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Abstract: This paper presents a Convolutional Sparse 

Coding (CSC)-based Deep Random Vector Functional Link 

Network (CSDRN) for distress classification of road 

structures. The main contribution of this paper is the 

introduction of CSC into a feature extraction scheme in the 

distress classification. CSC can extract visual features 

representing characteristics of target images since it can 

successfully estimate optimal convolutional dictionary filters 

and sparse features as visual features by training from a 

small number of distress images. The optimal dictionaries 

trained from distress images have basic components of visual 

characteristics such as edge and line information of distress 

images. Furthermore, sparse feature maps estimated on the 

basis of the dictionaries represent both strength of the basic 

components and location information of regions having their 

components, and these maps can represent distress images. 

That is, sparse feature maps can extract key components 

from distress images that have diverse visual characteristics. 

Therefore, CSC-based feature extraction is effective for 

training from a limited number of distress images that have 

diverse visual characteristics. The construction of a novel 

neural network, CSDRN, by the use of a combination of CSC-

based feature extraction and the DRN classifier, which can 

also be trained from a small dataset, is shown in this paper. 

Accurate distress classification is realized via the CSDRN.  

 

 

1 INTRODUCTION 

 

Many road structures have been built worldwide, and 

degradation of such structures has been accelerating. Thus, 

the number of deteriorated road structures that must be 

inspected and repaired has been increasing. Since inspectors 

have been performing their operations based on their 

knowledge and experience, there is a possibility of human 

errors (Woo et al., 2016). Many studies on support of 

inspectors have been conducted with the aim of establishing 

methods for efficient and precise maintenance inspection 

(Bergquist and Söderholm, 2015; Xu et al., 2015). Recently, 

computer vision-based approaches have been studied (Koch 

et al., 2015; Tizani and Mawdesley, 2011), and it has been 

shown that there is a need for automatic detection and 

techniques for classification of distresses that have occurred 

in road structures (O ’Byrne et al., 2013; Zalama et al., 

2014a). Since various kinds of distress occur in road 

structures (Li et al., 2018; Maeda et al., 2018a), the goal of 

our work is the realization of an accurate distress 

classification method based on machine learning techniques 

using images taken of distress parts of road structures.  

In image recognition fields, convolutional neural networks 

(CNNs) (Krizhevsky et al., 2012), which require a large 

number of training images, have achieved outstanding 

results in various tasks such as image classification (Zhang 

et al., 2016; Zalama et al., 2014a; Koziarski and Cyganek, 

2017). However, since the number of images of road 

structures is not sufficient for training CNNs, CNNs are not 

suitable for distress classification. Although fine-tuned 

CNNs have been proposed for a small dataset, it is difficult 

to use them since the visual characteristics of distress images 

are more diverse than those of images for generic object 
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recognition (Donahue et al., 2014; Zhou et al., 2014) as 

shown in Fig. 1.  

To overcome this problem, a local receptive field-based 

neural network (LRF-NN) (Huang et al., 2015) has been 

proposed. The LRF-NN, which is a feedforward neural 

network, realizes convolutional feature extraction via LRFs 

and classification via a random-based neural network, which 

is an extended version of the random vector functional link 

(RVFL) network (Schmidt et al., 1992; Pao et al., 1994). 

Since almost all of the parameters in LRFs are determined 

randomly, that is, the number of parameters to be optimized 

is small, this network enables training from a small amount 

of training data. This is the advantage of the LRF-NN. 

Recent studies have shown that performance improvement 

for classification of images with diverse visual 

characteristics can be realized by using an LRF-based deep 

RVFL network (LRF-DRN) (Maeda et al., 2017a), which is 

our previous method, and the kernel version of the LRF-NN 

(KLRF-NN) (Shen et al., 2017). These methods are extended 

versions of the LRF-NN. However, the above feature 

extraction scheme, LRF, sets their convolutional filters to 

random values. This means that since the LRF is not trained 

from training samples, it cannot extract effective visual 

features. Therefore, realization of effective training from a 

small number of images with diverse visual characteristics is 

expected by adopting a new feature extraction scheme that 

can determine optimal convolutional filters.  

It has been reported that a sparse coding approach, which 

is a traditional algorithm (Sarma and Adeli, 1995, 1996) that 

has been used for several problems, can represent 

characteristics of target images (Zhang et al., 2015). 

Specifically, sparse coding divides the target image into 

patches and reconstructs the patches by calculating the linear 

combination between dictionary filters obtained via 

dictionary learning and a sparse vector, which has many zero 

elements. Then the sparse coding exploits representation of 

the target patches. Thus, it has huge potential capabilities to 

solve many problems in a wide range of application fields, 

e.g., image denoising, inpainting and image classification. 

However, since general sparse coding represents these 

patches independently, it has difficulty in considering spatial 

information between the patches. Convolutional sparse 

coding (CSC), which can consider local interactions between 

patches by performing convolution of both dictionary filters 

and sparse feature maps, has been proposed to solve this 

problem (Wohlberg, 2016b; Zhang et al., 2017b). As shown 

in Fig. 2, traditional sparse coding approaches perform 

dictionary learning by using patches of images. However, 

since spatial phases of the patches are different, 

representation ability of the dictionaries calculated from 

these patches is limited. On the other hand, CSC calculates 

dictionaries with convolution between filters and images; in 

other words, it calculates dictionaries by sliding of images. 

Therefore, since CSC is robust for the difference of spatial 

phases, it is possible to calculate the features with high 

representation ability. This is the reason why we apply CSC 

to distress classification. Since the number of parameters to 

be optimized is less than that in CNN approaches, dictionary 

learning can be easily performed from a small number of 

training distress images. Optimal dictionaries trained from 

images have basic components of visual characteristics such 

as edge and line information. Since sparse feature maps 

estimated on the basis of dictionaries represent both strength 

of the basic components and location information of regions 

having their components, sparse feature maps can extract key 

components from images. Therefore, it is expected that CSC 

can realize effective training from a small number of distress 

images with diverse visual characteristics.  

In this paper, we present a novel distress classification 

method using a Convolutional Sparse Coding-based Deep 

Random Vector Functional Link Network (CSDRN). CSC,  

which enables extraction of visual features with higher 

representation ability and determination of optimal 

dictionary filters as convolutional filters, is newly introduced 

in our method. Specifically, the proposed method constructs 

a novel neural network, CSDRN, consisting of four layers (a 

CSC layer, a pooling layer, a local response normalization 

(LRN) layer and a DRN layer) that is constructed on the basis 

of a deep RVFL network (Cecotti, 2016). CSC-based feature 

extraction enables consideration local interactions such as 

spatial information of images more successfully than LRF 

can. Furthermore, since optimal dictionary filters can be 

estimated from a small dataset, CSC is suitable for a distress 

  
(a) Crack (b) Failure 

  
(c) Free lime (d) Exfoliation 

                     w 

(e) Corrosion  

Figure 1 Examples of distress images. 
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classification task. Moreover, since parameters of the hidden 

layers of the DRN are determined by an auto-encoder-based 

method, that is, the number of DRN’s parameters to be 

optimized is much less than that in general deep learning 

methods, the DRN classifier can also be trained from a small 

dataset. Thus, since CSC-based feature extraction has 

affinity for a DRN, the use of the combination of CSC and 

DRN is suitable for distress classification. In terms of 

stability, since CNNs also have problems such as overfitting 

and vanishing gradient, parameter tuning is difficult. On the 

other hand, although RVFL has a disadvantage due to 

random parameters, it is possible to efficiently search 

parameters with faster computation. Thus, since the 

introduction of RVFL is one of the reasonable solutions, the 

CSC and DRN are newly combined in the proposed method 

for improving the simple RVFL-based classifiers. Therefore, 

improvement of distress classification performance is 

realized by using CSDRN.  

The difference between the proposed method and our 

previous methods (Maeda et al., 2017b, 2018b) is explained 

below. Maeda et al. (2017b) proposed an approach based on 

the Bayesian network, which is one of probabilistic models. 

In addition, Maeda et al. (2018b) collaboratively used text 

features and visual features based on canonical correlation 

analysis (Hotelling, 1936), which maximizes the canonical 

correlation of multi-bivariates. The main contribution of our 

approach is the use of the combination of CSC and DRN. 

Our previous method (Maeda et al., 2017a) focused on LRF 

and DRN. LRF was used as the feature extractor. However, 

LRF is not suitable for feature extraction due to the random-

based approach. Thus, LRF is replaced by CSC, which can 

extract more effective visual features, in the proposed 

method. Each element of our architecture has been 

previously proposed. However, by simple combination use 

of CSC and DRN, we have derived a new framework that 

can deal with a small amount of data. Thus, our approach 

solves the current problem in computing in the field of civil 

engineering. This is a strong contribution. For more details, 

although the original CSC has been proposed for image 

classification, only sparse feature maps were used; in other 

words, introduction of multiple pooling and normalization 

has not been proposed. Moreover, although general deep 

learning approaches prevent over-fitting by using dropout in 

fully connected layers, this problem can also be solved by 

sparse coding. The proposed method can also solve the over-

fitting problem. Consequently, the proposed architecture is 

completely different from our previous methods.  

Section 2 shows related works. In Section 3, the 

construction of the CSDRN is explained. Section 4 shows 

experimental results. Finally, Section 5 shows conclusions. 

In order to simply explain our paper, Table 1 shows 

abbreviations.  

 

2 Related works 

 

Table 1 Abbreviations of our paper. 

Abbreviations Official name 

CSDRN Convolutional Sparse Coding-based Deep Random Vector Functional Link Network 

CSC Convolutional Sparse Coding 

MCDL Multi-channel Convolutional Dictionary Learning 

CNN Convolutional Neural Network 

PCA Principal Component Analysis 

LRN Local Response Normalization 

DFT Discrete Fourier Transform 

ADMM Alternating Direction Method of Multipliers 

RVFL Random Vector Functional Link 

LRN Local Receptive Field 

DRN Deep Random Vector Functional Link Network 

KLRF-NN Kernel version of Local Receptive Field-based Neural Network 

LRF-DRN Local Receptive Field-based Deep Random Vector Functional Link Network 

LRF-NN Local Receptive Field-based Neural Network 

SVM Support Vector Machine 

 

 
Figure 2 Difference between traditional sparse coding 

and convolutional sparse coding. 

Patch divisionInput image

Traditional sparse coding approach

Convolutional sparse coding

Dictionary learning 

(DL) from patches

Spatial phase is different.

There is a performance limitation since DL is 

performed from divided patches for which 

spatial phases are different.

Input image Convolution
Convolutional dictionary learning 

enables to absorb the phase difference. 
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In this section, we explain related works of computing in 

civil engineering. In this research area, the methods used in 

many studies can be roughly divided into deep learning-based 

methods and non-deep learning-based methods.  

Recently, although deep learning-based approaches have 

been used to solve several problems in the field of civil 

engineering, some problems are complex, and more optimal 

approaches than deep learning-based approaches have 

sometimes been used (Wang et al., 2018; Poskus et al., 2018; 

Huangpeng et al., 2018; Liao, 2017; Amezquita-Sanchez and 

Adeli, 2015b; Qarib and Adeli, 2015). For example, Wang et 

al. (2018) developed an automatic method for measuring 

crack width using binary crack map images. They introduced 

a new crack width definition and formulated it using the 

Laplace equation so that crack width can be continuously and 

unambiguously measured, and they showed that their method 

was effective for characterizing propagation behavior of 

cracks with small widths. Although cracks are one of the most 

important types of distress, methods for detecting other types 

of distress have also been studied (Poskus et al., 2018; 

Huangpeng et al., 2018). Huangpeng et al. (2018) focused on 

the use of texture features to construct prior maps for distress 

detection. They formulated a detection process as a novel 

weighted low-rank reconstruction model with a texture prior 

map and improved the detection performance of state-of-the-

art detection methods. Moreover, a solution to the vehicle 

routing problem has been proposed by using computational 

approaches (Liao, 2017). Liao (2017) developed on-line VRP 

because it is more appropriate for logistics operations in 

which customer service is requested in real time with a meta-

heuristic algorithm. Thus, computational approaches have 

been used to solve various problems.  

On the other hand, recent computational methods have used 

deep learning-based approaches to solve many problems such 

as crack detection and distress classification. Since deep 

learning-based methods generally require a large number of 

labeled training images for parameter tuning, high-resolution 

images were prepared and divided into patches in some 

studies (Zhang et al., 2016; Cha et al., 2017, 2018; Xue and 

Li, 2018; Chen and Jahanshahi, 2018; Gibert et al., 2017; 

Rafiei et al., 2017). By using the obtained patches, training of 

CNNs becomes feasible. Various crack detection methods 

have been proposed (Zhang et al., 2016; Chen and Jahanshahi, 

2018; Cha et al., 2017). Zhang et al. (2016) used 3,264×2,448 

original images and divided the images into 640,000 patches. 

Chen and Jahanshahi (2018) and Cha (2017) used about 

300,000 and 40,000 patches, respectively. They constructed 

their own CNN architectures and outperformed other 

classifiers such as a support vector machine (SVM) (Cortes 

and Vapnik, 1995) and traditional crack detection methods 

such as a canny algorithm. High-resolution images were also 

used for region-based distress detection methods (Xue and Li, 

2018; Cha et al., 2018) inspired by a fully convolutional 

network (Long et al., 2015) and fast R-CNN (Girshick, 2015). 

Although the number of distress images is often not sufficient 

for training CNNs, the use of high-resolution images provides 

a solution to introduce CNNs into the field of civil 

engineering.  

However, there are cases in which it is difficult to prepare 

not only high-resolution images but also labeled training 

images. Other than research on hardware (Ortega-Zamorano 

et al., 2017), there are mainly four approaches based on 

software in such cases. Firstly, there are methods combining 

a conventional signal processing method and deep learning 

 
Figure 3 An overview of the CSDRN. The CSDRN is constructed from four layers. The CSC layer estimates sparse 

feature maps via optimal dictionary filters obtained by Multi-channel Convolutional Dictionary Learning (MCDL) 

(3.1). The pooling layer performs the pooling operation, and the LRN layer performs local response normalization 

between channels for contrast adjustment (3.2). Finally, the DRN layer performs classification using the visual and 

text features (3.3). 
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(Doulamis et al., 2018; Rafiei and Adeli, 2018, 2017) and 

methods devising preprocessing of inputs to the CNNs 

(Zhang et al., 2017a; Nabian and Meidani, 2018). Rafiei and 

Adeli proposed methods for health monitoring of large 

structures through integration of synchrosqueezed wavelet 

transform, fast Fourier transform and unsupervised deep 

Boltzmann machine. In addition, Amezquita-Sanchez, J. and 

Adeli, H. (2015a) presented a review journal in order to assess 

the health condition of a structure (Amezquita-Sanchez and 

Adeli, 2015a). Nabian and Meidani (2018) and Zhang (2017a) 

generated input features for deep learning by using their own 

feature extraction method. Secondly, Lin et al. (2017) created 

fake data based on a true data set and added the fake data to 

the training set (Lin et al., 2017). Thus, deep neural networks 

can be trained from a small amount of original data and a large 

amount of fake data. This approach means “data 

augmentation”. Thirdly, active learning and weakly 

supervised approaches have been developed. Feng et al. 

(2017) developed a distress detection method based on active 

learning. In the initial phase of the method, only a small 

number of labeled training images are given, resulting in a 

distress classifier with poor performance. Although 

performing poorly, this classifier can filter out many non-

distress images. Then the most difficult cases are sent to 

human experts for ground truth labels, and these images are 

added to train CNNs. This approach greatly improved 

classification performance. Xia (2018) pre-extracted objects 

from original images, and humans assigned each object to a 

certain class manually. Xia claimed that the approach is 

weakly-supervised labeling (Xia, 2018). Finally, many 

researchers have focused on a transfer learning approach (Gao 

and Mosalam, 2018; Gopalakrishnan et al., 2018, 2017). The 

transfer learning approach is used for two different strategies: 

feature extraction and fine-tuning. In the feature extraction, a 

target image is input into the pre-trained CNN, and outputs of 

the middle layer of the network are used as visual features. 

Thus, traditional classifiers such as SVM are constructed by 

using the obtained visual features. Furthermore, the fine-

tuning approach retrains the networks with a target image 

dataset by using pre-determined parameters as initial 

parameters. These approaches are effective for solving the 

problem of a shortage of labeled training data. However, there 

are cases in which transfer learning is difficult with data in the 

field of civil engineering since the visual characteristics of 

distress images are more diverse than those of images for 

generic object recognition such as ImageNet. To overcome 

this problem, a method that can fully train from original 

distress images without patch division and transfer learning is 

presented in this paper.  

 

 

3 DISTRESS CLASSIFICATION VIA CSDRN 

 

Distress classification based on the CSDRN is explained in 

this section. Figure 3 shows an overview of the CSDRN that 

consists of four layers: CSC layer, pooling layer, LRN layer 

and DRN layer. In order to construct the CSDRN, we first 

estimate optimal dictionary filters obtained via Multi-channel 

Convolutional Dictionary Learning (MCDL) (Wohlberg, 

2016a) and sparse feature maps in the CSC layer. We 

construct MCDL and CSC inspired by (Wohlberg, 2016a,b). 

The optimal dictionary filter is constructed so as to minimize 

the least square error between the original image and the 

reconstructed image based on sparse representation. Details 

of construction of the CSC layer are shown in 3.1. 

Construction of the pooling and LRN layers is explained in 

3.2, and construction of the DRN layer is explained in 3.3. 

Since it was revealed in our previous studies (Maeda et al., 

2017b, 2018b) that the inspection items shown in Table 2 are 

effective for distress classification, we utilize not only visual 

features but also text features from the inspection data and 

input these features into the DRN classifier. Finally, 

procedures of the test phase of the CSDRN are shown in 3.4.  

 

3.1 Construction of the CSC Layer 

 

In order to estimate dictionary filters {𝒅𝒅𝑐𝑐,𝑚𝑚} (𝑐𝑐 ∈ 𝐶𝐶 and 𝑚𝑚 = 1, 2, . . . ,𝑀𝑀;  𝐶𝐶 = {𝑅𝑅,𝐺𝐺,𝐵𝐵} and 𝑀𝑀 being the number of 

Table 2 A part of the inspection items of the inspection data. Inspection data include distress images and inspection items. 

Text data such as “Damaged parts”, “Categories of structure” and “Details of structure” are recorded. IDs 1-5 correspond 

to Figs. 1 (a)-(e). For example, the variables “Abutment (front)”, “Abutment”, ... and “Concrete substructure” are recorded 

as ID 1 corresponding to Fig. 1 (a). 

  Inspection items 

ID Distress Damaged parts Categories of structure … Details of structure 

1 Crack Abutment (front) Abutment … Concrete substructure 

2 Failure Road shoulder (right) Bridge drainpipe … Bridge drainage facility 

3 Free lime Stretch (right) RC slab … Concrete superstructure 

4 Exfoliation Abutment (front) Abutment … Concrete substructure 

5 Corrosion Main girder flange Steel girder … Steel structure 
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dictionaries) as convolutional filters and enable estimation of 

sparse feature maps {𝒙𝒙𝑛𝑛,𝑚𝑚} from an image n with 𝐼𝐼𝐻𝐻 × 𝐼𝐼𝑊𝑊 

pixels1, we solve the following optimization problem: 

arg min
{𝒅𝒅𝑐𝑐,𝑚𝑚},{𝒙𝒙𝑛𝑛,𝑚𝑚}

1

2
����� {𝒅𝒅𝑐𝑐,𝑚𝑚 ∗ 𝒙𝒙𝑛𝑛,𝑚𝑚𝑀𝑀

𝑚𝑚=1 − 𝒔𝒔𝑛𝑛,𝑐𝑐�2
2

c∈C �𝑁𝑁
𝑛𝑛=1  

                                  +𝛌𝛌� ���𝒙𝒙𝒏𝒏,𝒎𝒎�𝟏𝟏𝑴𝑴
𝒎𝒎=𝟏𝟏 �𝑵𝑵

𝒏𝒏=𝟏𝟏                       (1) 

s. t. �𝒅𝒅𝑐𝑐,𝑚𝑚�2 = 1  ∀𝑐𝑐,𝑚𝑚, 

where 𝒙𝒙𝑛𝑛,𝑚𝑚 ∈ ℝ𝐼𝐼𝐻𝐻𝐼𝐼𝑊𝑊 is a sparse vector and 𝒅𝒅𝑐𝑐,𝑚𝑚 is the m-th 

dictionary vector for channel c. N is the number of training 

images. Furthermore, 𝒔𝒔𝑛𝑛,𝑐𝑐 ∈ ℝ𝐼𝐼𝐻𝐻𝐼𝐼𝑊𝑊  is an original signal of a 

target image n, and ∗ denotes the convolution operator. λ is 

a regularization parameter. Equation (1) represents a 

summary of dictionary learning and sparse coding processes. 

The right term in this equation is for sparse representation. 

The optimization of Eq. (1) can be divided into an update 

process of the dictionary filters {𝒅𝒅𝑐𝑐,𝑚𝑚} and an update process 

of the sparse feature maps {𝒙𝒙𝑛𝑛,𝑚𝑚} . Although a basic 

optimization process of Eq. (1) is the same as the process 

proposed by Wohlberg et al. (Wohlberg, 2016b), the update 

process of dictionary filters is slightly different from their 

process. Dictionary learning is generally performed by using 

only one target image. However, we need to extract basic 

components of visual characteristics from various kinds of 

distress in order to effectively classify the distress images. 

Thus, we optimize the problem by using N distress images in 

MCDL. The details of these two update procedures are shown 

below. Since the rationale for CSC is fundamental, we moved 

the rationale to a chapter of the appendix. We have to make 𝒅𝒅𝑐𝑐,𝑚𝑚 ∗ 𝒙𝒙𝑛𝑛,𝑚𝑚 and 𝒔𝒔𝑛𝑛,𝑐𝑐 all the same size, and it is necessary to 

be in the order of 𝒅𝒅𝑐𝑐,𝑚𝑚 ∗ 𝒙𝒙𝑛𝑛,𝑚𝑚.  

 

3.1.1 Process for update of dictionary filters 

 

In MCDL, the dictionary filters {𝒅𝒅𝑐𝑐,𝑚𝑚} are estimated by 

solving the following optimization problem: 

arg min
{𝒅𝒅𝑐𝑐,𝑚𝑚}

1

2
���� 𝒙𝒙𝑛𝑛,𝑚𝑚 ∗ 𝒅𝒅𝑐𝑐,𝑚𝑚𝑀𝑀

𝑚𝑚=1 − 𝒔𝒔𝑛𝑛,𝑐𝑐�2
2

c∈C
𝑁𝑁
𝑛𝑛=1  

                               +�� 𝓵𝓵𝑪𝑪𝑸𝑸𝑵𝑵�𝒈𝒈𝒄𝒄,𝒎𝒎�𝑴𝑴
𝒎𝒎=𝟏𝟏𝒄𝒄∈𝑪𝑪                       (𝟐𝟐) 

s. t.  𝒅𝒅𝑐𝑐,𝑚𝑚 −  𝒈𝒈𝑐𝑐,𝑚𝑚 = 𝟎𝟎  ∀𝑐𝑐,𝑚𝑚, 

where 𝐶𝐶𝑄𝑄𝑄𝑄 = {𝒅𝒅𝑐𝑐,𝑚𝑚 ∈ ℝ𝐼𝐼𝐻𝐻𝐼𝐼𝑊𝑊: (𝑰𝑰 − 𝑸𝑸𝑸𝑸⊤)𝒅𝒅𝑐𝑐,𝑚𝑚 =𝟎𝟎, �𝒅𝒅𝑐𝑐,𝑚𝑚�2
= 1}, Q is a zero-padding operator, {𝒈𝒈𝑐𝑐,𝑚𝑚} is an 

auxiliary variable, and ℓ𝐶𝐶𝑄𝑄𝑄𝑄  is an indicator function. 

                𝓵𝓵𝑪𝑪𝑸𝑸𝑵𝑵�𝒈𝒈𝒄𝒄,𝒎𝒎� = �𝟎𝟎    𝐢𝐢𝐢𝐢 𝒈𝒈𝒄𝒄,𝒎𝒎 ∈  𝑪𝑪𝑸𝑸𝑵𝑵,

∞   𝐢𝐢𝐢𝐢 𝒈𝒈𝒄𝒄,𝒎𝒎 ∉  𝑪𝑪𝑸𝑸𝑵𝑵.
                 (𝟑𝟑) 

                                                           
1 For notational simplicity, each of the {𝒙𝒙𝑛𝑛,𝑚𝑚} is considered 

𝐶𝐶𝑄𝑄𝑄𝑄 means “C”onstraint, zero-padding operator “Q” and 

“N”ormalization, respectively. Note that since “P” is used 

as feature vectors, we used “Q” for the zero-padding 

operator. Although there exists 𝒙𝒙𝑛𝑛,𝑚𝑚 ∗ 𝒅𝒅𝑐𝑐,𝑚𝑚  in Eq. (2), 

since 𝒅𝒅𝑐𝑐,𝑚𝑚  in Eq. (2) is redefined by performing zero-

padding, it is necessary to be in the order of 𝒙𝒙𝑛𝑛,𝑚𝑚 ∗ 𝒅𝒅𝑐𝑐,𝑚𝑚. 

MCDL is formulated on the basis of (Wohlberg, 2016a). 

MCDL is an extended version of single-channel 

convolutional dictionary learning dealing with gray scale 

images. Equation (2) shows that MCDL separately extracts 

dictionaries for each color channel and shares single sparse 

representation, that is, it can consider inter-channel statistical 

dependencies. The details of the solution of the above 

problem are shown in the appendix. Finally, we can obtain 𝒅𝒅� 

by solving the linear system problem as follows: 

                 ��𝛀𝛀�𝑛𝑛𝐻𝐻𝛀𝛀�𝑛𝑛 𝑁𝑁
𝑛𝑛=1 + 𝜎𝜎𝑰𝑰�𝒅𝒅� = �𝛀𝛀�𝑛𝑛𝐻𝐻𝒔𝒔�𝑛𝑛 𝑁𝑁

𝑛𝑛=1 + 𝜎𝜎𝒆𝒆� .             (4) 

The dictionary filter d can be obtained by computing the 

inverse DFT of 𝒅𝒅�. Since dictionary filters can be estimated 

from many distress images, they have basic components of 

distress images.  

 

3.1.2 Process for update of sparse feature maps 

 

In order to estimate sparse feature maps, we solve the 

following optimization problem:  

arg min
{𝒙𝒙𝑛𝑛,𝑚𝑚}

1

2
��� 𝒅𝒅𝑐𝑐,𝑚𝑚 ∗ 𝒙𝒙𝑛𝑛,𝑚𝑚𝑀𝑀

𝑚𝑚=1 − 𝒔𝒔𝑛𝑛,𝑐𝑐�2
2

𝑐𝑐∈𝐶𝐶 + λ ��𝒙𝒙𝑛𝑛,𝑚𝑚�1𝑀𝑀
𝑚𝑚=1 . 

         (5) 

The details of the solution of the above problem are shown in 

the appendix. Finally, we can obtain 𝒙𝒙� by solving the linear 

system problem as follows:  

              ��𝑫𝑫�𝑐𝑐𝐻𝐻𝑫𝑫� 𝑐𝑐  

𝑐𝑐∈𝐶𝐶 + 𝜌𝜌𝑰𝑰� 𝒙𝒙�𝑛𝑛 = �𝑫𝑫�𝑐𝑐𝐻𝐻𝒔𝒔�𝑛𝑛,𝑐𝑐 

 

𝑐𝑐∈𝐶𝐶 + 𝜌𝜌𝒛𝒛�𝑛𝑛 .          (6) 

The sparse feature vector 𝒙𝒙𝑛𝑛 can be obtained by computing 

the inverse DFT of 𝒙𝒙�𝑛𝑛. 

 We can perform MCDL with a limited number of distress 

images and calculate the M optimal dictionaries trained from 

all kinds of distress. These dictionaries have various basic 

components of visual characteristics of distress images, and 

the kinds of distress that each dictionary can represent are 

different. On the other hand, since the sparse feature maps 

estimated on the basis of dictionaries represent both strength 

to be an 𝐼𝐼𝐻𝐻𝐼𝐼𝑊𝑊 dimensional vector. 
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of the basic components and location information of regions 

having their components, these maps can represent distress 

images that have diverse visual characteristics. Since each 

sparse feature map corresponds to each dictionary, the kinds 

of distress that each sparse feature map can represent are also 

different as is the case in the dictionary. Thus, the sparse 

features have discriminant ability to classify distresses. 

Therefore, the sparse feature maps are effective for 

representing distresses. 

 The solution of the CSC model used in the proposed 

method is based on (Wohlberg, 2016b). We describe the 

differences of other CSC models below. The method proposed 

in (Bristow et al., 2013) uses the ADMM algorithm (Gabay 

and Mercier, 1975) as a solver for the optimization problem 

and divides the original problem into subproblems. However, 

Bristow et al. did not use an efficient method for solving the 

subproblem, a linear system. Although our method inspired 

from (Wohlberg, 2016b) also uses the ADMM algorithm, we 

perform effective optimization for solving the subproblem 

based on the Sherman-Morrison approach. In addition, an 

extended version of CSC for improving its robustness has 

been proposed in (Heide et al., 2015). They argued that it was 

difficult to work with incomplete data by using a general CSC 

due to the boundary artifact. They therefore added a filter 

handling the boundaries into the objective function. Since this 

approach cannot use an effective frequency-based 

optimization approach, this is a big difference. Since general 

CSC-based methods are time-consuming tasks due to 

inversion of a linear operator related to convolution, Šorel and 

Šroubek proposed how these inversions can be computed 

non-iteratively in the Fourier domain using the matrix 

inversion lemma. This method led to efficient optimization. 

Our method uses an efficient algorithm based on not the 

approach proposed in (Šorel and Šroubek, 2016) but the 

Sherman-Morrison approach.  

 LRF calculates the vectors based on random values from 

the uniform distribution and then orthogonalizes these vectors. 

Finally, LRF generates filters via matricization of the obtained 

orthogonal vectors. In these three steps of LRF, there are two 

drawbacks: 1) since LRF uses random values, feature 

extraction suitable for the target data is difficult and 2) since 

LRF simply matricizes the orthogonal vectors, LRF cannot 

consider the spatial relationship between elements in the 

calculated filter. On the other hand, CSC can generate optimal 

filters via training from the target data. Furthermore, since 

CSC performs dictionary learning based on the convolution 

operation, it can consider the spatial relationship. From the 

above points, CSC solves the problems of LRF, and effective 

feature extraction is realized via CSC. 

 

3.2 Construction of the Pooling Layer and LRN Layer 

  

 We use pooling and LRN layers to obtain transformation-

invariant features and perform contrast adjustment between 

channels of input images. In the proposed method, we use two 

sets of these layers, that is, we construct pool-LRN-pool-LRN 

layers. In the first pooling layer, we apply the 𝑒𝑒𝑝𝑝1 × 𝑒𝑒𝑝𝑝1 

pooling operation with the sliding interval 𝑒𝑒𝑠𝑠1  to the input 

map. Since it has been reported that max pooling is effective 

for sparse features (Yang et al., 2009; Wang et al., 2010), it is 

also used in the proposed method. Thus, we obtain the first 

pooling map 𝒙𝒙�𝑛𝑛,𝑚𝑚1 ∈ ℝ𝐼𝐼𝐻𝐻1 𝐼𝐼𝑊𝑊1 . Furthermore, for performing 

contrast adjustment between channels of input images, we 

calculate the first LRN map 𝒙𝒙�𝑛𝑛,𝑚𝑚1 ∈ ℝ𝐼𝐼𝐻𝐻1 𝐼𝐼𝑊𝑊1   by considering 

the local response normalization, which has been used in 

 
Figure 4 Details of the encoding approach for the 

inspection data. 

Table 3 Dataset used in the experiment. 

Distress 

Training data 

Test data Validation 

(train) 

Validation 

(test) 

Crack 400 170 180 

Failure 400 170 160 

Free lime 400 170 181 

Exfoliation 400 170 152 

Corrosion 400 170 169 

Sum 2,850 842 
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(Krizhevsky et al., 2012). In the second pooling layer, we 

apply max pooling to the obtained 𝒙𝒙�𝑛𝑛,𝑚𝑚1  and normalize it. 

Then we obtain 𝒙𝒙�𝑛𝑛,𝑚𝑚2 ∈ ℝ𝐼𝐼𝐻𝐻2 𝐼𝐼𝑊𝑊2  from the second LRN layer.  

 The max pooling operation realizes not only calculation of 

transformation-invariant features but also emphasis of 

activated pixels. Furthermore, the LRN operation adjusts the 

contrast of pooling maps. Consequently, transformation-

invariant features with higher representation ability can be 

obtained via the pooling and normalization.  

 

3.3 Construction of the DRN Layer 

 

The visual feature vector 𝒙𝒙�𝑛𝑛2 ∈ ℝ𝐼𝐼𝐻𝐻2 𝐼𝐼𝑊𝑊2 𝑀𝑀  is obtained by 

aligning the LRN maps 𝒙𝒙�𝑛𝑛,𝑚𝑚2 . We also obtain the visual 

feature 𝒑𝒑𝑛𝑛𝑖𝑖 ∈ ℝ𝑑𝑑𝑖𝑖  by performing PCA (Wold et al., 1987) to 

reduce the dimension since 𝐼𝐼𝐻𝐻2𝐼𝐼𝑊𝑊2𝑀𝑀  is a high dimension. 

Furthermore, we calculate text features 𝒑𝒑𝑛𝑛𝑡𝑡 ∈ ℝ𝑑𝑑𝑡𝑡  of a 

training image n from inspection data shown in Table 2. Note 

that 𝑑𝑑𝑡𝑡 is the dimension of 𝒑𝒑𝑛𝑛𝑡𝑡 . All elements of text feature 

vectors are binary values. Specifically, although the original 

text data contain many inspection items such as “details of 

structures”, “inspection date” and “a remark column”, many 

of these items have defects, i.e., blank space due to omission. 

Thus, the proposed method used inspection items that have no 

defects. We selected six inspection items from inspection data. 

By using these selected inspection items, we could obtain text 

features. The details of the calculation of the text features are 

shown below. Specifically, our encoding approach for the text 

features is shown in Fig. 4. As shown in the column of 

“categories of structure”, since there are four kinds of 

inspection results, we obtain four-dimensional features for 

this item. ID1 has an abutment as “categories of structure”, 

and the corresponding feature value becomes 1. Otherwise, it 

becomes 0. In this way, we search all inspection items and 

assign feature values. Finally, we obtain the text feature by 

concatenating the calculated features. Thus, we obtain feature 

vectors 𝒑𝒑𝑛𝑛𝑖𝑖  and 𝒑𝒑𝑛𝑛𝑡𝑡 . Furthermore, defining a feature vector 𝒗𝒗𝑛𝑛0 = �𝒑𝒑𝑛𝑛𝑖𝑖 ⊤,𝒑𝒑𝑛𝑛𝑡𝑡 ⊤�⊤ ∈ ℝ𝑑𝑑𝑖𝑖+𝑑𝑑𝑡𝑡 , we train the DRN classifier. As 

shown in Fig. 3, DRN has K+2 layers including K hidden 

layers. In the training phase of DRN, we calculate an output 

weight matrix between the output layer and the Kth hidden 

layer. DRN consists of feature transformation and 

classification. When k is smaller than K+1, auto-encoder-

based feature transformation (Cambria et al., 2013) is 

performed. When k is equal to K+1, the classification is 

performed via the RVFL-based neural network. The above 

procedures are explained in detail in the appendix.  

 Parameters of the hidden layers of DRN are determined via 

the auto-encoder; that is, the number of DRN’s parameters to 

be optimized is less than that in general deep learning methods, 

and the DRN classifier can also be trained from a small 

dataset. Furthermore, since the least-squares approach can 

solve an objective function of RVFL, the optimal weight can 

be estimated even if the number of training images is small. 

Therefore, DRN is suitable for distress classification. 

Consequently, due to the introduction of the regularization 

term in the CSC and DRN, we can determine a unique 

solution. Therefore, over-fitting does not occur in the 

proposed method. 

Furthermore, the CSC layer does not use the nonlinear 

activation function. In contrast, in the DRN layer, nonlinear 

feature transformation is carried out by using the activation 

function for each layer. In other words, non-linear 

transformation of the DRN layer enables compensation for 

the linear transformation in CSC. Thus, since there is high 

affinity for the CSC and RVFL series, our framework, 

CSDRN, is an effective approach.  

 

3.4 Test Phase of CSDRN 

 

Given a new test image, the sparse feature maps {𝒙𝒙𝑚𝑚} are 

estimated in the CSC layer including the estimated optimal 

dictionary filters in the same manner as that in Eq. (5). Next, 

by performing pooling and normalization, we can obtain an 

LRN map. By applying PCA-based projection obtained in the 

training phase to the LRN map, we can obtain the feature 

vector 𝒑𝒑𝑖𝑖 . Furthermore, we calculate the text feature 𝒑𝒑𝑡𝑡 
corresponding to the target image. Finally, by using 𝒗𝒗 

0 =�𝒑𝒑 
𝑖𝑖⊤,𝒑𝒑 

𝑡𝑡⊤�⊤  and the obtained 𝜷𝜷𝑘𝑘(𝑘𝑘 = 2,3, … ,𝐾𝐾 + 1) , the 

output value 𝒇𝒇 = [𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓Φ]⊤  is obtained as 𝒇𝒇 =𝜷𝜷𝐾𝐾+1𝒗𝒗𝐾𝐾 . Furthermore, the final classification result 

corresponds to the index of the output node that has the 

highest value. Consequently, distress classification is realized 

by the DRN classifier using sparse features having strong 

representation ability via CSC.  

The differences between the other CSC-based methods 

(Chen et al., 2016; Yu and Sun, 2017; Luo et al., 2017) and 

the proposed method are described below. In the method 

proposed by Chen et al., filters are constructed for each class 

using training data. Next, when a test image is given, 

Table 4 Relation between predicted class and true class. “TP” is the number of images correctly classified as the target class. 

“TN” is the number of images correctly classified as not the target class. “FP” is the number of images misclassified as the 

target class. “FN” is the number of images misclassified as not the target class. 

  Predicted class 

  Target class Not target class 

True class 
Target class True positive (TP)  False negative (FN) 

Not target class False positive (FP) True negative (TN) 
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dictionary learning and sparse coding are performed by using 

only the test image. By using sparse features obtained from 

the test image and dictionary filters trained for each class, 

reconstructed images for each class are obtained. Finally, the 

class to minimize the error between the original image and the 

reconstructed image is adopted as a final result. The number 

of unnecessary components such as a background in the 

dataset used in (Chen et al., 2016) is small. Therefore, it is a 

possible to perform sufficient training by using linear 

transformation only via CSC. On the other hand,  since 

images used in the proposed method are more complex, non-

linear transformation is required. Thus, we can solve the 

problem by inputting the sparse features obtained from CSC 

to DRN, which is a fully connected layer including a 

nonlinear transformation. 

Yu and Sun focused on the theory that neurons in each layer 

are sparse from a physiological point of view. They therefore 

proposed a novel RVFL classifier including a sparse hidden 

layer. Specifically, since it is difficult to perform sparse 

coding of the hidden layer by using random-based weights, 

their method combines minimization of both the least squares 

error and L1 regularization as the objective function. The goal 

of the proposed method is to perform sparse coding of input 

features. Thus, there is a notable difference between the 

approach of their technique and the proposed method. 

Moreover, in their approach, it is necessary to set some kinds 

of features as input features; in other words, classification 

results depend on the characteristics of the input features. 

However, since the proposed method enables input features to 

be adaptively determined from input images, the obtained 

results are robust.  

Luo et al. achieved a reduction in computational costs by 

using a convolutional sparse auto-encoder, which is proposed 

in their paper. Moreover, dictionaries calculated via CSC 

were set to the initial filters of a two or three-layered CNN, 

and they examined the use of a combination of CNN and CSC. 

However, although they used a large amount of general data, 

the performance of their approach was close to that of 

AlexNet (Krizhevsky et al., 2012), which is a traditional CNN. 

On the other hand, the proposed method constructs a new 

framework considering characteristics of the data used in the 

field of civil engineering by combining CSC and RVFL, 

which can be constructed by using a small amount of data.  

 

 

4 EXPERIMENTAL RESULTS 

  

 This section verifies that the CSDRN is effective. In 4.1, 

experimental settings are described. Evaluation of the 

performance of the proposed method is explained in 4.2. 

Finally, the effectiveness of our feature extraction approach 

via CSC is discussed in 4.3. 

Table 5 Methods used in the experiment. “C”, “P” and “N” mean CSC, pooling and LRN layers, respectively. 

Methods Details Feature Classifier 

Proposed method CSDRN CSC (C-P-N-P-N) DRN 

Comparative method 1 CSDRN CSC (C-P-N) DRN 

Comparative method 2 CSRN CSC (C-P-N) RVFL 

Comparative method 3 LRF-DRN (Maeda et al., 2017a) LRF DRN 

Comparative method 4 Kernel LRF-NN (Shen et al., 2017) LRF Kernel RVFL 

Comparative method 5 LRF-NN (Huang et al., 2015) LRF RVFL 

Comparative method 6 Inception v3-based RVFL Inception-v3 RVFL 

Comparative method 7 Fine-tuned VGG-based CNN VGG16 (Simonyan and Zisserman, 2014) 

Comparative method 8 Text-based RVFL Text features only RVFL 

Comparative method 9 DenseNet-based RVFL DenseNet-201 RVFL 

Comparative method 10 Inception-ResNet-v2-based RVFL Inception-ResNet-v2 RVFL 

Comparative method 11 ResNet50-based RVFL ResNet50 RVFL 

Comparative method 12 VGG16-based RVFL VGG16 RVFL 

Comparative method 13 Xception-based RVFL Xception RVFL 

Comparative method 14 DenseNet-based DRN DenseNet-201 DRN 

Comparative method 15 Inception-ResNet-v2-based DRN Inception-ResNet-v2 DRN 

Comparative method 16 Inception-v3-based DRN Inception-v3 DRN 

Comparative method 17 ResNet50-based DRN ResNet50 DRN 

Comparative method 18 VGG16-based DRN VGG16 DRN 

Comparative method 19 Xception-based DRN Xception DRN 

Comparative method 20 Fine-tuned DenseNet-based CNN DenseNet-201 (Huang et al., 2017) 

Comparative method 21 Fine-tuned Inception-ResNet-v2-based 

CNN 

Inception-ResNet-v2 (Szegedy et al., 2017) 

Comparative method 22 Fine-tuned Inception-v3-based CNN Inception-v3 (Szegedy et al., 2016) 

Comparative method 23 Fine-tuned ResNet50-based CNN ResNet50 (He et al., 2016) 

Comparative method 24 Fine-tuned Xception-based CNN Xception (Chollet, 2017) 
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4.1 Experimental Settings 

 

 We evaluated the performance of the distress classification 

by using inspection data provided by East Nippon 

Expressway Company Limited. This company is called 

NEXCO. In this experiment, we examined five kinds of 

distress, crack, failure, free lime, exfoliation and corrosion, as 

shown in Fig. 1. We used 3,692 samples. The details of the 

dataset are shown in Table 3. We divided the dataset into 

training data and test data for performance evaluation. The 

proposed method randomly decided training data and test data 

from the entire dataset provided by NEXCO in order to fairly 

consider the spatial characteristics. We also divided the 

training data into training and test validation data for 

parameter settings. The previous work (Liang, 2018) trained 

deep networks (not scratch but fine-tuning) from hundreds of 

images. The method classifies whether major failure of 

structures exists or not in the image classification step. Since 

this classification task is a simple binary classification 

problem, the authors of the above reference claim that 

“hundreds of images” means “a small dataset”. However, 

since our classification task is a more complex multi-class 

classification problem, we can regard “thousands of images” 

as “a small amount of training data”. Note that since general 

multi-class classification tasks need hundreds of thousands of 

images (Krizhevsky et al., 2012), we can regard our dataset as 

“a small amount of training data”. The images used in this 

experiment were taken manually by inspectors in the daytime 

at bridges and tunnels along an expressway. Inspectors take 

distress images at difference angles. The images are taken at 

close and distant positions, but images taken from a distant 

position are difficult to analyze. Therefore, we used only 

images taken from a close position in this experiment. In 

addition, the resolution of all images is 640×480 pixels. We 

resized the original images to 160×120 pixels for calculating 

MCDL and CSC. High-resolution images can also be applied 

to the CSC. However, since MCDL requires a large amount 

of memory when there are many training images, the number 

of training images should be reduced if high-resolution 

images are used. On the other hand, if distress regions are 

small such as regions with cracks, distresses cannot be 

visually recognized in low-resolution images, and more than 

a quarter size of the original image is required.   

 Recall, Precision and F-measure were used in this 

experiment. They are defined as follows:  

                             Recall =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁 ,                                            (7)                                                     

                       Precision =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ,                                            (8)                                       

                    F- measure =  
2 × Recall × PrecisionRecall + Precision .                      (9)                                                             

where the relationships between “TP”, “TN”, “FP” and “FN” 

are shown in Table 4. In this experiment, we used eight 

comparative methods shown in Table 5. Comp. 1 is a CSDRN 

with one set of pooling and LRN layers. Comp. 2 is a method 

replacing the DRN in comp. 1 with a general RVFL. Comps. 

3 and 4 are state-of-the-art methods for a small number of 

training images with diverse visual characteristics. Comps. 6 

and 7 are general deep learning methods. Comp. 6 uses the 

Inception-v3 model (Szegedy et al., 2016) for visual feature 

extraction, and comp. 7 uses a fine-tuned CNN only when 

outputs of the text-based RVFL are lower than a pre-

determined threshold value. All of the methods except for 

comps. 7 and 8 use visual and text features by concatenating 

those features. Comp. 8 uses text features 𝒑𝒑𝑡𝑡  only. 

Furthermore, we extracted other advanced deep learning-

based features and constructed the RVFL-based neural 

network and DRN (comps. 9-19). In addition, we performed 

fine-tuning of the above advanced deep learning methods 

(comps. 20-24).  

 The details of parameters used in the proposed method are 

shown in Table 6. We selected six inspection items from 

inspection data. The number of results obtained from the six 

inspection items is 129. The details of calculation of the text 

features are shown in subsection 3.3. In (Šorel and Šroubek, 

2016), M is set to 32. In addition, since the convergence of the 

MCDL becomes severe by increasing M, we experimentally 

determine M. By changing the value M, further improvement 

in accuracy is expected. Note that the hidden nodes of RVFL 

and DRN were set to values in such a way that each 

classification performance becomes the best by applying the 

validation dataset to each method as shown in Table 3. Since 

the computational cost of performing MCDL increases as the 

number of images increases, we used 50 training images to 

perform MCDL in this experiment. Specifically, ten training 

images for each class were used. On the other hand, in all 

procedures without MCDL, all of the training images were 

used. We determined the parameters 𝐶𝐶1,𝐶𝐶2 , K and L by 

applying a grid search to the validation data. In addition, we 

determined the dictionary size of CSC in the same manner as 

(Wohlberg, 2016b). Since other parameters were set 

experimentally, performance improvement is expected by 

searching their optimal values. Since the size of input images 

is different for each framework, we optimally resized the 

input images for each deep learning method in order to 

perform fair experiments. On the other hand, since it is 

necessary to reduce the size by considering parameter 

convergence, the image size was experimentally set in the 

proposed method. In other words, since we set optimal 

parameters for each deep learning technique, we can fairly 

show comparable experimental results. With respect to other 

parameters, we performed a grid search in all methods by 

using validation data. Therefore, the performance comparison 

is fair for all methods.  

 Since the combination use of CSC and DRN is a novel 

framework, comp. 1 can be regarded as a part of the proposed 

method. We explain the reason for performing the pooling-
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norm twice. As can be seen from CNNs, in a general 

classification problem, classification performance is 

improved by constructing robust activation maps. Since CSC 

performs image reconstruction so that the square mean error 

is minimized, that is, the error is calculated based on each 

pixel, calculated feature maps are sensitive to a shift and 

distortion. Thus, sparse feature maps need to be updated by a 

pooling approach for improving robustness of the shift and 

distortion. Furthermore, since the calculated sparse feature 

maps via CSC have very high sparsity, we cannot obtain 

sufficient robustness by using only single pooling. Therefore, 

pooling-normalization is used twice in the proposed method. 

In fact, since an inception-based network, which is one of the 

strong deep neural networks, also continuously uses two 

poolings, this approach is reasonable. 

 

4.2 Performance Evaluation 

 

 Table 7 shows Recall, Precision and F-measure. In the 

averages of all measurements, the proposed method 

outperforms all comparative methods including the state-of-

the-art methods comps. 3 and 4. Specifically, since the 

performance of CSDRN and comp. 2 is higher than that of 

comps. 3 and 5, respectively, the sparse features estimated 

from the optimal dictionary filters can effectively represent 

the characteristics of distresses. Furthermore, although it has 

been reported that visual features obtained from the 

Inception-v3 model have higher representation ability for 

generic object recognition, the performance of comp. 6 is 

lower than that of CSC-based methods (our method and 

comps. 1 and 2) for distress classification. Thus, feature 

extraction via CSC is effective for images with diverse visual 

characteristics since CSC can adaptively train visual features 

with consideration of characteristics of the target dataset. 

RVFL is a three-layered neural network that consists of input, 

hidden and output layers. DRN is an extended version of 

RVFL. Specifically, DRN is constructed by inserting multiple 

hidden layers into RVFL. The proposed method outperforms 

comp. 2, and DRN is more effective than RVFL. Furthermore, 

since the proposed method outperforms comp. 3, the 

advantage of the CSC-based feature extraction can be 

confirmed. Moreover, since the proposed method outperforms 

the fine-tuned CNN (Simonyan and Zisserman, 2014) for a 

small number of training images, CSC-based feature 

extraction is also effective for a small dataset. As shown in 

Table 7, the performance for failure and corrosion is very high. 

This is because text information has a great influence on 

performance improvement. These distresses occur in specific 

parts of structures. For example, corrosion often occurs in 

metal parts, not in concrete. A comparison of the performance 

of the proposed method and that of comp. 1 shows that the use 

of multiple sets of pooling and LRN layers is effective. By 

performing transfer learning based on various deep learning 

architectures, it is verified that the performance of the 

proposed method is higher than that of advanced deep 

learning methods. Moreover, in (Maeda et al., 2017a), it was 

shown that LRF-DRN improves SVM by comparing comp. 3 

with SVM. Furthermore, since the proposed method 

outperforms comp. 3, it can be seen that our method is more 

effective than SVM. Consequently, since the proposed 

method achieves the best performance, the effectiveness of 

the CSDRN is verified.  

 We calculated the training times and test times for all of the 

methods as shown in Tables 8 and 9. The computational cost 

of MCDL is 7.53 × 103 sec, and the costs of the fine-tuned 

CNNs (comps. 7 and 20-24) are about 2.00 × 104 sec. Note 

that comps. 20-24 are constructed on the basis of 

DenseNet201, InceptionResNet-v2, Inception-v3, ResNet50 

and Xception, respectively. In addition, since our method 

outperforms these fine-tuned CNNs, it is verified that 

effective dictionary filters can be calculated with low 

computational cost. However, the total cost of our method is 

higher than that of the fine-tuned CNNs. Since it is necessary 

to solve the ADMM for calculating MCDL and CSC, the 

calculational cost becomes high. In the test phase, CSC-based 

approaches have higher costs than the costs of other methods. 

This is the drawback of our method. There are some 

parameters  determined experimentally in the proposed 

method. Among them, the number of dictionaries and 

dictionary filter size have an influence on the computational 

costs. Therefore, reduction of the computational costs is 

expected by determining these parameters optimally. We 

Table 6 Performance settings of our method. 

Details Parameter Value 

Size of input image 
𝐼𝐼𝐻𝐻  120 𝐼𝐼𝑊𝑊 160 

Num. of dictionaries M 32 

Dictionary filter size No listed 8×8 

Dictionary filter’s sliding interval No listed 1 

Pooling size 
𝑒𝑒𝑝𝑝1 5 𝑒𝑒𝑝𝑝2 3 

Pooling sliding interval 
𝑒𝑒𝑠𝑠1 5 𝑒𝑒𝑠𝑠2 2 

Num. of dimensions 
𝑑𝑑𝑖𝑖 367 𝑑𝑑𝑡𝑡 129 

Regularization parameters 

λ 0.02 𝐶𝐶1 
2

5
 𝐶𝐶2 

2
5
 

ADMM parameters 
𝜎𝜎 50 𝜌𝜌 1.5 

Sparsity parameter (DRN) η 0.05 

Num. of hidden layers K 2 

Num. of hidden nodes 

𝐿𝐿0 496 𝐿𝐿1 1488 𝐿𝐿2 744 

Num. of classes Φ 5 
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should search these parameters in future works. However, 

MCDL can optimize parameters more effectively than can 

transfer learning-based approaches, and the proposed method 

is superior to these methods in terms of classification 

performance.  

There is little difference between the performance of comp. 

1 and that of our method. In order to statistically validate the 

effectiveness of the proposed method, we applied Welch’s t-

test (Welch, 1938) to the results of 100 trials by using comp. 

1 and the proposed method as shown in Table 10. Since it was 

statistically significant (significance level at 0.01), the 

proposed method is effective. Verification using other datasets 

will be performed in future works.  

 

4.3 Discussion 

 

 We discuss the effectiveness of our feature extraction via 

CSC in this subsection. An original training image and sparse 

feature maps of the image are shown in Fig. 5. Figure 5 (a) is 

an original image, and Figs. 5 (b), (c) and (d) are sparse 

feature maps obtained from CSC and from the first and second 

LRN layers, respectively. Specifically, the m-th feature map 𝒙𝒙𝑛𝑛,𝑚𝑚 of the training image n is estimated via CSC by using 

m-th dictionaries 𝒅𝒅𝑐𝑐,𝑚𝑚. We manually select the map that has 

the largest number of non-zero pixels among all maps (right 

images in Figs. 5 (b), (c) and (d)). Furthermore, we 

subjectively select the feature map significantly representing 

cracks among the feature maps (left images in Figs. 5 (b), (c) 

and (d)). Since something similar to a heat map of a CNN does 

not exist in CSC, images in which distress regions had been 

activated were manually determined as an effective feature 

map. It was verified that some feature maps calculated from 

only a small number of images via CSC can extract 

characteristics of distress images. This provides interpretation 

of classification results. It is thought that automatic 

determination of effective feature maps will become feasible 

by improving CSC approaches. 

 Feature maps in Fig. 5 show the merit of pooling. The left 

images of Figs. 5 (c) and (d) can represent characteristics of 

cracks more strongly than can the left image of Fig. 5 (b). 

Thus, the use of pooling and LRN procedures is effective for 

obtaining characteristics of distresses. Firstly, there is one 

feature map that has many non-zero elements in all of the 

maps estimated via the CSC layer as shown in Fig. 5 (b). Since 

the 30th feature map contributes to minimization of the 

difference between the original image and the reconstructed 

image by considering the whole image, this map cannot 

represent detailed characteristics of distresses. On the other 

hand, the others can represent these characteristics. For 

example, Fig. 5 (b) shows that not the 30th map but the 18th 

map represents the crack. However, since almost all of the 

feature maps are too sparse to represent the characteristics of 

distresses, the number of feature maps representing these 

characteristics is small. Thus, we apply pooling and 

normalization to feature maps obtained from the CSC layer. 

As shown in Figs. 5 (c) and (d), the feature maps can clearly 

represent distresses. Furthermore, by comparing Fig. 5 (c) 

with Fig. 5 (d), it is confirmed that feature maps in Fig. 5 (d) 

calculated from two sets of pooling and LRN layers can 

emphasize pixels of these feature maps. Therefore, the use of 

multiple sets of these layers is effective for improving the 

performance of distress classification. 

 Secondly, it is confirmed that feature maps representing the 

characteristics of distresses are different depending on the 

kind of distress as shown in Fig. 6. We explain their 

differences below.  

・Crack (Figure 6 (a)) 

The 17th - 23rd feature maps have characteristics of cracks 

such as long and faint patterns. 

 
(a) Original image 

  
(b) Examples of feature maps estimated via the CSC 

layer 

  
(c) Examples of feature maps calculated via the first 

LRN layer 

  
(d) Examples of feature maps calculated via the 

second LRN layer 

Figure 5 Examples of an original training image 

and sparse feature maps of the image. The left 

images of (b), (c) and (d) are the 18th feature 

maps. The right images of (b), (c) and (d) are the 

30th feature maps. 
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・Failure (Figure 6 (b))  

Failure often occurs in drainpipes. Many feature maps 
represent these target objects. 

・Free lime (Figure 6 (c)) 

Compared with cracks, failures and exfoliation, free lime 

occurs in a large area. These characteristics can be 

monitored in the 4th, 11th, 25th and 26th feature maps.  

・Exfoliation (Figure 6 (d)) 

Exfoliation often occurs in a small area, and it is 

represented in the 4th, 8th, 11th, 12th and 26th feature maps. 

Table 7 Classification performance of all methods. 

 Proposed method Comp. 1 Comp. 2 Comp. 3 Comp. 4 

Distresses Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm 

Crack 0.911 0.906 0.908 0.905 0.895 0.900 0.911 0.916 0.913 0.888 0.879 0.883 0.894 0.865 0.879 

Failure 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Free lime 0.828 0.882 0.854 0.801 0.868 0.833 0.801 0.838 0.819 0.790 0.846 0.817 0.773 0.843 0.806 

Exfoliation 0.894 0.839 0.866 0.888 0.823 0.854 0.861 0.813 0.837 0.855 0.807 0.830 0.842 0.795 0.817 

Corrosion 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.997 1.000 1.000 1.000 

Average 0.926 0.925 0.925 0.918 0.917 0.917 0.914 0.913 0.913 0.906 0.905 0.905 0.902 0.900 0.900 
 

 Comp. 5 Comp. 6 Comp. 7 Comp. 8 Comp. 9 

Distresses Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm 

Crack 0.888 0.860 0.874 0.900 0.866 0.882 0.855 0.855 0.855 0.816 0.880 0.847 0.777 0.765 0.771 

Failure 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.975 1.000 1.000 1.000 0.968 0.981 0.974 

Free lime 0.767 0.812 0.789 0.790 0.812 0.801 0.767 0.847 0.805 0.773 0.790 0.782 0.696 0.707 0.701 

Exfoliation 0.789 0.769 0.779 0.802 0.813 0.807 0.782 0.815 0.798 0.782 0.704 0.741 0.717 0.668 0.692 

Corrosion 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.918 0.957 1.000 1.000 1.000 0.923 0.975 0.948 

Average 0.889 0.888 0.888 0.898 0.898 0.898 0.881 0.877 0.878 0.874 0.875 0.874 0.816 0.819 0.817 
 

 Comp. 10 Comp. 11 Comp. 12 Comp. 13 Comp. 14 

Distresses Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm 

Crack 0.872 0.892 0.882 0.872 0.902 0.887 0.9 0.870 0.885 0.894 0.865 0.879 0.872 0.853 0.862 

Failure 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Free lime 0.779 0.787 0.783 0.767 0.798 0.783 0.795 0.867 0.829 0.767 0.837 0.801 0.762 0.821 0.790 

Exfoliation 0.822 0.796 0.809 0.815 0.756 0.784 0.868 0.825 0.846 0.842 0.800 0.820 0.815 0.770 0.792 

Corrosion 1.000 0.994 0.997 1.000 0.994 0.997 1.000 0.994 0.997 1.000 0.994 0.997 0.994 0.994 0.994 

Average 0.894 0.894 0.894 0.891 0.890 0.890 0.912 0.911 0.911 0.900 0.899 0.899 0.888 0.887 0.887 
 

 Comp. 15 Comp. 16 Comp. 17 Comp. 18 Comp. 19 

Distresses Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm 

Crack 0.888 0.869 0.879 0.872 0.887 0.879 0.861 0.911 0.885 0.888 0.903 0.896 0.883 0.850 0.866 

Failure 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.996 1.000 1.000 1.000 

Free lime 0.779 0.787 0.783 0.812 0.790 0.801 0.828 0.824 0.826 0.856 0.842 0.849 0.751 0.819 0.783 

Exfoliation 0.782 0.793 0.788 0.789 0.800 0.794 0.861 0.813 0.837 0.848 0.848 0.848 0.776 0.732 0.753 

Corrosion 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 0.997 0.994 1.000 0.997 

Average 0.890 0.890 0.890 0.894 0.895 0.895 0.910 0.909 0.909 0.917 0.917 0.917 0.881 0.880 0.880 
 

 Comp. 20 Comp. 21 Comp. 22 Comp. 23 Comp. 24 

Distresses Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm Re Pr Fm 

Crack 0.855 0.793 0.823 0.900 0.760 0.824 0.916 0.778 0.841 0.927 0.625 0.747 0.866 0.764 0.812 

Failure 1.000 1.000 1.000 1.000 0.975 0.987 1.000 0.946 0.972 1.000 0.869 0.930 1.000 0.969 0.984 

Free lime 0.834 0.736 0.782 0.823 0.741 0.780 0.740 0.817 0.776 0.563 0.822 0.668 0.834 0.736 0.782 

Exfoliation 0.519 0.822 0.637 0.546 0.932 0.688 0.644 0.875 0.742 0.493 0.789 0.607 0.532 0.890 0.666 

Corrosion 1.000 0.903 0.949 1.000 0.965 0.982 1.000 0.913 0.954 1.000 0.982 0.991 1.000 0.954 0.976 

Average 0.841 0.851 0.838 0.853 0.875 0.852 0.860 0.866 0.857 0.796 0.817 0.788 0.846 0.863 0.844 
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Table 8 Computational costs (sec) of the training procedure. “PM” and “C1” mean the proposed method and comparative 

method 1, respectively. 

Methods MCDL CSC P+N LRF Text CNN feat RVFL KRVFL DRN Fine-tune Sum 

PM 7.53×103 3.13×104 2.55×102 - - - - - 3.91×101 - 3.91×104 

C1 7.53×103 3.13×104 2.14×102 - - - - - 1.58×103 - 4.06×104 

C2 7.53×103 3.13×104 2.14×102 - - - 1.12×102 - - - 3.91×104 

C3 - - - 2.53×102 - - - - 2.86 - 2.55×102 

C4 - - - 2.47×102 - - - 2.86×10-1 - - 2.47×102 

C5 - - - 1.94×102 - - 8.69×101 - - - 2.81×102 

C6 - - - - - 5.72×101 1.06×102 - - - 1.63×102 

C7 - - - - - - - - - 1.21×104 1.21×104 

C8 - - - - 9.73×10-2 - 1.35 - - - 1.44 

C9 - - - - - 1.68×102 1.70×102 - - - 3.39×102 

C10 - - - - - 1.64×102 6.29×101 - - - 2.27×102 

C11 - - - - - 6.71×101 6.61×101 - - - 1.33×102 

C12 - - - - - 6.21×101 1.34×102 - - - 1.96×102 

C13 - - - - - 7.14×101 1.57×102 - - - 2.29×102 

C14 - - - - - 1.68×102 - - 4.34 - 1.73×102 

C15 - - - - - 1.64×102 - - 1.74 - 1.66×102 

C16 - - - - - 7.41×101 - - 2.98 - 7.70×101 

C17 - - - - - 6.71×101 - - 3.63 - 7.05×101 

C18 - - - - - 6.21×101 - - 5.60 - 6.77×101 

C19 - - - - - 7.14×101 - - 4.26 - 7.57×101 

C20 - - - - - - - - - 2.06×104 2.06×104 

C21 - - - - - - - - - 2.62×104 2.62×104 

C22 - - - - - - - - - 1.58×104 1.58×104 

C23 - - - - - - - - - 1.70×104 1.70×104 

C24 - - - - - - - - - 2.30×104 2.30×104 
 

Table 9 Computational costs (sec) of the test procedure for all test images. “PM” and “C1” mean the proposed method and 

comparative method 1, respectively. 

Methods CSC P+N LRF Text CNN feat RVFL KRVFL DRN Fine-tune Sum 

PM 9.33×103 7.54×101 - - - - - 3.57×10-1 - 9.41×103 

C1 9.33×103 6.33×101 - - - - - 4.92 - 9.40×103 

C2 9.33×103 6.33×101 - - - 2.18 - - - 9.40×103 

C3 - - 7.35×101 - - - - 4.90×10-2 - 7.35×101 

C4 - - 7.17×101 - - - 4.88×10-2 - - 7.17×101 

C5 - - 5.69×101 - - 8.90×10-1 - - - 5.78×101 

C6 - - - - 1.69×101 1.34 - - - 1.82×101 

C7 - - - - - - - - 2.11×101 2.11×101 

C8 - - - 2.87×10-2 - 6.00×10-2 - - - 8.87×10-2 

C9 - - - - 4.99×101 2.58 - - - 5.24×101 

C10 - - - - 4.85×101 6.50×10-1 - - - 4.92×101 

C11 - - - - 1.98×101 6.20×10-1 - - - 2.04×101 

C12 - - - - 1.83×101 1.67 - - - 2.00×101 

C13 - - - - 2.11×101 2.09 - - - 2.32×101 

C14 - - - - 4.99×101 - - 5.19×10-2 - 4.99×101 

C15 - - - - 4.85×101 - - 2.21×10-2 - 4.85×101 

C16 - - - - 7.41×101 - - 3.74×10-2 - 7.41×101 

C17 - - - - 1.98×101 - - 5.07×10-2 - 1.98×101 

C18 - - - - 1.83×101 - - 7.08×10-2 - 1.84×101 

C19 - - - - 2.11×101 - - 4.60×10-2 - 2.11×101 

C20 - - - - - - - - 6.37×101 6.37×101 

C21 - - - - - - - - 8.76×101 8.76×101 

C22 - - - - - - - - 5.69×101 5.69×101 

C23 - - - - - - - - 2.82×101 2.82×101 

C24 - - - - - - - - 3.34×101 3.34×101 
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・Corrosion (Figure 6 (e)) 

An area in which corrosion occurs is the largest among all 

distresses. Furthermore, corrosion occurs in various forms 

since the distress depends on the form of the structure. Thus, 

various feature maps are activated.  

 

From the above, it is confirmed that feature maps representing 

cracks, free lime and exfoliation are different as shown by 

color rectangles in Fig. 6. Since something similar to a heat 

map of a CNN does not exist in CSC, we manually determine 

feature maps that are activated in distress regions as effective 

feature maps. It was verified that some feature maps 

calculated from only a small number of images via CSC can 

extract characteristics of distress images. This provides 

interpretation of classification results. On the other hand, 

failure and corrosion are represented by various feature maps. 

Thus, the CSC-based feature extraction contributes to 

improvement in the performance of classification of cracks, 

free lime and exfoliation; that is, dictionaries effectively 

representing distresses are different for each distress as shown 

in Fig. 7. Figure 7 shows dictionaries of a red channel 

obtained via MCDL, and effective dictionaries are surrounded 

by color rectangles by reference to Fig. 6. In free lime and 

exfoliation, the 4th, 11th and 26th feature maps are activated 

as shown in Fig. 6. Although their corresponding dictionaries 

represent both characteristics of free lime and exfoliation, it 

is considered that CSC cannot provide strongly discriminant 

features that distinguish these distresses. Therefore, 

misclassification of these distresses occurs. Thus, the 

performance for these distresses is lower than that for other 

distresses. Although there is no remarkable difference 

between feature maps of failure and corrosion and those of 

other distresses, the proposed method maintains high 

performance. Focusing on the results of comp. 3 in Table 7, 

LRF-based features have an adverse effect on classification 

performance for corrosion. There is a possibility that the CSC-

based features have an affinity for the text features. Therefore, 

by considering the above discussion, CSC-based feature 

extraction is effective. Distress size depends on imaging 

processes, and the tendency for exfoliation to be small and 

corrosion to be large is sometimes not observed. However, 

since the imaging process is unified among all inspectors, that 

tendency can be seen in many images. In future works, it is 

necessary to consider the influence of the imaging processes.  

 The proposed method misclassified some test images in the 

experiment. We explain why these images were misclassified 

in terms of CSC-based feature extraction. Figure 8 shows 

examples of misclassified images. Crack, free lime and 

exfoliation images were misclassified as exfoliation, crack 

and free lime, respectively. Although there is a crack in the 

center of the original image in Fig. 8 (a), feature maps do not 

represent any characteristics of a crack. Generally, the aim of 

CSC is minimization of the error between original and 

reconstructed images. Since the original image in Fig. 8 (a) 

has various patterns and darkening of concrete, CSC estimates 

sparse maps so that it effectively reconstructs these patterns 

and darkening. Thus, the image was misclassified as another 

distress. Furthermore, as shown in feature maps in Fig. 8 (b), 

there are long and faint lines such as cracks, but the image in 

Fig. 8 (b) was misclassified as crack. Moreover, as shown in 

Fig. 8 (c), the 4th, 11th and 26th maps have characteristics of 

exfoliation, but they also represent other textures in a large 

area. Thus, this image was misclassified as free lime. The 

proposed model depends on the quality of images. This is a 

limitation of the proposed method. On the other hand, in this 

situation, not only visual features but also multimodal features 

such as text features are effective. In the next step in our 

research, we will consider image quality. On the other hand, 

examples of a part of the classification results obtained from 

comps. 1 and 18 and the proposed method show that the 

performance of these comparative methods is similar to that 

of the proposed method. However, a comparison with training 

results obtained from the training data is meaningless. 

Therefore, we compared the results of the test. Figure 9 shows 

examples of images classified by these three methods. The 

proposed method correctly classified all images, and comp. 

18 incorrectly classified all images. In addition, the image 

shown in Fig. 9 (c) was incorrectly classified by comp. 1. As 

shown in Figs. 9 (a) and (c), CSC-based methods can classify 

slight cracks and complex exfoliation. Since Fig. 9 (b) is a 

corrosion image, text features are effective for classification. 

However, comp. 18 misclassified the image. Thus, it was 

verified that the use of a combination of text features and 

Inception-v3-based visual features is not suitable.  

 From the above discussion, the effectiveness of CSC-based 

feature extraction is verified. However, in future works, we 

will try to extend this feature extraction approach in order to 

reconstruct distress images with focus on target distresses 

even if there are various patterns and noise in original images. 

Specifically, construction of discriminative CSC by 

introducing class information into CSC would be effective for 

solving the problem. 

 

5 CONCLUSIONS 

  

A novel distress classification method via a CSDRN is 

proposed in this paper. The CSDRN can extract visual 

features with higher representation ability since MCDL can 

estimate optimal dictionary filters from distress images. 

Furthermore, by training the DRN classifier based on the 

obtained effective visual features, a novel neural network can 

be constructed. According to the results of experiments, the 

CSDRN has higher computational costs than those of 

comparative methods including advanced deep learning 

methods. For example, fine-tuned CNNs are trained about 

twice as fast as the proposed method. Furthermore, in the test 

phase, the costs of CSC-based methods are much higher than 

those of other methods, and this is a drawback of the proposed 

method. However, MCDL can optimize parameters more 

effectively than can transfer learning-based approaches, and 



Maeda et al.  16 

  
(a) Crack 

  
(b) Failure 

  
(c) Free lime 
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(d) Exfoliation 

  
(e) Corrosion 

 Figure 6 Feature maps calculated via the second LRN layer. The images in (a), (b), (c), (d) and (e) correspond to those in 

Fig. 1. Effective feature maps are surrounded by color rectangles. The red rectangles in (a), blue rectangles in (c), and green 

rectangles in (d) correspond to crack, free lime and exfoliation, respectively.  

 

 
Figure 7 Dictionaries (red channel) obtained via MCDL. The color rectangles indicate the effective dictionaries for each 

distress. Red, blue and green correspond to crack, free lime and exfoliation, respectively. 
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the CSC-based approaches provide interpretation of 

classification results. In addition, the proposed method is 

superior to these methods in terms of classification 

performance. Consequently, the experimental results show 

that the CSDRN enables effective training from a small 

number of training images with diverse visual characteristics.  

  
(a) Crack image misclassified as exfoliation 

  
(b) Free lime image misclassified as crack 

  
(c) Exfoliation image misclassified as Free lime 

Figure 8 Examples of misclassified test images. Original images (left column) and their corresponding feature maps 

calculated via the second LRN layer (right column). 

 

   
(a) Crack (b) Corrosion (c) Exfoliation 

Figure 9 The proposed method correctly classified all images, and comp. 18 incorrectly classified all images. In 

addition, (c) was incorrectly classified by comp. 1. 
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 CNNs can extract effective features automatically by 

merely determining the input and output and they realize 

highly accurate classification. They are very powerful without 

feature design based on experts’ knowledge and experience. 

In fact, Cha et al. proposed that a CNN is more effective than 

a traditional crack detection method (Cha et al., 2017) and 

also realizes location detection for multiple distresses (Cha et 

al., 2018) by Faster R-CNN (Girshick, 2015). These methods 

had a great impact on computing in the field of civil 

engineering. On the other hand, a CNN realizes highly 

accurate classification, but the poor interpretability of a CNN 

has been a major problem in recent years. Various approaches 

by CSC have been proposed as a solution (Papyan et al., 2016). 

Since filters and feature maps calculated by CSC are created 

by clear objective functions, interpretation of the results is 

possible. Figures 6 and 7 show that the activated maps are 

different for each distress. This is one of the strengths of the 

proposed method. In future works, it will be necessary to 

expand the proposed method to a method that can detect the 

location while maintaining high interpretability.  

We should consider various factors in future works to 

improve the proposed method. From experimental results, we 

should deal with reduction of computational costs by 

improving CSC. The detection techniques enable complete 

automation. Since accurate classification is realized by the 

proposed method, it is necessary to consider the detection 

scheme. If the number of images used in the proposed method 

is small, representation capability of the visual features is not 

sufficient. On the other hand, if the number of images is large, 

the calculation cost is increased. There is a need to verify the 

optimal number of images. For evaluating the robustness of 

the proposed method, we should verify the effectiveness of 

our method by using various kinds of distress including 

leakage; that is, we should apply the proposed method to other 

datasets. The proposed method does not consider a distress-

free situation; in other words, detection of distresses is not 

realized in the proposed method. We should consider the 

detection problem in future works.  
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APPENDIX 

  

Details of DRN 

 

 Calculation of DRN is conducted via two steps.  

(I) 𝑘𝑘 = 2,3, . . . ,𝐾𝐾 

 DRN calculates the output matrix 𝑽𝑽𝑘𝑘 = [𝒗𝒗1𝑘𝑘 ,𝒗𝒗2𝑘𝑘, … ,𝒗𝒗𝑁𝑁𝑘𝑘 ]  

of the k-th hidden layer as 𝒗𝒗𝑛𝑛𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜷𝜷𝑘𝑘𝒗𝒗𝑛𝑛𝑘𝑘−1�.  Note that 

sig means a sigmoid function. Furthermore, 𝜷𝜷𝑘𝑘 ∈ ℝ𝐿𝐿𝑘𝑘×𝐿𝐿𝑘𝑘−1

 

is a weight matrix between the k-th and (k−1)-th hidden layers 

and is calculated via the RVFL-based auto-encoder consisting 

of three layers. The number of input and output nodes of the 

auto-encoder is 𝐿𝐿𝑘𝑘−1, and that of hidden nodes is 𝐿𝐿𝑘𝑘. When 

an input vector 𝒗𝒗𝑛𝑛𝑘𝑘−1 ∈ ℝ𝐿𝐿𝑘𝑘−1   is given, the outputs 𝒓𝒓𝑛𝑛𝑘𝑘 ∈ℝ𝐿𝐿𝑘𝑘 of the auto-encoder’s hidden layers can be obtained as 𝒓𝒓𝑛𝑛𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑾𝑾𝑘𝑘𝒗𝒗𝑛𝑛𝑘𝑘−1 + 𝒃𝒃 
𝑘𝑘) . Note that (𝒃𝒃 

𝑘𝑘)⊤𝒃𝒃 
𝑘𝑘 = 1  and 𝑾𝑾 

𝑘𝑘(𝑾𝑾 
𝑘𝑘)⊤ = 𝑰𝑰 . In the auto-encoder, 𝑾𝑾𝑘𝑘 =�𝒘𝒘1𝑘𝑘 ,𝒘𝒘2𝑘𝑘 , … ,𝒘𝒘𝐿𝐿𝑘𝑘𝑘𝑘 �⊤  is an orthogonal random weight, and 𝒃𝒃𝑘𝑘 = �𝑏𝑏1𝑘𝑘,𝑏𝑏2𝑘𝑘, … , 𝑏𝑏𝐿𝐿𝑘𝑘𝑘𝑘 �⊤ is a random bias. Finally, the output 

weight 𝜷𝜷𝑘𝑘 can be obtained as  𝜷𝜷𝑘𝑘 = � 𝑰𝑰𝐶𝐶1 � KL�𝜂𝜂||�̂�𝜂𝑙𝑙𝑘𝑘�𝐿𝐿𝑘𝑘
𝑙𝑙𝑘𝑘=1 + (𝑹𝑹𝑘𝑘)⊤𝑹𝑹𝑘𝑘�−1 (𝑹𝑹𝑘𝑘)⊤(𝑽𝑽𝑘𝑘−1)⊤. (10) 

Note that 𝑽𝑽𝑘𝑘−1 and 𝑹𝑹𝑘𝑘 = �𝒓𝒓1
𝑘𝑘,𝒓𝒓2

𝑘𝑘, . . . ,𝒓𝒓𝑄𝑄𝑘𝑘 �⊤ ∈ ℝ𝑄𝑄×𝐿𝐿𝑘𝑘 are an 

input and a hidden layer’s output matrices of the auto-

encoder, respectively. Furthermore, 𝐶𝐶1 is a regularization 

parameter, KL�𝜂𝜂||�̂�𝜂𝑙𝑙𝑘𝑘� = 𝜂𝜂log(𝜂𝜂/�̂�𝜂𝑙𝑙𝑘𝑘) + (1− 𝜂𝜂) log((1−𝜂𝜂)/(1− �̂�𝜂𝑙𝑙𝑘𝑘)) is the KL divergence, 𝜂𝜂 is a sparsity parameter, 

and �̂�𝜂𝑙𝑙𝑘𝑘 is the average activation of a node 𝑙𝑙𝑘𝑘 of the auto-

encoder’s hidden layer.  

 

(II) 𝑘𝑘 = 𝐾𝐾 + 1 

 

 The output weight 𝜷𝜷𝐾𝐾+1 ∈ ℝΦ×𝐿𝐿𝑘𝑘 is calculated by RVFL. 

We minimize the output weights and the training error 𝝃𝝃𝑛𝑛 =�𝜉𝜉𝑛𝑛,1, 𝜉𝜉𝑛𝑛,2, . . . , 𝜉𝜉𝑛𝑛,Φ �⊤(Φ being the number of classes) as 

min𝜷𝜷𝐾𝐾+1

1

2
�𝜷𝜷𝐾𝐾+1�𝐹𝐹2 +

𝐶𝐶2

2
�‖𝝃𝝃𝑛𝑛‖2𝑁𝑁
𝑛𝑛=1     

                             s. t.   𝜷𝜷𝐾𝐾+1𝒗𝒗𝑛𝑛𝐾𝐾 = 𝒕𝒕𝑛𝑛 − 𝝃𝝃𝑛𝑛,                        (11) 

where 𝐶𝐶2 is a regularization parameter. Furthermore, 𝒕𝒕𝑛𝑛 =�𝑡𝑡𝑛𝑛,1, 𝑡𝑡𝑛𝑛,2, . . . , 𝑡𝑡𝑛𝑛,Φ �⊤ is a binary vector (𝑡𝑡𝑛𝑛,𝜙𝜙 ∈ {1,0}). If the 

true class is 𝜙𝜙, the 𝜙𝜙𝑡𝑡ℎ element of the vector is 1, while 

the other elements become 0. By defining 𝑻𝑻 =
[𝒕𝒕1 , 𝒕𝒕2 , … , 𝒕𝒕𝑁𝑁 ] , the optimal weight of 𝜷𝜷𝐾𝐾+1 can be 

calculated as  

Table 10 Statistical verification of the proposed method 

and comp. 1. 

 PM Comp. 1 

Recall 92.2±0.47% 92.0±0.51% 

Precision 92.1±0.47% 91.9±0.52% 

F-measure 92.1±0.47% 91.9±0.52% 
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                      𝜷𝜷𝐾𝐾+1 = 𝑻𝑻(𝑽𝑽𝐾𝐾)⊤ � 𝑰𝑰𝐶𝐶2 + 𝑽𝑽𝐾𝐾(𝑽𝑽𝐾𝐾)⊤�−𝟏𝟏 .              (12) 

In both cases (I) and (II), we have to solve the least square 

error problems.  
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