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Abstract. Ruscheweyh and Sheil-Small proved that convexity is preserved

under the convolution of univalent analytic mappings in K. However, when we
consider the convolution of univalent harmonic convex mappings in KO

H , this

property does not hold. In fact, such convolutions may not be univalent. We

establish some results concerning the convolution of univalent harmonic convex
mappings provided that it is locally univalent. In particular, we show that the

convolution of a right half-plane mapping in KO
H with either another right half-

plane mapping or a vertical strip mapping in KO
H is convex in the direction of

the real axis. Further, we give a condition under which the convolution of a

vertical strip mapping in KO
H with itself will be convex in the direction of the

real axis.

1. Introduction

Let D be the unit disk. We will consider the family of complex-valued harmonic
functions f = u + iv defined in D, where u and v are real harmonic in D. Such
functions can be expressed as f = h + g, where

h(z) = z +
∞∑

n=2

anzn and g(z) =
∞∑

n=1

bnzn

are analytic in D. The harmonic f = h + g is locally one-to-one and sense-
preserving in D if and only if

(1) |g′(z)| < |h′(z)|,∀z ∈ D.

In such case, we say that f is locally univalent. Let SH be the class of complex-
valued, harmonic, sense-preserving, univalent functions f in D, normalized so that
f(0) = 0 and fz(0) = 1. The classical family S of analytic univalent, normalized
functions on D is the subclass of SH in which bk = 0 for all k. Let KH , S∗H , and CH be
the subclasses of SH mapping D onto convex, starlike, and close-to-convex domains,
just as K, S∗, and C are the subclasses of S mapping D onto these respective
domains. Finally, let SO

H denote the subclass of SH for which f z(0) = b1 = 0,
and KO

H and CO
H be the subclasses of SO

H of convex and close-to-convex mappings,
respectively.

For analytic functions f(z) = z +
∑∞

n=2 anzn and F (z) = z +
∑∞

n=2 Anzn, their
convolution (or Hadamard product) is defined as f ∗F = z +

∑∞
n=2 anAnzn. In the
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harmonic case, with

f = h + g = z +
∞∑

n=2

anzn +
∞∑

n=1

bn zn and

F = H + G = z +
∞∑

n=2

Anzn +
∞∑

n=1

Bn zn,

define the harmonic convolution as

f ∗̃ F = h ∗H + g ∗G = z +
∞∑

n=2

anAnzn +
∞∑

n=1

bnBn zn,

Clunie and Sheil-Small [2] posed the question for what harmonic functions ϕ is
ϕ ∗̃ f in KH , where f ∈ KH? This question was partially answered by Ruscheweyh
and Salinas [8]. In this paper, we provide some further results related to this
question.

2. Background results

In [1], [3], and [6], explicit descriptions are given for half-plane and strip map-
pings. Specifically, the collection of functions f = h+ g ∈ SO

H that map D onto the
right half-plane, R = {w : Re(w) > −1/2}, have the form

h(z) + g(z) =
z

1− z

and those that map D onto the vertical strip, Ωα = {w : α−π
2 sin α < Re(w) < α

2 sin α},
where π

2 ≤ α < π, have the form

(2) h(z) + g(z) =
1

2i sinα
log

( 1 + zeiα

1 + ze−iα

)
.

Note that a function in SO
H satisfying (2) maps D onto Ωα, or onto the convex hull

of three points (one of which may be the point at infinity) on the boundary of Ωα.
In other words, the image of D may be a vertical strip, a halfstrip, a trapezium, or
a triangle.

In proving our theorems we will need a few known results. The first is Clunie
and Sheil-Small’s shear construction theorem ([2], Theorem 5.3).
Theorem 1. A harmonic function f = h + g locally univalent in D is a univalent
mapping of D onto a domain convex in the direction of the real axis if and only if
h− g is an analytic univalent mapping of D onto a domain convex in the direction
of the real axis.

Next, there is a useful remark by Pommerenke [7] concerning analytic mappings
convex in one direction. Using a particular case of this, we have the following result.
Theorem 2. Let f be an analytic function in D with f(0) = 0 and f ′(0) 6= 0, and
let

ϕ(z) =
z

(1 + zeiθ)(1 + e−iθ)
where θ ∈ R. If

Re
{zf ′(z)

ϕ(z)

}
> 0,∀z ∈ D,

then f is convex in the direction of the real axis.



CONVOLUTIONS OF PLANAR HARMONIC CONVEX MAPPINGS 3

Finally, we state a result by Ruscheweyh and Sheil-Small ([9], Lemma 2.7) con-
cerning convolution of analytic functions.

Theorem 3. Let ϕ and G(z) be analytic in D with ϕ(0) = G(0) = 0. If ϕ is
convex and G is starlike, then for each function F (z) analytic in D and satisfying
Re F (z) > 0, we have

Re
(ϕ ∗ FG)(z)
(ϕ ∗G)(z)

> 0,∀z ∈ D.

3. Main results

For the convolution of analytic functions, if f1, f2 ∈ K, then f1 ∗ f2 ∈ K. Also,
the right half-plane mapping, z

1−z , acts as the convolution identity. In the har-
monic case, there are infinitely many right half-plane mappings and the harmonic
convolution of one of these right half-plane mappings with a function f ∈ KO

H may
not preserve the properties of f , such as convexity or even univalence. This fact is
seen in the following example.

Example 4. If l0 = h0 + g0 ∈ KO
H , where

h0(z) =
z − 1

2z2

(1− z)2
= z +

∞∑
n=2

1 + n

2
zn and g0(z) =

− 1
2z2

(1− z)2
=

∞∑
n=2

1− n

2
zn,

is the right half-plane mapping presented in [2], and if f1 = h1 + g1 ∈ KO
H is the

mapping, described by Duren [5], onto a 6-gon, where

h1(z) = z +
∞∑

n=1

1
6n + 1

z6n+1 and g1(z) =
∞∑

n=1

−1
6n− 1

z6n−1

(see [4] for these representations of h1 and g1). Then l0 ∗̃f1 /∈ KO
H , because |(g0(z)∗

g1(z))′/(h0(z) ∗ h1(z))′| = |z4(2 + z6)/(1 + 2z6)| ≮ 1,∀z ∈ D.

However, the next theorem guarantees that the harmonic convolution of a right
half-plane mapping with another right half-plane mapping will at least be convex
in the direction of the real axis as long as the convolution is sense-preserving.

Theorem 5. Let f1 = h1 + g1, f2 = h2 + g2 ∈ KO
H be right half-plane mappings.

If f1 ∗̃ f2 satisfies (1), then f1 ∗̃ f2 ∈ CO
H and is convex in the direction of the real

axis.

Proof. For any right half-plane mapping f = h + g ∈ KO
H , recall that

h + g =
z

1− z
.

Hence,

h2 − g2 = (h1 + g1) ∗ (h2 − g2) = h1 ∗ h2 − h1 ∗ g2 + h2 ∗ g1 − g1 ∗ g2

h1 − g1 = (h1 − g1) ∗ (h2 + g2) = h1 ∗ h2 + h1 ∗ g2 − h2 ∗ g1 − g1 ∗ g2.

Thus,

(3) h1 ∗ h2 − g1 ∗ g2 = 1
2 [(h1 − g1) + (h2 − g2)].

We will now show that (h1 − g1) + (h2 − g2) is convex in the direction of the real
axis.
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If f = h + g ∈ KO
H is a right half-plane mappings with dilatation ω = g′/h′,

then

h′ − g′ = (h′ + g′)
(h′ − g′

h′ + g′

)
= (h′ + g′)

(1− ω

1 + ω

)
=

p(z)
(1− z)2

,

where Re{p(z)} > 0,∀z ∈ D. So, letting ϕ(z) = z/(1− z)2 ∈ S∗, we have

Re
{z[(h′1 − g′1) + (h′2 − g′2)]

ϕ

}
= Re

{
z

(1−z)2 [p1(z) + p2(z)]
z

(1−z)2

}
= Re

{
p1(z) + p2(z)

}
> 0.

Therefore, by Theorem 2 and eq. (3), h1 ∗ h2 − g1 ∗ g2 is convex in the direction of
the real axis.

Finally, since we assumed that f1 ∗̃ f2 is locally univalent, we apply Theorem 1
to get that f1 ∗̃ f2 = h1 ∗ h2 − g1 ∗ g2 is convex in the direction of the real axis. �

Remark 6. The convolution of l0, which is the right half-plane mapping presented
in [2], with itself sends D onto a nonconvex domain. This is because

h0(z) ∗ h0(z) = z +
∞∑

n=2

(1 + n)2

4
zn /∈ C.

Hence by Theorem 5.7 in [2], l0 ∗̃ l0 /∈ KO
H . Thus the conclusion of Theorem 5

cannot be strengthened to f1 ∗̃ f2 ∈ KO
H .

The next theorem shows that the harmonic convolution of a right half-plane
mapping and a vertical strip mapping will also be convex in the real direction,
provided that the convolution is sense-preserving.
Theorem 7. Let f1 = h1 + g1 ∈ KO

H be a right half-plane mapping and f2 =
h2 + g2 ∈ KO

H be a vertical strip mapping. If f1 ∗̃ f2 satisfies (1), then f1 ∗̃ f2 ∈ CO
H

and is convex in the direction of the real axis.

Proof. Let

F1 = (h1 + g1) ∗ (h2 − g2) = h1 ∗ h2 − h1 ∗ g2 + h2 ∗ g1 − g1 ∗ g2

F2 = (h1 − g1) ∗ (h2 + g2) = h1 ∗ h2 + h1 ∗ g2 − h2 ∗ g1 − g1 ∗ g2,

and so

(4) h1 ∗ h2 − g1 ∗ g2 = 1
2 [F1 + F2].

As before, we want to show that this is a function convex in the direction of the
real axis.

First, applying eq. (2) to h2 + g2, we have

zF ′
1 = z[(h1 + g1) ∗ (h2 − g2)]′

= (h1 + g1) ∗ z(h′2 − g′2)

= (h1 + g1) ∗
[
z(h′2 + g′2)

(h′2 − g′2
h′2 + g′2

)]
=

z

1− z
∗ z

(1 + zeiα)(1 + ze−iα)

(1− ω

1 + ω

)
=

z p1(z)
(1 + zeiα)(1 + ze−iα)

,
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where Re{p1(z)} > 0,∀z ∈ D. Hence,

(5) Re

{
zF ′

1
z

(1+zeiα)(1+ze−iα)

}
> 0.

Next, consider

zF ′
2 = z[(h1 − g1) ∗ (h2 + g2)]′

= z(h′1 − g′1) ∗ (h2 + g2)

=
[
z(h′1 + g′1)

(h′1 − g′1
h′1 + g′1

)]
∗(h2 + g2)

=
z p2(z)
(1− z)2

∗ (h2 + g2) ,

where Re{p2(z)} > 0,∀z ∈ D. Using the fact that Ψ(z) ∗ z/(1 − z)2 = zΨ′(z) and
since h2 + g2 is convex by eq. (2) we can apply Theorem 3, we have

Re

{
zF ′

2
z

(1+zeiα)(1+ze−iα)

}
= Re

{
(h2 + g2) ∗ p2(z) z

(1−z)2

z(h′2 + g′2)

}

= Re

{
(h2 + g2) ∗ p2(z) z

(1−z)2

(h2 + g2) ∗ z
(1−z)2

}
> 0.

(6)

Therefore, from eqs. (5) and (6),

Re

{
z(F ′

1 + F ′
2)

z
(1+zeiα)(1+ze−iα)

}
> 0

and F1 + F2 is convex in the direction of the real axis by Theorem 2. Finally, by
applying Theorem 1 to eq. (4), we get the desired result. �

Remark 8. Actually, we have proved a more general result since we let f2 be any
mapping in KO

H satisfying eq. (2). Hence f2 may map D onto a vertical strip, a
halfstrip, a trapezium, or a triangle. The same is true of the next theorem.
Theorem 9. Let f = h + g ∈ KO

H be a vertical strip mapping. If f ∗̃ f satisfies
(1) and if Re{(1− z)2(h′ − g′)} > 0,∀z ∈ D, then f ∗̃ f ∈ CO

H and is convex in the
direction of the real axis.

Proof. Let
F = (h + g) ∗ (h− g) = h ∗ h− g ∗ g.

Notice that

zF ′ = z[(h + g) ∗ (h− g)]′

= (h + g) ∗ z(h′ − g′)

= (h + g) ∗ z[(1− z)2(h′ − g′)]
(1− z)2

.

Since we assumed that Re{(1−z)2(h′−g′)} > 0, we can apply Theorem 3 to derive

Re
{ zF ′

z(h′ + g′)

}
= Re

{
(h + g) ∗ z

(1−z)2 [(1− z)2(h′ − g′)]

(h + g) ∗ z
(1−z)2

}
> 0.
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Because
z(h′ + g′) =

z

(1 + zeiα)(1 + ze−iα)
,

Theorem 2 guarantees that F is convex in the direction of the real axis, and the
result follows by Theorem 1. �

Question 10. These results concern unbounded domains. In Example 4, it is
stated that the harmonic convolution of a half-plane mapping with a 6−gon map-
ping is not in KO

H . However, it is true that the harmonic convolution of that 6−gon
mapping with itself is in KO

H . Does this work in general? That is, if f ∈ KH maps
D onto a bounded domain, is f ∗̃ f ∈ KH?
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