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Abstract

In existing convolutional neural networks (CNNs), both
convolution and pooling are locally performed for image
regions separately, no contextual dependencies between dif-
ferent image regions have been taken into consideration.
Such dependencies represent useful spatial structure in-
formation in images. Whereas recurrent neural networks
(RNNs) are designed for learning contextual dependencies
among sequential data by using the recurrent (feedback)
connections. In this work, we propose the convolutional
recurrent neural network (C-RNN), which learns the spa-
tial dependencies between image regions to enhance the
discriminative power of image representation. The C-RNN
is trained in an end-to-end manner from raw pixel images.
CNN layers are firstly processed to generate middle level
features. RNN layer is then learned to encode spatial de-
pendencies. The C-RNN can learn better image represen-
tation, especially for images with obvious spatial contex-
tual dependencies. Our method achieves competitive per-
formance on ILSVRC 2012, SUN 397, and MIT indoor.

1. Introduction
In recent years, convolutional neural networks (CNNs)

[23] have brought revolutionary changes to computer vi-
sion community. Upon the seminal paper [21], a number
of recent works have been developed to further improve
the representation power of CNNs in image classification
[3,4,11,24,41,45], detection [10,14,34,40,52], face recog-
nition [42, 46] etc. Most of these improvements focus on
designing more sophisticated, deeper and wider networks,
and aim to learn feature representations based on large and
diverse datasets [5]. Besides CNNs, there are also some
other deep neural nets, such as [29, 47, 54, 55], comparing
with which CNNs are generally more efficient and effective.

The most important layers in CNNs are convolution layer
and pooling layer. The convolutional layers convolve local
image regions independently with multiple filters, and the
responses are combined according to the coordinates of the
image regions. The pooling layers summarize the feature
responses, and pooling is processed with a fixed stride and
a pooling kernel size. Both convolutional layers and pool-
ing layers are performed without considering other regions.
This setting has some obvious drawbacks. For example,
when performing convolution/pooling for the top left image
region, no matter what the appearance of the right bottom
region is, the features of the top left region always remain
the same. As a result, they fail to capture contextual depen-
dencies for better representation.

In this paper, we propose to encode such correlations in
image representation for better classification. But how to
model the spatial dependencies? A straight-forward way is
to learn all types of image region combinations. This will
cost huge computation resources, and can hardly tolerate
small part shifting or structure variance. The idealized net-
work should have ‘memory’, and all the scanned area can be
remembered and their spatial correlations can be analyzed.
Recurrent Neural Networks (RNNs) [9, 17] are such neural
networks developed for modeling the dependencies in time
sequences. A RNN is a network which can have feedback
connections among itself. Its hidden layer state is a func-
tion of the previous state, which can be further expanded as
a function of all the previous states. Thus, RNN is inher-
ently deep in time, and it is able to retain all the past inputs,
based on which, the network can discover correlations be-
tween the input data at different states of the sequence.

However, in image domain, we cannot directly use the
general RNNs, since 1) we do not have existing sequences,
2) the intermediate label of each state (image region) of
the sequence is not given, only the label of the whole se-
quence (image) is available. For the first challenge, we pro-
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Figure 1: The overall C-RNN framework. CNN layers: The first five layers are convolutional and pooling layers, which
aim to extract middle level image region representations. RNN layers: 1) The outputs of CNNs are parallelly converted
into four spatial sequence by using four different directional scanning (left-to-right, right-to-left, top-to-bottom, and bottom-
to-top). For each sequence, there is a scanning window with size of one row (or one column) of image regions, and the
non-overlapping window keep scanning until the whole image sequence has been covered. 2) For each scanning window, we
focus on learning the local spatial dependencies of the segment of the sequential image regions (each region is represented
as a feature vector), and update the shared unified RNN weights W→ (left-to-right), W← (right-to-left), W↓ (top-to-bottom),
and W↑ (bottom-to-top). The weights updating are sequentially processed window by window. FC layers: Gather the four
directional RNN feature outputs and connect to two fully connected layers. (Best viewed in color)

pose to scan the image region by region from four direc-
tions (left-to-right, right-to-left, top-to-bottom, bottom-to-
top), and convert each image into four independent image
region sequences. For the second problem, we propose to
utilize a global hidden layer to collect all the image region
representations, and further connect to image-level labels.
Afterwards, for each image region sequence, we are able to
utilize RNN to learn their spatial dependencies, and conse-
quently improve the classification accuracy.

By combining the CNN and RNN, we achieve our C-
RNN framework as shown in Figure 1. C-RNN not only
utilize the representation power of CNNs, but also employ
the context modeling ability of RNNs. CNN layers can
learn good middle-level features, and help our RNN layer
to learn effective spatial dependencies between image re-
gion features. Meanwhile, the context information encoded
by RNN can lead to better image representation, and trans-
mit more accurate supervisions to CNN layers during back-
propagation. Our C-RNN model can achieve competitive
results on ILSVRC 2012, SUN 397, and MIT indoor.

2. Related Works
Recently, deep Neural Networks have made great break

through in many computer vision areas in the last few years.

There are a lot of successful deep frameworks, such as con-
volutional neural networks [3, 4, 7, 10, 11, 14, 21, 23, 24,
33, 40, 41, 45, 46], deep belief nets [15, 25, 32], and auto-
encoder [1, 16, 50, 53], etc. Among all of them, CNNs are
the most developed networks for image classification tasks.
The key idea of CNNs is progressively learning more ab-
stract (higher visual level) patterns: the first few layers learn
‘Gabor like’ low level features (e.g. edges and lines); the
middle layers learn representation of parts of the objects
(e.g. ‘tire’ and ‘window’ in the images with label ‘car’);
the higher layers learn the the feature of the whole image
(e.g. image with label ‘car’).

In recent years, RNNs have achieved great success in
natural language processing [2,12,20,30,31,43,44]. RNNs
[8, 9, 17] are neural networks for modeling sequential de-
pendencies. RNNs are networks with ‘memory’, they allow
connections from the previous states to the current ones.
Through these connections, the model can retain informa-
tion about the past inputs, and it is able to discover corre-
lations among the input data that might be far away from
each other in the sequence. Because of the reuse of hidden
layers, only a limited number of neurons need to be kept in
the model, and testing is fast. Another advantage of RNN
is the possibility to represent more advanced patterns of de-



pendencies in the sequential data.
However, RNNs are naturally suitable for dealing with

1D time sequences (e.g. text, speech), while images are 2D
data, and the spatial context is undirected. In this paper,
we convert the 2D images into 1D quad-directional spatial
sequences by parallelly scanning the images from four dif-
ferent directions. Consequently, for each image region, the
contextual information from all directions can be captured.
RNNs have rarely been applied in computer vision. There
are only few related works that partially utilize the recur-
rent idea. In [35], shared CNNs were used to model the
long range pixel label dependencies by learning the con-
nections between different scales of image patches. Differ-
ent from this work, our RNN models the correlations be-
tween different image regions. Our tasks are also differ-
ent from scene labeling, where all the pixels have labels,
while in image classification, only the image level labels
are given, thus our supervision is much weaker. Another
work is DrSAE [37] which builds an auto-encoder with rec-
tified linear units for digit number recognition. In DrSAE,
iterative auto-encoders are used to encode the whole image.
Different from them, we aim to model the spatial contex-
tual dependencies of local image region features. In [13],
MDLSTM was proposed to solve the handwriting recogni-
tion problem by using RNN. Different from this work, we
utilize quad-directional 1D RNN instead of their 2D RNN,
our RNN is simpler and it has fewer parameters, but it can
already cover the context from all directions. Moreover, our
C-RNN make both use of the discriminative representation
power of CNN and contextual information modeling capa-
bility of RNN, which is more powerful for solving large-
scale image classification problem.

3. Convolutional Recurrent Neural Network
Convolutional recurrent Neural Network (C-RNN) con-

sists of five convolution layers, one recurrent layer, and two
fully connected layers. Similar to the first five layers of
the popular seven layer Alex-Net [21], the CNN layers are
used to learn middle-level visual patterns. The RNN layer is
employed to learn spatial dependencies between the middle
level visual patterns. The final two fully connected layers
are used to gather the RNN outputs and learn a global image
representation. Afterwards, an N-way (N denotes the class
number) softmax layer will be applied for classification. In
the rest of this section, we will introduce our C-RNN in de-
tail.

3.1. Convolutional Neural Network

As shown on the left part of Figure 1, we firstly utilize
five convolutional layers to learn middle-level feature rep-
resentations from raw pixel images.

Based on the visualization result in [51], when the num-
ber of convolutional layers increases, more abstract and ro-
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Figure 2: General RNN structure. In each state s of the
sequence, there are two inputs for the hidden layer h(s): the
current state input x(s), and the previous state hidden layer
output h(s−1). The predicted output label y(s) dependents
on h(s).

bust patterns can be extracted. When being trained on Im-
ageNet, the fifth convolutional layer can possibly localize
parts and objects in the images. Thus, such CNN features
are very suitable for representing the mid-level elements,
based on which, we are more likely to learn appropriate spa-
tial dependencies by using RNN, and further achieve bet-
ter global image representations by connecting to two fully
connected layers. With back propagation, the global rep-
resentations can also transmit back supervisions for RNN
to improve the spatial dependency encoding, and RNN can
further help the CNNs to learn better middle-level and low-
level features.

3.2. Recurrent Neural Network

Based on the fifth CNN layer, as shown in the central part
of Figure 1, we build our RNN layer to model the spatial
dependencies in the images.

Since RNN is originally designed for time sequences,
thus it cannot directly be applied on images. We firstly con-
vert the 2D images into four 1D image region sequences
through four different scanning directions. Afterwards, we
learn spatial context dependencies base on the sequences of
image regions.

3.2.1 General RNN

RNNs are neural networks with feedback loops that con-
nect the output of the previous hidden states to the current
ones. They are designed to encode contextual information
for sequences. In recent years, RNNs have shown good per-
formances on natural language processing [12, 20, 31, 43].
In a typical recurrent network as shown in Figure 2, when
processing a sequence with length S, its hidden layer fea-
ture h(s), and the predicted output label y(s) at the state
s ∈ [1, · · · , S] can be represented as:

h(s) = fh

(
Whhh

(s−1) +Wihx
(s) + bh

)
(1)

y(s) = fo

(
Whoh

(s) + bo

)
(2)

where x(s) is the s-th input data, h(s) denotes the hidden
layer units, y(s) represents the output, Wih, Whh, Who are



the transformation matrices between x(s) and h(s), h(s−1)

and h(s), h(s) and y(s). bh and bo are the constant bias
terms, while fh and fo are the non-linear activation func-
tions.

Because of the feedback loops, RNNs are able to remem-
ber all the previously processed data. The ‘memory’ is pro-
gressively increased by updating Wih, Whh. Who, and each
state can be unfolded to a function of all the previous states.
Ideally, the RNNs can remember whatever they have ‘seen’.
Such historical information can be used to find meaningful
connections between the current data and its context. Here
we utilize RNN to learn the connections between image re-
gions at different spatial positions, which we called spatial
dependencies.

3.2.2 RNN for Images

RNNs are naturally suitable for learning contextual depen-
dencies. Similar to text and speech, image data also carries
such structured dependencies.

However, in images, there are no existing sequences. It is
difficult to build undirected graphs for image regions based
on the existing CNN framework. Thus, we propose to con-
vert each image into 1D spatial sequences, and use RNN to
learn the spatial dependencies of image regions. Further-
more, the conventional single directional RNNs can only
make use of the previous context, however, future context
should also be helpful [39], especially in image data, where
no fixed dependency direction exists. Therefore, we gener-
ate quad-directional spatial sequences to cover the context
from all the image regions.

We use four different sequence scanner to convert each
image into four spatial sequences: left-to-right sequence,
right-to-left sequence, top-to-bottom sequence, and bottom-
to-top sequence. As shown in the middle of Figure 1, taking
the left-to-right sequence as an example, the sequence starts
from the top left corner, and ends at the right bottom corner,
the sequence is scanned from left to right, top to bottom,
until the whole image has been covered. Similarly, we gen-
erate the other three sequences. In our C-RNN framework,
each input data point corresponds to a 256-dimensional fea-
ture vector in the CNN response maps (one corresponds to
an image patch in the original image, the data points corre-
spond to overlapped neighborhood image patches [51]).

For each sequence, unified weights Whh and Wih

(Whh→ and Wih→ for the left-to-right, Whh← and Wih← for
the right-to-left, Whh↓ and Wih↓ for the top-to-bottom, and
Whh↑ and Wih↑ for the bottom-to-top direction) are shared
for all the image region features in each sequence.

Referring to Equation 1, for the spatial sequences, we

can formulate our quad-directional RNN as:

h(s)
→ = fh

(
Whh→h(s−1)

→ +Wih→x(s) + bh→

)
(3)

h(s)
← = fh

(
Whh←h(s−1)

← +Wih←x(s) + bh←

)
(4)

h
(s)
↓ = fh

(
Whh↓h

(s−1)
↓ +Wih↓x

(s) + bh↓

)
(5)

h
(s)
↑ = fh

(
Whh↑h

(s−1)
↑ +Wih↑x

(s) + bh↑

)
(6)

h(s) = h(s)
→ + h(s)

← + h
(s)
↓ + h

(s)
↑ (7)

where s is the index of the data point in the sequence,
x(s) is the input data. h(s)

→ denotes the left-to-right hidden
layer units, h(s)

← denotes the right-to-left ones, h(s)
↓ denotes

the top-to-bottom ones, and h
(s)
↑ denotes the bottom-to-top

units. h(s) is the combination of these four, which are the
final feature outputs of the RNN layers.

3.2.3 RNN Optimization

Ideally, all of the regions in each sequence should be pro-
cessed one by one, and the weights of RNN layer will be
updated after the whole sequence has been processed. How-
ever, the gradients will vanish very fast in this way. Ac-
cording to the RNNs optimization notes in [30], RNNs can
be simply and effectively optimized by back propagation
through time (BPTT), which is a variant of back propaga-
tion for time sequences. In BPTT, the recurrent nets are
unfolded to a limited size of the sequence, and converted
into feed-forward networks with multiple deep layers. Con-
sequently, traditional back-propagation for deep networks
can be directly applied.

To make the RNN training effective and efficient, we un-
fold the feedback networks to feed-forward ones with lim-
ited length of sequence window. As show in the middle of
Figure 1, for each sequence, there is a scanning window
which covers n (n equals to the number of states in one row
or one column) image regions. The window slides from
the start to the end of the sequence in an non-overlapping
way, and there are S/n windows (S is the length of the
sequence) in each sequence. Thus, for each sequence, its
shared weights (Wih & Whh) will be updated window by
window for S/n times. In detail, for each window, only
the image regions within the current window will be acti-
vated with the recurrent transformation, while for the other
regions in the sequence, their previous states will be directly
passed forward to help calculating the overall loss.

The RNN sliding window length is n, which means the
spatial sequences should be unfolded for every n states.
After the unfolding operation, the RNN equals to a feed-
forward deep network with the depth of n layers (all the
layers share the same weights). By utilizing the ‘weight
sharing’ setting in Caffe [18], we can perform the BPTT



optimization for the shared RNN weights. In the rest of this
sub-section, we will take the left-to-right sequence as an ex-
ample, and describe the forward and backward procedures
in the RNN optimization.

In the forward procedure, The Equation 3 can be un-
folded as:

h(1)
→ = fh

(
Whh→h(0)

→ +Wih→x(1) + bh→

)

h(2)
→ = fh

(
Whh→h(1)

→ +Wih→x(2) + bh→

)

· · ·

h(n)
→ = fh

(
Whh→h(n−1)

→ +Wih→x(n) + bh→

)

(8)

where Wih→ , Whh→ , bh→ are the shared RNN weights and
bias term, n is the length of the scanning window. If the
scanning window is the first window of the sequence, h(0)

→
equals to zero, otherwise, it represents the last state of the
previous window of the same sequence.

In the back-propagation procedure, the weights of each
unfolded step can be updated step by step as follows:

W
(s+1)
ih→

= W
(s)
ih→

+ x(s)e
(s)
h→

α

W
(s+1)
hh→

= W
(s)
hh→

+ h(s−1)
→ e

(s)
h→

α
(9)

where e(s)h→
is the gradient of error propagated from the out-

put layer to the hidden layer at step s, α is the learning rate.
Similarly, forward and backward procedures of the other

three directional RNN sequences (correspond to Equation
4, 5, and 6) can be achieved.

3.3. Fully Connected Layers

Different from general RNNs, which deals with the prob-
lems that have label y(s) for each x(s), we do not have any
intermediate labels except the image label. Consequently,
Equation 2 cannot be directly used in our C-RNN. Instead,
we utilize the fully connected layers to collect all the hidden
units in the RNN layers (Equation 7), and connect with the
final image label. Similar to the fully connected layers in
Alex-Net [21], we use two fully connected layers, and one
softmax layer on the top:

g = fg(WhgH + bg)

y = fo(Wgog + bo)

H = [(h(1))T , · · · , (h(s))T , · · · , (h(S))T ]T
(10)

in which, Whg and Whg are the fully connected transforma-
tion matrices. Whg transfer the concatenated RNN outputs
H to the global hidden layer g. While Wgo transfer g to the
predicted class label y. Particularly, H is the concatenation
of all its sequential states h(s) (s = 1, · · · , S). bg and bo are
the bias terms, fg is an non-linear activation function, and
fo is softmax.

4. Experiments
In this section, we will firstly describe the C-RNN net-

work setting details, and then we will validate our C-RNN
on three image classification benchmarks: ILSVRC 2012
[5], SUN 397 [49], and MIT indoor [36].

4.1. C-RNN Settings

We adopted the data prepossessing settings in Caffe [18].
For a training image, it was firstly resized to 256 × 256
pixels and subtracted by the pixel mean, based on which,
10 sub-crops of size 227 × 227 (1 center, 4 corners, and
their horizontal flips) were extracted as the training data.

For the CNN layers, we followed the same filter settings
in Alex-net [21]. The filter numbers (sizes) were: 96(11 ×
11), 256(5×5), 384(3×3), 384(3×3), and 256(3×3). For
the first layer, the stride was 4, and the rest were 1. There
were also three pooling layers for the first, second and fifth
layer respectively, all of them were max pooling with the
kernel size of 3 × 3, and the stride of 2. Thus, the size of
feature response maps of the fifth CNN layer was 256×6×6
(channel number × width × hight), which was the input to
our RNN layer.

Since there are 6 × 6 output regions in the fifth CNN
layer, thus, the length of our RNN sequence should be 36.
For the RNN layer, we set the scanning window size as
6 ( 1 × 6 for one row or 6 × 1 for one column of re-
gions), and there were 6 RNN windows for each of the
four sequences. Where each region was represented as a
256-dimensional feature vector (channel number of the fifth
layer CNN). Thus, the size of the RNN weight matrices
Whh→ , Wih→ (Equation 3); Whh← , Wih← (Equation 4);
Whh↓ , Wih↓ (Equation 5); Whh↑ , Wih↑ (Equation 6) were
all set to 256 × 256. The non-linear transformation fh, fg,
and fo were all set to ReLU functions in our experiments.

The output unit number of the two fully connected layers
were 4096.

Our basic C-RNN model was trained on the ILSVRC
2012 training set [5]. For the SUN 397 dataset, we fine-
tuned the basic C-RNN model by replacing the 1000-way
(ILSVRC 2012 contains 1000 classes) softmax layer with
a new N-way (N is the number of classes in the dataset)
softmax layer. The training batch size was 256, learning
rate started from 0.01, momentum weight was 0.9, and both
the RNN layer and the fully connected layers were applied
with dropout rate of 0.5. All experiments were run with a
single NVIDIA Tesla K40 GPU.

4.2. Experimental Results

4.2.1 Experimental Results on ILSVRC 2012

ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) dataset [5] is the most prominent dataset for val-
idating large-scale image classification algorithms. Most



Methods test scales test views Top 1 val Top 5 val
Alex-Net [21] 1 1 42.71% 20.01%
C-RNN 1 1 41.85% 19.15%
Alex-Net [21] 1 10 41.35% 18.74%
C-RNN 1 10 40.16% 17.78%

Table 1: Comparison of error rates on ILSVRC validation set.

of the existing deep neural networks depend on the large
amount of training data provided by ImageNet. ILSVRC
contains 1.2 million training images from 1000 different
object centric classes. Here we evaluated our C-RNN and
other CNN based networks on the validation dataset, which
has 50,000 images in total.

In the upper part of Table 1, we compared our C-RNN
with Alex-net [21] (we use the model released in 1). Our
C-RNN had the same settings with Alex-net, except that it
directly connects the output of the fifth convolutional layer
to the sixth fully connected layer, while our C-RNN uses the
RNN to connect the fifth convolutional layer and the fully
connected layers. Hence, the comparison with Alex-net can
validate the effectiveness of our C-RNN. When we set all of
the weight matrices Whh to 0, and set Wih to identity ma-
trices, our C-RNN degenerates to the original Alex-net. In
Table 1, we compared our C-RNN with Alex-net: testing on
the eccentric view only or 10 test views, based on the Top 1
error rate and Top 5 error rate. The performance gain indi-
cates that our C-RNN benefited from modeling the spatial
dependencies by using RNN. Thus, besides going deeper
and wider of the convolutional neural networks, RNN is an-
other promising direction to build better neural networks for
classification.

4.2.2 Experimental Results on SUN397

SUN 397 [49] is one of the largest datasets for scene im-
age classification. Different from ILSVRC, it focuses on
scene images rather than object images. It contains around
100,000 images from 397 different scene scenarios. We fol-
low the general splittings in [49], which use 50 images per
class for training, and 50 images per class for testing. Since
there are a limited number of images in SUN 397, we pre-
trained C-RNN on ILSVRC 2012, and then fine-tuned the
network. For the Alex-net, we also applied fine-tuning for
fair comparison, and we report the results before and after
the fine-tuning.

As shown in the upper part of Table 2 (results were
achieved with 1 test scale, 10 test views), our C-RNN per-
formed much better than the Alex-net. Especially when the

1https://github.com/BVLC/caffe/tree/master/
models/bvlc_alexnet

Methods Accuracy
Alex-Net [21] 43.74%
Alex-Net [21] (finetune) 47.12%
C-RNN 43.38%
C-RNN (finetune) 51.14%
Xiao et al. [49] 38.00%
IFV [38] 47.20%
MTL-SDCA [22] 49.50%

Table 2: Comparison of accuracy on SUN 397 dataset.

images have more obvious spatial layout, e.g. scene images,
our C-RNN were more likely to capture such spatial cor-
relations and learn better representations for scene images
than the general CNNs. An interesting observation is that,
when directly applying the model pre-trained on ILSVRC
2012, our C-RNN (43.38%) worked slightly worse than the
Alex-net (43.74%), which was mainly caused by the image
domain gap between SUN 397(scene dataset) and ILSVRC
(object dataset). After fine-tuning on SUN 397, we were
able to learn more data adaptive spatial dependencies and
significantly outperform Alex-net with 4.02% in accuracy.

In the lower part, we show the results of using shallow
methods on SUN 397. Most of them heavily depend on
combined hand-crafted features, and they usually have very
high-dimensional features for the final image representa-
tion.

4.2.3 Experimental Results on MIT indoor

MIT indoor [36] is one of the most popular and challeng-
ing indoor scene image classification benchmarks. Differ-
ent from the SUN 397 dataset, it focuses on indoor scenes,
which tend to have more variations than outdoor scenes.
MIT indoor has 67 classes. We followed the general split-
ting provided by [36], for each class, there are around 80
training images, and around 20 testing images. We also pre-
train the C-RNN model on ILSVRC 2012, and fine-tuning
the RNN layer and the 67-way softmax layer.

As shown in the upper part of Table 3 (results were
achieved with 1 test scale, 10 test views), our C-RNN was
able to achieve the accuracy of 65.07%. We could achieve



Methods Accuracy
Alex-Net [21] 59.85%
Alex-Net [21] (finetune) 63.21%
C-RNN 58.96%
C-RNN (finetune) 65.07%
ROI + GIST [36] 26.50%
Object Bank [26] 37.60%
Visual Concepts [27] 46.40%
MMDL [48] 50.15%
IFV [19] 60.77%
MLrep + IFV [6] 66.87%
ISPR + IFV [28] 68.50%

Table 3: Comparison of accuracy on MIT indoor dataset.

the performance gain of 1.86% compared to Alex-net. The
MIT indoor dataset only contains 5,360 training images,
and the variance of image region dependencies are very
large, thus, the representation power of C-RNN was not
fully explored because of lacking of training data.

The bottom part of Table 3 shows the results of the state-
of-art for non neural network methods. The most popular
methods are combining middle-level feature (hand-crafted)
with fisher vectors. Although very powerful on MIT Indoor,
these methods cost much more computation power to per-
form middle-level patch searching and clustering, and the
dimension of Fisher vectors is very high. In contrast, our C-
RNN is an end-to-end feature learning method, the output
feature is very compact (4096-dimensional), and the testing
procedure is very efficient, which make it very appropriate
for solving large-scale image classification problem.

4.2.4 Effect of Number of RNN directions

In this paper, quad-directional RNNs are built to encode the
spatial contextual dependencies, but what are the benefits
of doing so? In Table 4, we show the intermediate results
of utilizing different numbers of context directions in the
RNN layer of our C-RNN framework on ILSVRC 2012.
On the left column of Table 4, the performance of using
each single directional RNN is shown. On the right col-
umn of Table 4, the combination of two directional RNNs,
and the complete quad-directional RNN results are given.
We observe that utilizing one directional RNN only would
already achieve satisfactory result, when activating multi-
ple directions, especially the quad-directional RNNs, the
performance gain was significant. Another observation is
that the spatial correlation in the vertical direction (top-to-
bottom & bottom-to-top) sequences are relatively more ro-
bust than the horizontal direction (left-to-right & right-to-
left) sequences. The reason might be that the images are
less sensitive to mirror flip (symmetrical about the vertical

Methods Top 1 val Methods Top 1 val
C-RNN1(→) 40.89% C-RNN2(

→
←) 40.71%

C-RNN1(←) 40.86% C-RNN2(↓↑) 40.53%
C-RNN1(↓) 40.70% C-RNN4 40.16%
C-RNN1(↑) 40.74%

Table 4: Error rates of applying RNN with different number
of context directions on ILSVRC 2012. C-RNN1 use one
direction only; C-RNN2 use the combination of two direc-
tions; and C-RNN4 use the complete quad-directional RNN.
(All results are achieved with 1 test scale, 10 test view)

axis), while more sensitive to the flip about the horizontal
axis.

4.2.5 RNN Complexity

In terms of the number of network parameters, each direc-
tion of the quad-directional RNN layer has two 256 × 256
weight matrices: Whh and Wih. Thus, there are 524,288
network parameters in the RNN layer in total. While in
CNN, e.g. the second fully connected layer needs to learn a
4096× 4096 weight matrix, which has 16,777,216 parame-
ters. Thus, our RNN layer requires fewer parameters.

Furthermore, our RNN layer does not consume much
memory. The only memory cost is from the intermedi-
ate hidden units h(s) (refer to Equation 7), which are 256-
dimensional vectors. While in CNN, the most memory
consuming layer is the first convolutional layer, which has
290,400 dimensional outputs. Thus, the RNN requires neg-
ligible extra memory.

5. Conclusions & Future Works

In this paper, we propose a new deep learning network
C-RNN to encode spatial dependencies for image represen-
tation. CNN layers are firstly utilized to extract middle-
level image region representation. Afterwards, our pro-
posed quad-directional spatial RNN are employed to model
the dependency correlations between different image re-
gions. By combining the CNN and RNN, we are able to
learn more powerful feature representations. Our C-RNN
shows outstanding performance on all of the three image
classification benchmarks.

In the future we would like to extend the RNN to deep
RNN with recurrent hidden layers and enable the network to
learn more complex spatial dependencies. Since the RNN
is a general spatial dependency encoding layer, we would
also try combinations of RNN with different types of deep
neural networks other than CNN.
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