2 + ϕ4w3

ϕ2w1 ϕ2w2 + ϕ4w1 ϕ4w2

4 ϕ1w1 4
ϕ1w3 +ϕ3w3

2
4ϕ3w1

4
ϕ2w2 +ϕ2w3

2
4
ϕ1w4 +ϕ2w4+ϕ3w4+ϕ4w4

4
4ϕ3w2+ϕ4w3

2

4ϕ2w1 4ϕ2w2+ϕ4w1

2
4ϕ4w2

Sort

block
slice

s⊛↓2
w

ϕ

ϕ⊛↑2
w

P · block

Unrank blocks

Overlap & Add

Average & × by

maximum Overlap

v

Figure 4.10: Activated Rank filter example followed by a transposed rank filter with a 2× 2
field of view. Each channel slice permutations indices “v” are saved into memory. We perform
a transposed convolution of the activation followed by a permutation. Finally, to compute the
output, we overlap & add the window values followed by rescaling. This particular example
doesn’t show the cross-channel computations (it show’s effectively the exact output if there
is a single input and output channel.), only a single term is computed.
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4.4.1 Avoiding artefacts

Note that in Figure 4.10, we used an example without padding the input. If we were to
pad the input, we would need to crop the extra pixels out of the output at the very last
step. Reflective padding is desirable in the coder because, if we do not use padding, the
rank-based decoder will generate artifacts along the edges of the reconstruction. This edge
artifact is caused by the difference in the number of terms that arise by using the overlap
& add technique (it has nothing to do with zero padding). Inside the region, we may get
checkerboard artifacts depending on the stride and window size, if any of the filter sides is
coprime with the stride in its own dimension[45]. To mitigate this, following the overlap
and add method, we average by the amount of overlap and scale by the maximum overlap.
A solution to remove edge effects is to pad the input enough at the coder and then crop
out at the decoder. Other solutions are possible. For example, in the U-net[32], a semantic
labeling net, padding can be avoided, and artifacts never seem to appear possibly for two of
the net characteristics. First convolutions following the deconvolution in the decoder permit
to output a smaller size image removing the need of using cropping. Secondly, the cropped
skip-connections between the coder blocks and decoder blocks also yield a smaller dimension
size to match the decoder block’s input. We do not use convolutions to reduce our output
size in the decoders. It is important to note that we found that using reflective padding in
the coder side was much better than zero padding for rank filters. Hence this configuration is
used by default.

So we need an overlap normalization to :

1. Avoid edge artifacts when we pad with values that have the same mean as the edge
locally. Zero-padding is a bad choice and reflection-padding is a good one.

2. Avoid inner periodical artefacts (checkerboard artefacts) whenever the filter’s stride is
coprime with it’s length.

Note that the only rank filter that is not affected by these two types of artifacts are filters
that have strides equal to the filter size. Obviously, since there is no overlap, we do not
normalize by the overlaps. The types of rank filters that have the same sides as the stride
include rank-pooling and max-pooling layers.

The scaling and overlap normalizing help only for the transposed rank filter because they
can’t code static locations (The P’s are almost always different.). Hence, the weights of
the transposed rank filter are always mixed in an output block. This will create an uneven
distribution of power across the different overlapping regions, thus generating a checkerboard
artifact. In the case of all-linear nets, the permutations are static (the weights always fall at
the same location), so even if the distribution of weights isn’t equally distributed, the net can
learn to adapt the power of these weights. Consequently, no checkerboard artifacts appear.
To illustrate this, I will give a simple 1D example where the window size is 2, and the overlap
is 1. In this example, we are minimizing the MSE. We try to estimate the output y3×1 with
the previous layer output x2×1. Note that the artifact here is an edge artifact. Hence, for the
linear case:







x1

x1 + x2

x2






= Ax = y3×1.
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We know that A =







1 0

1 1

0 1






. A is a tall matrix of rank-28 Hence the solution to the MSE

problem is:

A†Axopt = xopt = A†y3×1 =
1

3

[

2y1 + y2 − y3

−y1 + y2 + 2y3

]

.

If
y ∼ N

(

µy13×1, σ
2
yI3×3

)

,

then

w ∼ N
(

µy12×1,
σ2
y

3

[

2 −1
−1 2

])

.

The estimated output is:
Awopt = ŷ

Then

E (ŷ) = 2

3

[

1 2 1
]T

µy

The average output variance is given by:

V (ŷ) = 2

3
13×1σ

2
y .

The variance result above shows that indeed the power is equally distributed among its
indices. Now consider the rank filtering case. In this case, there are 4 outcomes for the matrix
A corresponding to the uncontrollable mixing of the permutations. Under the expected value,
the active transformation amounts to an average of all the outcomes: We know that

Ā =
1

4







1 0

1 1

0 1






+

1

4







0 1

2 0

0 1






+

1

4







1 0

0 2

1 0






+

1

4







0 1

1 1

1 0






=







1
2

1
1
2







[

1 1
]

.

Immediately we see that Ā is a rank-1 deficient matrix with a pseudoinverse of

Ā† =
1

6

[

1 2 1

1 2 1

]

.

Thus, we have an infinity of solutions provided that for both weights:

x
opt
1 = x

opt
2 = xopt =

1

2
(x1 + x2) =

1

6
(y1 + 2y2 + y3) .

The mean and variance of wopt are µ = 2
3
µy and σ2 = 1

6
σ2
y . It follows then that the estimated

output is:

ŷ = Āxopt =
[

1 2 1
]T

xopt.

8 Here the term “rank” is the dimension spanned by the matrix. It isn’t used in the sense of order statistics.
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Then

E (ŷ) = 2

3

[

1 2 1
]T

µy

The average output variance are not equally distributed as shown by:

V (ŷ) = 1

6

[

1 4 1
]T

σ2
y .

Let’s see what happens when we adjust the power, then the average transfer matrix is:

Āa = 13×2.

Yet again, this is a deficient matrix and a linear combination of the weights solves the problem:

w
opt
1 = w

opt
2 = (w1 + w2) =

1

3
(y1 + y2 + y3)

The mean and variance of wopt are µ = µy and σ2 = 1
3
σ2
y . The estimated output is

ŷa = Āawopt =
2

3
13×1wopt.

Finally, the mean and output variance are:

E (ŷ) = 2

3
13×1µy.

and

V (ŷ) = 4

9
13×1σy.

Thus by adjusting the power in this situation with the overlap, we set the output variance to
by identical for all locations. This simple example generalizes for any transposed filtering.
Since usually, the bias in the average is not a problem for learning (assumed to be 0), then
we are only left to address the bias of the power. To illustrate the necessity of the overlap
scaling, we included Figure 4.11.
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Figure 4.11: Shallow denoising rank transpose autoencoder without overlap scaling. The
output had a rank transpose with FoV=3× 3 with a stride ∆ = 2. Since 3 and 2 are coprime,
there is a checkerboard artifact.

4.4.2 Block channel slice sorting inverse

As we can see in the example in Figure 4.10, the permutations are saved so that they can be
reused later in the decoder. For stacked autoencoders, we also collect the permutations so
that the decoder block can use them to permute its weights accordingly, as in Figure 3.1.
Since it may be difficult to see what exactly is happening in Figure 4.10, we made a numerical
example in Figure 4.12 with a ReLU activation to clarify the transposed rank filter.

In Figures 4.10 and 4.12, we save indices in a tensor v that are later used to permute
values in reverse order. We will clarify how to get these indices. If we consider the example
in Figure 4.10, what happens is that we assign column-wise linear indexing associated with
each block. Hence we augment the input9 with respect to the blocks:







3 7 0

6 8 4

−2 0 1







Augmentation−−−−−−−−→











3 7 7 0

6 8 8 4

6 8 8 4

−2 0 0 1











.

Then we sort the blocks and log the transformation:

9 This is done in the GPU, so no actual augmentation is carried away. The augmentation is only done for
illustrative purposes.
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Figure 4.12: Deconvolutional rank filter numerical example.











3 7 7 0

6 8 8 4

6 8 8 4

−2 0 0 1





















3 7 0 7

6 8 4 8

−2 6 0 4

0 8 1 8











0→ 0 4→ 4 8→ 12 12→ 8

1→ 1 5→ 5 9→ 13 13→ 9

2→ 6 6→ 7 10→ 15 14→ 14

3→ 2 7→ 3 11→ 10 15→ 11

Sort block channel slice

.

At the bottom of the diagram lies the permutation change table where each entry a → b

means “Move index a to index b.”. The numbers on the right (the b’s) correspond to our
permutation indices stored in the matrix v in Figures 4.10 and 4.12. This corresponds to the
sorting operation s = P Tx. When we execute the block unranking operation, we replace the
elements from where they came from. Similarly, this corresponds to a matrix multiplication
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with P since Ps = x. Hence to sort we executed “move index a to index b”, and to unsort
we “move index b from where it came from” or a ← b. In our example Figure 4.10 the
permutations are given by:

0→ 0 4→ 4 12→ 8 8→ 12

1→ 1 5→ 5 13→ 9 9→ 13

6→ 2 7→ 6 15→ 10 14→ 14

2→ 3 3→ 7 10→ 11 11→ 15

≡

0→ 0 4→ 4 8→ 12 12→ 8

1→ 1 5→ 5 9→ 13 13→ 9

2→ 3 6→ 2 10→ 11 14→ 14

3→ 7 7→ 6 11→ 15 15→ 10

.

The target indices in the rhs of last equation are the inverse permutation indices π, in this
case:

π =

0 4 12 8

1 5 13 9

3 2 11 14

7 6 15 10

.

Up until this point, we’ve abused notation of Sort to mean an augmentation operation
followed by a block channel-slice sorting operation. The reverse operation will also be
abbreviated from now on and use the term Sort−1 to designate a block channel-slice un-
sorting operation followed by an overlap & add method (where the amount of overlap equals
to the rank filter stride) finishing with an adjustment of the output intensities. We compress
notation by labelling the rank filtering as rk = (Sort→ C) (see 4.8) and it’s transpose by
rkT =

(

CT → Sort−1
)

.

4.5 Transposed Rank+Linear Filters

These naturally exist and are implemented with transposed ranks and transposed linear
filters. In Figure 4.13, we present how the filters can be implemented with parallel paths.
This will be particularly useful to determine if rank weights feature maps can be combined
additively with linear feature maps. It was designed to see if the learned feature maps can be
helpful for the training process.

4.5. TRANSPOSED RANK+LINEAR FILTERS 47



CHAPTER 4. PROPOSED LAYERS

X

rkTFoV,∆,Pad,Chin→Chout
ConvTFoV,∆,Pad,Chin→Chout

+

Y

Figure 4.13: The splitting point selects channels for the transposed filters. In the junction
where there is a + symbol, the rank filters elements are added to the convolutional filters
additively.
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Chapter 5

Histogram Filters (amplitude space)

Histogram filters are closely related to rank-filters in the sense that both are a linear
combination of permuted input elements. This similarity and the fact that many algorithms
are based on histograms is what motivated the inclusion of this chapter within this thesis.

This chapter is simply a graphical framework perspective on histogram-based methods in
order to view them as potential architectures or inspiration for new layers for deep learning.
We are only systematically using algebra in order to show the similarities with convolutional
neural net architectures explicitly.

We implemented a forward pass algorithm for the amplitude space because ordered
data(ranks) are just un-binned data for histograms. They are very similar in implementation
and required some minor modifications of the rank filtering code. However, for the back-
propagation, the equations require more alterations for the GPU implementation.

We based the histogram filter kernel on the Dirac delta function (the most uncomplicated
option possible). As explained in Section 5.1, note that implementing a kernel with continuous
support to allow gradients to flow through the histogram filter weights node would complicate
the forward and gradient computation extensively.

The range of values of the ranks is data-dependent (meaning that they could, in theory,
span the whole real line). In contrast, a histogram bin range is amplitude dependent1 and
can be fixed. Another motivation is that local histogram statistics achieve crisper and more
appealing transformations [20]. Other histogram methods include histogram gradients (HOG).
Thus we will show how it can be viewed as a graphical model for a potential neural net
having a non-linear(histogram) filter.

5.1 HOG Pipeline Analysis

HOG features are generated from multiple operations. First, we need to compute two features
i.e., gradient in x and gradients in y. Then, we generate two non-linearities features since we
calculate the angle θ and the magnitude m of the gradient. Then, we use a transfer matrix

HT
#Bins×Area(θ)1Area×1 = h#Bins×1 (θ) , (5.1)

1 Ordered data may yield highly variable minima and maxima statistics and low variance highly predictable
centered values. If we bin these values, we move to the amplitude space, which is possibly less correlated
than the ranks.
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where h#Bins×1 (θ) is the histogram of θ. Since usually interpolation is used, the transfer
matrix HT (θ) will generally have more than one non-zero entry per column, and it obeys
HArea×#Bins(θ)1#Bins×1 = 1Area×1. The fact that the matrix H has argument θ means that
the matrix is non-linear with respect to θ and bin boundaries a1 < a2 < · · · < a#Bins+1. Note
that extreme values of the bin limits can be unbounded for example, it can divide the whole
real line a = [−∞, a2, . . . , a#Bins,∞]. Let us define a bin histogram made from a kernel K(x)
taking a real argument:

hist(a,θ, x) =
Area
∑

j=1

#Bins
∑

i=1

∫ ai+1

ai

K(t− θj) dt · δ [ai < x < ai+1] . (5.2)

If we define the indicator function vector to be δ#Bins×1(x) = [δ [ai < x < ai+1]]i∈[1:#Bins],
then if we instead of binning into the real line, we bin into a vector h#Bins×1 (θ) then

h#Bins×1 (θ) = ∇δ(x)hist(a,θ, x) =
Area
∑

j=1

∫ ai+1

ai

K(t− θj) dt; i ∈ [1 : #Bins] . (5.3)

By substituting in eq.5.1 we get :

HT
#Bins×Area(θ) =

[∫ ai+1

ai

K(t− θj) dt

]

i,j

for i ∈ [1,#Bins] and j ∈ [1, Area] . (5.4)

Then we apply the transformation matrix to m: z = HT
#Bins×Area(θ)mArea×1. The final

HOG feature is thus y = norm(z), where norm could be any normalization technique (for
example using ℓp, L2-Hys or L1-sqrt).

x

∆T
j x = gy

∆T
i x = gx

θ

m

H
T (θ)mA×1

φ#Bins×1

a

norm(φ) y

Linear layers Normalization layerNonlinear layers
Histogram
filtering

Figure 5.1: HOG pipeline analysis. The non-linearity after the non-linear filter is a vector
function as in Capsule net [33]. It is not an elementwise function such as the ReLU activation.

Doesn’t this pipeline look familiar? We have a linear layer followed by a non-linear
function, then a non-linear filter, after a normalization. If we lump the two non-linear
operations, we get the usual block commonly used in deep learning a linearity→ activation
→ normalization. Additionally, gradients can back-propagate through the pipeline except
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possibly through Hi,j(θ). To see when it can propagate through, let us compute the gradient
of a single element eq.5.4 with respect to θk:

∂

∂θk
H(j,i) = −δ[k = j]

∫ ai+1

ai

K ′(t− θj) dt = δ[k = j] (K(ai − θj)−K(ai+1 − θj)) . (5.5)

If the Kernel K is a Dirac delta function δ (x), then

∂

∂θj
H(j,i) = δ(ai − θj)− δ(ai+1 − θj) = 0; ai 6= θj ∀ (i, j) . (5.6)

Hence, the gradients will not propagate through H in the θ 6= a case, but they will explode
in the opposite case. However, that may not be a problem if the gradient gets multiplied
(during back-propagation) by a vanishing function at the singularities. Usually, HOG features
are computed using a boxcar kernel with equidistant bins; it may also be possible to use a
Gaussian kernel. These examples do yield a derivative by using eq.5.4. To let eq.5.4 produce
positive values on a range, and the Kernel can’t have discrete support on the real line. In
other words, it can’t contain any Dirac delta functions. It is always possible to back-propagate
through a HOG layer if it’s inside a neural net. Still, more research should be made on this
subject to show what would be the impact of having vanishing gradients for H.

Since histogram filter weights depend on bin limits a, it may also be possible to back-
propagate through and update the bin limits. If we compute the gradients of the histogram
filter with ak:

∂

∂ak
H(j,i) =

∂

∂ak

∫ ai+1

ai

K(t− θj) dt = δ[k = i+ 1]K(ai+1 − θj)− δ[k = i]K(ai − θj) . (5.7)

The above equation shows that to update the bin limits, we need the kernel to be bounded
and have continuous support. Note that the kernel functions may be different, and the
difference may even depend on the limits a in order, for example, the sum adds up to 1
between the bin range when we overlap and add the kernels. In this case, more complicated
derivatives will incur. The kernels may also depend on more parameters such as bandwidth,
for example.

5.2 Histogram Equalization Pipeline Analysis

In this special case, the bins are centered on the set of pixel values {0, . . . , B − 1}. Then, we
have assigned the equalization of a histogram to their corresponding pixel. Since we already
know how to compute a discrete histogram by using eq.5.3, we can easily compute the cdf of
xArea×1:

cdf(x) = LB×BhB×1 (x) , (5.8)

where L is a left triangular B ×B matrix where all of the lower diagonal terms (including
the diagonal) are 1. We stretch the cdf values in [0, B − 1] by using:

q(x) = (B − 1)
cdf − cdf [1]

Area− cdf [1]
, (5.9)
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where cdf [1] = min cdf . the ouput is:

y = Hq(x) . (5.10)

Note that usually, the equalized histogram q are rounded to integers, and so gradients
can’t be computed. We need to ignore the rounding operation to permit non-zero gradients.
For histogram equalization, the matrix H is made from the dirac Kernel; hence it should
have only a single “1” per row. This choice for K is inconvenient for gradient propagation.
The pipeline is equivalent to a non-linear filter (to compute histogram)→ a normalization
function→ the transposed non-linear filter of the first layer (permute back values to original
place).

When seen as a deep learning architecture, we see that the first layer is a coder structure
followed by code processing subsequently passed to a decoder. In order to fit the equalizer

xA×1 H(x)

a

Nonlinear filter (Encoder)

H
T (x)1

hB×1
Lh− h(1)1

Linear layer

z
(B − 1) z

z(B)

q
Hq yA×1

Normalization

& rescaling layer

Transposed

Histogram filter

(Decoder)

Figure 5.2: Histogram Equalization pipeline analysis. The non-linear filter is the encoder, but
the transformation is made on the 1 rather than the input x such as rank filters. Following
the encoder layer, there is a linear transformation to compute the cdf followed by a scaled
normalization. The normalised (equalized) histogram q is then passed to the decoder which
is the transposed histogram filter linked to the encoder.

into a neural net, we would have to use a Kernel with a continuous support on the real line.

5.3 Amplitude bank filters and link with ReLU activa-

tion

Implementing amplitude banks rectifiers needs us to define a histogram of say #Bins = B

bins bounded by a. We can set the output amplitude bank output to be:

Y:,:,(1:Chin)+(b−1)Chin,: = X:,:,:,: ◦ δ [ab < X:,:,:,: < ab+1] ; b ∈ [1, B] (5.11)

If we used the simplified vector notation as in equation 5.1, we get:

Y = HArea×B(x) ◦
(

xArea×11
T
1×B

)

(5.12)

This is not exactly a histogram, because, we would need to use the term δ [ab < X:,:,:,: < ab+1]
and sum-reduce in a dimension in order to get a count frequency as in eq.5.1. However if
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we do that, we will inevitably encounter problems since δ [ab < X:,:,:,: < ab+1] has vanishing
gradients and infinite gradients at some points2. To make it differentiable, we would need
to smooth it with a kernel K that is not a dirac function. However, we will not use this
approach. Instead, we use the differentiable version in Eq. 5.11. If backprop gradients are
related to the derivative of Y:,:,(1:Chin)+(b−1)Chin,: by X :

∂L
∂X

=
B
∑

b=1

∂L
∂Y:,:,(1:Chin)+(b−1)Chin,:

◦ δ [ab < X < ab+1] (5.13)

This function can be easily implemented by using ReLUs and unit step functions. Moreover,
we want to add that this has been explored when the bin boundaries are a = [y, 0,∞] for
the ReLU case and a = [−∞, 0,∞] in the equivalent3 Concatenated ReLU (CReLU) [37].
Note that the authors in [37] used the notation y = [[x]+, [−x]+], which yields all positive
values in contrast with our version y = [[x]+, [x]−]. This sign difference doesn’t matter since
the weights can learn the sign, and they usually have 0 mean. In the CReLU article [37],
the authors report that it is advantageous to use CReLU for multiple reasons. Among the
reasons is that there is no information loss compared to ReLU because the bins divide the
whole real line in the CReLU case.

In [37] (and also as in the ReLU case), a dot product follows the bank. Thus, the authors
effectively have implemented the following equation4:

y = 1
T
(

HArea×B(x) ◦
(

xArea×11
T
1×B

)

◦WArea×B

)

1. (5.14)

That being said, the weights are modulated by Histogram filters and thus the updates on W

depend on the histogram or distribution of x algebraically since:

∇Wy = HArea×B(x) ◦
(

xArea×11
T
1×B

)

. (5.15)

ReLU is linked to one of simplest5 histogram filters that has only a single bin.

2 The reason being is because H generated from the Kronecker delta function δ [ab < X:,:,:,: < ab+1] is
modelled from dirac delta Kernels.

3 The methods are equivalent if the output of the CReLU is followed by a dot product where the weights
are permitted to be negative.

4 In convolutional neural nets, the Area would correspond to the patch volume or the area times the input
channels. In the ReLU case B = 1, and in the CReLU case B = 2.

5 “Simplest” because the histogram transformation is based on delta functions, and so has vanishing
gradients (except at bin locations).
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Chapter 6

Experiments & Methodology

6.1 Introduction

The primitives for the novel functions are all implemented using CUDA with MATLAB’s
mexcuda compiler. We do not use MATLAB’s inbuilt neural net library but have imple-
mented it using cuDNN. We’ve built a library from scratch to precisely know how layers are
implemented and control all aspects that we wish to investigate, particularly for the training
algorithm.

6.1.1 Cyclic Learning Rate Algorithm

The hyper-parameters for Stochastic Gradient Descent (SGD) are no longer considered
black-magic guessing. In the articles presenting the Cyclic Learning Rate (CLR) [41], [40]
algorithms, the authors find a range of optimal learning rates that permit to obtain state-
of-the-art performance using only SGD with costless periodic updates of hyper-parameters
(mom and µ). We use this technique to train our nets unless otherwise stated. The Learning
rate µ ∈ [µopt;µmax], as seen in Figure 6.1. Additionally, we use a cyclical momentum range
mom ∈ [0.85; 0.95] with an opposite phase to that of the learning rate’s. When µ is a
minimum, mom is 0.95, and when µ is minimal mom=0.85. Only the learning rate range
(and not the momentum) is determined via a preliminary test where the LR is incremented,
during training, from 0 to a large number. We plot the loss function with respect to the
learning rate. The learning rate is an approximate range where the loss converged quickest
as shown in Figure 6.2.
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Figure 6.1: Cyclic Learning Rate technique. The learning rate varies with respect to the
number of epochs. In this case, the learning rate follows a triangular wave. The lowest LR is
µopt, and the highest is µmax.

Figure 6.2: Cyclic Learning Rate initialization. The learning rate is initially set to a ramp
that grows linearly from 0. It is stopped when the Loss function diverges. The optimal range
to set the Learning rate amplitudes are given by the limits in blue. The first zone on the left
has very slow learning.
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6.1.2 Datasets & Other Experiment Setup

Depending on the experiment, we use various datasets for training, for example, MNIST,
SVHN, and CIFAR-10. . The other methodology specifics, for example, the mini-batch size,
the noise type, the loss function, and the specifics of the architecture, please refer to the
experiment themselves as they are highly variable i.e., go to section 6.2 and Chapter 6. The
architectures are highly variable for an excellent reason. Since the layers tested are new,
we need to find the architecture that works with it. We use a hands-on approach for the
architecture design because we need to test as many different types of architectures possible
that would optimally work with the proposed rank filters. Our baselines architectures are the
ones where we replace rank layers with the linear convolution layer unless otherwise stated.

We will refrain in bloating the experiments with unnecessary graphics unless otherwise
stated for training or generalization purposes. It is better to make comparative tables of
multiple experiments than a confusing profusion of graphics of lesser experiments. We opt
for many experiments so that we can see patterns in architectures that are helpful to fulfill
the main objective, i.e., to understand how rank filters behave.

6.1.3 Batch Normalization Initialization

We initialize our Batch normalization layer scales sampled from a uniform distribution γ ∼ U
and the biases are set to 0. We found that initializing the bias to small random numbers had
a small1 positive effect for the linear convolution layer, however, it was very detrimental for
rank-based autoencoders especially in decoders2. We tried different initializations i.e.:

1. Small random bias with γ = 1

2. Small random bias with γ ∼ U(0, 1)

3. Small random bias with γ = γ1/2 + γ2/2; (γ1,γ2) ∼ U(0, 1)

4. Bias b = 0 with γ = U(0, 1)

5. Small random bias with γ ∼ U(0, 1)

The best option was the fourth. The initialization of BN had a positive effect on the values
for the CLR test. The LR range wasn’t the same for different initializations of the scale.

In decoders, we place BN explicitly after the ReLU layers. Since in preliminary exper-
iments, BN best location depends on the problem’s nature, we thus somewhat disapprove
of observations3 discussed in [3]. We found consistently that BN is best located before the
ReLU layer in a coder, and after the ReLU layer in the decoder. We could exchange the

1 This positive effect occurred when we used blocks that ended in Batch normalization. It exhibited a
better score at the beginning. Still, when the net converged no difference could be noted from a net that
used non-zero initial bias (which is reasonable because the bias is allowed to grow).

2 We found that when we removed the biases altogether, we had better results than when we didn’t. This
effect didn’t depend on the number of decoder blocks. The results only depended if BN was the last layer
within a decoder block having a transposed rank filter.

3 If Batch normalization biases are initialized to small random values, then we can get problems especially
in decoders that use transpose rank filters.
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activation and normalization only(as recommended in [3]) if the bias was set to be 0 in the
normalization and filtering layer.

6.1.4 Filters Initialization

We use an initialization to set σ =
√

1
din

when using the Tanh activation with the BN

initialization using γ ∼ U(0, 1) for transposed filters. An exception to this rule applies
when a skipped connection is present in which case we use the normal initialization of He

(Kaiming)[18] with σ =
√

2
din

. Additionally, note that the weights are chosen to be orthogonal,

hence we generate them using the single value decomposition from a random matrix Rdin×dout .
The orthogonal initialization of weights consistently yields better training speeds, much better
than when sample from a gaussian distribution.

The input receptive field size is named din and the output receptive field is dout (named
fanout in [25]).

In the case of convolutions we use always He (Kaiming)[18] initialization with zero bias.

6.1.5 Notation

6.1.5.1 Convolutional layers

For the convolutional layer we use the notation of CFoV,↓∆,Pad,Cin→Cout
to designate a

convolution with square filters than span into the whole input channel depth, i.e. W ∈
RFoV×FoV×Cin×Cout

. ∆ is the stride the filter takes (or the downsampling rate) and Pad is the
zero-padding added to one side of the image boarder. Moreover, we also have the general case
Cwwin×hwin,↓(∆W ,∆H),(PadW,PadH),Cin→Cout

for general window size filters strides and padding.
We will not distinguish between reflective and zero padding in this case. Zero-padding is
used in linear convolutions unless it is an integral component of a rank filter, where reflective-
padding is used. We will explicitly mention whenever the linear convolution uses reflective
padding.

6.1.5.2 Transposed Convolutional layers

The convolutional transpose is annotated in a similar manner CT
FoV,↑∆,UnPad,Cout→Cin

, here
the signal is upsampled by a factor of ∆, we crop the edges of an image by a length of Unpad

pixels.

6.1.5.3 Rank filter layers

For the convolutional layer we use the notation of rkFoV,↓∆,Pad,Cin→Cout
and the general

case rkwwin×hwin,↓(∆W ,∆H),(PadW,PadH),Cin→Cout
to designate a rank convolutions. Note that

in the case of rank filtering, the padding is done by padding the input with reflections of

itself for example, we have x1×5 =
(

1 2 3 4 5
)

, then a left and right padding will be

x
pad

1×(5+4) =
(

2 1 1 2 3 4 5 5 4
)

. The reason why we chose reflective padding is that
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for rank filters it makes more sense to compare with local order statistics around edges instead
of the mean. Empirically this decision showed the best results.

6.1.5.4 Transposed Convolutional layers

The rank transpose is annotated with rkT
FoV,↑∆,UnPad,Cout→Cin

, here the signal is upsampled
by a factor of ∆, we crop the edges of an image by a length of Unpad pixels. It is important
to note that this layer needs another input, i.e. the coder’s permutation indices.

6.1.5.5 Joint Linear-Rank Filters

The joint Linear-Rank filter is annotated with JFoV,↑∆,UnPad,Cout→Cin
.

6.2 Denoising Autoencoders Experiments

6.2.1 Experiment 1: Using rank filters, find which coder-decoder
pair is best to reduce image corruption with a wide gaussian
noise for shallow autoencoder.

We will start by testing the properties of rank filters in a pure single-layer coder and single-layer
decoder.

6.2.1.1 Methodology

The database used is SVHN. We include the case where the coder has no activations because
the rank filter is non-linear itself. We will study the interactions when BN is placed after
activation in the coder. We will also include the interactions of ReLU with different activation
functions to determine which one yields the best performance. We test the architectures
under the ℓ2 pixel-wise error and compare them with the all-linear counterpart. We conduct
the tests where images are to be denoised, given that the pixels of the input have a probability
of having each channel value being corrupted by 50% with Gaussian noise N (µ = 0, σ = 2).
We should only see uncorrupted pixels with a chance of 1− p3 = 1− 1

23
= 87.5%. We chose

this type of noise because it is very light. It is ideal for a small network, and we also want to
generate images to show qualitative results.

The mini-batch size is set to 512. This large mini-batch size was chosen because the CLR
method works best for large Batch sizes. The total number of batches used for training the
baseline linear net is 64 epochs. The number of epochs for all other nets is 324. We use a
large mini-batch size because in [41] it is recommended to use the largest possible. We use a
cycle period of 8 epochs.

We test the Leaky ReLU activation to see what could be the amount of linearity required
to train the network. The LReLU net is tested in the fourth row of Table 6.1. The LReLU
“a” parameter was left to grow large. The only constraint used was |a| < 1. We just used
Leaky-ReLU’s parameter as a pressure gauge to measure optimal linearity. At the end of the

4 Usually they converged at 16 epochs, as opposed to deeper nets.
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training, “a” was larger for the coder than the decoder (though that might have changed later
on). This suggests that a more linear activation may be needed in the coder compared to the
second. Either way, the Leaky ReLU was worse than the ReLU method. Because of this,
we explored the possibility of using Tanh as a further experiment in the table.The fact that
there was an asymmetry in a’s might suggest that we could get even better results if we used
different activations in the coder and the decoder. This activation choice difference within an
autoencoder will be investigated further in later tests in experiment 3. Additionally, while at
it, we added more models to test that used alternate activations.

All coder and decoder blocks tested have a large receptive field of 4 × 4 × Cin, and no
downsampling is performed. We use a relatively large(32) output channel for the coder.

Our initial plan was to use only the ReLU activation. However, we discovered that
when we initialized the bias of BN, the ReLU nets were significantly affected except for all
linear ones. The Tanh activation served as an alternative that worked better than ReLU
when BN biases were initialized, and because LReLU indicated some linearity (which Tanh
approximately has when it’s argument is small.).

We use a simple labels to designate the 2 layers after the filtering. The two last layers can
be either “B” for BN, “R” for ReLU, “L” for Leaky-ReLU and “T” for Tanh. For example
the coder block C4,↓1,3,3→32→BN→ReLU is equivalent to C4,↓1,3,3→32→BR

6.2.1.2 Experiment results & Discussion

In Table 6.1, we trained 13 different denoising autoencoders. The best one was the one has
the following architecture:

rk4,↓1,3,3→32→BN→Tanh→CT
4,↑1,3,32→3→ReLU→BN.

So indeed alternating between activations may be beneficial. We suspect that Tanh may
have helped in attenuating high corruption values (unrealistically unbounded in this case).
Therefore, in this particular scenario, Tanh may have had an advantage over ReLU. This
advantage is why, in subsequent experiments, we will use possible values for an image. The
three best nets were the ones that finished with a convolution decoder. This observation may
be because we used a large FoV filter with a high overlap.

To compare the best result with it’s all-linear counterpart, we convert the shallow
autoencoder rank layer of rk4,↓1,3,3→32→BT→CT

4,↑1,3,32→3→RB to a linear one to directly
compare the methods. The new one is C4,↓1,3,3→32→ BT → CT

4,↑1,3,32→3→ RB and the
comparison is in Table 6.2. It suggests that the rank layer is better than the linear one in the
experiment setup.
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Autoencoder and it’s corresponding coder-decoder pair with learning rate range of CLR and
results (ℓ2).

Id Coder Decoder µopt µmax ℓ2 Fig.

1 C4,↓1,3,3→32→BR CT
4,↑1,3,32→3→RB 1·10−7 1·10−4 .0738 6.3c

2 rk4,↓1,3,3→32→BR rkT
4,↑1,3,32→3→RB 3·10−7 1·10−4 .0420 6.3d

3 rk4,↓1,3,3→32→RB rkT
4,↑1,3,32→3→RB 6·10−7 8·10−6 .0502 6.3e

4 rk4,↓1,3,3→32→BL rkT
4,↑1,3,32→3→LB 3·10−7 10−5 .0496 6.3f

5 rk4,↓1,3,3→32→B rkT
4,↑1,3,32→3→B 5·10−8 10−6 .0774 6.3g

6 rk4,↓1,3,3→32→BT rkT
4,↑1,3,32→3→TB 2·10−8 10−6 .0463 6.3h

7 rk4,↓1,3,3→32→BT rkT
4,↑1,3,32→3→RB 2·10−8 10−6 .0422 6.3i

8 rk4,↓1,3,3→32→BT CT
4,↑1,3,32→3→RB 2·10−8 10−6 .0310 6.3j

9 rk4,↓1,3,3→32→BT CT
4,↑1,3,32→3→TB 2·10−8 10−6 .0342 6.3k

10 rk4,↓1,3,3→32→BT CT
4,↑1,3,32→3 8·10−6 1.5·10−5 .0373 6.3l

11 rk4,↓1,3,3→32→BT rkT
4,↑1,3,32→3 4·10−8 1.2·10−7 .0657 6.3m

12 rk4,↓1,3,3→32→BR CT
4,↑1,3,32→3 10−6 10−5 .0393 6.3n

13 rk4,↓1,3,3→32→BR rkT
4,↑1,3,32→3 2·10−7 1.2·10−6 .0577 6.3o

14 rk4,↓1,3,3→32 rkT
4,↑1,3,32→3 3·10−7 2·10−6 .0768 6.3p

Table 6.1: Experiment 1 results

Best coder-decoder pair compared to it’s linear counterpart and learning rate range of CLR
and ℓ2 costs.

Id Coder Decoder µopt µmax ℓ2 Fig.

8 rk4,↓1,3,3→32→BT CT
4,↑1,3,32→3→RB 2·10−8 10−6 .0310 6.3j

- C4,↓1,3,3→32→BT CT
4,↑1,3,32→3→RB 2·10−6 10−5 .0765

Table 6.2: Comparing best result of experiment 1 with its linear counterpart.
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(a) Corrupted image (b) Target image (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6.3: Denoising net qualitative results for experiments 1 in Table 6.1.
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6.2.2 Experiment 2: Using rank filters, find which coder-decoder
pair is best to reduce gaussian mixture corruption for an
autoencoder of total depth of 4.

6.2.2.1 Methodology

In experiment 6.2.1, we investigated the shallowest possible autoencoder. Since it has a coder
and a decoder, we say it has a total depth of 2. Since in this experiment, we look at the
next largest autoencoder, it necessarily implies that we will use two coders and two decoders
summing to a total of 4 layers. We will see what the general trend that happens when we
increase the depth of autoencoders is.

6.2.2.2 Methodology

The CIFAR-10 database is used in this case. At each epoch, we estimate the test set loss with
only a single batch of 256 randomly picked from the test set. The images pixel channels have
a 1/3 probability of being corrupted by a Gaussian mixture noise that has three modes. One
of the means of the gaussian spikes is located at 0. The other two are located at two-thirds
of the minimum and maximum possible pixel value. The standard deviation of the peaks is
1/20, and the three noise modes occur at the same rate. This means that chance of seeing a

pixel with all RGB channels uncorrupted is of
(

1− 1
3

)3 ≈ 29.6%. We chose this noise because
it is a moderate type of noise suitable for depth four networks. Other types of noise yield the
same conclusions; however, for display purposes, we chose a moderate one. Very aggressive
types of noise didn’t produce “nice” pictures. We chose a mild kind of noise simply because
the reader can see and judge by himself the preservation of the fine-structure capacities for
tested architectures in Figures 6.4 and 6.5. Note that the noise saturates at possible values
corresponding to the pixel amplitude range of [0; 255], therefore the noise is clipped at the
minimum and maximal values for a normalized image. A total of 64 epochs are used for
training.

To emulate a skip connection with an average pooling all the weights are added 1/FoV
if the weight channel input index equals its output channel index. That initialization will
quickly be forgotten once the net is converged. This initialization is applied only to all coders
including linear and rank types. In the following subsections, I will list ten architectures used
for image reconstruction under the ℓ1 and ℓ2 loss. Then, you will see the CLR search test
results of the experiment in Table 6.3 for both losses.

6.2.2.3 The linear convolution autoencoder architecture.

The coder architecture is formed of two convolutional blocks as follows:

(C4,↓2,3,3→16→BN→ReLU)→(C2,↓1,1,16→16→BN→ReLU) .

The decoder is formed of two blocks:

(

CT
2,↑1,1,16→16→ReLU→BN

)

→
(

CT
4,↑2,3,16→3→ReLU→BN

)

.
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6.2.2.4 The rank autoencoder with ReLU architecture.

The coder architecture is formed of blocks as follows:

(rk4,↓2,3,3→16→BN→ReLU)→(rk2,↓1,1,16→16→BN→ReLU) .

The decoder is formed of two blocks:

(

rkT
2,↑1,1,16→16→ReLU→BN

)

→
(

rkT
4,↑2,3,16→3→ReLU→BN

)

.

6.2.2.5 The rank autoencoder without ReLU (BN only).

The coder architecture is formed of blocks as follows:

(rk4,↓2,3,3→16→BN)→(rk2,↓1,1,16→16→BN) .

The decoder is formed of two blocks:

(

rkT
2,↑1,1,16→16→BN

)

→
(

rkT
4,↑2,3,16→3→BN

)

.

6.2.2.6 The rank autoencoder with Tanh activation.

The coder architecture is formed with the following blocks:

(rk4,↓2,3,3→16→BN→Tanh)→(rk2,↓1,1,16→16→BN→Tanh) .

The decoder is formed of two blocks:

(

rkT
2,↑1,1,16→16→Tanh→BN

)

→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

.

6.2.2.7 The double shallow rank autoencoder with Tanh activation.

The overall architecture is formed with two shallow autoencoders connected sequentially:
The first is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

The second code consists of:

(rk2,↓1,1,16→16→BN→Tanh)→
(

rkT
2,↑1,1,16→16→Tanh→BN

)

.
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6.2.2.8 The shallow rank autoencoder with Tanh activation with ↓ 2.

The overall architecture is exactly the first shallow autoencoder used in the previous section :

(rk4,↓2,3,3→16→Tanh→BN)→
(

rkT
4,↑2,3,16→3→BN→Tanh

)

6.2.2.9 The shallow rank autoencoder with Tanh activation with FoV=2× 2.

The overall architecture is exactly the second block of the double shallow rank autoencoder :

(rk2,↓1,1,3→16→Tanh→BN)→
(

rkT
2,↑1,1,16→3→BN→Tanh

)

6.2.2.10 The double shallow linear autoencoder.

This is the linear version of the rank double shallow autoencoder. The overall architecture is
formed with two shallow linear autoencoders connected sequentially: The first is:

(C4,↓2,3,3→16→BN→ReLU)→
(

CT
4,↑2,3,16→3→ReLU→BN

)

And the second is:

(C2,↓1,1,16→16→BN→ReLU)→
(

CT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.2.11 Autoencoder with Rank outer layers and Tanh activation in linear
layers.

The net is similar to the baseline linear autoencoder on the experiment list(the first autoen-
coder architecture presented in this section). The difference is that we replace the outer
layers with rank layers, and we left the inner ones intact. The coder is:

(rk4,↓2,3,3→16→BN→Tanh)→(C2,↓1,1,16→16→BN→Tanh) .

The decoder is formed of two blocks:
(

CT
2,↑1,1,16→16→Tanh→BN

)

→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

.

6.2.2.12 Autoencoder with Rank inner layers and Tanh activation in linear
layers.

The net is similar to the baseline autoencoder except that this time we replaced the inner
layers with rank ones. The coder is:

(C4,↓2,3,3→16→BN→Tanh)→(rk2,↓1,1,16→16→BN→Tanh) .

The decoder is formed of two blocks:
(

rkT
2,↑1,1,16→16→Tanh→BN

)

→
(

CT
4,↑2,3,16→3→Tanh→BN

)

.

6.2.2.13 CLR range search test.
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Learning rate range µ ∈ [µopt;µmax].

Architecture name µopt|ℓ1 µmax|ℓ1 µopt|ℓ2 µmax|ℓ2
Linear of depth 4 1.6·10−6 4·10−5 10−6 4·10−5

Rank ReLU of depth 4 3·10−6 6·10−5 10−6 5·10−5

Rank BN only of depth 4 10−6 10−5 10−6 3·10−6

Rank Tanh of depth 4 1.6·10−6 3·10−5 1.4·10−6 3·10−5

Double shallow Rank Tanh 2·10−6 2·10−5 2·10−6 2·10−5

Shallow Rank Tanh with ↓ 2 1.6·10−6 4·10−5 10−7 2·5·10−6

Shallow Rank Tanh with FoV=2 2·10−6 6·10−6 2·10−6 2·10−5

Double shallow Linear 1·10−6 2·10−5 2·10−6 2·10−4

Autoencoder with Rank outer layers 1.6·10−6 4·10−5 2·10−6 5·10−5

Autoencoder with inner Rank layer all Tanh 2·10−6 5·10−5 2·10−6 5·10−5

Table 6.3: LR search test results for the interactions of rank with linear layers in autoencoders
given that the cost function is either the ℓ1 or ℓ2 cost. When the µmax was conducted under
the ℓ2 cost, the ones that yielded the highest learning rate have shown a relatively small
plateau and a rapid decrease of performance when µ > 2× µmax. The plateau was very large
under the ℓ1 cost and difficult to pinpoint from what value of µ it started. On this plateau
there was no clear minimum while on the ℓ2 cost a minima could sometimes be observed.

6.2.2.14 Experiment results.

Quantitative results for experiment 2.
Id Architecture name ℓ1 ℓ2 ℓ1 Figure ℓ2 Figure

1 Linear of depth 4 0.164 0.0586 6.4f 6.4b

2 Rank ReLU of depth 4 0.173 .0811 6.4g 6.4c

3 Rank BN only of depth 4 0.176 0.0917 6.4h 6.4d

4 Rank Tanh of depth 4 0.168 0.0784 6.4m 6.4i

5 Double shallow Rank Tanh 0.146 0.0447 6.4n 6.4j

6 Shallow Rank Tanh with ↓ 2 0.181 0.0903 6.4o 6.4k

7 Shallow Rank Tanh with FoV=2 0.166 0.0658 6.4p 6.4l

8 Double shallow Linear 0.188 0.0797 6.5d 6.5a

9 Autoencoder with Rank outer layers Tanh 0.168 0.0983 6.5e 6.5b

10 Autoencoder with Rank inner layers Tanh 0.178 0.0591 6.5f 6.5c

Table 6.4: Quantitative results for the rank autoencoder depth test. Remarquably, the best
method is the double shallow rank autoencoder. It beats the linear method by a significant
margin. If we separate the best method shallow autoencoders, we get the nets of the two rows
below the best one in the table. Neither one of them beat the linear autoencoder, but put
together they do. It is curious to see that the double shallow linear codec does not beat the
deep linear autoencoder, that is the opposite behaviour for the rank filter where the double
shallow one beat the full one by a large margin.
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The results in Table 6.4 show that the Rank autoencoders of depth 4 using the ReLU
activation had similar results compared to the one that used the Tanh activation. We
only tested the double shallow net with the Tanh activation under the bias that the ReLU
activation might be problematic for three possible reasons :

1. ReLU placed shortly after the ranking operation waters down the potential of the rank
filter. ReLU after a unranking or transposed rank filter is fine.

2. The rank filter is already a non-linear function so activating it isn’t as crucial compared
to the all linear convolution.

3. It might not attenuate large values enough.

We shall test this in experiment 3 in Section 6.2.3.
If we compare the two double shallow autoencoders, we notice that the rank one is much

better than the linear. Thus, we can confidently assert that rank filters are better to be under
the form of shallow autoencoders. But maybe the linear nets are good at generating data,
versus the rank filters that could be just better at replacing data(losing bad data in this
case). The fact that the double rank filter has a worse performance compared to the double
shallow rank net may be evidence for Hypothesis 3 where we mentioned that rank filters work
best as shallow filters. A clear advantage of this architecture is that we can design it is that
we can design them to use less weights than linear coders. For example in this experiment,
the total number of weights of the depth 4 Linear net is of 2·(3·16·4·4 + 16·16·2·2) = 3584,
compared to 2·(3·16·4·4 + 3·16·2·2) = 1920. Furthermore, the use of shallow rank codecs
has outstanding potential in a skip-connections since they can “clean” the input on the way
and refining the output without loosing too much initial information. Additionally, we saw
that the shallow rank codecs could be placed in the center of a larger linear filter autoencoder
without any clear advantage over the all linear net.

Looking at Figures 6.4f with 6.4n we can see that the double shallow rank autoencoder
reconstructs differently from the linear net. The linear net appears smoother, and the rank-net
reconstruction appears crisper.

Note that the autoencoder of depth four that had two rank middle layers was slightly worse
than the linear one. Additionally, the codec that had outer rank layers wasn’t particularly
useful. This observation may suggest that deep rank features or deep linear features from
rank ones aren’t particularly useful, but that a shallow rank autoencoder can be dealt with
by an outer linear net. We also noticed that the rank filters generally performed better
under the ℓ2 cost function compared to the ℓ1 cost. This is probably because the ℓ2 penalizes
more large errors and leading to a back-propagation of derivatives through values that were
classed as outlying ranks. However, the smaller errors in the ℓ1 cost function weren’t as easily
transmitted through by backprop since they came from ambiguous ranks (because ranks are
highly correlated).
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(a) Corrupted Image (b) ℓ2 output of linear
autoencoder of depth
4 with ReLU.

(c) ℓ2 output of rank
autoencoder of depth
4 with ReLU.

(d) ℓ2 output of au-
toencoder of rank with
BN only of depth 4.

(e) Target Image (f) ℓ1 output of linear
autoencoder of depth
4 with ReLU.

(g) ℓ1 output of rank
autoencoder of depth
4 with ReLU.

(h) ℓ1 output of au-
toencoder of rank with
BN only of depth 4.

(i) ℓ2 output of the
rank tanh autoencoder
of depth 4.

(j) ℓ2 output of the
double shallow rank
net with tanh.

(k) ℓ2 output of shal-
low rank with tanh
and ↓ 2.

(l) ℓ2 output of the
shallow rank with tanh
and a Fov=2.

(m) ℓ1 output of the
rank tanh autoencoder
of depth 4.

(n) ℓ1 output of double
shallow rank net with
tanh.

(o) ℓ1 output of shallow
rank with tanh and ↓
2.

(p) ℓ1 output of the
shallow rank with tanh
and a FoV=2.

Figure 6.4: Denoising net qualitative results (part 1)
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(a) ℓ2 Double shallow
Linear

(b) ℓ2 output of au-
toencoder with rank
outer layers with all ac-
tivations=tanh.

(c) ℓ2 output of autoen-
coder with rank inner
layers with all activa-
tions=Tanh.

(d) ℓ1 output of double
shallow Linear net.

(e) ℓ1 output of autoen-
coder with rank outer
layers with all activa-
tions=tanh.

(f) ℓ1 output of autoen-
coder with rank inner
layers with all activa-
tions=tanh.

Figure 6.5: Denoising net qualitative results (part 2)
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6.2.3 Experiment 3: Search an improved architecture inspired
from the best combinations in experiment 1 and 2.

This experiment aims to search an “improved” architecture in the sense that we continue the
search for architectures that yield better image reconstruction results directly inspired by
designs that best performed in the previous experiment.

6.2.3.1 Methodology

We will use the CIFAR-10 dataset with the same setup as in Section 6.2.2 except that this
time, we use a mini-batch size of 512, and we initialize weights to simulate average pooling
skip-connection fully. This simulation is forced onto the weights by using the following
initialization:

Wi,j,ki,ko =

{

1
FoV

ki = ko

0 ki 6= ko
; (ki, ko) < min (Cin, Cout) (6.1)

This initialization is applied only to all coders, including linear and rank types, and permitted
us to use higher learning rates. A notable example is for the “Double Codec 2,” where we
found that µmax = 10−5 without the initialization and much slower convergence to a high
value. In contrast, with the initialization, we could obtain µmax = 3·10−4, faster convergence,
and a much better final performance. However, we noticed in subsequent experiments that
it was better to add the average pooling weights to the random initialization. The mean of
the weights is around the average pooling initialization, like in experiment 2 in Section 6.2.2.
This convergence was found after the investigation was conducted(the difference between
both methods isn’t huge). A reason for this may be because we set off-diagonal weights to 0
if (ki, ko) < min (Cin, Cout) resulting weights that have a variance too small compared to the
rest resulting in slower convergence. We did consider the initialization of parts of the weights
to max-pooling but with worse results. This is probably because the max-pooling weights
are much larger than the weights, thus taking much longer to train by possibly putting the
Tanh activation into the dead-gradient zone. Maybe biasing the weights with max-pooling
fares better in other architectures.

In experiment 1, recall that we used the Leaky ReLU parameter as a linearity measure
gauge. We found that the coder got a lower a than the decoder, this might suggest that the
decoder activation should be better off as a ReLU and the first activation something linear
like (at least close to 0) for example the Tanh function. Hence in our tested architectures, we
are going to alternate between ReLU and Tanh in the decoder.

In experiment 1, we used high resolution, FoV, and capacity shallow decoders. In
this experiment, we are going to use a low-resolution, low-capacity, and high-FoV shallow
autoencoder for the first block. Then, following the first block, we have a high-resolution,
low-capacity, and low FoV block. We will test on a lot of different architectures, and we will
sort them concerning their ℓ2 score to see which layer combination is best. We will also look
at the images generated to give us a good intuition on why some nets are better than others.
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6.2.3.2 Double Codec 1

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

rkT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.3 Double Codec 2

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→ReLU→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

rkT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.4 Double Codec 3

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

rkT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.5 Double Codec 4

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→ReLU→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

rkT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.6 Double Codec 5

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→ReLU→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

rkT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.7 Double Codec 6

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→ReLU→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.8 Double Codec 7

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→ReLU→BN

)

→
(C2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→ReLU→BN

)

.
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6.2.3.9 Double Codec 8

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→ReLU→BN

)

→
(C2,↓1,1,16→16→BN→ReLU)→

(

CT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.10 Double Codec 9

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→ReLU→BN

)

→
(C2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→ReLU→BN

)

.

6.2.3.11 Double Codec 10

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.12 Double Codec 11

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→Tanh→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.13 Double Codec 12

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

→
(C2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.14 Double Codec 13

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

CT
4,↑2,3,16→3→Tanh→BN

)

→
(C2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→Tanh→BN

)

.

6.2.3.15 Double Codec 14

The net is:

(rk4,↓2,3,3→16→BN→Tanh)→
(

rkT
4,↑2,3,16→3→Tanh→BN

)

→
(rk2,↓1,1,16→16→BN→Tanh)→

(

CT
2,↑1,1,16→16→ReLU→BN

)

.
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6.2.3.16 Experiment results.

We will use a simple code to name the codec’s blocks in Tables 6.5 and 6.6 because this way
we can easily keep track of the architecture without giving them proper naming. A coder or
decoder is labelled with three symbols [aBC]. Each symbol corresponds to it’s component
layers labelled in order. The first one is a small caption letter either “c” or “r” for linear
convolution and rank filtering respectively and it will have the transpose subscript “T” to
label if it belongs to a decoder. The second symbol corresponds to the subsequent layer and
it could be “B” for BN, “R” for ReLU, and “T” for Tanh.

Quantitative ℓ2 performance results for double codecs with their CLR test range and the
figure output references.

Id Codec layer labels µopt µmax ℓ2 Figure

1 rBT |rTTB|rBT |rTTB 1·10−6 2·10−5 .0459 6.6a

2 rBT |rTRB|rBT |rTRB 1·10−6 3·10−4 .0464 6.6b

3 rBT |rTTB|rBT |rTRB 1·10−6 5·10−5 .0468 6.6c

4 rBT |rTRB|rBT |rTTB 1·10−6 4·10−5 .0452 6.6d

5 rBT |cTRB|rBT |rTRB 1·10−6 6·10−4 .0706 6.6e

6 rBT |cTRB|rBT |cTRB 1·10−6 4·10−4 .0757 6.6f

7 rBT |cTRB|cBT |cTRB 2·10−6 4·10−4 .0739 6.6g

8 rBT |cTRB|cBR|cTRB 2·10−6 4·10−4 .0737 6.6h

9 rBT |rTRB|cBT |cTRB 5·10−6 4·10−4 .0444 6.6i

10 rBT |rTTB|rBT |cTTB 1·10−6 1.5·10−4 .0451 6.6j

11 rBT |cTTB|rBT |cTTB 2·10−7 2·10−5 .0749 6.6k

12 rBT |rTRB|cBT |cTTB 1·10−6 4·10−5 .0456 6.6l

13 rBT |cTTB|cBT |cTTB 1·10−6 7·10−5 .0784 6.6m

14 rBT |rTTB|rBT |cTRB 1·10−6 4·10−5 .0462 6.6n

Table 6.5: Quantitative results for the double shallow codecs.

Note that whenever the final layer was a Tanh activation, it was difficult to pinpoint
µmax. The test curve was atypical, showing sudden large spikes for the train set score and
even more extensive and earlier for the test score. If we ignored the spikes, there was a broad
plateau with a slight declination(useful usually if there is no sudden drop in performance).
Typical test scores do not have large spikes, although, in the CLR articles [42][41], authors
test their method with ReLU activations only. If we use a learning rate corresponding to
the lowest point before definite divergence, we get disproportionate regularisation at high µ

values during training, and the net doesn’t recover from it. Conversely, if we pick the lowest
(best) ℓ2 point before the first spike, we get a much slower convergence5.

If we reorder the rows from the best score to worse, we get Table 6.6. It should help
in seeing what could be the common denominator between the best methods. We indeed

5 Ironically, there is still somewhat of a guessing game going on for the CLR test, but this technique
requires some trials and is a much better alternative than pure guessing. Thanks to this technique, we were
able to save time and perform many experiments.
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observe that activation types are somewhat essential, and they can potentially be different
depending on where they are located. In general, it seems that the best activation is Tanh
for rank-blocks. We also found nets with ReLU activations at the very end of an all-rank
chain were slightly less performant. However, the exact opposite is found for the linear layers.
We, unfortunately, had to rerun this experiment because rank decoders were sensitive to bias
initialization. The training was terrible for these and, we found that initializing the bias
to 0 helped (although this initialization lowered the score slightly for the linear ones and
Tanh-based rank decoders). We see from Table 6.6 that the best nets had approximately
the same score. What the worse layers show in Figure 6.6 is that a linear decoder in the
second block yielded too much smoothing for the second layer to manage. Nets that had a
first shallow fully rank-based autoencoder block were the best.

Although similar in score, the best net (net 9) consistently fell in first place even
after trying many µ ranges and different initializations. The best net architecture is
rBT |rTRB|cBT |cTRB. Probably a better option would have been rBT |rTRB|cBR|cTRB

since ReLU layers work well with linear blocks.

Quantitative ℓ2 performance results for double codecs.
Id Codec layer labels ℓ2 Figure

9 rBT |rTRB|cBT |cTRB .0444 6.6i

10 rBT |rTTB|rBT |cTTB .0451 6.6j

4 rBT |rTRB|rBT |rTTB .0452 6.6d

12 rBT |rTRB|cBT |cTTB .0456 6.6l

1 rBT |rTTB|rBT |rTTB .0459 6.6a

14 rBT |rTTB|rBT |cTRB .0462 6.6n

2 rBT |rTRB|rBT |rTRB .0464 6.6b

3 rBT |rTTB|rBT |rTRB .0468 6.6c

5 rBT |cTRB|rBT |rTRB .0706 6.6e

8 rBT |cTRB|cBR|cTRB .0737 6.6h

7 rBT |cTRB|cBT |cTRB .0739 6.6g

11 rBT |cTTB|rBT |cTTB .0749 6.6k

6 rBT |cTRB|rBT |cTRB .0757 6.6f

13 rBT |cTTB|cBT |cTTB .0784 6.6m

Table 6.6: Reordered quantitative results for the double shallow codecs.

Although subjective, we may say that Figures 6.6i and 6.6l(i.e. 9 and 12) yielded crisper
qualitative results, although this may be for that specific figure and could be a coincidence.
Moreover, the two pictures belong to the best net and the net that came in fourth place.
This qualitative result may suggest that shallow rank decoders are suitable for removing false
information, but aren’t useful for generating rich details.

To conclude, given that it was hard to say which net was the best, except for net 9, since
the other nets ℓ2 score were similar, we will say that nets 9 and 12 were the best, given the
qualitative data.
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(a) rBT |rT TB|rBT |rT TB (b) rBT |rT RB|rBT |rT RB (c) rBT |rT TB|rBT |rT RB (d) rBT |rT RB|rBT |rT TB

(e) rBT |cT RB|rBT |rT RB (f) rBT |cT RB|rBT |cT RB (g) rBT |cT RB|cBT |cT RB (h) rBT |cT RB|cBR|cT RB

(i) rBT |rT RB|cBT |cT RB (j) rBT |cT TB|rBT |cT TB (k) rBT |cT TB|rBT |cT TB (l) rBT |rT RB|cBT |cT TB

(m) rBT |cT TB|cBT |cT TB (n) rBT |rT TB|rBT |cT RB (o) Corrupted input (p) Target image

Figure 6.6: Experiment 3 qualitative results. Output of nets compared with input and target.
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6.2.4 Experiment 4: Effects of reducing filter FoV or resolution
when image is corrupted under spiked type noise for a shal-
low autoencoder.

We designed this experiment to gather evidence for Hypothesis 2.

6.2.4.1 Methodology

We will present three tables in this section having each row specifying which architecture was
used. The noise and methodology are identical to the one used in the previous experiment.
Here we are going to compare both rank filtering and linear filtering when we vary the FoV
and strides of the simplest codec. In table 6.7, we see that the methods are about the same

Autoencoder and it’s corresponding coder-decoder pair with learning rate range of CLR and
results (ℓ2).

Coder Decoder µopt µmax ℓ2

rk4,↓1,3,3→32→BN→Th rkT
4,↑1,3,32→3→R→BN 1.5·10−5 1·10−4 .0662

rk4,↓1,3,3→32→BN→Th CT
4,↑1,3,32→3→R→BN 1.5·10−5 1·10−4 .0722

rk3,↓1,2,3→32→BN→Th rkT
3,↑1,2,32→3→R→BN 1.5·10−5 1·10−4 .0628

rk3,↓1,2,3→32→BN→Th CT
3,↑1,2,32→3→R→BN 1.5·10−5 1·10−4 .0600

rk2,↓1,1,3→32→BN→Th rkT
2,↑1,1,32→3→R→BN 1.5·10−5 1·10−4 .0624

rk2,↓1,1,3→32→BN→Th CT
2,↑1,1,32→3→R→BN 1.5·10−5 1·10−4 .0652

rk(3×1),↓1,(2,1),3→32→BN→Th rkT
(3×1),↑1,(2,1),32→3→R→BN 10−6 5·10−4 .0989

rk(3×1),↓1,(2,0),3→32→BN→Th CT
(3×1),↑1,(2,0),32→3→R→BN 10−6 5·10−4 .108

Table 6.7: Experiment 4 results with stride 1.

when the overlap between frames is largest. When we increase the stride, using a rank decoder
gives an advantage. However, this advantage is lost when the stride equals the FoV.

Autoencoder and it’s corresponding coder-decoder pair ℓ2 result and µ range for a stride of 2.
Coder Decoder µopt µmax ℓ2

rk4,↓2,3,3→32→BN→Th rkT
4,↑2,3,32→3→R→BN 2·10−5 1·10−3 .0862

rk4,↓2,3,3→32→BN→Th CT
4,↑2,3,32→3→R→BN 2·10−5 1·10−3 .0940

rk3,↓2,2,3→32→BN→Th rkT
3,↑2,2,32→3→R→BN 2·10−5 4·10−4 .0693

rk3,↓2,2,3→32→BN→Th CT
3,↑2,2,32→3→R→BN 2·10−5 4·10−4 .0829

rk2,↓2,1,3→32→BN→Th rkT
2,↑2,1,32→3→R→BN 10−5 4·10−4 .137

rk2,↓2,1,3→32→BN→Th CT
2,↑2,1,32→3→R→BN 10−5 4·10−4 .1490

rk(3×1),↓(2,1),(2,1),3→32→BN→Th rkT
(3×1),↑(2,1),(2,1),32→3→R→BN 10−5 1·10−3 .123

rk(3×1),↓(2,1),(2,0),3→32→BN→Th CT
(3×1),↑(2,1),(2,0),32→3→R→BN 10−5 3·10−4 .122

Table 6.8: Experiment 4 results with stride 2.
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Autoencoder and it’s corresponding coder-decoder pair ℓ2 result and µ range for a stride of 3
and 4.

Coder Decoder µopt µmax ℓ2

rk4,↓3,3,3→32→BN→Th rkT
4,↑3,3,32→3→R→BN 10−6 4·10−4 .0927

rk4,↓3,3,3→32→BN→Th CT
4,↑3,3,32→3→R→BN 10−6 4·10−4 .122

rk4,↓4,2,3→32→BN→Th rkT
4,↑4,2,32→3→R→BN 10−6 4·10−4 .133

rk4,↓4,2,3→32→BN→Th CT
4,↑4,2,32→3→R→BN 10−6 4·10−4 .122

rk3,↓3,2,3→32→BN→Th rkT
3,↑3,2,32→3→R→BN 1.6·10−5 10−4 .129

rk3,↓3,2,3→32→BN→Th CT
3,↑3,2,32→3→R→BN 1.6·10−5 10−4 .128

rk(3×1),↓(3,1),(2,1),3→32→BN→Th rkT
(3×1),↑(3,1),(2,1),32→3→R→BN 10−5 1·10−3 .160

rk(3×1),↓(3,1),(2,0),3→32→BN→Th CT
(3×1),↑(3,1),(2,0),32→3→R→BN 10−5 3·10−4 .169

Table 6.9: Experiment 4 results with stride 3.

From the tables, we see that the best results are achieved whenever the FoV of rank filters
are not greater than 3 × 3. Additionally, we see that the best results coincide with small
strides. Hence we can conclude that Hypothesis 2 is true: Transposed rank layers with large
Field of View (FoV) should not be useful for deep decoders using permutations from the coder,
but should be less problematic for shallow decoders since they use a smaller neighbourhood
(more correlation).

6.2.5 Experiment 5: Dense Linear and Rank Filtering with 1D
shuffling.

To test the robustness of deep rank networks, we conduct this experiment. Additionally, we
check if the shuffle operation to combine features from different resolutions (FoVs) of filters
linear or not. The nets used in this experiment are described in Figure 6.7, with the exception
of the net with 2 rank based codec blocks. As shown in Figure 6.7, the networks are deep. We
designed the nets this way to see how rank filters behave in deep nets. The neural networks
have dense skip-connections, and each convolution outputs an image with the same size as
the input image X. The dense input is then reorganized with the shuffle-1D operation in
order to have a single pixel resolution(best resolution possible) processing achieved by the
final convolutional layer.

6.2.5.1 Methodology

The CIFAR-10 database is used in this experiment. At each epoch, we estimate the test set
ℓ1 loss with only a single batch of 256 randomly picked from the test set. The images pixel
channels have a 1/2 probability of being corrupted by a Gaussian mixture noise that has three
modes. One of the means of the Gaussian spikes is located at 0. The other two are located
at two-thirds of the minimum and maximum possible pixel value. The standard deviation of
the spikes is σ = 1, and the three noise modes occur at the same rate. This means that the

chance of seeing a pixel with all RGB channels uncorrupted is of
(

1− 1
2

)3 ≈ 12.5%. Note
that the noise saturates at possible values corresponding to the pixel amplitude range of
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[0; 255], therefore the noise is clipped at the minimum and maximal values for a normalized
image. A total of 64 epochs are used for training. We test the net in Figure 6.7. The baseline
net has linear blocks with its first block being activated with ReLU instead of Tanh. The
activation choice was made because, in previous experiments using a Tanh activation in the
coder of a shallow autoencoder was beneficial. As shown in Figure 6.8, we tested the nets
once they were done training with various different image corruption rates where we varied
the corruption all the way to 100%.

The reason why we Gaussian mixture noise that has three modes is because it is a severe
type of noise compared to a single spike Gaussian noise. The neural net needs to identify
the modes and “fix” them. It is easier to fix a single-mode than three peaks. The noise
corruption is very high, having the effect rendering the image unrecognizable for a human
observer. We chose this type of noise because it is a difficult task easily handled by deep nets.
In this experiment, we use very deep networks in order to handle this difficult task. This
experiment was conducted multiple times with less “aggressive” noise, but the conclusions
were the same.
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Figure 6.7: Rank nets for experiment 5. The net on the left has two rank codecs as first
blocks. The right hand side net has all rank layers before the last concatenation. For both
nets there are skip connections where the input is concatenated with codecs outputs.
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6.2.5.2 Experiment results & Discussion.

The results show that there is not a big difference between all nets. Additionally, the all-linear
net performs slightly better than the rank based networks. Rank-based filtering yields poor
high-resolution content compared to linear convolution. The baseline linear net performed
better than the other nets. This suggests that rank filtering isn’t very good for encoding
geometrical information in deep neural networks. It has less capacity than all-linear layers.
In spite of this, only the rank based net with four codecs showed better generalization than
the all-linear layer.

Autoencoder and it’s corresponding coder-decoder pair ℓ1 result and µ range .
Net µopt µmax ℓ1

4 first codecs are rank based 10−6 3·10−5 .121

2 first codecs are rank based 10−6 2·10−4 .119

All linear baseline 10−6 1·10−4 .112

Table 6.10: Experiment 5 results.

We see in Figure 6.8 that the net with four rank codecs generalizes better image recon-
struction for low corruption levels compared to the baseline network. The net that has two
first rank wasn’t included in the figure since it displayed a slightly worse performance than
the baseline network on all corruption rates.
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Loss versus corruption rate.
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Figure 6.8: We see how the all linear net and the net with four rank codecs perform for
different rates of corruption after they were trained on an 50% corruption rate. The blue curve
is the all-linear baseline network, and the red curve is the net with four codec blocks. We see
that the all-linear net does outperform the rank based net in a region around the corruption
rate of 50%. However, the rank-based net shows better robustness for low corruption rates.

6.2.5.3 Rank weights

Here we show the weights visualizations for the net with the 4 rank codec block in Figures
6.9 and 6.10. For Figure 6.9, the jth column represents the weights for the jth output channel.
We can always arrange the rank weights in columns to visualize them since there is no
2-dimensional information. The ith pixel in a column shows the weights of the rank. The
coloring used is RGB since these are the channel inputs.

It isn’t straightforward to conclude from these figures. One possible pattern may that
when the coder and the next decoder weights have similar correlations.
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Figure 6.9: Visualization of first block rank coder weights. The left column are the coder
weights and on the right we have the decoder weights. From top to bottom you have the first,
second and third coder-encoder pair of the net with 4 rank codecs. Notice how the weights of
the third codec (with FoV=3× 3) are highly correlated. Every column corresponds to an
output channel, and the colors correspond to the RGB channels of the input.
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Figure 6.10: Histogram of rank codec weights. The left column is the coder weights histogram,
and on the right, we have the decoder weights histogram. From top to bottom rows, you
have the first, second, and third coder-encoder pair.
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6.3 Classification Experiments

6.3.1 Experiment 6: Comparing classification capacity of rank
weights versus linear weights while keeping number of pa-
rameters constant.

Here we try to answer the question if the rank parameters are worth it for classification.

6.3.1.1 Methodology

A 5 layer net was trained on the MNIST database. The architecture used a block that had
a skip connection over two feed-forward filtering block. The ReLU activation is applied
directly after a skip connection junction. Each architecture used five blocks for a total of 10
feed-forward filtering blocks. Every filtering block uses ReLU and BN. A fully Connected
(FC) layer with Dropout, ReLU, and BN topped with a final FC for input to the log softmax
layer. The first FC layer has 128 outputs6. The details for the filtering layers are in table
6.11. To divide the Filtering capacity between Linear filtering and Rank filtering we used the

Filtering layer parameters
Filtering layer number FoV Stride Pad Chin Chout

1 2 1 1 3 16

2 2 1 1 16 32

3 3 1 2 32 32

4 3 2 2 32 32

5 2 1 1 32 32

6 2 1 1 32 32

7 3 1 2 32 64

8 3 2 2 64 64

9 2 1 1 64 128

10 2 1 1 128 128

Table 6.11: Experiment 6 filtering parameters. First column indicates the first filtering block
to the last filtering blocks. There are a total of 10 feed forward filtering blocks since we have
5 blocks with a residual connection over two blocks.

layer in 4.3 but each branch yields different output channels as in Figure 6.11. For example,
if the proportion of rank filtering is one quarter out of 16 output channels, then q = 1/4 and
the channel outputs are 4 and 12 for the rank and linear filtering blocks.

6 We chose this small number simply to make the net execute faster.
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X

rk FoV,∆,Pad,Chin→q·Chout
Conv FoV,∆,Pad,Chin→(1−q)·Chout

cat

Y

Figure 6.11: The Channel output parameters for both the rank filtering and the convolutional
filtering are different. The junction is a concatenation in the channel dimension. The rank
filter outputs q · Chout channels and the linear filter outputs (1− q) · Chout channels. After
the concatenation, we effetively have Chout dimensions.

6.3. CLASSIFICATION EXPERIMENTS 84



CHAPTER 6. EXPERIMENTS & METHODOLOGY

6.3.1.2 Results & Discussion
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Figure 6.12: Error rate using all linear convolutional net. The minima is attained at epoch 8
for an error of 2.89%.
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Figure 6.13: As expected no, because rank weights are highly correlated we should not expect
a great improvement. This is certainly not the case in autoencoders. There the permutation
information is saved and used at the decoder.
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Figure 6.14: Error rate using one fourth capacity (or number of parameters for filtering)
reserved for rank filtering. The minima is attained at epoch 12 for an error of 3.19% at the
black dot.
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Figure 6.15: Loss using 1/4 capacity for rank filtering.

From the results, we can see that the all-linear filtering yielded better results than the
rank filtering one. Additionally, we performed the ǫ× sign

(

∂L
∂X

)

method recursively once the
nets were trained to harness adversarial examples. We observed that rank filtering does yield
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adversarial examples that look like noise for a human viewer(not shown here). Qualitatively,
the adversarial examples weren’t that different from the ones generated by the all-linear net7.

6.3.2 Experiment 7: Deterministic and Stochastic Joint Linear-
Rank.

In this experiment, we train networks on noiseless data from the SVHN database. We wish to
investigate the effect of the deterministic and stochastic joint linear-rank filter compared to
the baseline linear network for classification. We use a mini-batch size of 128. In the following
table we describe the experiments architectures: We will test the general architecture of the

Layer general parameters.
Layer Layer type Chin Chout FoV Stride (∆) Padding

1 Filter Block 3 16 (2× 2) 1 0

2 Filter Block 16 16 (2× 2) 1 0

3 Filter Block 16 32 (3× 3) ↓ 2 0

4 FC 32 10

5 Log Softmax 10 10

6 Cross-Entropy 10 10

Table 6.12: General architecture form for the joint linear-rank experiment. A block’s filter
can be either linear, joint linear-rank, or a stochastic joint-linear layer. Each block consists
of a filter followed by BN and ReLU. The Fully Connected layer is linear.

network of table 6.12 by setting the Block filter to be either linear, deterministic, or stochastic
joint linear-rank. We will also test different initializations and if we use a “softmaxed” weights
for the prediction step and the random version as in eq.4.40 providing a total of 8 different
networks as described in the following table. Since, the symmetry is broken with the gradient
update in eq.4.37 and eq.4.38, we are allowed to initialize the weights to a mean of 1 with
σ = 0. We add the last net in the table where we use the stochastic algorithm given that the
weight seed v has σ = 0 and mean 1.

Since initializing the random weights uniquely for each batch element is too expensive, we
set the weights to be identical across batches. This constraint is highly problematic, and we
expect the results to be harmful since the variance would not be scaled by 1/ (KN), but only
by 1/ (K). Hence, we are forced to use a high K in order to reduce the deleterious effects,
however to chose a high K is pointless using the Gumbel trick since (when using a large K)
it would be the same as using Gaussian sampling.

7 That’s why we didn’t include the figures. They convey very little information since they look to produce
the same visual gibberish.

8 The weights is initialized as described in Sec.6.1.4. In other words, zero-mean orthogonal weights with
standard deviation σ =

√

2/din.
9 The weights is initialized by sampling from a uniform distribution where v = − ln(u) ;u ∼ U .
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Weight initialization and sampling or activation used while training and testing per network.
Net Block Linear filter Rank filter

Id filter Weights init. Weights init.

1 Lin. wlin w8 N/A

2 Lin.-R. wlin w8 wrnk w8

3 Lin.-R. wlin
fwrd = S̃s

K

(

vlin
)

v9 wrnk w8

wlin
pred = Ss

(

vlin
)

4 Lin.-R. wlin w8 wrnk
fwrd = S̃s

K

(

vrnk
)

v9

wrnk
pred = Ss

(

vrnk
)

5 Lin.-R. wlin
fwrd = S̃s

K

(

vlin
)

v9 wrnk
fwrd = S̃s

K

(

vrnk
)

v9

wlin
pred = Ss

(

vlin
)

wrnk
pred = Ss

(

vrnk
)

6 Lin.-R. wlin w8 wrnk = 1

7 Lin.-R. wlin = 1 wrnk w8

8 Lin.-R. wlin = 1 wrnk = 1

9 Lin.-R. wlin wrnk
fwrd = S̃s

K

(

vrnk
)

v = 1

wrnk
pred = Ss

(

vrnk
)

Table 6.13: Architectures tested for joint linear-rank experiment. For all experiments we
chose K = Area.

6.3.2.1 CLR tests

We conduct the CLR test in the following figures:
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(a) Net 1 (baseline) CLR test
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(b) Net 2 CLR test
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(d) Net 4 CLR test
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(f) Net 6 CLR test

Figure 6.16: Joint Linear-Rank CLR tests (part 1).
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(b) Net 8 CLR test
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(c) Net 9 CLR test

Figure 6.17: Joint Linear-Rank CLR tests (part 2).
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6.3.2.2 Results & Discussion

In Figures 6.19 and 6.18, we see that the best testing errors, are achieved in 6.18f and 6.18a.
The best results are therefore obtained by the baseline all linear net and the joint linear-rank
net with all rank weights initialized to 1. The net 1 obtained an error rate of 13.3% and Net
2 obtained an error rate of 13.8%.

We will attempt to explain this observation. The expected value of the gradient wrt the
weights are:

Ex [∇wl
y] = Ex [P (s ◦wr)] = Ex [x ◦ Pwr] = Ex [x] ◦ (Ex [P ]wr) = x̄ · 1

Twr

n
. (6.2)

Ex [∇wr
y] = Ex

[

P T (x ◦wl)
]

= Ex [s] ◦
(

Ex
[

P T
]

wl

)

= s̄ · 1
Twl

n
. (6.3)

Equations 6.2 and 6.3 imply that we need to be careful in the initialization. We use a scaled
version orthogonal weight initialization [35]. This initialization is unit variance and zero-mean.
This implies that both Equations 6.2 and 6.3 will tend to 0, effectively slowing the weight
update. To prevent this and to ensure quick learning we would need to make either the rank
weights or the linear weights have mean of 1. But since the net works best with linear weights
we are left with only setting the rank weights to 1 (net 6). In the end, the training rank
weights mean of net 6 for layers 1 to 3 are E [wr] = (1.0369, 0.9977, 0.9988), and the weight
standard deviations for layers 1 to 3 are σwr

= (0.1716, 0.0842, 0.0547). This result may be
empirical proof that we are better not to use rank filters in many layers or at all.

Furthermore, all stochastic experiments yielded terrible results. We quickly trained a net
where K was large, and the results improved. But we will not elaborate more on this since to
truly test the potential of the stochastic algorithms, we would need to implement it also in
the FC layer, and we would also need to sample the weights for each batch element uniquely.
Testing the idea on the FC makes sense since, by analogy, Dropout performs better when
placed after FC layers. Perhaps, we could see a similar result? But this is hardware intensive,
and hence we will not pursue more experiments.

From figures 6.18e and 6.19b, we see that it is a bad idea to set both linear weights and
rank weights to an average of 1 since it effectively stalls learning.
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(d) Net 4 loss.
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(f) Net 6 loss.

Figure 6.18: Joint Linear-Rank training and test loss (part 1). The red curves are the test
set loss, and the training loss is in blue.
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(b) Net 8 loss.

0 2 4 6 8 10 12 14 16

epoch

0

0.5

1

1.5

2

2.5

3

L
o

s
s

(c) Net 9 loss.

Figure 6.19: Joint Linear-Rank training and test loss (part 2).The red curves are the test set
loss, and the training loss is in blue.
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Discussion

We’ve answered the questions on page 22:

1. In classification, is a rank parameter worth the same as a linear parameter?

• In general, no rank filters don’t seem to be particularly advantageous for deep or
shallow layers.

2. When is it advantageous of using rank filters in classification ?

• When we use shallow neural nets that have impulse noise corruption on the data.
In experiment 3, we saw that it is better to use a rank filter at the beginning of a
network.

3. What are the advantages and disadvantages of using rank filters in autoencoders ?

• The advantage is that under impulse noise, rank filters really do seem to be more
robust than linear filters. However, it is not spectacularly more robust and in fact
deep linear layers perform systematically better than rank neural nets when the
test data has the same corruption type when training both nets, as seen in Figure
6.8.

• It is definitely better to use rank filters when we use shallow neural nets. But,
this result isn’t too interesting since the advantage seems to be lost quickly when
we use deep nets.

4. How remembering all permutations affect a decoder’s reconstruction “clearness”?

• As seen in Figure 6.6i and Tables 6.7, 6.7 and 6.9, remembering permutations do
seem to be helpful only when the rank transpose filter is immediately after the
rank filter. The advantage is more evident when we use strides that aren’t too
large. When it is used in a shallow autoencoder, from Figure 6.3j, we see that we
are better to not use transposed rank permutations.

(a) If we simply ignore the permutations how will it affect the reconstruction quality?

• It depends...
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• In the Tables 6.7, 6.7 and 6.9 from experiment 4 and the best result from
experiment 1, when transposed rank filters are used in shallow autoencoders,
we saw that the performance depends on the FoV and stride of the encoder
rank filters. Therefore, sometimes it is better to use transposed rank filters,
and sometimes not. In experiment 4, we’ve only seen what was the effect of
FoV variations within the context of corrupted images. Hence, if there is no
noise, the reconstruction error might have been less punitive for low FoV’s.
Additionally, in presence of corruption noise, results show that using large
FoVs of 4 yields worse results than an FoV of 3, but when the FoV was smaller
than 3, we obtained worse performance. The degradation of performance for
large FoVs seem to support 2.

• It would be better to ignore altogether the permutations if the decoder is more
than 1 layers apart from it’s corresponding coder layer as seen in experiment
2.

• In the case where we used many small codecs, we saw better visual recon-
struction results in experiment 3.

5. If we use shallow or deep decoders that use the reverse-sorting process, would it still be
able to preserve thin structures?

• Thin structures are preserved by the reverse-sorting process. Transposed rank
filters seem to work very well if used within a block that has a coder-decoder
structure (see experiments 1 to 4). They don’t work well with deep decoders.
Moreover, when we use an autoencoder with 4 or more layers, using a rank codec
only at the beginning seems to be beneficial.

(a) If so, would it be able to discern which thin structures are spurious?

• Yes, but it does seem to introduce a lot more smoothing than regular deconvo-
lution. Although this is probably due to the loss of information in the coder
(since ranks are highly correlated) and not the decoder itself.

(b) Does thin structures reconstruction better or worse with large versus small FoV
in shallow decoders?

• In experiment 4, we saw that an Fov of (3, 3) performed best when we used
a stride of 1. It was even better than the performance for the net with
FoV of (4, 4) with stride 1. So a larger FoV isn’t better, and too small isn’t
better either. The degradation of performance for large FoVs seem to support
Hypothesis 2.

(c) Does thin structures reconstruct better or worse with large versus small FoV in
deep decoders?

• It really depends on the architecture of the deep net and the noise level. But
from the results in experiment 1, we saw that it was better to avoid deep
decoders when the corresponding encoder had rank filters.

6. What forms do the rank filters and transposed filters take?
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• From Figure 6.9, we see that both the decoder and encoder exhibit high correlation
in their weights.

7. Do transposed rank filters generate artefacts analogous to transposed convolutions?

• If transposed rank filters are used without any Overlap compensation as described
in 4.4.1, then we get artefacts as shown in Figure 4.11. However, by using the
compensation we avoid artefacts completely. Directly using scale compensation
may not be the only solution since the strategy used in [45] was to smoothing the
“artifacty” output of the transposed filter.

8. Is a stochastic version of rank filters combined with linear filters beneficial?

• This hasn’t been fully resolved as to test this idea we would need to randomly
sample different weights for every batch, which requires an efficient algorithm
on the GPU. Moreover, we tested a low sparsity and identical random weights
across the batch dimension to observe that in Figures 6.18c, 6.18d, 6.18e and 6.19c
overall worse testing loss compared to the baseline linear convolutional net (see
6.18a).

Furthermore, we’ve gathered evidence from experiment 1 that seem to confirm Hypothesis
3, that postulated that transposed rank filters performed better as shallow autoencoders.
More evidence extends this hypothesis to shallow encoder-decoder building blocks in later
experiments.

In experiment 5, we attempted to use Cross-Channel Rank filters in order to mitigate the
loss of information inherent to rank filters, and maximise the resolution of the neural net.
However, we found that the baseline all-linear net performed better for image reconstruction.

In experiment 6 we found that rank weights do not encode as much information as linear
weights.
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Conclusion & Outlook

We’ve built novel layers based on ranks and framework to describe how they fit within the
family of commonly used layers. We analyzed its mathematical properties. By symmetry,
we’ve designed transposed non-linear filters to mimic the inverse operation and analyzed and
proposed a solution to the common artifact problem that transposed filters suffer from and
applied it to our rank transposed filter.

We have analyzed the rank filters as a non-linear layer, and we’ve derived the variance
of the optimal weights during the initialization step, given that we do not use any other
activation. In experiment 1, we saw that it was best to use an activation even though the
sorting process is itself non-linear.

We’ve explored when we should use them and what architectures our new layers best
perform in tasks such as image restoration and classification. We found that rank filters
work best within a block that has a shallow encoder and decoder. Transposed rank filters are
beneficial, particularly if they are immediately placed after it’s corresponding coder layer.
The transposed filters were also shown to perform best in low FoVs. Max-Pooling layers are
rank filters with stride equal to their FoV. If we were to permit max-pooling layers to have a
lower downsampling rate1, then it might be possible to have better performance. We also saw
that rank filters or shallow rank encoder-decoder blocks performed better when they were
only present at the beginning of a neural network. Deeper into the layer, it is best to avoid
rank filters. Pooling layers lose delicate structure information for large FoVs because they are
sparse rank filters, we saw in our experiments that rank filters and the transposed ones could
preserve fine structures. Still, they do tend to induce a lot of diffusion in image restoration.

Stochastic algorithms

We haven’t explored the full potential of stochastic rank filters, but the mixed results
obtained may suggest that we might be better to use the classical convolution layer.Moreover,
the sampling technique that was developed in designing the sampling method
for the stochastic algorithm may be used for linear filters. This hasn’t been
investigated thoroughly, and the main obstacle is that the algorithm would need to

1 Although this would destroy the purpose of max-pooling, which is to downsample by keeping the highest
activation.
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generate different random weights for each batch element. The design of the algorithm itself is
pretty straightforward since the sampling method is based on the Gumbel max-trick, which is
based on a maximal index of a Gumbel distribution. There exist excellent parallel algorithms
to get maximal index, and thus it shouldn’t be too hard to implement the sampling trick on
a GPU (provided that the GPU hardware manages to process random weights that have an
extra batch dimension quickly).

In designing a method to generate sparse random weights for training, we found that the ℓ1
norm appeared naturally in eq. 4.55. It is interesting to note that the ℓ1 norm also appeared
in another sparsity context, such as LASSO. Perhaps there is an interesting probabilistic
explanation for this similarity. There might be a link.

Lessons to be Retained for Future Design of Neural Net-

works

In Capsule networks [33], there is a max-operation in order to make the capsules agree
for a probability. The features learned by Capsules were shown to contain dilations [33].
Max-operations are a type of rank filter that generates high dilation features. Hence we may
think that capsule nets will inherently have dilation features. In this thesis, we saw that
rank features fare almost always worse than linear features. Both the max-pooling layer
and the capsule network architecture do not use activations that aren’t maximal. Thus we
may need to reconsider the capsule architecture and see what the effect of removing the
routing by agreement method is. Surely better performance will be achieved if we used more
information e.g. if we also used the second-highest probability capsule and so onBut as shown
in the thesis, all-linear nets generally performed better in very deep neural networks. We
could make an analogous prediction that the overall performance would be much better for
very deep capsule nets if we simply abandon altogether the routing procedure based on the
maxima (abandon all ranking procedures) and use all-linear capsule nets. Indeed, in [12],
the authors show that it is not necessary to implement routing procedures. Essentially, they
show that the benefits of Capsule Networks lie in the abstraction of a general convolution
in yet another dimension and not on the routing. This is analogous to why the authors of
the paper [43] show that it’s better to use only convolutional layers and downsample using
strided convolutions(or average pooling) instead of using max-pooling layers.

Outlook on Other Non-Linear Filters

We’ve briefly explored histogram filters in Section 5. Histogram filters can be smooth or not,
and they are akin to rank filters in the sense that they can be modelled as a non-linear filter.
We’ve derived the gradients of the Histogram filters in order to permit back-propagation
through the filters. We’ve also related the Histogram filters and interpreted the following
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techniques in the context of neural networks HOG2, Histogram equalization3 and amplitude
banks4. Naturally, neural nets that use amplitude banks are directly related to histograms,
and thus they are algebraically linked to a non-linear operation. Analysis of the gradients
permits the use of HOG features in neural networks. There is so much work done in the
literature that belongs to this wide5 class of filters that it is hard to believe that we can’t
find a better design that would greatly contribute to the emergent field of deep learning.

2 We’ve shown that HOG features have striking resemblances with the now commonly used blocks that
comprise of linear→activation→normalization.

3 We’ve shown that Histogram equalization has an autoencoder structure with a non-linear
filter→normalization→transposed non-linear filter.

4 As demonstrated in the thesis, CReLU and ReLU are amplitude banks.
5 I’ve avoided to work on this topic because the idea is too general. Programming on a GPU is difficult

and takes a lot of time. The speed of the algorithm depends on the code design and hardware. Complicated
Histogram filters may not be the best choice for today’s technological limitations in hardware.

99



References

[1] Adaptive rank filters and transposed rank filters in deep learning. https://www.youtube.

com/watch?v=pC0NU8Rxqto/. Accessed: 2019-12-06.

[2] Deconvolution and Checkerboard Artifacts. https://distill.pub/2016/

deconv-checkerboard/. Accessed: 2019-06-21.

[3] Intro to optimization in deep learning: Busting the myth
about batch normalization. https://blog.paperspace.com/

busting-the-myths-about-batch-normalization/. Accessed: 2019-06-27.

[4] Andrew Aitken, Christian Ledig, Lucas Theis, Jose Caballero, Zehan Wang, and Wenzhe
Shi. Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution,
resize convolution and convolution resize. arXiv preprint arXiv:1707.02937, 2017.

[5] Kazuhiko Aomoto. Analytic structure of schläfli function. Nagoya Mathematical Journal,
68:1–16, 1977.

[6] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint
arXiv:1505.07293, 2015.

[7] BG Batchelor. Streak and spot detection in digital pictures. Electronics Letters,
15(12):352–353, 1979.

[8] Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning ways for your
mathematical plays.

[9] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling
in visual recognition. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 111–118, 2010.

[10] Raymond H Chan, Chung-Wa Ho, and Mila Nikolova. Salt-and-pepper noise removal by
median-type noise detectors and detail-preserving regularization. IEEE Transactions on
image processing, 14(10):1479–1485, 2005.

[11] Liang Chen, Paul Bentley, and Daniel Rueckert. Fully automatic acute ischemic lesion
segmentation in dwi using convolutional neural networks. NeuroImage: Clinical, 15, 06
2017.

100

https://www.youtube.com/watch?v=pC0NU8Rxqto/
https://www.youtube.com/watch?v=pC0NU8Rxqto/
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/


REFERENCES

[12] Zhenhua Chen, Xiwen Li, Chuhua Wang, and David Crandall. Capsule networks without
routing procedures. 2019.

[13] MC Cheng. The orthant probabilities of four gaussian variates. The Annals of Mathe-
matical Statistics, 40(1):152–161, 1969.

[14] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in
neural information processing systems, pages 342–350, 2009.

[15] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

[16] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust
statistics: the approach based on influence functions, volume 114. John Wiley & Sons,
2011.

[17] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation
function on deep neural networks training. arXiv preprint arXiv:1902.06853, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1026–1034, 2015.

[19] Robert M Hodgson, Donald G Bailey, MJ Naylor, ALM Ng, and SJ McNeill. Properties,
implementations and applications of rank filters. Image and Vision Computing, 3(1):3–14,
1985.

[20] Michael Kass and Justin Solomon. Smoothed local histogram filters. ACM Transactions
on Graphics (TOG), 29(4):100, 2010.

[21] Steven G Krantz. The proof is in the pudding: The changing nature of mathematical
proof. Springer Science & Business Media, 2011.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[23] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[25] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[26] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint
arXiv:1711.00165, 2017.

REFERENCES 101



REFERENCES

[27] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in Neural
Information Processing Systems, pages 3086–3094, 2014.

[28] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using convolutional
auto-encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921, 2016.

[29] Frederick Mosteller. On some useful inefficient statistics. In Selected Papers of Frederick
Mosteller, pages 69–100. Springer, 2006.

[30] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1520–1528, 2015.

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[33] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
In Advances in neural information processing systems, pages 3856–3866, 2017.

[34] Kenzi Satô. Spherical simplices and their polars. Quarterly journal of mathematics,
58(1):107–126, 2007.

[35] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

[36] L Schläfli. On the multiple integral whose limits are p1= a1x+ b1y+···+ h1z>
0,···, pn> 0, x2+ y2+···+ z2< 1. Quart. J. Math. Pure Appl, 2:261–301, 1858.

[37] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and
improving convolutional neural networks via concatenated rectified linear units. In
international conference on machine learning, pages 2217–2225, 2016.

[38] Zenglin Shi, Yangdong Ye, and Yunpeng Wu. Rank-based pooling for deep convolutional
neural networks. Neural Networks, 83:21–31, 2016.

[39] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[40] Leslie N Smith. No more pesky learning rate guessing games. CoRR, abs/1506.01186,
2015.

[41] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 464–472. IEEE,
2017.

REFERENCES 102



REFERENCES

[42] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of residual
networks using large learning rates. 2018.

[43] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

[45] Yusuke Sugawara, Sayaka Shiota, and Hitoshi Kiya. Convolutional neural networks
without any checkerboard artifacts. In 2018 26th European Signal Processing Conference
(EUSIPCO), pages 1317–1321. IEEE, 2018.

[46] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[47] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
Efficient object localization using convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 648–656, 2015.

[48] Rand R Wilcox. Introduction to robust estimation and hypothesis testing. Academic
Press, 2005.

[49] Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convo-
lutional neural networks. arXiv preprint arXiv:1301.3557, 2013.

[50] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

REFERENCES 103



List of Figures

2.1 Convolution connection graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Rank filter Grayscale feature map. . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Rank skip connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Rank double skip connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Venn diagram showing which layer can be reached by subspaces of rank filters

and convolutional layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Max-Pooling with downsampling of 2 Viewed under rank filtering perspective. 13
2.7 Average-Pooling with downsampling of 2 Viewed under rank filtering perspective. 13
2.8 Average-Pooling with downsampling of 2 viewed as a fixed Convolutional layer

of stride 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Scrambled face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Unpooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Venn diagram showing how Max-Unpooling falls in transposed rank filters. . 18
2.12 Max-Pooling & Max-Unpooling layers with downsampling of 2 Viewed under

rank & transposed rank filtering perspective. . . . . . . . . . . . . . . . . . . 18

3.1 Permutations saved in coder for the decoder . . . . . . . . . . . . . . . . . . 21

4.1 Rank filter connection graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Rank Filter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Input example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Augmentation example with FoV=5x5 with stride=1 . . . . . . . . . . . . . 26
4.5 Augmentation example with FoV=5x5 with stride=2 . . . . . . . . . . . . . 27
4.6 Augmentation example with FoV=1x8 with stride=1 . . . . . . . . . . . . . 28
4.7 Venn diagram showing various subspaces reach. . . . . . . . . . . . . . . . . 34
4.8 Joint Linear-Rank Filter graph. . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Rank plus Linear filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 Deconvolutional Rank Filter example . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Shallow denoising rank transpose autoencoder without overlap scaling. . . . 45
4.12 Deconvolutional rank filter numerical example . . . . . . . . . . . . . . . . . 46
4.13 Transposed Rank plus Linear filter. . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 HOG pileline analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Histogram Equalization pileline analysis. . . . . . . . . . . . . . . . . . . . . 52

6.1 Cyclic Learning Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

104



LIST OF FIGURES

6.2 Cyclic Learning Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Denoising net qualitative results for experiments 1. . . . . . . . . . . . . . . 61
6.4 Denoising net qualitative results (part 1) . . . . . . . . . . . . . . . . . . . . 67
6.5 Denoising net qualitative results (part 2) . . . . . . . . . . . . . . . . . . . . 68
6.6 Experiment 3 qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.7 Networks for experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.8 Robustness test for experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . 80
6.9 Visualization of rank codec weights. . . . . . . . . . . . . . . . . . . . . . . . 81
6.10 Histogram of rank codec weights. . . . . . . . . . . . . . . . . . . . . . . . . 82
6.11 Rank plus Linear filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.12 Error rate for a 5 layer net classifier with linear filtering. . . . . . . . . . . . 85
6.13 Loss rate for a 5 layer net classifier with linear filtering. . . . . . . . . . . . . 85
6.14 Error rate for a 5 layer net classifier with 25% rank filtering. . . . . . . . . . 86
6.15 Loss rate for a 5 layer net classifier with 25% rank filtering. . . . . . . . . . . 86
6.16 Joint Linear-Rank CLR tests (part 1) . . . . . . . . . . . . . . . . . . . . . . 89
6.17 Joint Linear-Rank CLR tests (part 2) . . . . . . . . . . . . . . . . . . . . . . 90
6.18 Joint Linear-Rank training and test loss (part 1). . . . . . . . . . . . . . . . 92
6.19 Joint Linear-Rank training and test loss (part 2). . . . . . . . . . . . . . . . 93

B.1 Network that yields permutation indices of 4 elements. . . . . . . . . . . . . 120
B.2 Network that yields permutation indices of 6 elements. . . . . . . . . . . . . 121

LIST OF FIGURES 105



Appendices

106



Appendix A

Kernel Derivation for the Rank
Filtering Process

Since the integral depends only on the angle between the input vectors a and b (see Equation
4.17), without loss of generality, we can pick M = 2. The mean

µ = EW
[

φ
(

W Ta
)]

. (A.1)

The mean vector is skew-symmetric since when we flip it, we change it’s sign:

Jµ = −µ, (A.2)

where J is the cross-diagonal matrix. Analogously, the kernel matrix EW
[

φ
(

W Ta
)

φT
(

W Tb
)]

is bisymmetric and thus contains only
⌊

(N+1)2

4

⌋

unique functions. The permutation matrix

Px element (i, j) is given by:

Pi,j =
∑

k=1:(N
j
)

σk,j

N
∏

n=1
n 6=i

u (σn (xi − xn)) , (A.3)

where σk,j is a unique N − 1× 1 vector that has N − i (1)’s and i− 1 (−1)’s. In other terms,

σk = P (k)

[

1N−i×1

−1i−1×1

]

;σm,j 6= σn,j∀ (m,n) ,

where V (k) is a permutation matrix. The kernel’s derivative at θ = 0 is for all N :

Lemma A.0.1.

∂θK (a, b)

∣

∣

∣

∣

θ=0

= 0N×N . (A.4)

Proof: Since the correlation between two vectors of the same magnitude is maximal when
the vectors are colinear, then the correlation between the sorted vectors is also maximal when
the vectors are co-linear.
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Lemma A.0.2. For any N , the cross-correlation matrix K (a, b) = K (θ) obeys:

K (θ)

‖a‖ ‖b‖ = cos θ · IN +
K (0)

‖a‖ ‖b‖ − I + V (θ) ;Vi,j (θ) = O
(

θ3
)

, θ > 0. (A.5)

is equivalent in stating that

lim
θ→0+

−1
sin θ

∂

∂θ

K (a, b)

‖a‖ ‖b‖ = I. (A.6)

Proof: The matrix V (θ) = O (θ1) is easy to verify since by Equation A.5:

lim
θ→0

K (θ)

‖a‖ ‖b‖ = lim
θ→0

K (0)

‖a‖ ‖b‖ + V (θ) ;

and by cancelation we have

V (0) = 0.

Then, we know that K (θ) is an even function and so is V (θ), hence:

V (θ) = |θ|A (θ) + B (θ) , (A.7)

where B (0) = 0 and both A (θ) and B (θ) are even. By using A.0.1, we have

V̇ (0) = 0 = A(0), (A.8)

For small θ, and by using A.6

lim
θ→0+

−1
sin θ

∂

∂θ

K (a, b)

‖a‖ ‖b‖ ≈ I + lim
θ→0+

V̇ (θ)

θ
= I. (A.9)

Hence, lim
θ→0+

∂2

∂θ2
B (θ) = 0 and thus, Vi,j (θ) = |θ| O (θ2) +O (θ4) = O (θ3).

Note that the above hypothesis is supported by experimental data using Monte-Carlo
simulations. From Lemma A.0.3, we can deduce that V (θ)1 = 0.

Lemma A.0.3.
K (a, b)

‖a‖ ‖b‖1N×1 = cos θ1N×1 (A.10)

This means that 1N×1 is in the null space of the matrix terms (except for the identity)
that compose K (a, b). In other words,

(

K (a, b)

‖a‖ ‖b‖ − cos θI
)

1N×1 = 0, (A.11)

independently from θ. Equation A.11 shows that cos θ and 1 is an eigenpair of K(a,b)
‖a‖‖b‖

.
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Proof: To prove Equations A.10 and A.11, we can use φ (x) = P T
x x. Although Px and

Pcos θx+sin θy are dependent, it won’t matter since Pcos θx+sin θy will vanish from the expectation
because P T

1 = 1 leaving a single permutation matrix that will permit us to use the law of
total expectation. This is justified because the sets are disjoint since P T

1 = P1 = 1 because
one element is active per row. Hence,

Ex,y
(

φ (x)φT (cos θx+ sin θy)1
)

= Ex,y
(

P T
x x (cos θx+ sin θy)T Pcos θx+sin θy1

)

(A.12)

= Ex,y
(

P T
x x (cos θx+ sin θy)T 1

)

= cos θEx
(

P T
x xx

T
1
)

(A.13)

= cos θ
∑

n

Ex
(

xnx
T
1|πn,i = 1

)

Pr (πn,i = 1) ; i ∈ [1, N ] (A.14)

=
cos θ
N

∑

n

Exn

(

x2
n

)

1 = cos θ1 (A.15)

This reduces the kernel functions to solved by integration from
⌊

(N+1)2

4

⌋

to
⌊

N2

4

⌋

. For general

N > 2 and θ, the last (comparing max with max) kernel function to solve has many terms
since Px and Pcos θx+sin θy are dependent. There is some redundancy that makes it possible
to at least reduce the number terms to compute since many of them are linearly dependent.
This number c depends on N and varies depending on the kernel function computed. c is at

most O(N2) and hence the number of integrals to solve is at most |I|0 = c
⌊

N2

4

⌋

= O(N4).

This is why the Kernel functions are not shown for N > 2 and a general θ. Fortunately, when
θ = 0, c = 1 for the extreme values Kernel.

For the cases N > 2, we couldn’t find a closed form solution1. When θ = 0, the integrals
become considerably easier to solve, however they do become difficult when N ≥ 5.

Lemma A.0.4. Yet another property includes:

tr

(

K (a,a)

‖a‖2
)

= N. (A.16)

Proof:

tr
(

Ex
(

φ (x)φT (x)
))

= Ex
(

tr
(

P T
x xx

TPx

))

. (A.17)

Then,
= Ex

(

tr
(

PxP
T
x xx

T
))

= Ex
(

tr
(

xxT
))

= tr(IN×N) = N. (A.18)

Property A.0.4 further reduces the number of unknowns to
⌊

N2

4

⌋

− 1 for θ = 0.

1 There definitely is a closed form solution in terms of Owen’s Generalized T function. A good start on
solving the extreme value kernels, in the case of N = 3, is to reduce a term with 6 variable gaussians to

finding P4 that depends on a variance of the form of C ⊗
[

1 − cos θ
− cos θ 1

]

[13].
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Theorem A.0.5. The trace of the Kernel matrix is :

tr

(

K (θ)

‖a‖ ‖b‖

)

= N · cos θ +O
(

θ3
)

(A.19)

Proof: We start from Equation A.5:

tr

(

K (θ)

‖a‖ ‖b‖

)

= N · cos θ + tr

(

K (0)

‖a‖ ‖b‖

)

−N + tr (V (θ)) . (A.20)

We then use substitute in property A.0.4:

tr

(

K (θ)

‖a‖ ‖b‖

)

= N · cos θ + tr (V (θ)) , (A.21)

Then, by A.0.2, the result follows.

A.1 Rank filters of two elements

In this section, we show how to evaluate the matrix integral in Equation 4.16 for N = (2)
only. The non-linearity is, when N=2:

φ (x) =

[

x1u(x2 − x1) + x2u(x1 − x2)

x1u(x1 − x2) + x2u(x2 − x1)

]

. (A.22)

In the above equation, u is the Heaviside unit step function. For N=2 and for the first
element, the integral in 4.16 is:

K2,2 (a, b) = EW
[(

wT
1 au

(

∆wT
1,2a
)

+wT
2 au

(

−∆wT
1,2a
)) (

wT
1 bu

(

∆wT
1,2b
)

+wT
2 bu

(

−∆wT
1,2b
))]

(A.23)
We used the shorthand notation of ∆wi,j = wi−wj;wi = coliW . There are four terms after
expanding the product, but we really need to compute the integral for two of them since the
other two are linearly dependent. The first being:

Jmax
1,1 = EW

[

wT
1 au

(

∆wT
1,2a
)

wT
1 bu

(

∆wT
1,2b
)]

. (A.24)

Changing the variables w2 = w − z and w1 = w yields:

Jmax
1,1 =

1

(2π)2

∫

R4

wTau
(

zTa
)

wTbu
(

zTb
)

e−
‖w‖2+‖w−z‖2

2 (dw)∧ (dz)∧ . (A.25)

Since in the exponential, −‖w‖2+‖w−z‖2

2
= −‖w‖2 +wTz − ‖z‖2 /2:

Jmax
1,1 =

1

(2π)2

∫

R4

bTwwTa · u
(

zTa
)

· u
(

zTb
)

e−‖w‖2+wT z−‖z‖2/2 (dw)∧ (dz)∧ . (A.26)
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By using the identity in Equation C.1 we can carry out the integration in w:

Jmax
1,1 =

1

(2π)2

∫

R2

bT

(

e
‖z‖2

4

2
π

(

I +
zzT

2

)

)

a · u
(

zTa
)

· u
(

zTb
)

e−‖z‖2/2 (dz)∧ . (A.27)

Rescaling the vector z ←
√
2z we get:

Jmax
1,1 =

1

4π

∫

R2

bT
(

I + zzT
)

a · u
(

zTa
)

· u
(

zTb
)

e−‖z‖2/2 (dz)∧ . (A.28)

We can recognise arc-cosine kernels and use substitute in Equation C.8 and C.9 to get:

Jmax
1,1 =

1

2

(

aTb · k(0)(a, b) + k(1)(a, b)
)

=
‖a‖ ‖b‖

4π
(cos θ · J0 (θ) + J1(θ)) . (A.29)

By using Equations C.12 and C.13, into the expression above:

Jmax
1,1 =

‖a‖ ‖b‖
4π

(sin |θ|+ 2 (π − |θ|) cos θ) . (A.30)

The second integral:

Jmax
1,2 = EW

[

wT
1 au

(

∆wT
1,2a
)

wT
2 bu

(

∆wT
2,1b
)]

. (A.31)

Substituting in w2 = w − z and w1 = w yields and changing the angle of b to π − |θ| to
absorb a negative (b = −v) yields:

Jmax
1,2 = − 1

(2π)2

∫

R4

aT
(

wwT +wzT
)

v · u
(

zTa
)

· u
(

zTv
)

e−‖w‖2−wT z−‖z‖2/2 (dw)∧ (dz)∧ .

(A.32)
By Eq.C.1 and C.3:

Jmax
1,2 = − 1

(2π)2

∫

R2

aT

(

π

2
e‖z‖

2/4

(

I − zzT

2

))

v · u
(

zTa
)

· u
(

zTv
)

e−‖z‖2/2 (dz)∧ . (A.33)

Then we scale z by
√
2 and use the arc-cosine kernel definitions:

Jmax
1,2 = − 1

(4π)

∫

R2

aT
(

I − zzT
)

v · u
(

zTa
)

· u
(

zTv
)

e−‖z‖2/2 (dz)∧ , (A.34)

Jmax
1,2 =

‖a‖ ‖b‖
4π

(cos (|θ|) · J0 (π − |θ|) + J1 (π − |θ|)) . (A.35)

Jmax
1,2 =

‖a‖ ‖b‖
4π

sin |θ| . (A.36)

The kernel for the maximum is :

K2,2 = 2 ‖a‖ ‖b‖
(

Jmax
1,2 + Jmax

1,1

)

. (A.37)
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K2,2 = ‖a‖ ‖b‖
(

cos θ + sin |θ| − |θ| cos θ
π

)

. (A.38)

The kernel for the minimum is equal to the maximum kernel. This can be deduced from the
fact that the kernel matrix is bisymmetric. Proceeding similarly as shown above, we find
that the kernel function K1,2 is:

K1,2 =
‖a‖ ‖b‖

π
(|θ| cos θ − sin |θ|) . (A.39)

Thus the final kernel matrix is:

K (a, b) =
‖a‖ ‖b‖

π

[

π cos θ + sin |θ| − |θ| cos θ |θ| cos θ − sin |θ|
|θ| cos θ − sin |θ| π cos θ + sin |θ| − |θ| cos θ

]

. (A.40)

The mean for the maximum is:

µmax = EW
[(

wT
1 au

(

∆wT
1,2a
)

+wT
2 au

(

−∆wT
1,2a
))]

,

µmax (a) =
1

(2π)2

∫

R4

(

(w − z)T a+ zTau
(

zTa
)

)

e−‖w‖2+wT z−
‖z‖2

2 (dw)∧ (dz)∧ . (A.41)

=
‖a‖
(2π)

∫

R4

((w1 − z1) + z1u(z1)) e
−w2

1
+w1z1−

z2
1
2 dw1dz1. (A.42)

=
‖a‖
(2π)

∫

R2

z1u(z1) e
−w2

1
+w1z1−

z2
1
2 dw1dz1. (A.43)

=
‖a‖√π
(2π)

∫

R

z1u(z1) e
−

z2
1
4 dz1. (A.44)

=
‖a‖√
π

= µmax (a) . (A.45)

Note that, µ (b) does not depend on θ, it depends only on it’s norm. The covariance matrix
is:

C (a, b) = K (a, b)− µ (a)µT (b) , (A.46)

C (a, b) =
‖a‖ ‖b‖

π

[

π cos θ + sin |θ| − |θ| cos θ − 1 |θ| cos θ − sin |θ|+ 1

|θ| cos θ − sin |θ|+ 1 π cos θ + sin |θ| − |θ| cos θ − 1

]

.

(A.47)
When a ‖ b at θ = 0, then the Kernel from Equation A.40 becomes

K (a, b)

∣

∣

∣

∣

θ=0

= ‖a‖ ‖b‖ I2×2. (A.48)

The covariance becomes:

C (a, b)

∣

∣

∣

∣

θ=0

= ‖a‖ ‖b‖ J2×2. (A.49)

The derivative of the non-linearity is:

φ (x) =

[

u(x2 − x1) + u(x1 − x2)

u(x1 − x2) + u(x2 − x1)

]

. (A.50)
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A.2 Rank filter kernels with N>2

The second kernel’s derivative relation at θ = 0 is for all N :

− 1

sin θ

∂

∂θ
K (a, b)

∣

∣

∣

∣

θ=0

= IN×N . (A.51)

For N=3, at θ = 0 the kernel matrix is given in eq.A.52:

K (a, b)

∣

∣

∣

∣

θ=0

= ‖a‖ ‖b‖






I3×3 +

√
3

2π







1 1 −2
1 −2 1

−2 1 1












. (A.52)

and the mean of of the maximum:

µmax = 3EW
[(

wT
1 au

(

∆wT
1,2a
)

u
(

∆wT
1,3a
))]

, (A.53)

Upon changing variables, w1 ← w, w2 ← w − y, w3 ← w − z and carrying (or ignoring)
the integration in z2, y2, z2:

µmax (a) =
3 ‖a‖
(2π)3/2

∫

R3

w · u(y) u(z) e−3w2/2+w(z+y)− z2

2
− y2

2 dxdydz. (A.54)

µmax (a) =
3 ‖a‖

33/2 (2π)

∫

R2

(x+ y) · u(y) u(z) e− y2−zy+z2

3 dydz. (A.55)

µmax (a) =
3 ‖a‖
(2π)

∫

R2

(y + z) · u(y) u(z) e−y2+zy−z2dydz. (A.56)

µmax (a) =
3 ‖a‖
(π)

∫

R2

(y) · u(y) u(z) e−y2+zy−z2dydz. (A.57)

Now we substitute in polar coordinates and integrate out the radius:

µmax (a) =
3 ‖a‖
4
√
π

∫ π/2

0

cosφ
√

(

1− 1
2

sin 2φ
)3
dφ, (A.58)

µmax (a) =
3 ‖a‖
2
√
π
. (A.59)

Hence,

µ (a) =
3 ‖a‖
2
√
π







−1
0

1






(A.60)
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For N=4, at θ = 0 the kernel is conjectured2 to be:

K (a, b)|θ=0

‖a‖ ‖b‖ = I4×4 +

√
3

π











1 1 −2 0

1 −1 2 −2
−2 2 −1 1

0 −2 1 1











+
3

π











0 0 1 −1
0 0 −1 1

1 −1 0 0

−1 1 0 0











. (A.61)

The last kernel function is for general N at θ = 0 is:

kN,N =
N

√

(2π)N
·
∫

x

∫

x1−xN−1≥0

x2e−
x2

2
−x

T
x

2 dx (dx)∧ . (A.62)

Substituting in x← x1− xN−1 we obtain

kN,N =
N

√

(2π)N
·
∫

x

∫

xN−1≥0

x2e−N x2

2
+xT

1x−x
T
x

2 dx (dx)∧ . (A.63)

kN,N =
1

√

N (2π)N
·
∫

x

∫

xN−1≥0

x2e
−x2

2
+x

T
1√

N
x−x

T
x

2 dx (dx)∧ . (A.64)

kN,N =
1

√

N (2π)N
·
∫

x

∫

xN−1≥0

x2e
− 1

2

(

x−x
T
1√

N

)2

− 1

2
xT

(

I−11
T

N

)

x
dx (dx)∧ . (A.65)

kN,N =
1

√

N (2π)N−1
·
∫

xN−1≥0

(

1 +

(

xT
1
)2

N

)

e
− 1

2
xT

(

I−11
T

N

)

x
(dx)∧ . (A.66)

kN,N =
1

√

N (2π)N−1
·
∫

xN−1≥0

(

1 +

(

xT
1
)2

N

)

e−
1

2
xT

(

I+11
T
)−1

x (dx)∧ . (A.67)

Then we substitute x ←
√
2x to make the covariance matrix have 1’s as diagonal entries,

and set cN = 1
√

N(π)N−1
:

kN,N = cN ·
∫

xN−1≥0

(

1 + 2

(

xT
1
)2

N

)

e−
1

2
xT

(

I+ 1

2

(

11
T−I

))−1
x (dx)∧ . (A.68)

kN,N = cN ·
(

g1 + 2
g2

N

)

, (A.69)

2 This was a guess tested with Monte-Carlo simulations and the digits matched up to 4 decimals. The
integrals become increasingly tedious to solve. For N = 4, we need to integrate over a spherical simplex.
However, for N > 5 we need to integrate over an n-sphere. We thus solved the integral of the first element of
K (a, b). This result combined with property A.10, we found that two other kernel function matched the
integral. Noting that the terms are powers of π and integers mixed with square roots, we deduced A.61
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where

g1 =

∫

xN−1≥0

e−
1

2
xT

(

I+ 1

2

(

11
T−I

))−1
x (dx)∧ , (A.70)

and

g2 =

∫

xN−1≥0

(

xT
1
)2

e−
1

2
xT

(

I+ 1

2

(

11
T−I

))−1
x (dx)∧ . (A.71)

Equation A.68 is related to Aomoto’s hypergeometric function for an integral (see Equation
A.72) over a spherical simplex [5]. Aomoto shows that the gaussian orthant probability equals
to an integral over a spherical simplex and he solves a general case.

fN =

∫

x≥0

e−
1

2
xTBx (dx)∧ , (A.72)

where B is the precision matrix. Aomoto then express a solution that depend on the
correlation matrix terms. His solution is an infinite power series in terms of dihedral angles.
When variates are equicorrelated or have other simple structures, it is possible to have closed
form solutions in terms of inverse trigonometric and polylogarithm functions. For example, in
our case for N = 2 and 3, we have terms that are algebraic numbers scaled by inverse powers
of π. Indeed, integrals of this type are well known and solved up to an orthant of order 5 and
4 exactly for various types of correlation matrices [13]. Cheng’s equicorrelated case solution’s
for dimensions 4 and 5 depend on dilogarithms3 and inverse trigonometric functions. Schläfli
[36] has shown a recursive formula to solve orthant integrals over an odd number of variables
f2k+1 provided we know the formulas for all the smaller dimension fn’s such that n < 2k+1 .
However, it is not possible to do so for even numbered orthant integration (because the term
desired vanishes out). Instead, one must use Schläfli’s differential recursive formula [34] for
f2k. One must rely on Monte-Carlo simulations to get the variances.

3 When evaluated at ρ = 1/2, the dilogarithm functions can be expressed as a sum of dilogarithms of
different powers of the inverse golden ratio φ−1. Unfortunately, even if there are many simplifications
associated to the golden ratio, we couldn’t find a closed form solution that eliminates the dilogarithms
altogether.
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Appendix B

A Curious Link Between Prime
Numbers, the Maundy Cake Problem
and Parallel Sorting.

B.1 Introduction

Computing is generally done using binary comparators. Perhaps the most intuitive way
of sorting is by using brute force. If we count the number of times an element is larger
than another, then effectively, we indirectly are implementing Insertion Sort or a similar
Selection sort. By counting the number of times an element is larger than the others in the
sequence, we effectively ranked the element. By obtaining the rank, we can sort the sequence
with a permutation. However, ranking (to count the number of times an element is larger
than another) can be assigned to multiple processors simultaneously and is therefore highly
parallelizable. In the insertion sort or the selection sort algorithm, the depth is of the order
of the sequence length. Since we rank in parallel, we have, in the end, a reduction (or a
sum) of O (N) comparator arrays. Again, using GPU’s, this can be reduced in O (log (N))
time. But in most algorithms, comparators used are binary. In this paper, we study if
we can use comparators that take more than two numbers. More specifically, we see what
comparator sizes are possible given N , the size of the sequence to be ranked. When we count
the number of partial ranks(output of a comparator bank) required to be reduced, we get a
direct connection to the Maundy cake problem [8]. Additionally, we analyze the number of
comparators that will have to be used, and we provide a new number-theoretical sequence
related to them.

The new divide and conquer algorithms are mainly theoretical since it is not scalable for
large N . It still requires O (N2) processors running in parallel in the worse case, and it requires
to factorize a large number, which is a nondeterministic polynomial time (NP) problem [21].
Another possible drawback is that the processors need to output n-ary comparators, hence
they could need specialized hardware to implement them.

Sorting a sequence is a non-linear in the sense that the matrix that transforms the sequence
is a permutation matrix P x that depends on the data itself, i.e.

s = P T
xx (B.1)
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We will drop the data dependence subscript for brevity so P x = P . Furthermore,

P =
[

eπ0
. . . eπN−1

]

(B.2)

where ei is a zero N × 1 vector except the ith entry equals 1. Hence if we define nN×1 to be:

nN×1 =
[

0 1 . . . N − 1
]T

(B.3)

then,
P Tn = π (B.4)

where π =
[

π0 . . . πN−1

]T

.

B.2 Converting a sorting problem into a sum problem.

Note that, unless otherwise stated, Zero-indexing is used in this project. If we consider
equation B.1 and B.2 we see that what really is important is the indices π to order a sequence.
That is if we solve for π, we indirectly know what our sorted sequence s is since π fully
characterizes the permutation matrix. In this section we will use comparator units that
output ranks or keys π of the corresponding input sequence number x, instead of using them
to output a “swapped in order” sequence s. If we consider that a K-ary comparator CK×1 or
simply CK , it would output keys ∈ [0, 1, · · · , K − 1]:

CN (xN×1) = π (B.5)

For example, C3
(

[

6.4 −9.3 0.1
]T
)

=
[

2 0 1
]T

and C2
(

[

−40.56 10.76
]T
)

=
[

0 1
]T

.

Consider for now that the sequence has no repeated elements. Then, for the case where
we have exactly 2 elements to compare, we can model C2 as being a boolean function that
outputs 0 and 1 for false and true respectively:

C2
([

x0

x1

])

=

[

(x0 > x1)

(x1 > x0)

]

=

[

δ [x0 − x1]

δ [x1 − x0]

]

= π (B.6)

The relation above is important enough to be given a special notation ci,j for output of the
comparison (xi > xj) = δ[xi − xj] = ci,j. We can rewrite eq. B.6 into:

C2
([

x0

x1

])

=

[

c0,1

c1,0

]

(B.7)

B.2.1 Binary partial ranks

The first algorithm is very intuitive. To illustrate it with an example, if in a sequence of
16 numbers, I told you that one of the elements is bigger than exactly six elements, then
we know that this is the seventh element. We don’t need to know the order of the other
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elements to infer this. Hence it is possible to do sorting in parallel by finding the permutation
index of a sequence element by counting the number of times one element is higher than the
other. So we sum together the partial ranks to get the correct index. In vector notation, the
permutation vector πN×1 is a sum of elements of partial ranks stored in a matrix CN×N (x)
or just CN .

CN (x) = π = CN1N×1 (B.8)

The entry (i, j) of matrix CN are defined by:

ci,j =















δ[xi − xj], if i > j

1− δ[xi − xj], if j > i

0 if i = j

or perhaps more clearly:

CN =











0 c0,1 c0,2 . . .

c̄0,1 0 c1,2 . . .

c̄0,2 c̄1,2 0 . . .
...

. . .











(B.9)

Here c̄ is the 1-bit complement of c. The diagonal is assigned a 0 by default because it never
contributes to the ordering permutation. The lower diagonal are filled with complements of
the upper diagonal elements because this way the permutation indices can’t repeat themselves.
Note that if x has repeated values there could be multiple possible solution for π since the
elements πi could be repeated. Despite that, even if there are equal elements in the vector
x, the permutation indices will correspond to a sorted vector, i.e. the sorting algorithm is
stable. The matrix CN is skew-symmetric in the 1-bit sense, in other words the negative
sign is replaced with the boolean complement. Let us denote the space of the boolean skew-
symmetric matrices by SN×N and the possible comparison matrix space by CN×N . In general,
not all boolean skew-symmetric matrices correspond to a possible x, or CN×N ( SN×N for
N > 2. For example, there is no sequence x that correspond to the following matrix:

S4 =











0 0 0 1

1 0 1 0

1 0 0 1

0 1 0 0











The indexing vector π will correspond to the indices of a stable sorting algorithm if the
permutation indices are unique. The structure imposed on CN also ensures that the solution
π has unique elements.

Proof: Let v (CN) denote the 1
2
(N − 1)N×1 vector obtained from the vectorized matrix

vec (CN) by eliminating all the diagonal and lower diagonal elements of CN . For example if

N = 3, c = v (CN) =
[

c0,1 c0,2 c1,2

]T

. Then the sum of partial indices is:

CN1N×1 = ∆N× 1

2
(N−1)Nc+ n (B.10)
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The matrix ∆N× 1

2
(N−1)N = ∆N has the following recursive structure:

∆N =

[

∆N−1 IN−1×N−1

0
T
N−1×1 −1T

N−1×1

]

(B.11)

The smallest of theses matrices is: ∆2 =

[

1

−1

]

. We have1 rank (∆N) = N − 1 and

1
T
∆N = 0

T
1

2
(N−1)N×1

(B.12)

Combining equations B.8, B.10 andB.4 we obtain:

∆Nc+ n = P Tn (B.13)

Assume that indeed π has repeated values, then P T has repeated 1’s in at least a column
and at least a zero column. In other words, assume rank (P ) < N . If we multiply the left
of eq. B.13 with 1

T we get: 1
T
∆N× 1

2
(N−1)Nc + 1

Tn = 1
TP Tn. Because of eq. B.12, this

reduces to: 1Tn = 1
TP Tn. However, for this equation to hold P T must be of full rank. This

contradicts the assumption.

Algorithm 1 Binary algorithm

1: for i = 0 to N − 2 do
2: for j = 1 to N − 1 do
3: if x[i] > x[j] then
4: c[i][j] = 1
5: c[j][i] = 0
6: else
7: c[i][j] = 0
8: c[j][i] = 1
9: end if

10: end for
11: end for
12: for (i 6= j) and (j = 0 to N) do
13: π[i] = π[i] + c[i][j]
14: end for
15: for j = 0 to N do
16: s[π[i]] = x[i]
17: end for

The cumulative sum is done in parallel too. Since the elements in the sum are binary, it
could be possible to use logical circuits to implement this. So it is possible to convert the
problem of sorting of N numbers into the problem of N-1 binary cumulative sums. For a

1 This is a matrix rank, not to be confused with a sorting order rank.
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sequence of length N, the comparison complexity required to sort N numbers (CN) in terms
of the quantity of binary comparisons (C2) is :

CN ≡
N2 −N

2
C2 = O(N2)C2 (B.14)

Note that we can see this directly from equation B.9 since there are N2−N
2

disjoint binary
comparisons to represent CN , so the above equation reads as: A N -ary comparison is
equivalent to N2−N

2
C2 simultaneous binary comparisons. The quadratic term shows that the

algorithm is practically useless for large sequences. Recall that only short sequences are of
interest here.

x0

x1

x2

x3

Σ

Σ

Σ

Σ

π0

π1

π2

π3

L0

L1

L2

Figure B.1: The comparators only outputs ranks, they don’t swap the compared numbers.
The ranks from the three parallel levels L0, L1 and L2 are added together in the end. There
are three levels and each level has 2 binary comparators.

The question arises if we can minimize the number of parallel levels labelled Li using
ternary or even K-ary comparisons. In fact, this is possible, for example a sequence of length
9 can be separated into 4 parallel nets using ternary comparisons only. The generalization of
this for K-ary comparisons is the aim of the next subsection. Furthermore, we would like the
levels to be maximal, i.e. the number of K-ary comparators per level is N

K
.

B.2.2 Smallest divisor partitioning of partial ranks

Let the sequence length N be factored into a pair of divisors:

N = d ·D (B.15)
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In the above equation, d is the smallest prime divisor of N , and D is the largest divisor of
N or the conjugate divisor of d since D = N/d. The topology of the connections of such
networks is what determines if the network design sorts correctly. Before stating the general
formula, we will enunciate some definitions.

The MATLAB convenient notation for a vector permutation is used, i.e.:

yN×1 = xN×1 (πN×1) =⇒ yi = xπi
; i ∈ [0, N − 1] (B.16)

The M × L matrix Ei,j,M×L, or simply Ei,j , has 1 in its (i, j) entry and 0’s elsewhere. Thus,

Ei,j = δiδ
T
j (B.17)

Let an index vector vj,k ∈ Rd×1 be constructed with it’s ith element defined as:

vi,j,k = (j + k · i) mod D +D · i (B.18)

where i ∈ [0, d− 1], j ∈ [0, D− 1], k ∈ [0, D− 1]. Let a second index vector wj ∈ RD×1 with
it’s ith element defined as wi,j = (i) mod D +D · j:

wj = nD×1 + i · D · 1D×1 (B.19)

Then we have:

πN×1 =
d−1
∑

j=0

δj,d×1 ⊗ CD×1 (x (wj)) +
D−1
∑

k=0

D−1
∑

j=0

(

d−1
∑

i=0

Evi,j,k,i,N×d

)

Cd×1 (x (vj,k)) (B.20)

Here ⊗ denotes the Kronecker product. The pattern for the connections are illustrated with
an example figure with N = 6 network that looks like:

L3,6 L2,6 L2,6 L2,6

C3
C3

C2

C2

C2

C2

C2

C2

C2

C2

C2

Figure B.2: At the left N3,6 is the ternary network, the others are binary networks. The
binary and ternary comparators are labeled with C2 and C3 respectively. There are 1 level of
ternary comparators and there are 3 levels of binary comparators hence L6,6 ≡ L3,6 + 3L2,6.
There is 2 ternary comparators in the ternary level and 3 binary ones per binary level, i.e.
C6 ≡ 2C3 + 9C2.
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We can decompose a sorting network of N numbers into one D-ary network and D d-ary
nets:

LN,N ≡ 1 · LD,N +D · Ld,N (B.21)

Let CD denote a D-ary comparison. Then each network Ld,N contains D d-ary comparisons:

Ld,N ≡
N

d
· Cd = D · Cd (B.22)

Each comparator unit Cpi can be modelled by any algorithm, provided it saves the
permutation indices.

Partial ranks, or output of LN,dj and their sum.

Partial rank from levels

i xi L8,4 L8,2 L8,2 L8,2 L8,2 πi

0 5 2 0 0 0 0 2

1 12 3 1 1 1 1 7

2 2 0 0 0 0 0 0

3 3 1 0 0 0 0 1

4 5 0 1 1 1 0 3

5 7 0 1 1 1 0 5

6 8 3 1 0 1 1 6

7 6 1 1 1 0 1 4

Table B.1: Example of summing partial ranks with divisor partitioning (eq.B.20) with N = 8.
Here, D = 4 and the first column of outputs corresponds to 2 quaternary comparator ranks
placed one above the other, hence it’s partial ranks go from 0 to 3. The last column are the
ranks, or the sum of all the partial ranks.

Substituting eq.B.22 into B.21 we get the mixed comparisons complexity:

CN ≡ d · CN/d +

(

N

d

)2

· Cd (B.23)

If we take take eq. B.23, and substitute in eq.B.14, we show that the binary complexity are
the same for both algorithms:

CN ≡ d · 1
2

(

(

N

d

)2

− N

d

)

C2 +
(

N

d

)2

· 1
2

(

d2 − d
)

C2 =
1

2
(N − 1)NC2 (B.24)

The above relation is a hint that both algorithms are equivalent. If we use algorithm 1, to
model all comparisons, the whole network reduces to binary comparisons. This effectively
reduces the conjugate divisor algorithm into alg. 1. Although this substitution wouldn’t be
interesting because the goal of this section was to see if it was possible to use non binary
comparators, this reduction means that the two algorithms are equivalent.

Proof:
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If we take eq.B.20 and substitute all comparisons with eq.B.8 without summing in the
columns together we get:

CN =
d−1
∑

j=0

Ej,j,d×d ⊗CD×D (x (wj)) +
D−1
∑

k=0

D−1
∑

j=0

Cd×d (x (vj,k))⊗Ek,j,D×D (B.25)

The above equation shows that the binary matrix CN can be represented as an addition of
small discontinuous tiles i.e. CD’s and Cd’s.

B.2.3 Prime partitioning of partial ranks

Let

N =
m
∏

i

fi =
n
∏

j

p
kj
j (B.26)

Where fi are prime factors of N and f1 ≤ · · · ≤ fm. The pj’s are the unique prime factors
and kj is their corresponding power and p1 < · · · < pn. If D can be further decomposed
into prime factors then we can reapply the algorithm iteratively on equation B.21 until no
further decompositions are possible. Using this iterative scheme, we can sort N numbers
using minimal sized partitions consisting of the prime factors of N . We start the steps by
rewriting equation B.21:

LN,N ≡ 1 · L N
f1

,N +
N

f1
· Lf1,N (B.27)

We then repeat the recursion until we can’t factor any more:
LN,N ≡ L N

f1
,N + N

f1
· Lf1,N ≡ (L N

f1f2
,N + N

f1f2
· Lf2,N) +

N
f1
· Lf1,N ≡ · · ·

We then end up with the sum:

LN,N ≡
m
∑

i=1

N
∏i

j=1 fj
Lfi,N =

m
∑

i=1

(

m
∏

j=i

fj

)

Lfi,N

fi
(B.28)

This sequence can be then be organised wrt to it’s unique prime factors:

LN,N ≡
n
∑

i=1

N
∏i

j=1 p
kj
j

pkii − 1

pi − 1
Lpi,N (B.29)

Applying equation B.22 to B.28, we get a formula for the different types of comparisons:

CN ≡
m
∑

i=1

N
∏i

j=1 fj

(

N

fi

)

Cfi = N

m
∑

i=1

(

m
∏

j=i

fj

)

Cfi
f 2
i

(B.30)

CN ≡
n
∑

i=1

N
∏i

j=1 p
kj
j

pkii − 1

pi − 1

N

pi
Cpi (B.31)
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The proof for eq.B.31 follows the same lines as the proof for equation B.33. If we substitute
each Lpi,N in equation B.28 with 1, we get the number of column vectors of keys to be added
in the final adder step:

|LN | =
m
∑

i=1

N
∏i

j=1 fj
(B.32)

Consequently, the addition complexity C
⊕

N = |LN | − 1. A special case of eq. B.28 when
N = pk include:

LN,N ≡
N − 1

p− 1
Lp,N (B.33)

Proof: We start with equation B.28 and set all primes pi = p. We get a geometrical series
LN,N ≡

∑m

i=1 p
m−iLp,N = pm−1 1−p−m

1−p−1 Lp,N and B.33 follows.
The comparison complexity for prime powers is:

CN ≡
N − 1

p− 1
· N
p
Cp (B.34)

A second case of eq. B.28 when N = pk11 pk22 include:

LN,N ≡ pk22
pk11 − 1

p1 − 1
Lp1,N +

pk22 − 1

p2 − 1
Lp2,N . (B.35)

Now upon inspecting the formula for |LN | in equation B.32 we see that the upper bound is
obtained when the number of prime factors m is maximal and the denominator is minimal.
This happens only when N = 2m. Then |L2m | = N − 1. The minimum is when N is prime
and hence |Lp| = 1 and so we have:

1 ≤ |LN | ≤ N − 1;N ≥ 2 (B.36)

The formula provided in the sequence of OEIS A006022, (related to the Maundy cake
problem [8]) is:

a (N) = max
(

[d · a (N/d) + 1]∀d|N

)

(B.37)

applying the iteration until we cover all the values we end up with the formula for |LN |. In
other words, a (N) = |LN | implies that |LN | are Nim numbers.

If we are interested in the total number of comparisons regardless of the number of input
the comparators take we get by setting all Cfi to 1:

|CN | ≡
m
∑

i=1

N2

fi
∏i

j=1 fj
(B.38)

It can be shown using the same arguments to show the limits in B.36 that:

1 ≤ |CN | ≤
N2 −N

2
;N ≥ 2 (B.39)

The first 50 terms are:

0, 1, 1, 6, 1, 11, 1, 28, 12, 27, 1, 58, 1, 51, 28, 120, 1, 105, 1, 154, 52, 123, 1, 260, 30, 171, 117, 298,

1, 281, 1, 496, 124, 291, 54, 534, 1, 363, 172, 708, 1, 545, 1, 730, 309, 531, 1, 1096, 56, 685.
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p

N 2 3 5 7 11 13 . . . |LN |
2 1 1

3 1 1

4 3 3

5 1 1

6 3 1 4

7 1 1

8 7 7

9 4 4

10 5 1 6

11 1 1

12 9 1 10

13 1 1

14 7 1 8

15 5 1 6

16 15 15

Table B.2: Coefficients in Lp,N of eq.B.29 and |LN,N |.

p

N 2 3 5 7 11 13 . . . |CN |
2 1 1

3 1 1

4 6 6

5 1 1

6 9 2 11

7 1 1

8 28 28

9 12 12

10 25 2 27

11 1 1

12 54 4 58

13 1 1

14 49 2 51

15 25 3 28

16 120 120

Table B.3: Coefficients in Cpi of eq.B.31 and |CN |.
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Appendix C

Facts

∫

Rn

wwT e−wTAw±bTw (dw)∧ =
e

b
TA−1

b

4

2

√

πn

|A|

(

A−1 +
A−1bbTA−1

2

)

. (C.1)

∫

Rn

wwT e−wTΣ−1w/2 (dw)∧ = Σ · 2n/2πn/2
√

|Σ|. (C.2)

∫

Rn

we−wTAw−bTw (dw)∧ = −A−1b

2

√

πn

|A|e
b
TA−1

b

4 . (C.3)

If Wn×m = [w1, · · · ,wm], and vec(W ) =W ∼ N (0mn×1,Σmn×mn), with

Σ =











Σ11 0 · · · 0

0 Σ22 · · · 0
...

...
. . .

...

0 0 · · · Σmm











,

and Σii ∈ Rn×n.
∫

Rnm

W T
m×nBn×nWn×me

− tr
(

WTΣ−1W
)

/2 (dW )∧ =

∫

Rnm

[

wT
i Bn×nwj

]

i,j
e− tr

(

WTΣ−1W
)

/2 (dW )∧

=

∫

Rnm

[

1
T
(

Bn×n ◦wiw
T
j

)

1
]

i,j
e− tr

(

WTΣ−1W
)

/2 (dW )∧

=
[

1
T (Bn×n ◦ Σij)1

]

m×m

√

(2π)mn |Σ| =
[

tr
(

Bn×nΣ
T
ij

)]

m×m

√

(2π)mn |Σ| (C.4)

=
[

tr
(

Bn×nΣ
T
ij

)]

m×m

√

(2π)mn |Σ11|
1

2 |Σ22|
1

2 · · · |Σmm|
1

2 . (C.5)

In the simple case where Σii = Σn×n,
∫

Rnm

W T
m×nBn×nWn×me

− tr
(

WTΣ−1W
)

/2 (dW )∧ = tr
(

Bn×nΣ
T
n×n

)

· Im×m

√

(2π)mn |Σn×n|
m
2 ,

and
∫

Rnm

W T
m×nWn×me

− tr
(

WTΣ−1W
)

/2 (dW )∧ = tr(Σn×n) · Im×m

√

(2π)mn |Σn×n|
m
2 .
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This includes the special case Σii = σ2In×n,

∫

Rnm

W T
m×nBn×nWn×me

− tr
(

WTΣ−1W
)

/2 (dW )∧ = σ2 tr(Bn×n) · Im×m

√

(2π)mn
σmn. (C.6)

It then follows that
∫

Rnm

W T
m×nWn×me

− tr
(

WTΣ−1W
)

/2 (dW )∧ = σ2n · Im×m

√

(2π)mn
σmn. (C.7)

Additionally,
The following Equations C.8, C.9 and C.10 are taken from [14]. Equation C.9 is named

the arc-cosine kernel [14], [26].

k(m)(a, b) =
1

(2π)n/2

∫

Rn

(

aTwwTb
)m · u

(

wTa
)

· u
(

wTb
)

e−
w

T
w

2 (dw)∧ , (C.8)

or

k(m)(a, b) =
1

2π
‖a‖m ‖b‖m Jm(θ) . (C.9)

The angle

θ = arcos

(

aTb

‖a‖ ‖b‖

)

.

Jm (θ) = (−1)m (sin θ)m
(

1

sin θ

∂

∂θ

)m(
π − θ

sin θ

)

; θ ∈ [0, π] (C.10)

Jm (−θ) = Jm (θ) ; θ ∈ [0, π] (C.11)

J0 (θ) = π − |θ| (C.12)

J1 (θ) = sin |θ|+ (π − |θ|) cos θ (C.13)

J2 (θ) = 3 sin |θ| cos θ + (π − |θ|)
(

1 + 2 cos2 θ
)

(C.14)
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