
Convolutional Sequence to Sequence Learning

Jonas Gehring 1 Michael Auli 1 David Grangier 1 Denis Yarats 1 Yann N. Dauphin 1

Abstract

The prevalent approach to sequence to sequence

learning maps an input sequence to a variable length

output sequence via recurrent neural networks.

We introduce an architecture based entirely on

convolutional neural networks. Compared to recurrent

models, computations over all elements can be fully

parallelized during training to better exploit the GPU

hardware and optimization is easier since the number

of non-linearities is fixed and independent of the

input length. Our use of gated linear units eases

gradient propagation and we equip each decoder layer

with a separate attention module. We outperform the

accuracy of the deep LSTM setup of Wu et al. (2016)

on both WMT’14 English-German and WMT’14

English-French translation at an order of magnitude

faster speed, both on GPU and CPU.?

1. Introduction

Sequence to sequence learning has been successful in many tasks

such as machine translation, speech recognition (Sutskever et al.,

2014; Chorowski et al., 2015) and text summarization (Rush

et al., 2015; Nallapati et al., 2016; Shen et al., 2016) amongst

others. The dominant approach to date encodes the input

sequence with a series of bi-directional recurrent neural networks

(RNN) and generates a variable length output with another set

of decoder RNNs, both of which interface via a soft-attention

mechanism (Bahdanau et al., 2014; Luong et al., 2015). In

machine translation, this architecture has been demonstrated to

outperform traditional phrase-based models by large margins

(Sennrich et al., 2016b; Zhou et al., 2016; Wu et al., 2016;§2).

Convolutional neural networks are less common for sequence

modeling, despite several advantages (Waibel et al., 1989; LeCun

& Bengio, 1995). Compared to recurrent layers, convolutions

create representations for fixed size contexts, however, the

effective context size of the network can easily be made larger

1Facebook AI Research. Correspondence to: Jonas Gehring
<jgehring@fb.com>, Michael Auli<michaelauli@fb.com>.

Proceedings of the 34 th International Conference on Machine Learning,
Sydney, Australia, PMLR 70, 2017. Copyright 2017 by the author(s).

?The source code and models are available at https:

//github.com/facebookresearch/fairseq.

by stacking several layers on top of each other. This allows

to precisely control the maximum length of dependencies to

be modeled. Convolutional networks do not depend on the

computations of the previous time step and therefore allow

parallelization over every element in a sequence. This contrasts

with RNNs which maintain a hidden state of the entire past that

prevents parallel computation within a sequence.

Multi-layer convolutional neural networks create hierarchical

representations over the input sequence in which nearby input

elements interact at lower layers while distant elements interact

at higher layers. Hierarchical structure provides a shorter path

to capture long-range dependencies compared to the chain

structure modeled by recurrent networks, e.g. we can obtain

a feature representation capturing relationships within a window

of n words by applying only O(nk) convolutional operations

for kernels of width k, compared to a linear number O(n) for

recurrent neural networks. Inputs to a convolutional network

are fed through a constant number of kernels and non-linearities,

whereas recurrent networks apply up to n operations and

non-linearities to the first word and only a single set of operations

to the last word. Fixing the number of non-linearities applied

to the inputs also eases learning.

Recent work has applied convolutional neural networks to se-

quence modeling such as Bradbury et al. (2016) who introduce

recurrent pooling between a succession of convolutional layers or

Kalchbrenner et al. (2016) who tackle neural translation without

attention. However, none of these approaches has been demon-

strated improvements over state of the art results on large bench-

mark datasets. Gated convolutions have been previously explored

for machine translation by Meng et al. (2015) but their evaluation

was restricted to a small dataset and the model was used in tandem

with a traditional count-based model. Architectures which are

partially convolutional have shown strong performance on larger

tasks but their decoder is still recurrent (Gehring et al., 2016).

In this paper we propose an architecture for sequence to sequence

modeling that is entirely convolutional. Our model is equipped

with gated linear units (Dauphin et al., 2016) and residual

connections (He et al., 2015a). We also use attention in every

decoder layer and demonstrate that each attention layer only

adds a negligible amount of overhead. The combination of these

choices enables us to tackle large scale problems (§3).

We evaluate our approach on several large datasets for machine

translation as well as summarization and compare to the current

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq

Convolutional Sequence to Sequence Learning

best architectures reported in the literature. On WMT’16

English-Romanian translation we achieve a new state of the

art, outperforming the previous best result by 1.9 BLEU. On

WMT’14 English-German we outperform the strong LSTM

setup of Wu et al. (2016) by 0.5 BLEU and on WMT’14

English-French we outperform the likelihood trained system

of Wu et al. (2016) by 1.6 BLEU. Furthermore, our model can

translate unseen sentences at an order of magnitude faster speed

than Wu et al. (2016) on GPU and CPU hardware (§4,§5).

2. Recurrent Sequence to Sequence Learning

Sequence to sequence modeling has been synonymous with

recurrent neural network based encoder-decoder architectures

(Sutskever et al., 2014; Bahdanau et al., 2014). The encoder

RNN processes an input sequence x = (x1,...,xm) of m
elements and returns state representations z = (z1....,zm).
The decoder RNN takes z and generates the output sequence

y=(y1,...,yn) left to right, one element at a time. To generate

output yi+1, the decoder computes a new hidden state hi+1

based on the previous state hi, an embedding gi of the previous

target language word yi, as well as a conditional input ci derived

from the encoder output z. Based on this generic formulation,

various encoder-decoder architectures have been proposed, which

differ mainly in the conditional input and the type of RNN.

Models without attention consider only the final encoder state zm
by setting ci=zm for all i (Cho et al., 2014), or simply initialize

the first decoder state with zm (Sutskever et al., 2014), in which

case ci is not used. Architectures with attention (Bahdanau et al.,

2014; Luong et al., 2015) compute ci as a weighted sum of

(z1....,zm) at each time step. The weights of the sum are referred

to as attention scores and allow the network to focus on different

parts of the input sequence as it generates the output sequences.

Attention scores are computed by essentially comparing each

encoder state zj to a combination of the previous decoder state

hi and the last prediction yi; the result is normalized to be a

distribution over input elements.

Popular choices for recurrent networks in encoder-decoder mod-

els are long short term memory networks (LSTM; Hochreiter &

Schmidhuber, 1997) and gated recurrent units (GRU; Cho et al.,

2014). Both extend Elman RNNs (Elman, 1990) with a gating

mechanism that allows the memorization of information from

previous time steps in order to model long-term dependencies.

Most recent approaches also rely on bi-directional encoders to

build representations of both past and future contexts (Bahdanau

et al., 2014; Zhou et al., 2016; Wu et al., 2016). Models with

many layers often rely on shortcut or residual connections (He

et al., 2015a; Zhou et al., 2016; Wu et al., 2016).

3. A Convolutional Architecture

Next we introduce a fully convolutional architecture for sequence

to sequence modeling. Instead of relying on RNNs to compute

intermediate encoder states z and decoder states h we use

convolutional neural networks (CNN).

3.1. Position Embeddings

First, we embed input elements x=(x1,...,xm) in distributional

space as w=(w1,...,wm), where wj ∈R
f is a column in an

embedding matrix D∈R
V×f . We also equip our model with

a sense of order by embedding the absolute position of input

elements p=(p1,...,pm) where pj∈R
f . Both are combined to

obtain input element representations e=(w1+p1,...,wm+pm).
We proceed similarly for output elements that were already

generated by the decoder network to yield output element

representations that are being fed back into the decoder network

g=(g1,...,gn). Position embeddings are useful in our architec-

ture since they give our model a sense of which portion of the

sequence in the input or output it is currently dealing with (§5.4).

3.2. Convolutional Block Structure

Both encoder and decoder networks share a simple block

structure that computes intermediate states based on a fixed

number of input elements. We denote the output of the l-th block

as hl=(hl1,...,h
l
n) for the decoder network, and zl=(zl1,...,z

l
m)

for the encoder network; we refer to blocks and layers inter-

changeably. Each block contains a one dimensional convolution

followed by a non-linearity. For a decoder network with a

single block and kernel width k, each resulting state h1i contains

information over k input elements. Stacking several blocks

on top of each other increases the number of input elements

represented in a state. For instance, stacking 6 blocks with k=5
results in an input field of 25 elements, i.e. each output depends

on 25 inputs. Non-linearities allow the networks to exploit the

full input field, or to focus on fewer elements if needed.

Each convolution kernel is parameterized as W ∈ R
2d×kd,

bw∈R
2d and takes as input X∈R

k×d which is a concatenation

of k input elements embedded in d dimensions and maps

them to a single output element Y ∈ R
2d that has twice the

dimensionality of the input elements; subsequent layers operate

over the k output elements of the previous layer. We choose

gated linear units (GLU; Dauphin et al., 2016) as non-linearity

which implement a simple gating mechanism over the output

of the convolution Y =[AB]∈R
2d:

v([AB])=A⊗σ(B)

where A,B ∈R
d are the inputs to the non-linearity, ⊗ is the

point-wise multiplication and the output v([AB])∈R
d is half

the size of Y . The gates σ(B) control which inputs A of the

current context are relevant. A similar non-linearity has been

introduced in Oord et al. (2016b) who apply tanh to A but

Dauphin et al. (2016) shows that GLUs perform better in the

context of language modelling.

To enable deep convolutional networks, we add residual

connections from the input of each convolution to the output

Convolutional Sequence to Sequence Learning

of the block (He et al., 2015a).

hli=v(W l[hl−1

i−k/2,...,h
l−1

i+k/2]+blw)+hl−1

i

For encoder networks we ensure that the output of the

convolutional layers matches the input length by padding the

input at each layer. However, for decoder networks we have to

take care that no future information is available to the decoder

(Oord et al., 2016a). Specifically, we pad the input by k−1
elements on both the left and right side by zero vectors, and then

remove k elements from the end of the convolution output.

We also add linear mappings to project between the embedding

size f and the convolution outputs that are of size 2d. We

apply such a transform to w when feeding embeddings to the

encoder network, to the encoder output zuj , to the final layer of

the decoder just before the softmax hL, and to all decoder layers

hl before computing attention scores (1).

Finally, we compute a distribution over the T possible next target

elements yi+1 by transforming the top decoder output hLi via

a linear layer with weights Wo and bias bo:

p(yi+1|y1,...,yi,x)=softmax(Woh
L
i +bo)∈R

T

3.3. Multi-step Attention

We introduce a separate attention mechanism for each decoder

layer. To compute the attention, we combine the current decoder

state hli with an embedding of the previous target element gi:

dli=W l
dh

l
i+bld+gi (1)

For decoder layer l the attention alij of state i and source element

j is computed as a dot-product between the decoder state

summary dli and each output zuj of the last encoder block u:

alij=
exp

�

dli·z
u
j

�

Pm
t=1

exp
�

dli·z
u
t

�

The conditional input cli to the current decoder layer is a

weighted sum of the encoder outputs as well as the input element

embeddings ej (Figure 1, center right):

cli=

m
X

j=1

alij(z
u
j +ej) (2)

This is slightly different to recurrent approaches which compute

both the attention and the weighted sum over zuj only. We

found adding ej to be beneficial and it resembles key-value

memory networks where the keys are the zuj and the values are

the zuj +ej (Miller et al., 2016). Encoder outputs zuj represent

potentially large input contexts and ej provides point information

about a specific input element that is useful when making a

Figure 1. Illustration of batching during training. The English source

sentence is encoded (top) and we compute all attention values for the

four German target words (center) simultaneously. Our attentions are

just dot products between decoder context representations (bottom left)

and encoder representations. We add the conditional inputs computed

by the attention (center right) to the decoder states which then predict

the target words (bottom right). The sigmoid and multiplicative boxes

illustrate Gated Linear Units.

prediction. Once cli has been computed, it is simply added to

the output of the corresponding decoder layer hli.

This can be seen as attention with multiple ’hops’ (Sukhbaatar

et al., 2015) compared to single step attention (Bahdanau et al.,

2014; Luong et al., 2015; Zhou et al., 2016; Wu et al., 2016).

In particular, the attention of the first layer determines a use-

ful source context which is then fed to the second layer that

takes this information into account when computing attention etc.

The decoder also has immediate access to the attention history

of the k−1 previous time steps because the conditional inputs

cl−1

i−k,...,c
l−1

i are part of hl−1

i−k,...,h
l−1

i which are input to hli. This

makes it easier for the model to take into account which previous

inputs have been attended to already compared to recurrent nets

where this information is in the recurrent state and needs to sur-

vive several non-linearities. Overall, our attention mechanism con-

siders which words we previously attended to (Yang et al., 2016)

and performs multiple attention ’hops’ per time step. In Appendix

§C, we plot attention scores for a deep decoder and show that at

different layers, different portions of the source are attended to.

Convolutional Sequence to Sequence Learning

Our convolutional architecture also allows to batch the attention

computation across all elements of a sequence compared to

RNNs (Figure 1, middle). We batch the computations of each

decoder layer individually.

3.4. Normalization Strategy

We stabilize learning through careful weight initialization (§3.5)

and by scaling parts of the network to ensure that the variance

throughout the network does not change dramatically. In particu-

lar, we scale the output of residual blocks as well as the attention

to preserve the variance of activations. We multiply the sum

of the input and output of a residual block by
√
0.5 to halve the

variance of the sum. This assumes that both summands have the

same variance which is not always true but effective in practice.

The conditional input cli generated by the attention is a weighted

sum of m vectors (2) and we counteract a change in variance

through scaling by m
p

1/m; we multiply by m to scale up

the inputs to their original size, assuming the attention scores

are uniformly distributed. This is generally not the case but we

found it to work well in practice.

For convolutional decoders with multiple attention, we scale

the gradients for the encoder layers by the number of attention

mechanisms we use; we exclude source word embeddings. We

found this to stabilize learning since the encoder received too

much gradient otherwise.

3.5. Initialization

Normalizing activations when adding the output of different

layers, e.g. residual connections, requires careful weight initial-

ization. The motivation for our initialization is the same as for the

normalization: maintain the variance of activations throughout

the forward and backward passes. All embeddings are initialized

from a normal distribution with mean 0 and standard deviation

0.1. For layers whose output is not directly fed to a gated linear

unit, we initialize weights from N (0,
p

1/nl) where nl is the

number of input connections to each neuron. This ensures that

the variance of a normally distributed input is retained.

For layers which are followed by a GLU activation, we propose

a weight initialization scheme by adapting the derivations in (He

et al., 2015b; Glorot & Bengio, 2010; Appendix A). If the GLU

inputs are distributed with mean 0 and have sufficiently small

variance, then we can approximate the output variance with 1/4
of the input variance (Appendix A.1). Hence, we initialize the

weights so that the input to the GLU activations have 4 times

the variance of the layer input. This is achieved by drawing their

initial values from N (0,
p

4/nl). Biases are uniformly set to

zero when the network is constructed.

We apply dropout to the input of some layers so that inputs

are retained with a probability of p. This can be seen as

multiplication with a Bernoulli random variable taking value 1/p
with probability p and 0 otherwise (Srivastava et al., 2014). The

application of dropout will then cause the variance to be scaled

by 1/p. We aim to restore the incoming variance by initializing

the respective layers with larger weights. Specifically, we use

N (0,
p

4p/nl) for layers whose output is subject to a GLU and

N (0,
p

p/nl) otherwise (Appendix A.3).

4. Experimental Setup

4.1. Datasets

WMT’16 English-Romanian. We use the same data and

pre-processing as Sennrich et al. (2016b) but remove sentences

with more than 175 words. This results in 2.8M sentence pairs

for training and we evaluate on newstest2016.1 We experiment

with word-based models using a source vocabulary of 200K

types and a target vocabulary of 80K types. We also consider

a joint source and target byte-pair encoding (BPE) with 40K

types (Sennrich et al., 2016a;b).

WMT’14 English-German. We use the same setup as Luong

et al. (2015) which comprises 4.5M sentence pairs for training

and we test on newstest2014.2 As vocabulary we use 40K

sub-word types based on BPE.

WMT’14 English-French. We use the full training set of 36M

sentence pairs, and remove sentences longer than 175 words

as well as pairs with a source/target length ratio exceeding 1.5.

This results in 35.5M sentence-pairs for training. Results are

reported on newstest2014. We use a source and target vocabulary

with 40K BPE types.

In all setups a small subset of the training data serves as validation

set (about 0.5-1%) for early stopping and learning rate annealing.

Abstractive summarization. We train on the Gigaword corpus

(Graff et al., 2003) and pre-process it identically to Rush et al.

(2015) resulting in 3.8M training examples and 190K for val-

idation. We evaluate on the DUC-2004 test data comprising

500 article-title pairs (Over et al., 2007) and report recall-based

ROUGE (Lin, 2004). We also evaluate on the Gigaword test set

of Rush et al. (2015) and report F1 ROUGE similar to prior work.

Similar to Shen et al. (2016) we use a source and target vocabulary

of 30K words and require outputs to be at least 14 words long.

4.2. Model Parameters and Optimization

We use 512 hidden units for both encoders and decoders, unless

otherwise stated. All embeddings, including the output produced

by the decoder before the final linear layer, have dimensionality

512; we use the same dimensionalities for linear layers mapping

between the hidden and embedding sizes (§3.2).

1We followed the pre-processing of https://github.

com/rsennrich/wmt16-scripts/blob/80e21e5/

sample/preprocess.sh and added the back-translated data
from http://data.statmt.org/rsennrich/wmt16_

backtranslations/en-ro.
2http://nlp.stanford.edu/projects/nmt

https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/sample/preprocess.sh
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://data.statmt.org/rsennrich/wmt16_backtranslations/en-ro
http://nlp.stanford.edu/projects/nmt

Convolutional Sequence to Sequence Learning

We train our convolutional models with Nesterov’s accelerated

gradient method (Sutskever et al., 2013) using a momentum value

of 0.99 and renormalize gradients if their norm exceeds 0.1 (Pas-

canu et al., 2013). We use a learning rate of 0.25 and once the val-

idation perplexity stops improving, we reduce the learning rate by

an order of magnitude after each epoch until it falls below 10−4.

Unless otherwise stated, we use mini-batches of 64 sentences.

We restrict the maximum number of words in a mini-batch

to make sure that batches with long sentences still fit in GPU

memory. If the threshold is exceeded, we simply split the batch

until the threshold is met and process the parts separatedly.

Gradients are normalized by the number of non-padding tokens

per mini-batch. We also use weight normalization for all layers

except for lookup tables (Salimans & Kingma, 2016).

Besides dropout on the embeddings and the decoder output,

we also apply dropout to the input of the convolutional blocks

(Srivastava et al., 2014). All models are implemented in Torch

(Collobert et al., 2011) and trained on a single Nvidia M40

GPU except for WMT’14 English-French for which we use a

multi-GPU setup on a single machine. We train on up to eight

GPUs synchronously by maintaining copies of the model on each

card and split the batch so that each worker computes 1/8-th of

the gradients; at the end we sum the gradients via Nvidia NCCL.

4.3. Evaluation

We report average results over three runs of each model, where

each differs only in the initial random seed. Translations are gen-

erated by a beam search and we normalize log-likelihood scores

by sentence length. We use a beam of width 5. We divide the log-

likelihoods of the final hypothesis in beam search by their length

|y|. For WMT’14 English-German we tune a length normaliza-

tion constant on a separate development set (newstest2015) and

we normalize log-likelihoods by |y|↵ (Wu et al., 2016). On other

datasets we did not find any benefit with length normalization.

For word-based models, we replace unknown words after gener-

ation by looking up the source word with the maximum attention

score in a pre-computed dictionary (Jean et al., 2015). If the dictio-

nary contains no translation, then we simply copy the source word.

Dictionaries were extracted from the word aligned training data

that we obtained with fast align (Dyer et al., 2013). In our

multi-step attention (§3.3) we simply average the attention scores

over all layers. Finally, we compute case-sensitive tokenized

BLEU, except for WMT’16 English-Romanian where we use

detokenized BLEU to be comparable with Sennrich et al. (2016b).

5. Results

5.1. Recurrent vs. Convolutional Models

We first evaluate our convolutional model on three translation

tasks. On WMT’16 English-Romanian translation we compare

to Sennrich et al. (2016b) which is the winning entry on this

language pair at WMT’16 (Bojar et al., 2016). Their model

implements the attention-based sequence to sequence architecture

of Bahdanau et al. (2014) and uses GRU cells both in the encoder

and decoder. We test both word-based and BPE vocabularies (§4).

Table 1 shows that our fully convolutional sequence to sequence

model (ConvS2S) outperforms the WMT’16 winning entry for

English-Romanian by 1.9 BLEU with a BPE encoding and by 1.3

BLEU with a word factored vocabulary. This instance of our ar-

chitecture has 20 layes in the encoder and 20 layers in the decoder,

both using kernels of width 3 and hidden size 512 throughout.

Training took between 6 and 7.5 days on a single GPU.

On WMT’14 English to German translation we compare to the

following prior work: Luong et al. (2015) is based on a four layer

LSTM attention model, ByteNet (Kalchbrenner et al., 2016) pro-

pose a convolutional model based on characters without attention,

with 30 layers in the encoder and 30 layers in the decoder, GNMT

(Wu et al., 2016) represents the state of the art on this dataset and

they use eight encoder LSTMs as well as eight decoder LSTMs,

we quote their result for a word-based model, such as ours, as

well as a word-piece model (Schuster & Nakajima, 2012).3

The results (Table 1) show that our convolutional model

outpeforms GNMT by 0.5 BLEU. Our encoder has 15 layers

and the decoder has 15 layers, both with 512 hidden units in the

first ten layers and 768 units in the subsequent three layers, all

using kernel width 3. The final two layers have 2048 units which

are just linear mappings with a single input. We trained this

model on a single GPU over a period of 18.5 days with a batch

size of 48. LSTM sparse mixtures have shown strong accuracy

at 26.03 BLEU for a single run (Shazeer et al., 2016) which

compares to 25.39 BLEU for our best run. This mixture sums

the output of four experts, not unlike an ensemble which sums

the output of multiple networks. ConvS2S also benefits from

ensembling (§5.2), therefore mixtures are a promising direction.

Finally, we train on the much larger WMT’14 English-French

task where we compare to the state of the art result of GNMT

(Wu et al., 2016). Our model is trained with a simple token-level

likelihood objective and we improve over GNMT in the same

setting by 1.6 BLEU on average. We also outperform their

reinforcement (RL) models by 0.5 BLEU. Reinforcement

learning is equally applicable to our architecture and we believe

that it would further improve our results.

The ConvS2S model for this experiment uses 15 layers in the en-

coder and 15 layers in the decoder, both with 512 hidden units in

the first five layers, 768 units in the subsequent four layers, 1024

units in the next 3 layers, all using kernel width 3; the final two

layers have 2048 units and 4096 units each but the they are linear

mappings with kernel width 1. This model has an effective con-

text size of only 25 words, beyond which it cannot access any in-

formation on the target size. Our results are based on training with

3We did not use the exact same vocabulary size because word pieces
and BPE estimate the vocabulary differently.

Convolutional Sequence to Sequence Learning

WMT’16 English-Romanian BLEU

Sennrich et al. (2016b) GRU (BPE 90K) 28.1

ConvS2S (Word 80K) 29.45

ConvS2S (BPE 40K) 30.02

WMT’14 English-German BLEU

Luong et al. (2015) LSTM (Word 50K) 20.9

Kalchbrenner et al. (2016) ByteNet (Char) 23.75

Wu et al. (2016) GNMT (Word 80K) 23.12

Wu et al. (2016) GNMT (Word pieces) 24.61

ConvS2S (BPE 40K) 25.16

WMT’14 English-French BLEU

Wu et al. (2016) GNMT (Word 80K) 37.90

Wu et al. (2016) GNMT (Word pieces) 38.95

Wu et al. (2016) GNMT (Word pieces) + RL 39.92

ConvS2S (BPE 40K) 40.51

Table 1. Accuracy on WMT tasks comapred to previous work. ConvS2S

and GNMT results are averaged over several runs.

8 GPUs for about 37 days and batch size 32 on each worker.4 The

same configuration as for WMT’14 English-German achieves

39.41 BLEU in two weeks on this dataset in an eight GPU setup.

Zhou et al. (2016) report a non-averaged result of 39.2 BLEU.

More recently, Ha et al. (2016) showed that one can generate

weights with one LSTM for another LSTM. This approach

achieves 40.03 BLEU but the result is not averaged. Shazeer et al.

(2016) compares at 40.56 BLEU to our best single run of 40.70

BLEU.

The translations produced by our models often match the length

of the references for the large WMT’14 English-French task,

or are very close for small to medium data sets such as WMT’14

English-German or WMT’16 English-Romanian.

5.2. Ensemble Results

Next, we ensemble eight likelihood-trained models for both

WMT’14 English-German and WMT’14 English-French and

compare to previous work which also reported ensemble results.

Table 2 shows that we outperform the best current ensembles

on both datasets. For WMT’14 English-French we also show

results when ensembling 10 models.

4This is half of the GPU time consumed by a basic model of Wu
et al. (2016) who use 96 GPUs for 6 days. We expect the time to train
our model to decrease substantially in a multi-machine setup.

WMT’14 English-German BLEU

Wu et al. (2016) GNMT 26.20

Wu et al. (2016) GNMT + RL 26.30

ConvS2S 26.43

WMT’14 English-French BLEU

Zhou et al. (2016) 40.4

Wu et al. (2016) GNMT 40.35

Wu et al. (2016) GNMT + RL 41.16

ConvS2S 41.44

ConvS2S (10 models) 41.62

Table 2. Accuracy of ensembles with eight models. We show both

likelihood and Reinforce (RL) results for GNMT; Zhou et al. (2016)

and ConvS2S use simple likelihood training.

5.3. Generation Speed

Next, we evaluate the inference speed on the development set

of the WMT’14 English-French task which is the concatenation

of newstest2012 and newstest2013; it comprises 6003 sentences.

We measure generation speed both on GPU and CPU hardware.

Specifically, we measure GPU speed on three generations

of Nvidia cards: a GTX-1080ti, an M40 as well as an older

K40 card. CPU timings are measured on one host with 48

hyper-threaded cores (Intel Xeon E5-2680 @ 2.50GHz) with 40

workers. In all settings, we batch up to 128 sentences, composing

batches with sentences of equal length. Note that the majority of

batches is smaller because of the small size of the development

set. We experiment with beams of size 5 as well as greedy

search, i.e beam of size 1. To make generation fast, we do not

recompute convolution states that have not changed compared

to the previous time step but rather copy (shift) these activations.

We compare to results reported in Wu et al. (2016) who use

Nvidia K80 GPUs which are essentially two K40s. We did not

have such a GPU available and therefore run experiments on an

older K40 card which is inferior to a K80, in addition to the newer

M40 and GTX-1080ti cards. The results (Table 3) show that our

model can generate translations on a K40 GPU at 9.3 times the

speed and 2.25 higher BLEU; on an M40 the speed-up is up to

13.7 times and on a GTX-1080ti card the speed is 21.3 times faster.

A larger beam of size 5 decreases speed but gives better BLEU.

On CPU, our model is up to 9.3 times faster, however, the

GNMT CPU results were obtained with an 88 core machine

whereas our results were obtained with just over half the number

of cores. On a per CPU core basis, our model is 17 times faster

at a better BLEU. Finally, our CPU speed is 2.7 times higher

than GNMT on a custom TPU chip which shows that high speed

can be achieved on commodity hardware. We do no report TPU

figures as we do not have access to this hardware.

Convolutional Sequence to Sequence Learning

BLEU Time (s)

GNMT GPU (K80) 31.20 3,028

GNMT CPU 88 cores 31.20 1,322

GNMT TPU 31.21 384

ConvS2S GPU (K40) b=1 33.45 327

ConvS2S GPU (M40) b=1 33.45 221

ConvS2S GPU (GTX-1080ti) b=1 33.45 142

ConvS2S CPU 48 cores b=1 33.45 142

ConvS2S GPU (K40) b=5 34.10 587

ConvS2S CPU 48 cores b=5 34.10 482

ConvS2S GPU (M40) b=5 34.10 406

ConvS2S GPU (GTX-1080ti) b=5 34.10 256

Table 3. CPU and GPU generation speed in seconds on the development

set of WMT’14 English-French. We show results for different beam

sizes b. GNMT figures are taken from Wu et al. (2016). CPU speeds

are not directly comparable because Wu et al. (2016) use a 88 core

machine versus our 48 core setup.

PPL BLEU

ConvS2S 6.64 21.7

-source position 6.69 21.3

-target position 6.63 21.5

-source & target position 6.68 21.2

Table 4. Effect of removing position embeddings from our model in

terms of validation perplexity (valid PPL) and BLEU.

5.4. Position Embeddings

In the following sections, we analyze the design choices in our

architecture. The remaining results in this paper are based on

the WMT’14 English-German task with 13 encoder layers at

kernel size 3 and 5 decoder layers at kernel size 5. We use a

target vocabulary of 160K words as well as vocabulary selection

(Mi et al., 2016; L’Hostis et al., 2016) to decrease the size of

the output layer which speeds up training and testing. The

average vocabulary size for each training batch is about 20K target

words. All figures are averaged over three runs (§4) and BLEU

is reported on newstest2014 before unknown word replacement.

We start with an experiment that removes the position embed-

dings from the encoder and decoder (§3.1). These embeddings

allow our model to identify which portion of the source and

target sequence it is dealing with but also impose a restriction

on the maximum sentence length. Table 4 shows that position

embeddings are helpful but that our model still performs well

without them. Removing the source position embeddings results

in a larger accuracy decrease than target position embeddings.

However, removing both source and target positions decreases

accuracy only by 0.5 BLEU. We also find that the length of the

outputs of models without position embeddings closely matches

the output length of models with position information. This

Attn Layers PPL BLEU

1,2,3,4,5 6.65 21.63

1,2,3,4 6.70 21.54

1,2,3 6.95 21.36

1,2 6.92 21.47

1,3,5 6.97 21.10

1 7.15 21.26

2 7.09 21.30

3 7.11 21.19

4 7.19 21.31

5 7.66 20.24

Table 5. Multi-step attention in all five decoder layers or fewer layers

in terms of validation perplexity (PPL) and test BLEU.

indicates that the models can learn relative position information

within the contexts visible to the encoder and decoder networks

which can observe up to 27 and 25 words respectively.

Recurrent models typically do not use explicit position

embeddings since they can learn where they are in the sequence

through the recurrent hidden state computation. In our setting,

the use of position embeddings requires only a simple addition

to the input word embeddings which is a negligible overhead.

5.5. Multi-step Attention

The multiple attention mechanism (§3.3) computes a separate

source context vector for each decoder layer. The computation

also takes into account contexts computed for preceding decoder

layers of the current time step as well as previous time steps

that are within the receptive field of the decoder. How does

multiple attention compare to attention in fewer layers or even

only in a single layer as is usual? Table 5 shows that attention in

all decoder layers achieves the best validation perplexity (PPL).

Furthermore, removing more and more attention layers decreases

accuracy, both in terms of BLEU as well as PPL.

The computational overhead for attention is very small compared

to the rest of the network. Training with attention in all five

decoder layers processes 3624 target words per second on

average on a single GPU, compared to 3772 words per second

for a single attention module. This corresponds to 1% overhead

per attention module and demonstrates that attention is not

the bottleneck in neural machine translation, even though it

is quadratic in the sequence length (cf. Kalchbrenner et al.,

2016). Part of the reason for the low impact on speed is that

we batch the computation of an attention module over all target

words. However, for RNNs batching of the attention may be less

effective because of the dependence on the previous time step.

Convolutional Sequence to Sequence Learning

DUC-2004 Gigaword

RG-1 (R) RG-2 (R) RG-L (R) RG-1 (F) RG-2 (F) RG-L (F)

RNN MLE (Shen et al., 2016) 24.92 8.60 22.25 32.67 15.23 30.56

RNN MRT (Shen et al., 2016) 30.41 10.87 26.79 36.54 16.59 33.44

WFE (Suzuki & Nagata, 2017) 32.28 10.54 27.80 36.30 17.31 33.88

ConvS2S 30.44 10.84 26.90 35.88 17.48 33.29

Table 6. Accuracy on two summarization tasks in terms of Rouge-1 (RG-1), Rouge-2 (RG-2), and Rouge-L (RG-L).

 19

 19.5

 20

 20.5

 21

 21.5

 22

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

B
L

E
U

Layers

Encoder
Decoder

Figure 2. Encoder and decoder with different number of layers.

Kernel width Encoder layers

5 9 13

3 20.61 21.17 21.63

5 20.80 21.02 21.42

7 20.81 21.30 21.09

Table 7. Encoder with different kernel width in terms of BLEU.

Kernel width Decoder layers

3 5 7

3 21.10 21.71 21.62

5 21.09 21.63 21.24

7 21.40 21.31 21.33

Table 8. Decoder with different kernel width in terms of BLEU.

5.6. Kernel size and Depth

Figure 2 shows accuracy when we change the number of layers

in the encoder or decoder. The kernel width for layers in the

encoder is 3 and for the decoder it is 5. Deeper architectures are

particularly beneficial for the encoder but less so for the decoder.

Decoder setups with two layers already perform well whereas

for the encoder accuracy keeps increasing steadily with more

layers until up to 9 layers when accuracy starts to plateau.

Aside from increasing the depth of the networks, we can also

change the kernel width. Table 7 shows that encoders with

narrow kernels and many layers perform better than wider kernels.

These networks can also be faster since the amount of work to

compute a kernel operating over 3 input elements is less than half

compared to kernels over 7 elements. We see a similar picture for

decoder networks with large kernel sizes (Table 8). Dauphin et al.

(2016) shows that context sizes of 20 words are often sufficient

to achieve very good accuracy on language modeling for English.

5.7. Summarization

Finally, we evaluate our model on abstractive sentence

summarization which takes a long sentence as input and outputs

a shortened version. The current best models on this task are

recurrent neural networks which either optimize the evaluation

metric (Shen et al., 2016) or address specific problems of summa-

rization such as avoiding repeated generations (Suzuki & Nagata,

2017). We use standard likelhood training for our model and

a simple model with six layers in the encoder and decoder each,

hidden size 256, batch size 128, and we trained on a single GPU

in one night. Table 6 shows that our likelhood trained model out-

performs the likelihood trained model (RNN MLE) of Shen et al.

(2016) and is not far behind the best models on this task which

benefit from task-specific optimization and model structure.

6. Conclusion and Future Work

We introduce the first fully convolutional model for sequence

to sequence learning that outperforms strong recurrent models

on very large benchmark datasets at an order of magnitude

faster speed. Compared to recurrent networks, our convolutional

approach allows to discover compositional structure in the se-

quences more easily since representations are built hierarchically.

Our model relies on gating and performs multiple attention steps.

We achieve a new state of the art on several public translation

benchmark data sets. On the WMT’16 English-Romanian

task we outperform the previous best result by 1.9 BLEU, on

WMT’14 English-French translation we improve over the LSTM

model of Wu et al. (2016) by 1.6 BLEU in a comparable setting,

and on WMT’14 English-German translation we ouperform the

same model by 0.5 BLEU. In future work, we would like to

apply convolutional architectures to other sequence to sequence

learning problems which may benefit from learning hierarchical

representations as well.

Convolutional Sequence to Sequence Learning

Acknowledgements

We thank Benjamin Graham for providing a fast 1-D convolution,

and Ronan Collobert as well as Yann LeCun for helpful

discussions related to this work.

References

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua.

Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014.

Bojar, Ondej, Chatterjee, Rajen, Federmann, Christian, Graham,

Yvette, Haddow, Barry, Huck, Matthias, Jimeno-Yepes,

Antonio, Koehn, Philipp, Logacheva, Varvara, Monz, Christof,

Negri, Matteo, Névéol, Aurélie, Neves, Mariana L., Popel,

Martin, Post, Matt, Rubino, Raphaël, Scarton, Carolina,

Specia, Lucia, Turchi, Marco, Verspoor, Karin M., and

Zampieri, Marcos. Findings of the 2016 conference on

machine translation. In Proc. of WMT, 2016.

Bradbury, James, Merity, Stephen, Xiong, Caiming, and Socher,

Richard. Quasi-Recurrent Neural Networks. arXiv preprint

arXiv:1611.01576, 2016.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre, Caglar,

Bahdanau, Dzmitry, Bougares, Fethi, Schwenk, Holger, and

Bengio, Yoshua. Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation. In Proc.

of EMNLP, 2014.

Chorowski, Jan K, Bahdanau, Dzmitry, Serdyuk, Dmitriy, Cho,

Kyunghyun, and Bengio, Yoshua. Attention-based models

for speech recognition. In Advances in Neural Information

Processing Systems, pp. 577–585, 2015.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,

Clement. Torch7: A Matlab-like Environment for Machine

Learning. In BigLearn, NIPS Workshop, 2011. URL

http://torch.ch.

Dauphin, Yann N., Fan, Angela, Auli, Michael, and Grangier,

David. Language modeling with gated linear units. arXiv

preprint arXiv:1612.08083, 2016.

Dyer, Chris, Chahuneau, Victor, and Smith, Noah A. A Simple,

Fast, and Effective Reparameterization of IBM Model 2. In

Proc. of ACL, 2013.

Elman, Jeffrey L. Finding Structure in Time. Cognitive Science,

14:179–211, 1990.

Gehring, Jonas, Auli, Michael, Grangier, David, and Dauphin,

Yann N. A Convolutional Encoder Model for Neural Machine

Translation. arXiv preprint arXiv:1611.02344, 2016.

Glorot, Xavier and Bengio, Yoshua. Understanding the difficulty

of training deep feedforward neural networks. The handbook

of brain theory and neural networks, 2010.

Graff, David, Kong, Junbo, Chen, Ke, and Maeda, Kazuaki.

English gigaword. Linguistic Data Consortium, Philadelphia,

2003.

Ha, David, Dai, Andrew, and Le, Quoc V. Hypernetworks.

arXiv preprint arXiv:1609.09106, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian.

Deep Residual Learning for Image Recognition. In Proc. of

CVPR, 2015a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In Proceedings of

the IEEE International Conference on Computer Vision, pp.

1026–1034, 2015b.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In Proceedings of The 32nd International

Conference on Machine Learning, pp. 448–456, 2015.

Jean, Sébastien, Firat, Orhan, Cho, Kyunghyun, Memisevic,

Roland, and Bengio, Yoshua. Montreal Neural Machine

Translation systems for WMT15. In Proc. of WMT, pp.

134–140, 2015.

Kalchbrenner, Nal, Espeholt, Lasse, Simonyan, Karen, van den

Oord, Aaron, Graves, Alex, and Kavukcuoglu, Koray. Neural

Machine Translation in Linear Time. arXiv, 2016.

LeCun, Yann and Bengio, Yoshua. Convolutional networks

for images, speech, and time series. The handbook of brain

theory and neural networks, 3361(10):1995, 1995.

L’Hostis, Gurvan, Grangier, David, and Auli, Michael. Vocab-

ulary Selection Strategies for Neural Machine Translation.

arXiv preprint arXiv:1610.00072, 2016.

Lin, Chin-Yew. Rouge: A package for automatic evaluation

of summaries. In Text Summarization Branches Out:

Proceedings of the ACL-04 Workshop, pp. 74–81, 2004.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christopher D.

Effective approaches to attention-based neural machine

translation. In Proc. of EMNLP, 2015.

Meng, Fandong, Lu, Zhengdong, Wang, Mingxuan, Li, Hang,

Jiang, Wenbin, and Liu, Qun. Encoding Source Language

with Convolutional Neural Network for Machine Translation.

In Proc. of ACL, 2015.

http://torch.ch

Convolutional Sequence to Sequence Learning

Mi, Haitao, Wang, Zhiguo, and Ittycheriah, Abe. Vocabulary

Manipulation for Neural Machine Translation. In Proc. of

ACL, 2016.

Miller, Alexander H., Fisch, Adam, Dodge, Jesse, Karimi, Amir-

Hossein, Bordes, Antoine, and Weston, Jason. Key-value

memory networks for directly reading documents. In Proc.

of EMNLP, 2016.

Nallapati, Ramesh, Zhou, Bowen, Gulcehre, Caglar, Xiang,

Bing, et al. Abstractive text summarization using sequence-

to-sequence rnns and beyond. In Proc. of EMNLP, 2016.

Oord, Aaron van den, Kalchbrenner, Nal, and Kavukcuoglu,

Koray. Pixel recurrent neural networks. arXiv preprint

arXiv:1601.06759, 2016a.

Oord, Aaron van den, Kalchbrenner, Nal, Vinyals, Oriol,

Espeholt, Lasse, Graves, Alex, and Kavukcuoglu, Koray.

Conditional image generation with pixelcnn decoders. arXiv

preprint arXiv:1606.05328, 2016b.

Over, Paul, Dang, Hoa, and Harman, Donna. Duc in context.

Information Processing & Management, 43(6):1506–1520,

2007.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On

the difficulty of training recurrent neural networks. In

Proceedings of The 30th International Conference on Machine

Learning, pp. 1310–1318, 2013.

Rush, Alexander M, Chopra, Sumit, and Weston, Jason. A

neural attention model for abstractive sentence summarization.

In Proc. of EMNLP, 2015.

Salimans, Tim and Kingma, Diederik P. Weight normalization:

A simple reparameterization to accelerate training of deep

neural networks. arXiv preprint arXiv:1602.07868, 2016.

Schuster, Mike and Nakajima, Kaisuke. Japanese and korean

voice search. In Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference on, pp.

5149–5152. IEEE, 2012.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. Neural

Machine Translation of Rare Words with Subword Units. In

Proc. of ACL, 2016a.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. Edinburgh

Neural Machine Translation Systems for WMT 16. In Proc.

of WMT, 2016b.

Shazeer, Noam, Mirhoseini, Azalia, Maziarz, Krzysztof,

Davis, Andy, Le, Quoc, Hinton, Geoffrey, and Dean, Jeff.

Outrageously large neural networks: The sparsely-gated

mixture-of-experts layer. ArXiv e-prints, January 2016.

Shen, Shiqi, Zhao, Yu, Liu, Zhiyuan, Sun, Maosong, et al.

Neural headline generation with sentence-wise optimization.

arXiv preprint arXiv:1604.01904, 2016.

Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex,

Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a simple

way to prevent Neural Networks from overfitting. JMLR, 15:

1929–1958, 2014.

Sukhbaatar, Sainbayar, Weston, Jason, Fergus, Rob, and Szlam,

Arthur. End-to-end Memory Networks. In Proc. of NIPS,

pp. 2440–2448, 2015.

Sutskever, Ilya, Martens, James, Dahl, George E., and Hinton,

Geoffrey E. On the importance of initialization and

momentum in deep learning. In ICML, 2013.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to

Sequence Learning with Neural Networks. In Proc. of NIPS,

pp. 3104–3112, 2014.

Suzuki, Jun and Nagata, Masaaki. Cutting-off redundant

repeating generations for neural abstractive summarization.

arXiv preprint arXiv:1701.00138, 2017.

Waibel, Alex, Hanazawa, Toshiyuki, Hinton, Geoffrey, Shikano,

Kiyohiro, and Lang, Kevin J. Phoneme Recognition using

Time-delay Neural Networks. IEEE transactions on acoustics,

speech, and signal processing, 37(3):328–339, 1989.

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V,

Norouzi, Mohammad, Macherey, Wolfgang, Krikun, Maxim,

Cao, Yuan, Gao, Qin, Macherey, Klaus, et al. Google’s

Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation. arXiv preprint

arXiv:1609.08144, 2016.

Yang, Zichao, Hu, Zhiting, Deng, Yuntian, Dyer, Chris, and

Smola, Alex. Neural Machine Translation with Recurrent

Attention Modeling. arXiv preprint arXiv:1607.05108, 2016.

Zhou, Jie, Cao, Ying, Wang, Xuguang, Li, Peng, and Xu,

Wei. Deep Recurrent Models with Fast-Forward Con-

nections for Neural Machine Translation. arXiv preprint

arXiv:1606.04199, 2016.

