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ABSTRACT: 

Dynamic Texture (DT) can be considered as an extension of the static texture additionally comprising the motion features. The DT is 

very wide but the weak studied type of textures that is employed in many tasks of computer vision. The proposed method of the DTs 

recognition includes a preliminary categorization based on the proposed four categories, such as natural particles with periodic 

movement, natural translucency/transparent non-rigid blobs with randomly changed movement, man-made opaque rigid objects with 

periodic movement, and man-made opaque rigid objects with stationary or chaotic movement. Such formulation permitted to 

construct the separate spatial and temporal Convolutional Neural Networks (CNNs) for each category. The inputs of the CNNs are a 

pair of successive frames (taken through 1, 2, 3, or 4 frames according to a category), while the outputs store the sets of binary 

features in a view of histograms. In test stage, the concatenated histograms are compared with the histograms of the classes using the 

Kullback-Leibler distance. The experiments demonstrate the efficiency of the designed CNNs and provided the recognition rates up 

97.46–98.32% for the sequences with a single type of the DT conducted on the DynTex database. 

* Corresponding author

1. INTRODUCTION

It is evident that the most of the wild natural scenes include a 

lot of motion patterns, such as clouds, trees, grass, water, 

smoke, flame, haze, fog, etc., called as the DTs. Even, crowd of 

people running, vehicular traffic, swam of fishes or birds in 

flight may be modelled as the DTs under the specific shooting 

parameters. The DTs are caused by a variety of physical 

processes that leads to different visualization of such objects: 

small/large particles, transparent/opaque visibility, rigid/non-

rigid structure, 2D/3D motion. The goal of the DTs recognition 

can be different. In reconstruction tasks, the recognition of the 

DT means a creation of its 2D or 3D statistical model. In 

surveillance system, the DT motion in 3D spatiotemporal 

volume is analyzed. In virtual applications, only the qualitative 

motion recognition is necessary. 

One of the main properties of man-caused textured objects – 

regularity is not so evident for the natural DTs. It is reasonable 

to assume that a computing of the gradient fields and full 

displacements with high accuracy is not necessary. The spatial 

properties of textures are well-known and include statistical, 

fractal, and color estimators (Favorskaya et al., 2016). The 

temporal properties of textures differ each others, and one can 

speak about the common temporal properties, such as 

divergence, curl, peakiness (the average flow magnitude divided 

by its standard deviation), and orientation in the case of the 

normal or full optical flow (Chetverikov and Peteri, 2005), and 

the special temporal properties, for example, the stationary, 

coherent, incoherent, flickering, and scintillating. It is required 

a necessity of the spatiotemporal features to be invariant, at 

least, to the affine transform and illumination variations. 

The recognition of the DTs remains a challenging problem 

because of multiple impacts appearing in the dynamic scenes 

that include the viewpoint changes, camera motion, illumination 

changes, etc. In past decades, a variety of different approaches 

have been proposed for recognition of the DTs, such as the 

Linear Dynamic System (LDS) methods (Ravichandran et al., 

2013), GIST method (Oliva and Torralba, 2001), the Local 

Binary Pattern (LBP) methods (Zhao and Pietikainen, 2007a), 

wavelet methods (Dubois et al., 2009; Dubois et al., 2015), 

morphological methods (Dubois et al., 2012), deep multilayer 

networks (Yang et al., 2016; Arashloo et al., 2017), among 

others. 

Our contribution deals with the architecture’s design of the 

spatial and temporal CNNs for the categorized type of the DTs 

in such manner that the parameters of filters are optimally tuned 

for each DT category. The special attention is devoted to the 

motion features like the periodic movement features and 

movement features based on the energies. 

The rest of the paper is organized as follows. Section 2 

describes the related work. The preliminary dynamic textures 

categorization is proposed in Section 3. Section 4 contains the 

design details of the CNN, while Section 5 presents the results 

of experiments conducted on DynTex database. The last section 

6 concludes the paper. 
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2. RELATED WORK 

All approaches for the DTs recognition can be roughly 

categorized as generative and discriminative methods. The 

generative methods consider the DTs as the physical dynamic 

systems based on the spatiotemporal autoregressive model 

(Szummer and Picard, 1996), the LDS (Doretto et al., 2003), 

the kernel-based model (Chan and Vasconcelos, 2007), and the 

phase-based model (Ghanem and Ahuja, 2007). The details of 

this approach are described in (Haindl and Filip, 2013). The 

main drawback of this approach is an inflexibility of models, 

describing the DT sequence with the nonlinear motion 

irregularities. 

 

The discriminative methods employ the distributions of the DT 

patterns. Many methods, such as the local spatiotemporal 

filtering using an oriented energy (Wildes and Bergen, 2000), 

normal flow pattern estimation (Peteri and Chetverikov, 2005), 

spacetime texture analysis (Derpanis and Wildes, 2012), global 

spatiotemporal transforms (Li et al., 2009), model-based 

methods (Doretto et al., 2004.), fractal analysis (Xu et al., 

2011), wavelet multifractal analysis (Ji et al., 2013), and 

spatiotemporal extension of the LBPs (Liu et al., 2017), are 

concerned to this group. The discriminative methods prevail on 

the generative methods due to their robustness to the 

environmental changes. However, the merits of all approaches 

become quite limited in the case of complex DT motion. 

 

The spacetime orientation decomposition is an intuitive 

representation of the DT. Derpanis and Wildes (Derpanis and 

Wildes, 2010) implemented the broadly tuned 3D Gaussian 

third derivative filters, capturing the 3D direction of the 

symmetry axis. The responses of the image data were pointwise 

rectified (squared) and integrated (summed) over a spacetime 

region of the DT. The spacetime oriented energy distributions 

maintained as histograms in practice evaluated by Minkowski 

distance, Bhattacharyya coefficient, or Earth mover’s distance 

respect to the sampling measurements. These authors claimed 

that the semantic category classification results achieved 92.3% 

for seven classes like flames, fountain, smoke, turbulence, 

waves, waterfall, and vegetation from UCLA dynamic texture 

database (Saisan et al., 2001). 

 

The temporal repetitiveness is a basis of most DTs. A 

periodicity analysis of strictly periodic and nearly (quasi) 

periodic movements was developed by Kanjilal et al. (Kanjilal 

et al., 1999) and included three basic periodicity attributes: the 

periodicity (a period length), pattern over successive repetitive 

segments, and scaling factor of the repetitive pattern segments. 

Hereinafter, this analysis based on the Singular Value 

Decomposition (SVD) of time series configured into a matrix 

was adapted to the DTs recognition (Chetverikov and Fazekas, 

2006). 

 

A set of spatial features is wide. Usually it is impossible to 

recognize the DT using a single descriptor, some arbitrary 

aggregation of features is required to satisfy the diversity, 

independence, decentralization, and aggregation criteria. The 

spatial features are defined by the type of the analyzed DTs. 

Thus, the LBP and Gabor features can be used to recognized the 

simple and regular textures, while the shape co-occurrence 

texture patterns (Liu et al., 2014) and deep network-based 

features (Bruna and Mallat, 2013) describe the geometrical and 

high-order static textures. The GIST descriptor is selected to 

depict the scene-level textural information. 

The DTs indicate the spatial and temporal regularities, depicting 

simultaneously. Therefore, many researches are focused on a 

simultaneous processing the spatial and temporal patterns in 

order to construct the efficient spatiotemporal descriptors based 

on the LDT model (Chan and Vasconcelos, 2007; Yang et al., 

2016). Nevertheless, some authors study the dynamic or spatial 

patterns of the DTs separately using, for example, Markov 

random fields, chaotic invariants, GIST descriptor, the LBPs, 

among others (Zhao et al, 2012; Crivelliet al., 2013). 

 

Recently, the deep structure-based approaches have been 

actively applied in many tasks of computer vision. The deep 

multilayer architectures achieve an excellent performance, 

exceeding the human possibilities in different challenging visual 

recognition tasks (Goodfellow et al., 2016). However, they 

require a large volume of labeled data that makes the learning 

stage computationally demanding. Due to the large number of 

the involved parameters, these networks are prone to 

overfitting. A particularly successful group of multilayer 

networks is the convolutional architectures (Schmidhuber, 

2015) or the CNNs. In the CNN, the problems of the 

overfitting, expensive learning stage, and weak robustness 

against image distortions are handled via the constrained 

parameterization and pooling. 

 

Qi et al. (Qi et al., 2016) proposed the well-trained 

Convolutional neural Network (ConvNet) that extracts the mid-

level features from each frame with following classification by 

concatenating the first and the second order statistics over the 

mid-level features. These authors presented and tested two-level 

feature extraction scheme as the spatial and the temporal 

transferred ConvNet features. The ConvNet has five 

convolutional layers and two full-connected layers with removal 

of the final full-connected layer. 

 

The PCA Network (PCANet) was designed by Chan et al. 

(Chan et al., 2015) as a convolutional multilayer architecture 

with filters that are learned using principal component analysis. 

The overcoming is in that the training the network only involves 

the PCA data volume. The PCANet is a convolutional structure 

with high restricted parameterization. Despite its simplicity, the 

PCANet provides the best performance in static texture 

categorization and image recognition tasks. Afterwards, the 

static PCANet was extended to the spatiotemporal domain 

(PCANet-TOP) for analysis of dynamic texture sequences 

(Arashloo et al., 2017). 

 

Due to a great variety of the DTs, it is reasonable to categorize 

preliminary the DTs according to their global features and 

design the special CNNs with simpler architectures for each 

category. Objectively, the proposed structure permits to speed 

up a recognition process of huge data volume, for example, 

during the object recognition and surveillance. 

 

3. PRELIMINARY CATEGORIZATION OF DYNAMIC 

TEXTURES  

Our DTs categorization is based on the following 

spatiotemporal criteria: 

 

1. Spatial texture layering/layout – uniformly distributed 

texels/texels in a non-uniform spatial background 

2. Type of texels – particles/blobs/objects 

3. Shape of texels – rigid/non-rigid 

4. Color of texels – changeable/persistent 

5. Transparency – opaque/translucency/transparent 
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6. Type of texels’ motion – stationary/periodic/randomly 

changed/chaotic 

 

A multi-slice of texels (2D space texture) mapping forms a 

volumetric representation, so called voxels. It is worth noting 

that the voxels’ analysis is also possible. However, 3D filters 

are more complicated and provide the global estimators with 

less discriminative information regarding a multi-slice mapping. 

Above all, any motion in a scene ought to be analyzed on a 

subject of textural/non-textural regions. For this goal, the well-

known techniques, such as background subtraction, block-

matching algorithm, optical flow, or their multiple 

modifications may be applied (Favorskaya, 2012). 

 

A periodicity of the DTs is very significant feature for 

preliminary categorization. A generalized function of 

periodicity f(k) describes the temporal variations of the average 

optic flow of the DTs with following pre-processing according 

to Chetverikov and Fazekas (Chetverikov and Fazekas, 2006) 

recommendations. These preprocessing algorithms reduce the 

effects of: 

 

1. Noise. The original function fo(k) is smoothed by a 

small mean filter 

2. Function trend. The denoised function fn(k) is 

detrended by the smoothing with a large mean filter and 

subtracting the mean level from the denoised function ft(k) 

3. Amplitude variations. The detrended function ft(k) is 

normalized without shifting 

4. Potential non-stationarity. The periodicity is 

computed using a slicing window, which size should span 

at least four periods of the function ft(k) 

 

According to the notation of Kanjilal et al. (Kanjilal et al., 

1999), digital generalized function f(k), having a period n, is 

placed as the successive n intervals of f(k) into the rows of the 

m × n matrix An: 
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If n equals the period length, then the rows of matrix An are 

linearly dependent in spite of different scaling factors of the 

rows. This proposition permits to use the SVD to determine the 

repeating pattern and the scaling factors from matrix An as 

An = USVT, where UUT = UTU = I, VVT = VTV = I. The diagonal 

matrix S = diagonal(s1, s2, …, sr : 0) contains the sorted singular 

values s1  s2  ... sr  0 with the rank r = min(m, n). For strictly 

periodic movement, function f(k) has a period N, f(k) = f(k + N), 

rank(An) = 1, when n = N, the eigenvalues are s1 > 0, 

s2 = s3 = … = sr = 0, s1 / s2 = . The vector v1 of matrix V is the 

normalized periodic pattern and the elements of u1s1 are the 

scaling factors (they are all equal). For nearly periodic 

movement, function f(k) with a period N, f(k)  f(k + N), two 

cases are possible. The first case is the same one that was 

mentioned above but with different scaling. In this case, the 

vector v1 remains the periodic pattern. The second case 

evaluates the nearly repeating patterns with different scaling. In 

this case, the matrix An can be full-rank and s1 >>s2 that 

indicates a strong primary periodic component of the length n, 

given by rows of the matrix u1s1v1
T. To obtain the further 

component, the iterative procedure for the residual matrix An –

 u1s1v1
T is required. Besides the ratio s1/s2 evaluation, two 

alternative measures of function periodicity were introduced by 

Chetverikov and Fazekas (Chetverikov and Fazekas, 2006): 
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Consider the most interesting measures of moving regions that 

are easily can be implemented in the CNN architecture. Four 

spatiotemporal measures have been proposed by Xu et al. (Xu 

et al., 2015), which are suitable for the shape, motion, and 

fractal evaluation of the DTs. The pixel intensity measure 

I(p0, t0, rs, rt) is calculated by equation 3: 
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where  I(p, t) = an intensity value of pixel p in time instant t 

 rs = a spatial radius 

 rt = a temporal radius 

   tstp rr ,
00 ,  = a 3D cube centering at point (p0, t0) 

 

The temporal brightness gradient B(p0, t0, rs, rt) is a summation 

of temporal intensity changes of the DT in a 3D cube (). This 

parameter is defined by a derivative of second order (equation 

4): 
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The Laplacian L(p0, t0, rs, rt) means the information of the local 

co-variance of pixel intensity at point (p0, t0) in the spatial-

temporal domain (equation 5): 
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The normal flow F(p0, t0, rs, rt) is often used in motion 

estimation of the DTs. It measures a motion of pixels along the 

direction perpendicular to the brightness gradient, e.g., edge 

motion as an appropriate measure for chaotic motion of the 

DTs. This measure can be calculated by equation 6: 

  

  
 
    




tstp rr
tsF dp

pI

ttpI
rrtp

,
00

0
,

0

,
,,,μ .   (6) 

 

The spatial texture layering as well as the type and shape of 

texels are also important descriptors for preliminary 

categorization. They can be estimated using the gradient 

information of the successive frames. According to the 

proposed spatiotemporal features, the following categorized 

groups were formulated: 

 

1. Category I. Natural particles with periodic movement 

like water in the lake, river, waterfall, ocean, pond, canal, 

and fountain, leaves and grass under a wind in small scales 

2. Category II. Natural translucency/transparent non-

rigid blobs with randomly changed movement like the 

smoke, clouds, flame, haze, fog, and other phenomena 

3. Category III. Man-made opaque rigid objects with 

periodic movement like flags and textile under a wind, 

leaves and grass under a wind in large scales 
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4. Category IV. Man-made opaque rigid objects with

stationary or chaotic movement like car traffic, birds and

fishes in swarms, moving escalator, and crowd

It is reasonable to design the separate CNNs for each category. 

4. DESIGN OF CONVOLUTIONAL NETWORK

Many conventional machine learning techniques were approved 

for texture recognition. However, the DTs recognition causes 

the challenges that can be solved by use of more advanced 

techniques, for example, the CNN as a sub-type of a 

discriminative deep neural network. The CNNs demonstrate a 

satisfactory performance in processing of 2D single images and 

videos as a set of successive 2D frames. The CNN is a multi-

layer neural network, which topology in each layer is such that a 

number of parameters is reduced thanks to the implementation 

of the spatial relationships and the standard back propagation 

algorithms. The typical CNN architecture consists of two types 

of the alternate layers, such as the convolution layers (c-layers), 

which are used to extract features, and sub-sampling layers (s-

layers), which are suitable for feature mapping. The input image 

is convolved with trainable filters that produce the feature maps 

in the first c-layer. Then these pixels, passing through a sigmoid 

function, are organized in the additional feature maps in the first 

s-layer. This procedure is executed until the required rasterized

output of the network will not be obtained. The high

dimensionality of inputs may cause an overfitting. A pooling

process called as a sub-sampling can solve this problem.

Usually, a sub-sampling is integrated in 2D filters.

Except the special cases, the correlation between the spatial and 

temporal properties of the DTs does not exist. Therefore, it is 

reasonable to introduce the parallel spatial and temporal CNNs 

called as s-CNN and t-CNN with the finalizing voting of the 

separate concatenated results. The system’s architecture 

involves three main parts. The first categorization part defines a 

periodicity activity in a long-term series of the DTs that exceed 

as minimum in four times a period length of oscillations or it 

will be clarified that a periodicity is absent. The second 

convolution part analyses a short-term series and includes two 

s-CNNs and one t-CNN for a pair of successive frames. The s-

CNNs process two successive frames, while the inputs of the t-

CNN obtain a frame difference. The layers of all CNNs are

trained relative to a category that was determined during a

categorization part. For this goal, different spatial and temporal

filters are tuned. The output feature results of two s-CNNs are

averaged. The third voting part concatenates the spatial and

temporal features in order to define a class of the DT. The

detailed block-chart of the proposed architecture is depicted in

Figure 1. The specifications of two s-CNNs and one t-CNN for

category I of the DTs are situated in Table 1. Consider the

implementation of the learning and test processes in the DT

recognition system in Sections 4.1 and 4.2, respectively.

4.1 Overview of Learning Process 

Suppose that two successive training frames of size m  n pixels 

are divided into k  k patches, where k is an odd number. In 

Figure 1. The detailed block-chart of the proposed architecture 
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Name Kernel Features Input 

resolution 

Output 

resolution 

s-CNN 

Conv1 77 64 720×576 360×288 

Sampl1 55 128 360×288 180×144 

Conv2 55 256 180×144 90×72 

Sampl2 33 512 90×72 45×36 

Conv3 33 1024 45×36 22×18 

Polling1  1024   

Polling2  1024   

Polling3  512   

t-CNN 

Conv1 1111 64 720×576 360×288 

Conv2 99 128 360×288 180×144 

Conv3 77 128 180×144 90×72 

Conv4 77 256 90×72 45×36 

Conv5 55 256 45×36 45×36 

Conv6 55 512 45×36 22×18 

Conv7 33 512 22×18 119 

Conv8 33 1024 119 119 

Polling1  1024   

Polling2  512   

Table 1. Specification of the proposed architecture 

each convolutional layer, one of the filters is applied to each 

patch. The s-layer provides an estimation of the obtained 

intermediate results using a sigmoid function. During a learning 

stage, only the high quality frames are processed with the goal 

to tune optimally the parameters of each filter. In current 

architecture, the mean filter, the median filter, and the Laplacian 

filter were applied in the s-CNN and four spatiotemporal 

measures (equations 3-6) were implemented in the t-CNN for 

four DTs categories. Also the optical flow provides the 

information about the local and global motion vectors. After the 

last layer, the residuary patches ought to be binarized and 

represented as the separate histograms. The goal of the pooling 

layers is to aggregate the separate histograms, improve their 

representation, and create the output histogram for a voting part. 

Note that the output histograms from two s-CNNs are averaged. 

Each final histogram is associated with the labelled class of the 

DTs. 

 

4.2 Overview of Test Process 

The well-trained CNNs do not need in the architecture changes 

during a test process. The input frames are categorized 

according to the movement and main spatial features. The 

histograms are improved and concatenated in a voting part of a 

system. For recognition, the Kullback-Leibler distance among 

the others, such as Chi-square distance, histogram intersection 

distance, and G-statistics, was used as a recommended 

frequently method for the histograms’ comparison. Also the 

Kullback-Leibler distance called as a divergence provided the 

best results in our previous researches regarding the dynamic 

transparent textures (Favorskaya et al., 2015). 

 

The Kullback-Leibler divergence is adapted for measuring 

distances between histograms in order to analyze the probability 

of occurrence of code numbers for compared textures. First, the 

probability of occurrence of the code numbers is accumulated 

into one histogram per image. Each bin in a histogram 

represents a code number. Second, the constructed histograms 

of test images are normalized. Third, the Kullback-Leibler 

divergence DKL is computed by equation 7: 
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where  h  1, 2 = a number of compared histograms 

 H() = a histogram 

 K = the total number of coded numbers 

 

Note that a multi-scale analysis is only required for the DTs 

from categories III and IV (man-made objects) due to the 

natural textures are fractals with a self-organizing structure. 

 

5. EXPERIMENTAL RESULTS 

The DynTex database (Peteri et al., 2010) includes 678 video 

sequences with total duration in 337,100 frames or near four 

and a half hours. All video sequences have the resolution 

720×576 pixels. The selected video sequences were divided into 

four categories, some of which are represented in Tables 2-5. 

 

Description Snapshot Description Snapshot 
 

6ame100.avi 

FN = 600 

Water in a lake 
 

 

649h320.avi 

FN = 250 

Sea waves 
 

571b310.avi 

FN = 250 

Water in a river 1 
 

 

6amg900.avi 

FN = 1025 

Fountain 1  
571b210.avi 

FN = 254 

Water in a river 2 
 

 

648dc10.avi 

FN = 625 

Fountain 2  
54ac110.avi 

FN = 250 

Dry grass 
 

 

644b810.avi 

FN = 1150 

Shrub  
64ac510.avi 

FN = 1425 

Marine plant 
 

 

54aa110.avi 

FN = 250 

Wood chips  

Table 2. Category I (FN is a frame number) 

 

Description Snapshot Description Snapshot 
 

6ammj00.avi 

FN = 325 

Candles’ flame 
 

 

649g910.avi 

FN = 250 

Factory smoke  
 

55fc110.avi 

FN = 250 

Vapor 
 

 

6489610.avi 

FN = 250 

Water jets  
56ua110.avi 

FN = 250 

Raindrops 
 

 

57db110.avi 

FN = 250 

Cigarette smoke  
64cac10.avi 

FN = 250 

Flame 
 

 

6450810.avi 

FN = 875 

Clouds 1  
649aa20.avi 

FN = 250 

Clouds 2 
 

 

648ea10.avi 

FN = 250 

Steam exhaust  

Table 3. Category II (FN is a frame number) 
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Description Snapshot Description Snapshot 
 

646a510.avi 

FN = 650 

Flags 
 

 

6amg500.avi 

FN = 250 

Flag 1  

571e110.avi 

FN = 250 

Curtains 1 
 

 

648e910.avi 

FN = 250 

Flag 2  
644ba10.avi 

FN = 525 

Curtains 2 
 

 

649bd10.avi 

FN = 1150 

Flag 3  
645a930.avi 

FN = 250 

Decoration 
 

 

6483910.avi 

FN = 1425 

Leaves 1  
645a540.avi 

FN = 250 

Spruce branches 
  

6486910.avi 

FN = 250 

Leaves 2  

Table 4. Category III (FN is a frame number) 

 

Description Snapshot Description Snapshot 
 

54pe210.avi 

FN = 250 

Escalator 
 

 

645c510.avi 

FN = 1200 

Highway 1 
 

64ad910.avi 

FN = 825 

Ants 
 

 

646c410.avi 

FN = 500 

Swarm of birds  
64bae10.avi 

FN = 250 

CD disk 
 

 

647c730.avi 

FN = 50 

Highway 2  
648ab10.avi 

FN = 725 

Mill 
 

 

644c310.avi 

FN = 600 

Fan  
649i210.avi 

FN = 475 

Big round thing 
 

 

6441510.avi 

FN = 600 

Wheel of a bike  

Table 5. Category VI (FN is a frame number) 

 

The moving textured objects in video sequences were detected 

using the block matching algorithm and optical flow. A half of 

the obtained data was used in the CNN learning, while the other 

half was applied during the CNN test. Examples of such 

fragments in color and gray-scale representations are depicted in 

Figure 2. 

 

 

Figure 2. Examples of DTs in color and gray-scale 

representations 

 

Experiments show that the generalized CNN designed for all 

types of the DTs has very complicated architecture, when only 

the separate components of the s-layers and c-layers are worked 

out. This leads to a necessity of preliminary categorization of 

the DTs with following construction of the specified 2D filters 

for each type of the DTs. The s-CNN employs Laplacian, 

Gaussian, the energy Laws filter (Laws, 1980), and the energy 

Tamura features (Tamura, 1978). The t-CNN uses the filters, 

employing the block-matching and optical flow components 

with the successive decreasing of resolution. Then the resulting 

histograms are built and compared by the Kullback-Leibler 

divergence as a measure of differences. As an example, the 

histograms for Category I and Category III of the DTs are 

depicted in Figure 3. 

 

 

Figure 3. Normalized histograms for Category I (blue) and 

Category III (yellow) of the represented samplings 

 

The averaged recognition results for all four Categories are 

presented in Table 6. 

 

Video sequence Recognition 

rate, % 

Video sequence Recognition 

rate, % 

Category I 

Water in a lake 98.2 Sea waves 98.2 

Water in river 1 97.2 Fountain 1 97.6 

Water in river 2 97.0 Fountain 2 98.2 

Dry grass 94.1 Shrub 92.5 

Marine plant 95.6 Wood chips 99.2 

Averaged value 96.78   

Category II 

Candles’ flame 98.2 Factory smoke 100.0 

Vapor 96.2 Water jets 93.2 

Raindrops 98.1 Cigarette smoke 98.2 

Flame 98.8 Clouds 1 97.2 

Clouds 2 98.5 Steam exhaust 94.1 

Averaged value 97.25   

Category III 

Flags 98.2 Flag1 99.8 

Curtains 1 100.0 Flag 2 98.2 

Curtains 2 100.0 Flag 3 98.5 

Decoration 98.7 Leaves 1 96.7 

Spruce branches 96.8 Leaves 2 96.3 

Averaged value 98.32   

Category VI 

Escalator 100.0 Highway 1 94.1 

Ants 95.1 Swarm of birds 93.4 

CD disk 100.0 Highway 2 95.1 

Mill 98.7 Fan 99.1 

Big round thing 100.0 Wheel of a bike 99.1 

Averaged value 97.46   

Table 6. Averaged recognition results 

 

The comparison of the obtained results with the results of other 

authors was implemented using the DynTex database. The 

comparative values are placed in Table 7. Note that in most 
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investigations, the natural DTs are only processed with better 

results against our averaged results for all DT categories. 

Method Recognition 

rate, % 

Zhao and Pietikainen (Zhao and Pietikainen, 

2007b) 

92.45 

Xu et al. (Xu et al., 2011) 97.63 

Tiwari and Tyagi (Tiwari and Tyagi, 2016a) 85.14 

Tiwari and Tyagi (Tiwari and Tyagi, 2016b) 98.57 

The proposed method 97.45 

Table 7. Comparative results 

The experiments confirm the efficiency of the proposed method 

for the DTs recognition using the designed CNNs. 

6. CONCLUSIONS

The proposed system architecture, including the categorization, 

convolution and voting parts, provides very promising results in 

the DT recognition task. The experiments conducted on the 

sequences from the DynTex database show the best recognition 

results for the Categories VI and III with the averaged 

recognition rate 97.46 % and 98.32%, respectively. For the DTs 

based on man-made opaque rigid objects with stationary or 

chaotic movement, the errors of temporal features are high for 

the short-term series that influence on the final result. Also the 

samples of these categories usually contain a cluttered 

background. This means that a special attention ought to be paid 

for the temporal analysis in the further investigations. 

ACKNOWLEDGEMENTS 

The reported study was funded by the Russian Fund for Basic 

Researches according to the research project № 16-07-00121 A. 

REFERENCES 

Arashloo, S.R., Amirani, M.C., Ardeshir Noroozi, A., 2017. 

Dynamic texture representation using a deep multi-scale 

convolutional network. Journal of Visual Communication and 

Image Representation, 43, pp. 89-97. 

Bruna, J., Mallat, S., 2013. Invariant scattering convolution 

networks. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 35(8), pp. 1872-1886. 

Chan, A.B., Vasconcelos, N., 2007. Classifying video with 

kernel dynamic texture. In: The IEEE Conference on Computer 

Vision and Pattern Recognition, Minneapolis, MN, USA, pp. 1-

6. 

Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y., 2015. 

PCANet: a simple deep learning baseline for image 

classification? IEEE Transactions on Image Processing, 24(12), 

pp. 5017-5032. 

Chetverikov, D., Peteri, R., 2005 A brief survey of dynamic 

texture description and recognition. In: The 4th International 

Conference on Computer Recognition Systems, Rydzyna Castle, 

Poland, pp. 17–26. 

Chetverikov, D., Fazekas, S., 2006. On motion periodicity of 

dynamic textures. In: The British Machine Vision Conference, 

Edinburgh, UK, pp. 167-176. 

Crivelli, T., Cernuschi-Frias, B., Bouthemy, P., Yao, J., 2013. 

Motion textures: modeling, classification, and segmentation 

using mixed-state Markov random fields. SIAM Journal on 

Imaging Science, 6(4), pp. 2484-2520. 

Derpanis, K.G., Wildes, R.P, 2010. Dynamic texture 

recognition based on distributions of spacetime oriented 

structure. In: The IEEE Conference on Computer Vision and 

Pattern Recognition, San Francisco, CA, USA, pp. 1990-1997. 

Derpanis, K.G., Wildes, R.P., 2012. Spacetime texture 

representation and recognition based on a spatiotemporal 

orientation analysis. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 34(6), pp. 1193-1205. 

Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S., 2003. Dynamic 

textures. International Journal on Computer Vision, 51, pp. 91-

109. 

Doretto, G., Jones, E., Soatto, S., 2004. Spatially homogeneous 

dynamic textures. In: The European Conference on Computer 

Vision, Prague, Czech Republic, Vol. 2, pp. 591-602. 

Dubois, S., Peteri, R., Menard, M., 2009. A Comparison of 

Wavelet Based Spatio-temporal Decomposition Methods for 

Dynamic Texture Recognition. In: The Iberian Conference on 

Pattern Recognition and Image Analysis, Santiago de 

Compostela, Spain, pp. 314-321. 

Dubois, S., Peteri, R., Menard, M., 2012. Decomposition of 

Dynamic Textures using Morphological Component Analysis. 

IEEE Transactions on Circuits and Systems for Video 

Technology, 22(2), pp. 188-201. 

Dubois, S., Peteri, R., Menard, M., 2015. Characterization and 

recognition of dynamic textures based on 2D+T curvelet 

transform. Signal, Image and Video Processing, 9(4), pp. 819-

830. 

Favorskaya, M. (2012) Motion estimation for objects analysis 

and detection in videos. In: Kountchev, R., Nakamatsu, K. 

(Eds.) Advances in Reasoning-Based Image Processing 

Intelligent Systems: Conventional and Intelligent Paradigms. 

Springer-Verlag, Berlin, Heidelberg, ISRL, Vol. 29, pp. 211-

253. 

Favorskaya, M., Pyataeva, A., Popov, A., 2015. Verification of 

smoke detection in video sequences based on spatio-temporal 

local binary patterns. Procedia Computer Science, 60, pp. 671-

680. 

Favorskaya, M., Jain, L.C., Proskurin, A., 2016. Unsupervised 

clustering of natural images in automatic image annotation 

systems. In: Kountchev, R., Nakamatsu, K. (Eds.) New 

Approaches in Intelligent Image Analysis: Techniques: 

Methodologies and Applications. Springer International 

Publishing, Switzerland, ISRL, Vol. 108, pp. 123-155. 

Ghanem, B., Ahuja, N., 2007. Phase based modelling of 

dynamic textures. In: The IEEE 11th International Conference 

on Computer Vision, Rio de Janeiro, Brazil, pp. 1-8. 

Goodfellow, I., Courville, A., Bengio, Y., 2016. Deep 

Learning. MIT Press, Cambridge, Massachusetts, London, 

England. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-47-2017 53



Haindl, M., Filip, J., 2013. Visual texture: accurate material 

appearance measurement, representation and modeling. 

Springer, London, Heidelberg, New York, Dordrecht. 

Ji, H., Yang, X., Ling, H., Xu, Y., 2013. Wavelet domain 

multifractal analysis for static and dynamic texture 

classification. IEEE Transaction on Image Processing, 22(1), 

pp. 286-299. 

Kanjilal, P.P., Bhattacharya, J., Saha, G., 1999. Robust method 

for periodicity detection and characterization of irregular 

cyclical series in terms of embedded periodic components. 

Physical Review E, 59(4), pp. 4013-4025. 

Laws, K.I., 1980. Rapid Texture Identification. In: SPIE 0238, 

Image Processing for Missle Guardance, San Diego, USA, Vol. 

238, pp. 367-380. 

Li, J., Chen, L., Cai, Y., 2009. Dynamic texture segmentation 

using Fourier transform. Modern Applied Science, 3(9), pp. 29-

36. 

Liu, G., Xia, G.S., Yang, W., Zhang, L., 2014. Texture analysis 

with shape co-occurrence patterns. In: The 22nd International 

Conference on Pattern Recognition, Stockholm, Sweden, pp. 

1627-1632. 

Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M., 2017. 

Local binary features for texture classification: Taxonomy and 

experimental study. Pattern Recognition, 62, pp. 135-160. 

Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: 

a holistic representation of the spatial envelope. International 

Journal on Computer Vision, 42(3), pp. 145-175. 

Peteri, R., Chetverikov, D., 2005. Dynamic texture recognition 

using normal flow and texture regularity. In: The 2nd Iberian 

Conference on Pattern Recognition and Image Analysis, 

Estoril, Portugal, pp. 223-230. 

Peteri, R., Fazekas, S., Huiskes, M.J., 2010. DynTex: A 

comprehensive database of dynamic textures. Pattern 

Recognition Letters, 31(12), pp.1627-1632. 

Ravichandran, A., Chaudhry, R., Vidal, R., 2013. Categorizing 

dynamic textures using a bag of dynamical systems. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

35(2), pp. 342-353. 

Qi, X., Li,C.G., Zhao,G., Xiaopeng Hong,X., Pietikainen, M., 

2016. Dynamic texture and scene classification by transferring 

deep image features. Neurocomputing, 171(1), pp. 1230-1241. 

Saisan, P., Doretto, G., Wu, Y.N., Soatto, S., 2001. Dynamic 

texture recognition. In: The IEEE Conference on Computer 

Vision and Pattern Recognition, Kauai, Hawaii, Vol. 2, pp. 58–

63. 

Schmidhuber, J., 2015. Deep learning in neural networks: An 

overview. Neural Networks, 61, pp. 85-117. 

Szummer, M., Picard, R.W., 1996. Temporal texture modelling. 

In: The International Conference on Image Processing, 

Lausanne, Switzerland, Vol. 3, pp.823-826. 

Tamura, H., Mori, S., Yamawaki, T., 1978. Textural features 

corresponding to visual perception. IEEE Transaction on 

Systems, Man and Cybernetic, Vol. 8, pp. 400–473. 

Tiwari, D., Tyagi, V., 2016a. Dynamic texture recognition: a 

review. In: Satapathy, S., Mandal, J., Udgata, S., Bhateja, V. 

(Eds.) Information Systems Design and Intelligent Applications. 

Springer, New Delhi, Heidelberg, New York, Dordecht, 

London, AISC, Vol. 434, pp 365–373. 

Tiwari, D., Tyagi, V., 2016b. Dynamic texture recognition 

based on completed volume local binary pattern. 

Multidimensional Systems and Signal Processing, 27(2), pp. 

563-575.

Wildes, R.P., Bergen, J.R., 2000. Qualitative representation. In: 

The European Conference on Computer Vision, Dublin, 

Ireland, pp.768-784. 

Xu, Y., Quan, Y., Ling, H., Ji, H., 2011. Dynamic texture 

classification using dynamic fractal analysis. In: The IEEE 

International Conference on Computer Vision, Barcelona, 

Spain, pp. 1219-1226. 

Xu, Y., Quan, Y., Zhang, Z., Ling, H., Ji, H., 2015. Classifying 

dynamic textures via spatiotemporal fractal analysis. Pattern 

Recognition, 48(10), pp. 3239-3248. 

Yang, F., Xia, G.S., Liu, G., Zhang, L., Huang, X., 2016. 

Dynamic texture recognition by aggregating spatial and 

temporal features via ensemble SVMs. Neurocomputing, 

173(Part 3), pp. 1310-1321. 

Yang, X., Molchanov, P., Kautz, J., 2016. Multilayer and 

multimodal fusion of deep neural networks for video 

classification. In: The ACM Multimedia Conference, 

Amsterdam, the Netherland, pp. 978-987. 

Zhao, G., Pietikainen, M., 2007a. Dynamic texture recognition 

using local binary patterns with an application to facial 

expressions. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 29(6), pp. 915-928. 

Zhao, G., Pietikainen, M., 2007b. Dynamic texture recognition 

using volume local binary patterns. In: Vidal, R., Heyden, A., 

Ma, Y. (Eds.) Dynamical Vision. Springer-Verlag, Berlin, 

Heidelberg, pp. 165-177. 

Zhao, G., Ahonen, T., Matas, J., Pietikainen, M., 2012. 

Rotation-invariant image and video description with local 

binary pattern features. IEEE Transactions on Image 

Processing, 21(4), pp. 1465-1477. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-47-2017 54


