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Diet is a critical determinant of variation in gut microbial structure and function, 

outweighing even host genetics1–3. Numerous microbiome studies have compared diets with 

divergent ingredients1–5, but the everyday practice of cooking remains unclear. Here, we 

show that a plant diet served raw versus cooked reshapes the murine gut microbiome, with 

effects attributable to improvements in starch digestibility and degradation of plant-derived 

compounds. Shifts in the gut microbiota modulated host energy status, applied across 

multiple starch-rich plants, and were detectable in humans. Thus, diet-driven host-microbial 

interactions depend on the food as well as its form. Since cooking is human-specific, 

ubiquitous and ancient6,7, our results prompt the hypothesis that humans and our 

microbiomes co-evolved under unique cooking-related pressures.

Heat alters the physicochemical properties of foods in ways that could impact the gut 

microbiome. Cooking increases the ileal digestibility of carbohydrates by gelatinizing 

starch6,8, reducing the quantity reaching the colon, where the most numerous microbial 

community resides, and potentially affecting the fermentation capability of amylolytic gut 

bacteria9. Cooking can also denature antimicrobial compounds present naturally in food or 

introduced through agriculture10,11, thus limiting their bioactivity. Here, we interrogate the 

impact of cooking on the gut microbiome, as well as downstream impacts on host energy 

status.

To gauge the overall influence of cooking, we conducted 16S rDNA sequencing and shotgun 

sequencing of microbial RNA in distal gut samples collected from conventional mice reared 

for 5 days on organic lean beef or organic sweet potato served raw or cooked 

(Supplementary Fig. 1a, Supplementary Table 1a). These foods were chosen for their 

importance in past and present human diets12, diverse macronutrient profiles, and prior 

evidence of cooking influencing nutrient bioavailability6, antimicrobial properties13, and 

host energy balance12. Among mice fed cooked meals, half were free-fed, and half received 

a restricted ration calibrated to produce ~1g weight loss, allowing us to investigate the 

effects of cooking separately from those of changes in host energy gain associated with 

cooking. Ration restriction led to predictable reductions in caloric intake and body mass 

(Supplementary Fig. 1b–c). Among free-fed tuber diets, cooked diets were associated with 

lower caloric intakes but higher body mass outcomes, confirming that cooking increases net 

energy gain from this substrate12. We observed rapid and reproducible changes in gut 

microbial structure and function among mice fed meat versus tuber (Fig. 1a–b, 

Supplementary Fig. 1d–h, Supplementary Table 2a–c, Supplementary Notes), with effects 

paralleling those observed in an earlier study of humans consuming animal-based versus 

plant-based diets5.

Cooking impacted the gut microbiome differently on meat versus tuber diets. The gut 

microbiomes of mice fed raw and cooked meat were similar in composition and 

transcriptional profile (Fig. 1b–d, Supplementary Fig. 1d–e), although we were still able to 

detect 12 modules and 68 orthologous groups with significant differences in expression 

(Supplementary Table 3a–b). By contrast, the gut microbiomes of mice fed raw and cooked 

tuber were fundamentally distinct. Microbial community structure in tuber-fed mice was 

explained primarily by processing, a pattern evident within 24h of diet initiation (R=0.624, 

p<0.05, ANOSIMDay1samples;Fig. 1e). Consuming raw versus cooked tuber led to lower α-
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diversity, marginally lower bacterial abundance, and a rise in the relative proportion of 

Bacteroidetes, a phylum with broad capabilities for glycan degradation14,15 (Fig. 1d,f–h. 

Supplementary Table 4a). By contrast, gut microbial community structure on the cooked 

tuber diet resembled that at baseline, when mice were consuming a chow composed 

primarily of cooked plants. Because raw-fed mice lost more weight than cooked-fed mice 

(Supplementary Fig. 1c), we tested and confirmed that the effects of processing dominated 

those of experimental factors related to energy status, such as ration restriction and changes 

in body mass over various timescales (Supplementary Table 4b), a pattern also apparent in 

RNAseq-based analysis of host tissues7. Community-wide gene expression profiles clustered 

by processing for tuber diets (Fig. 1b, Supplementary Fig. 1d), representing significant 

differences in 174 modules and 1,419 orthologous groups (Supplementary Table 4c–d). The 

microbial communities of raw-fed hosts showed higher expression of genes for the 

metabolism of starch and sugar (ko00051, ko00500) and xenobiotic compounds (ko00980, 

ko00982) (Supplementary Table 4c), consistent with our expectations of lower digestibility 

and higher xenobiotic load in raw sweet potato. In addition, when compared against the 

Carbohydrate Active Enzymes (CAZy) database, β-amylase (GH14/EC3.2.1.2) emerged as 

one of two enzyme families distinguishing raw versus cooked tuber samples (FDR<0.05), 

the other being a broad glycosyltransferase family (GT2).

Apart from water, raw sweet potato tubers are composed principally of starch (44% of dry 

mass; Supplementary Table 1a). Cooking transforms this starch through gelatinization, 

whereby native semi-crystalline granules of amylopectin and amylose are degraded into 

amorphous structures susceptible to amylase digestion, increasing their absorption in the 

small intestine6,8,16. We reasoned that microbial communities could be sensitive to the 

reduced fraction of cooked starch reaching the colon, and its altered structure17, and 

therefore tested whether we could recapitulate the effects of raw versus cooked tuber diets 

on the gut microbiome by manipulating starch digestibility. We reared conventional mice for 

28 days on macronutrient-matched chows differing only in the ileal digestibility of their 

starch fraction (50% w/w) (Supplementary Fig. 2a, Supplementary Table 1b). Despite lesser 

chow and starch consumption (Fig. 2a, Supplementary Fig. 2b), mice consuming high-

digestibility starch (HDS) had body masses and fat levels similar to those of mice 

consuming low-digestibility starch (LDS) (Fig. 2b, Supplementary Fig. 2c), a result 

reflecting the higher energetic returns to the host of starch digested in the small intestine 

versus colon18. Mirroring patterns observed on the raw tuber diet, LDS- versus HDS-feeding 

led to microbial community divergence (R=0.840, p<0.01, ANOSIMDay28samples; Fig. 2c), 

with the LDS diet resulting in lower bacterial abundance, lower proportions of Firmicutes 

versus Bacteroidetes, and a trend towards lower α-diversity (Fig. 2d–e, Supplementary Fig. 

2d, Supplementary Table 5). We replicated this experiment in germ-free mice colonized with 

a common inoculum, confirming higher fecal energy loss in LDS-fed versus HDS-fed 

animals, and observing changes in community structure, α-diversity, and Firmicutes/

Bacteroidetes relative abundance that paralleled those observed in conventional animals 

(Fig. 2f–j, Supplementary Fig. 2e–h, Supplementary Table 5). Thus, gut microbial responses 

to altered starch digestibility recapitulated key patterns observed in mice fed raw versus 

cooked tuber.
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If starch digestibility is a key factor shaping the gut microbiota, we should expect to see 

stronger effects of cooking in starch-rich foods versus low-starch foods, and among starch-

rich foods, greater effects of cooking where the ileal digestibility of the raw starch is lower. 

To test these ideas, we conducted an expanded set of experiments in sweet potato and five 

other common plant foods: white potato, corn, pea, carrot, and beet. These foods were 

chosen to include a mix of starch-rich (sweet potato, white potato, corn, pea) and low-starch 

(carrot, beet) items, and starches with lower (sweet potato, white potato) and higher (corn, 

pea) digestibility when raw (Supplementary Fig. 3a–d, Supplementary Tables 1c,6). These 

experiments support the importance of starch digestibility as a driver of microbial changes 

with cooking; however, we cannot exclude some contribution of diet-induced changes to 

host physiology. For both α-diversity and β-diversity, we found evidence of divergent 

microbial signatures for sweet potato and white potato, the foods with a high quantity of 

low-digestibility starch (Fig. 2k–l). In contrast, there were no consistent microbial effects of 

cooking for low-starch foods (beet, carrot) or foods with a high quantity of high-digestibility 

starch (corn, pea), despite all foods showing detectable intervention effects (Fig. 2k–l, 

Supplementary Fig. 3e–g).

Heat can also affect non-starch plant components, including defense compounds10. To gauge 

the potential impact of heat-sensitive plant-derived antimicrobial compounds on the gut 

microbiome, we used fluorescent cell staining19,20 to examine gut microbial physiology in 

mice consuming diets of raw or cooked tuber, chow, or chow plus the broad-spectrum 

antibiotic ampicillin as a positive control (Fig. 3a). Using flow cytometry, we quantified 

microbial cells in fresh fecal pellets that exhibited membrane damage (propidium iodide [PI] 

stain) and/or high nucleic acid content [HNA] indicating cellular activity19 (SYBRGreenI 

stain). Prior to diet treatment, all mice displayed low levels of microbial cell damage 

(proportion of PI+ cells: 6.6±1.6%), high levels of activity (proportion of HNA cells: 

50.3±8.4%), and dense bacterial abundances (cells per mL suspension: 4.8×109±1.4×109). 

Relative to baseline values, the raw tuber and ampicillin-treated groups exhibited increases 

in gut microbial cell damage and decreases in cell activity and bacterial load that were not 

observed in the cooked tuber or standard chow groups (Fig. 3b–d).

Metabolomics was used to identify putative antimicrobial factors. While each of the six 

plant foods studied had a distinct composition, we found a consistent signature of cooking in 

each substrate (Fig. 3e, Supplementary Fig. 4a). Global analysis of metabolite features 

revealed that cooking caused compositional changes in all plant foods, with sweet potato and 

white potato exhibiting the greatest shifts and skew towards reduced metabolite complexity 

(Fig. 3f, Supplementary Fig. 4b). Using targeted analysis, a total of 246 total compounds 

were identified, 185 of which were high-confidence unambiguous assignments, and 51 of 

which were significantly different (FDR<0.1 and |log2FC|>1) in raw versus cooked sweet 

potato and/or white potato (Fig. 3g, Supplementary Fig. 4c, Supplementary Table 7). We 

prioritized candidates with prior evidence of antimicrobial activity and sensitivity to heat-

induced degradation (Supplementary Table 8). Chlorogenic acid and its downstream 

metabolite caffeic acid emerged as promising candidates; however, in vitro, ex vivo and in 

vivo assays failed to confirm antimicrobial effects in these isolated compounds 

(Supplementary Fig. 5a–i, Supplementary Table 9). Multiple additional compounds with 

known antibacterial effects were significantly decreased in cooked tubers, including 4-
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hydroxycinnamic acid, ferulate, and vanillic acid21–23; these and others may act in concert to 

impact gut bacterial physiology. Together, these results are consistent with our observation 

that raw tubers upregulate microbial pathways for xenobiotic metabolism (Supplementary 

Table 4c) and the broader hypothesis that plant-derived compounds with heat-sensitive 

antimicrobial properties impair gut microbial physiology. However, it remains possible that 

gut microbial physiology is sensitive to additional cooking-related factors acting in concert, 

such altered physical access to nutrients, changes in microbe-microbe interactions, and host-

driven changes in the luminal environment.

Next, we sought to determine the consequences of cooking-induced shifts in the gut 

microbiota for host energy balance. Reduced starch digestibility in the small intestine might 

select for colonic bacteria capable of fermenting starch or shape other host-microbial 

interactions affecting energy balance. Increased antimicrobial activity arising from higher 

xenobiotic load may also confer anabolic effects akin to those observed with low-dose 

antibiotic administration24,25. To assess effects on host energy balance, we transplanted gut 

microbiotas conditioned on raw versus cooked tuber diets into germ-free mice fed chow 

(Fig. 4a). The gut microbial communities of donors and recipients clustered together 

(Supplementary Fig. 6a), with donor diet explaining the majority of variation observed in 

recipient communities at all timepoints following the first transitional 24h post-gavage. As 

expected, controlling for routine colonization-associated decreases in cecal effluent, 

inoculation had positive effects on body mass and adiposity (Fig. 4b–d). The recipients of 

the raw-fed gut microbiota exhibited increased body mass and adiposity relative to cooked-

fed recipients (Fig. 4c–d) despite producing feces with higher energy content compared with 

the cooked-fed donor group (Supplementary Fig. 6b). This seeming contradiction could be 

explained by increased caloric intake in the raw-fed microbiota recipients (Supplementary 

Fig. 6c), highlighting the importance of host-microbial interactions for satiety26,27.

To evaluate the relevance of these effects in humans, we fed healthy participants matched 

raw and cooked plant-based diets over two three-day diet interventions, in counterbalanced 

order (Supplementary Fig. 7a, Supplementary Table 1d–e). We observed no consistent 

differences in body mass, caloric or macronutrient intake between diets (Supplementary Fig. 

7b–g, Supplementary Table 10). Gut microbial communities clustered strongly by 

participant (Fig. 4e), explaining >60% of variance regardless of the distance metric used 

(Supplementary Table 11). Analyses of α-diversity and β-diversity that controlled for 

participant, the order of diet presentation, and time on diet revealed a significant effect of the 

dietary intervention (Fig. 4f–g). Surprisingly, α-diversity decreased on our plant-based diets, 

potentially in response to the limited ingredients used and menu repetition across days. 

Treatment responses differed by participant, but across the cohort there was a significant 

effect of cooking on gut microbial β-diversity (Fig. 4g, Supplementary Fig. 8a–c). On 

cooked diets, changes in the gut microbiota were detectable within 48h (p=0.019, linear 

mixed effect model with TukeyHSD) and persisted until Day 5 (p=0.019) (Fig. 4g). 

However, the raw diet generated a later response, becoming significant at 72h (p=0.038) and 

lingering for only 24h post-intervention (p=0.044). Most diet-responsive OTUs were 

uniquely enriched on either raw or cooked diets, spanning multiple taxonomic groups (Fig. 

4h–i).
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Taken together, our results show that cooking plants rich in low-digestibility starch, a routine 

part of daily life, can have profound impacts on the gut microbiome, consistent with recent 

in vitro data28. Accordingly, future microbiome studies should control for or at minimum 

report food preparation alongside caloric and macronutrient content. The observation that 

everyday foods disrupt gut bacterial physiology when consumed raw raises opportunities for 

mining the human diet for therapeutics and prompts a polypharmacological view of the 

interactions between the gut microbiome and dietary small molecules29. Finally, these 

results emphasize that humans and our microbiomes were both affected by the adoption of 

habitual cooking, perhaps helping to explain accelerated gut microbial change in the human 

lineage30 and encouraging steps toward a microbiome-informed understanding of human 

evolution.

Methods

Methods summary

Experiments were performed under the guidance of the Animal Care and Use Committee 

and Committee on the Use of Human Subjects at Harvard University, and the Harvard 

Medical Area Standing Committee on Animals. To interrogate the impact of a cooked diet 

on the gut microbiome, we collected distal gut samples from conventional or gnotobiotic 

mice or human volunteers fed whole-food diets of plant items or meat served raw or cooked, 

or custom chows differing in starch digestibility or xenobiotic load. We used 16S rDNA 

sequencing with barcoded V4 primers (515F-806R) to assess gut microbial community 

structure, qPCR with these same primers or flow cytometry with fluorescent bead standards 

to assess community abundance, microbial RNAseq to assess gene transcription, gas 

chromatography to assess short-chain fatty acid production, and fluorescent cell staining 

with propidium iodide (PI) and SYBRGreenI to assess microbial physiology. 16S rDNA 

sequence data were processed using the Quantitative Insights into Microbial Ecology 

(QIIME) software package version 1.8.031, with microbial biomarker discovery performed 

using LEfSe32 and/or linear mixed effects models33 where appropriate. Microbial RNAseq 

data were analyzed for differential expression using limma34 with voom35, with gene set 

enrichment analysis conducted via ROAST36. Fluorescence and scatter profiles were 

analyzed in FlowJo following published protocols19 to deliver proportions of bacterial cells 

with membrane damage (PI+) and distinct activity based on nucleic acid content, as 

measured with SYBRGreenI. To probe food-derived compounds contributing to these 

effects, we profiled raw and cooked plant food extracts by mass spectrometry37, using 

standards to confirm the identity of metabolites rendered differentially abundant by cooking.

Animal and human experiments

Approvals.—Conventional mouse experiments were conducted in the Biological Research 

Infrastructure (BRI) barrier facility at Harvard University under the supervision of the 

Harvard University Animal Care and Use Committee (Protocol #17-06-306 and #12–06). 

Gnotobiotic mouse experiments were conducted in the Gnotobiotics Core at Brigham & 

Women’s Hospital under the supervision of the Harvard Medical Area Standing Committee 

on Animals (Protocol #04805). Sample sizes for early animal experiments were determined 

based on prior findings of substantial diet-induced differences in hepatic gene expression7; 
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sample sizes for follow-up studies were selected in reference to these initial experiments. 

Human experiments were conducted with informed written consent under the supervision of 

the Harvard University Committee on the Use of Human Subjects (Protocol #IRB17–1016). 

Although blinding was not practical, Core staff blind to the study hypotheses were 

responsible for the randomized assignment of conventional and gnotobiotic mice to cage, 

isolator, and treatment groups. Our human experiments were performed based on a crossover 

design, with treatment order determined by computer-based randomization.

Gut microbial community structure and function in mice fed whole-food meat or tuber (WF) 

diets.

We fed mice diets of meat or tuber served raw or cooked to (a) investigate the gut microbial 

impacts of consuming a whole-food diet in raw versus cooked form (Supplementary Fig. 

1a), and (b) validate that the murine gut microbial community responds rapidly and 

reproducibly to shifts in whole-food diets (Supplementary Notes). Animal models: Male 

BALB/c mice (n=24, 4 sets of 6 littermates) were acquired from Charles River Laboratories 

at 21 days of age and co-housed with littermates under standard BRI conditions (ventilated 

cages including cob bedding and enrichment (no running wheels); ad libitum chow and 

water; 12 h light/dark cycle beginning at 0600). At 8 weeks of age, mice were housed 

individually in cages fitted with a wire mesh floor to minimize coprophagy. To prevent 

contamination and loss of diet beneath the mesh floor, diets were administered in Pyrex Petri 

dishes with weighted tops bearing four symmetrical feeding holes. Mice acclimated to this 

experimental setup for 3 days before the start of diet manipulations. Sample sizes for this 

initial study were based on prior findings of substantial diet-induced differences in hepatic 

gene expression in these same animals7; sample sizes for follow-up studies targeting 

underlying mechanisms were selected in reference to this initial study. Experimental diets: 
Diets consisted of organic lean beef eye round roast (Bos taurus) or organic orange-fleshed 

sweet potato tubers (Ipomoea batatas L. ‘Beauregard’) sourced fresh daily and served either 

raw, cooked, or cooked but in a restricted ration that allowed us to evaluate the effects of a 

cooked diet given negative energy status. Full details of the food preparation procedure have 

been published elsewhere7. Briefly, for raw treatments, meat and tubers were sliced into 

standard cuboids and weighed into unlimited rations (MRF [meat/raw/free-fed]: 20.0±0.3 g; 

TRF [tuber/raw/free-fed]: 40.0±0.5 g). For cooked meat treatments, raw cuboids were 

weighed into rations (MCF [meat/cooked/free-fed]: 20.0±0.3 g; MCR [meat/cooked/

restricted]: 10.0±0.3 g) and roasted in covered Pyrex Petri dishes at 200°C for 12 min, 

resulting in internal temperatures of 65–70°C. For cooked tuber treatments, raw cuboids 

were weighed into rations (TCF [tuber/cooked/free-fed]: 40.0±0.5 g, TCR [tuber/cooked/

restricted]: 20.0±0.3 g) and roasted in foil packets at 204°C for 25 min, a protocol confirmed 

by polarized light microscopy to gelatinize starch, then transferred into Pyrex Petri feeding 

dishes. Once cooled, diets were sealed with parafilm and fed within 3 h of preparation. 

Technical replicates prepared from the same starting materials were analyzed for energy and 

macronutrient content using standard biochemical assays (Supplementary Table 1a). Sample 
collection: Mice were reared for 5 days on MRF, MCF, MCR, TRF, TCF, or TCR diets (n=4 

per diet), with littermates randomized symmetrically across diet groups. Diets were 

presented at the same time each day to give a standardized data collection cycle. During this 

daily intervention, mice were weighed during a period of inactivity and duplicate fresh fecal 
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samples were collected and flash-frozen in liquid nitrogen. Food refusals from the past 24 h 

were collected, weighed to monitor fresh weight intake, and later freeze-dried to determine 

dry weight intake. At the end of the feeding trial, mice were fasted overnight (12 h) to 

promote consumption of food on demand. Two hours before sacrifice, mice were presented 

with their assigned diets and in all cases began eating immediately. Body mass was taken 

immediately prior to euthanization via CO2 inhalation. Duplicate ~200 mg samples of cecal 

effluent were collected within 3 min of death using sterile, RNase-free instruments and 

flash-frozen in liquid nitrogen. Fecal and cecal samples were stored at -80°C until analysis. 

One mouse in the TRF group was euthanized after 4 days due to >20% weight loss, in 

accordance with our IACUC protocol; samples from this animal were excluded from all 

analyses.

Gut microbiota in mice fed chows differing in digestibility (DG) or xenobiotic 

(XB) load.—We fed mice custom chows differing in starch digestibility (Supplementary 

Fig. 2a) or chlorogenic acid content (Supplementary Fig. 5f) to evaluate digestibility and 

xenobiotic load as potential mechanisms underlying the microbial changes observed on raw 

versus cooked tuber diets. Animal models: C57BL/6J mice aged 6–12 weeks (n=46) were 

bred in-house and co-housed in groups of 3–5 under standard BRI conditions (see above) 

until their recruitment into a study. A total of 22 mice (12 male, 10 female) and 24 mice (12 

male, 12 female) were used in the comparisons of starch digestibility or chlorogenic acid 

content, respectively. Prior to the study, mice were individually housed in standard ventilated 

cages with multiple forms of enrichment (nestlet, shack, and cylinder; no running wheels) 

and allowed 3 days to acclimate to this set-up before the start of diet manipulations. 

Experimental diets: We used custom semi-purified or grain-based chows manufactured by 

Envigo/Teklad (Supplementary Table 1b). DG chows were semi-purified and were matched 

in all ingredients except for the source of the starch fraction (50% w/w), which was known 

to be either highly resistant to mammalian amylases (low-digestibility starch [LDS] diet, 

based on high-amylose resistant starch; TD.140475) or highly susceptible (high-digestibility 

starch [HDS] diet, based on high-amylopectin waxy maize starch; TD.140474). XB chows 

represented the inclusion or exclusion of 1% w/w chlorogenic acid ([CGA], C3878, Sigma-

Aldrich) in both grain-based low-fat and semi-purified high-fat diet conditions (LF: TD.

96338; LF+CGA: TD.140472; HF: TD.08811; HF+CGA: TD.140473). All diets were 

irradiated by the manufacturer and stored in their original vacuum-sealed pouches until 

feeding. Sample collection: Mice were reared for 28 days on LDS, HDS, LF, LF+CGA, HF, 

or HF+CGA diets (n=6–11 per diet), with littermates randomized symmetrically across 

groups in either the digestibility or xenobiotic trials. Just prior to the start of diet 

administration (Day 0) and on Days 1–3, 7, 14, and 28, mice were weighed during a period 

of inactivity, food weights were recorded to establish intake, and duplicate fresh fecal 

samples were collected and flash-frozen in liquid nitrogen. Fecal samples were stored at 

-80°C until analysis. At the end of the feeding trial, mice were sacrificed by cervical 

dislocation under isoflurane anesthesia. We weighed the cecum both full and empty to assess 

the mass of cecal contents, and returned the empty cecum to the body cavity before storage 

at -80°C. Analysis of body composition was performed on thawed carcasses at 37°C via 

MRI scan (EchoMRI-700), after validating that this protocol closely replicated 

measurements obtained in vivo (Supplementary Notes).

Carmody et al. Page 8

Nat Microbiol. Author manuscript; available in PMC 2020 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gut microbiota in mice fed six plant food (PF) diets.—To confirm starch 

digestibility as a key mechanism shaping the gut microbial response to cooking, we fed mice 

raw or cooked versions of six common plant foods varying in starch content and degree of 

starch digestibility (Supplementary Fig. 3a). Animal models: Female 6-week old C57BL/6J 

mice (n=48, 4 sets of 12 cagemates) were sourced from Jackson Laboratories. Mice were 

acclimated upon arrival to the BRI, during which they were cohoused under standard BRI 

conditions (see above). At the start of the experimental treatment, mice were individually 

housed in standard cages with bedding and enrichment (no running wheels) for the duration 

of the study. Diets were administered in plastic Petri dishes magnetically bound to the 

bottom of the cage. Cages were changed daily, and old cage bedding was saved to collect 

and weigh food refusals. Experimental diets: Diets consisted of organic orange-fleshed 

sweet potato tubers (Ipomoea batatas L. ‘Beauregard’), organic russet potato tubers 

(Solanum tuberosum ’Russet Burbank’), organic pre-frozen raw green peas (Pisum sativum), 

organic pre-frozen raw whole kernel sweet corn (Zea mays convar. Saccharata var. rugosa), 

organic carrot (Daucus carota subsp. sativus), and organic beetroot (Beta vulgaris). Fresh 

vegetables were diced into standard cuboids (see above), and pre-frozen vegetables were 

thawed to room temperature. Diets were prepared fresh daily and served either raw or 

cooked. For raw treatments, all vegetables were weighed into unlimited rations [30.0±0.9 g]. 

For cooked treatments, all vegetables were weighed into unlimited rations [30.0±0.9 g] then 

roasted in individual foil packets for 25 min at 204°C. Technical replicates were prepared for 

each dietary condition, sourced from the starting materials on each day of food preparation. 

Sample collection: Mice were randomized symmetrically across diet treatments and reared 

for a minimum of 3 days on one of 12 diets: raw or cooked sweet potato, raw or cooked 

white potato, raw or cooked corn, raw or cooked peas, raw or cooked carrot, or raw or 

cooked beet (n=4 animals per treatment). Diets were administered at the same time each day 

to allow for a standardized data collection schedule. During this time, mice were weighed, 

and duplicate fresh fecal samples were collected and flash-frozen in liquid nitrogen. Food 

refusals left in the Petri dish from the prior 24 h were collected and weighed, cages were 

changed, and old bedding was sifted for residual food refusals. Fecal samples were stored at 

-80°C until analysis. We terminated the dietary intervention for the white potato, carrot, and 

beet diet groups after 3 days due to >20% weight loss, in accordance with our IACUC 

protocol.

Microbial physiology.—We used a validated flow cytometry assay19 to evaluate the 

physiological consequences for the gut microbiota of raw versus cooked tuber diets (Fig. 3a) 

and two hypothetical candidates for the antimicrobial impact of raw tuber, chlorogenic acid 

and caffeic acid (Supplementary Fig. 5b). Animal models: Female C57BL/6J mice aged 6–

12 weeks (3 sets of 4 littermates for the tuber experiment, 3 sets of 3 littermates for the 

antimicrobial candidate experiment) were bred in-house and co-housed in their litter groups 

under standard BRI conditions (see above). Prior to each study, mice were individually 

housed and allowed 24 h to acclimate to this set-up before the start of treatments. Within 

each study, littermates were randomized symmetrically across treatments. Sample 
collection: For the tuber experiment, mice were reared for 4 days on TRF, TCF, ad libitum 

chow, or ad libitum chow plus 0.1% w/w pharmaceutical-grade ampicillin administered via 

water supply using light-shielded bottles. For the compound experiment, mice were reared 
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for 4 days on ad libitum chow with a light-shielded water supply containing either 1% 

chlorogenic acid, 1% caffeic acid, or no additive. Diets were presented at the same time each 

day to give a standardized data collection cycle, with compounds in water refreshed after 2 

days. During this daily intervention, mice were weighed during a period of inactivity, and 

fresh fecal samples were collected into tubes flushed with CO2 and transferred into an 

anaerobic chamber (Coy Laboratory Products) containing 5% H2 / 10% CO2 / 85% N2 for 

immediate processing. All samples were processed within 10 min of production.

Gnotobiotic experiments.—To establish the microbial consequences of diets under 

conditions in which the gut microbiota was tightly controlled, we conducted experiments 

with germ-free mice. Our experiments tested, respectively, the impacts on host net energy 

gain following inoculation with microbes pre-conditioned on raw versus cooked tuber diets 

(GB1; Fig. 4a), and microbial response to LDS versus HDS diets in gnotobiotic mice 

conventionalized with a shared gut microbiota (GB2; Supplementary Fig. 2e). Animal 
models: In each experiment, donor animals were 8-week-old conventionally raised 

C57BL/6J littermates that were bred and maintained under standard BRI conditions (GB1: 

females, n=2; GB2: males, n=2). Prior to their recruitment into the study, donors were 

individually housed and allowed 3 days to acclimate to this set-up before the start of diet 

manipulations (GB1) or sacrifice (GB2). In each experiment, recipient animals were male 8-

week-old germ-free C57BL/6 mice that were bred and maintained under standard 

Gnotobiotics Core conditions (positive-pressure flexible film isolator with open top cages 

containing cob bedding; no running wheels; ad libitum autoclaved chow and water; 12 h 

light/dark cycle beginning at 0700) until their recruitment into studies at 8 weeks of age 

(GB1: n=18; GB2: n=24). Mice sharing the same inoculation status were housed together in 

the same isolator and mice fed the same diet within an isolator were co-housed in groups of 

3. Sample collection: In GB1, donors were reared for 4 days on TRF (n=1) or TCF (n=1) 

diets, defined and prepared as described above. Each day, donors were weighed during a 

period of inactivity, food refusals from the past 24 h were collected and weighed to verify 

consumption, and duplicate fresh fecal samples were collected and flash-frozen in liquid 

nitrogen. In GB2, donors remained chow-fed until sacrifice. On the transplant day, donors 

were transported in their closed cages to the Gnotobiotics Core facility and sacrificed via 

cervical dislocation under isoflurane anesthesia. To minimize oxygen reaching the gut 

microbiota during preparation of the cecal-based inocula, hemostats were used to clamp just 

proximal and distal to ceca before their excision. Clamped ceca were immediately 

transferred into an anaerobic chamber (Coy Laboratory Products) containing 5% H2 / 10% 

CO2 / 85% N2 and the inocula were prepared by diluting cecal contents 1:20 in reduced 

phosphate-buffered saline, vortexing to mix, spinning down, and taking the supernatant. In 

GB1, within each group of germ-free mice receiving raw-conditioned or cooked-conditioned 

inocula, 6 recipients were gavaged with 200 μl of the live inoculum and 3 were gavaged with 

200 μl of autoclaved inoculum (negative control) that was verified as inactive by culture. 

GB1 recipients were then maintained for 14 days on a standard gnotobiotic diet of 

autoclaved chow. In GB2, 12 germ-free recipients received 200 μl of live inoculum (pooled 

from 2 donor animals to ensure sufficient volume), 6 received 200 μl of autoclaved 

inoculum, and 6 were not gavaged. Half of the recipients in each of these three colonization 

groups were maintained for 14 days on the LDS diet and the other half on the HDS diet. In 
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both experiments, just prior to gavage (Day 0) and on Days 1–5, 8, 11, and 14, recipients 

were weighed, food intake was measured by subtraction from the prior hopper weight, and 

duplicate fresh fecal samples were collected and flash-frozen in liquid nitrogen. Fecal 

samples were stored at -80°C until analysis. On Day 14, mice were removed from their 

isolators and sacrificed by cervical dislocation under isoflurane anesthesia. We assessed the 

mass of cecal contents, and retained the carcass (ex cecal effluent) for analysis of body 

composition by MRI.

Gut microbiota in humans fed raw and cooked plant-based diets (HC).—To 

assess whether cooking alters the gut microbiota in humans, we fed volunteers matched 

plant-based meals served in raw and cooked forms, based on a counterbalanced crossover 

study design (Supplementary Fig. 7a). Participants: After obtaining written informed 

consent, we enrolled 8 healthy adults (3 men, 5 women) from within the Harvard University 

community. Participants were non-smokers with no history of gastrointestinal disease, 

allergy to diet ingredients, or antibiotic use within 60 days of enrollment. Each participant 

completed two 9-day intervention arms, one involving raw foods and one involving cooked 

foods, with a 1-month period between arms. The order of diet treatments was 

counterbalanced across participants and was determined by computer randomization at the 

time of study enrollment. Experimental diets: We enlisted a professional chef to design a 

nutritionally adequate menu of plant-based (vegan, organic, gluten-free) meals and snacks 

that could be served in exclusively raw or exclusively cooked forms, with raw and cooked 

menus containing identical ingredients in identical proportions (Supplementary Fig. 7a, 

Supplementary Table 1d–e). We achieved dietary equivalence between raw and cooked 

menus (Supplementary Fig. 7d–g) by preparing mastermixes of all raw meal and snack 

components, reserving half of each mastermix for the raw treatment, and preparing the other 

half by roasting (lunch, dinner, nuts) or boiling (breakfast, smoothie, carrots) for the cooked 

treatment. All menu items were fed ad libitum, with food consumption determined by 

weighing refusals of all menu items separately. Sample collection: For each of two 

intervention arms, participants were asked to provide fecal samples on 9 consecutive days: 3 

prior to the start of the dietary intervention (wash-in period; Days -2, 1, 0), when participants 

were consuming their habitual foods and beverages; 3 during the dietary intervention, when 

participants consumed only study-provided meals and snacks, plus water and up to one cup 

of black coffee or black tea per day; and 3 following the dietary intervention (wash-out 

period: Days 4, 5, 6), when participants returned to their habitual feeding and drinking 

patterns (Supplementary Fig. 8a). Participants kept detailed logs of food and beverage 

consumption for each 9-day intervention arm, and were weighed on each day of the dietary 

intervention, and these logs suggested strong compliance with the study protocol. Fecal 

samples were stored for up to 24 hours in a home freezer before being transferred to the lab 

for storage at -80°C until analysis.

16S rDNA sequencing and analysis

Microbial DNA was isolated using the PowerSoil bacterial DNA extraction kit (MoBio) and 

PCR-amplified using barcoded universal bacterial primers targeting the V4 region of the 16S 

rRNA gene (515F and 806R). The following thermocycler protocol was used: 94°C for 3 

min, 35 cycles of 94°C for 45 sec, 50°C for 30 s, and 72°C for 90 s, with a final extension at 
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72°C for 10 min38,39. Triplicate reactions for each sample were pooled and amplification 

was confirmed by 1.5% gel electrophoresis. 16S rDNA amplicons were cleaned with 

AmpureXP beads (Agencourt), quantified using the Quant-iT Picogreen dsDNA Assay Kit 

(Invitrogen), and pooled evenly by DNA content. Pools were sequenced using the Illumina 

HiSeq (conventional mouse and human experiments) or MiSeq (gnotobiotic experiments) 

platforms, generating 2×100 bp (WF), 1×150 bp (DG, XB, PF, HC) or 250/150 bp (GB1, 

GB2) sequences (Supplementary Table 12). Sequences were analyzed on the Harvard 

Odyssey and UCSF QB3 computational clusters using the QIIME (Quantitative Insights into 

Microbial Ecology) software package version 1.8.031. Operational taxonomic units (OTUs) 

were picked at 97% similarity against the Greengenes database40, which we trimmed to span 

only the 16S rDNA region flanked by our sequencing primers (positions 521–773). We 

characterized a large number of reads per sample [WF: 174,582±3,193; DG: 92,049±1,864; 

XB: 86,774±1,505; GB1: 29,733±1,190; GB2: 33,159±1,300; PF: 143,960±4082; HC: 

42,772±894]. All sequences were used for the comparison of the relative abundance of 

bacterial taxonomic groups. To ensure unbiased generation of diversity metrics sensitive to 

sampling depth, each dataset was randomly subsampled at a depth that retained nearly all of 

the individual samples [WF: 50,000; DG, XB: 30,000; GB1, GB2: 15,000; PF: 40,924; HC: 

19,339]. Alpha diversity metrics were generated using either alpha_diversity.py (QIIME) or 

Vegan v2.5–241 and Picante v1.742 (R). Microbial biomarker discovery, as identified in text, 

was performed on the subsampled datasets using the LEfSe algorithm32 after filtering out 

species-level OTUs with <100 sequences or present in only 1 sample and treating |LDA|≥2 

as the threshold for significance. Permutation-based analyses of microbial community 

distances (ANOSIM, ADONIS, and PERMANOVA) were performed using 

compare_categories.py (QIIME) or the Adonis function of Vegan v2.5–2 (R), with 999 

permutations per test. To avoid pseudoreplication in these tests, datasets were either trimmed 

to a single sample per subject, as specified in the text, or the participant/mouse identifiers 

were used as strata for permutation. In all cases, ANOSIM and PERMANOVA tests 

supported the same conclusions, therefore we report only ANOSIM results everywhere 

except the Supplementary Tables. For the PF experiment, longitudinal data was analyzed 

using linear mixed effects models with the package lmerTest33 and the formula: 

y~Cooked*TimeOnDiet + (1|MouseID) where y represents the metric being tested. For the 

HC experiment, a similar formula was applied: y~Cooked*TimeOnDiet + Phase + (1|

ParticipantID). In both experiments, the interaction between cooking and time on diet was 

taken to represent a significant difference between cooked and raw food consumption. 

Multiple testing correction was carried out by a false discovery rate correction (Benjamini-

Hochberg). In both the PF and HC experiments: OTU-level abundance analysis was carried 

out using centered log2-transformation with count zero multiplicative replacement43 before 

testing using linear mixed effects models. Phylogenetic node testing was carried out using 

the phylogenetic isometric log ratio transformation of PhILR version 1.6.044 after removal 

of OTUs not present in at least 3 samples with a total of 10 reads.

Microbial RNAseq

We conducted a metatranscriptomic analysis of microbial community-wide gene expression 

in cecal samples harvested from mice fed whole-food diets of meat or tuber served raw or 

cooked. Cecal effluent was collected and flash-frozen in liquid nitrogen within 3 min of host 
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death. Microbial cells were lysed by bead-beater (BioSpec Products) and total RNA was 

extracted with phenol:chloroform:isoamyl alcohol (pH 4.5, 125:24:1, Ambion 9720). Total 

RNA was purified using the Ambion MEGAClear Kit (Life Technologies) and rRNA was 

depleted via Ambion MICROBExpress subtractive hybridization (Life Technologies) and 

custom depletion oligonucleotides. The absence of genomic DNA contamination was 

confirmed by PCR with universal 16S primers (8F and 1391R). cDNA was synthesized 

using SuperScript II and random hexamers (Life Technologies), followed by second-strand 

synthesis with RNaseH and E. coli DNA polymerase (New England Biolabs). Samples were 

fragmented enzymatically (E6040L and M0348S, New England Biolabs) and Illumina 

sequencing libraries were prepared on an Apollo 324 instrument using the PrepX mRNA 

Library Preparation Kit (WaferGen Biosystems). Libraries were quantified by quantitative 

PCR (qPCR) on a Stratagene MX3000P qPCR System (Agilent) using ABsolute qPCR 

SYBR Green ROX Mix (Thermo Scientific). The size distribution of each library was 

quantified by Agilent Bioanalyzer using an HS-DNA chip, and sample libraries were pooled 

evenly. The fully multiplexed pool was sequenced in 3 separate runs of an Illumina HiSeq 

(Supplementary Table 13), with strong reproducibility across runs (Supplementary Fig. 1d). 

To analyze the metatranscriptomic data, we quality controlled the FASTQ files with fastq-

mcf45 and removed rRNA reads using the database provided by SortMeRNA46. We removed 

host-originating reads by discarding sequences mapped by kallisto47 to the mouse 

transcriptome (GRCm38.rel79). To obtain counts of KEGG48 orthologs, we used translated 

search with DIAMOND49 and retained results with an E-value<0.01. Our analyses were 

based on KEGG release 58.1. As a final cleaning step, matches to animal versions of KOs 

were excluded, as were KOs associated with <1 read on average. Having obtained a set of 

KO counts for each sample, we then used the limma34 package in R along with its voom35 

extension to evaluate differential expression while controlling for differences in sequencing 

depth and batch effects. The abundance metric used by limma is log counts per million, 

obtained by dividing the count of classified reads for each KEGG ortholog by the total 

number of reads submitted to DIAMOND for classification. Per-observation weights were 

generated by the voom procedure. To find higher level patterns among the top genes, we ran 

gene set analyses with ROAST36. To visualize the dissimilarities between the 

metatranscriptomes, Ward.D2 hierarchical clustering was performed using a matrix of cosine 

distances and the hclust function in R. Prior to computing the distance matrix, batch effects 

resulting from sequencing replicates were removed with the limma package.

Quantitative PCR (qPCR) analysis

To quantify absolute bacterial abundance, we conducted qPCR using the same V4 primers 

employed in 16S rDNA sequencing (515F and 806R). For each reaction, template DNA at 

~5 ng/μL was diluted 1:100, and 2 μL was combined with 12.5 μL ABsolute qPCR SYBR 

Green ROX Mix (Thermo Scientific), 6 μL nuclease-free H2O, and 2.25 μL of each primer 

(450 nM final concentration). The following program was run on a Stratagene MX3000P 

qPCR System (Agilent): 95°C for 15 min, followed by 40 cycles of 95°C for 15 s, 50°C for 

40 s, and 72°C for 30 s. A melting curve was performed after amplification to distinguish 

targeted and non-targeted PCR products. All reactions were performed in duplicate, with the 

mean value used for statistical analyses. Reaction concentrations were quantified against a 

standard curve created using serial two-fold dilutions of pure culture Akkermansia 
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muciniphila (DSM 22959) genomic DNA of known concentration plus a non-template 

control (all standard curves, r2≥0.99). Bacterial DNA per gram of feces was determined by 

adjusting for the dilutions performed during DNA isolation (1:50), normalization to ~5 ng/

μL (various), and qPCR set-up (1:100), and dividing this gross concentration by the grams of 

feces utilized for the original DNA isolation (various). We report absolute bacterial 

community abundance in genome equivalents, where the murine gut microbiota was 

assigned a multiplier of 2.03×105 based on a mean genome size of 4.50 Mbp.

Short-chain fatty acid (SCFA) analysis

We used an established gas chromatography protocol5 to measure the concentration of 

acetic, butyric and propionic acids in flash-frozen cecal samples collected from mice fed 

whole-food diets of meat or tuber. Briefly, samples of cecal effluent stored at -80°C since 

harvest were thawed, weighed and resuspended in 400 μL of HPLC-grade water. Samples 

were homogenized and adjusted to pH 2–3 with 50% sulfuric acid. The acidified samples 

were incubated at room temperature for 5 min, with intermittent vortexing, then centrifuged 

for 10 min at 5,000 g. 300 μL of the clear supernatant was transferred into an Eppendorf 

tube, 50 μL of the internal standard (1% 2-methylpentanoic acid solution) and 300 μL of 

anhydrous ethyl ether were added. The samples were vortexed for 30 s and centrifuged at 

5,000 g for 10 min. 1 μL of the upper ether layer was used for analysis. Acids were 

identified and quantified in comparison to a reference mix of volatile acids, containing 10 

mM concentrations of acetic, butyric, and propionic acids (Matreya). The reference mix was 

validated against acid-specific standard curves to ensure quantification in the linear range. 

Results were expressed as mM concentrations per gram of sample, with the mean value 

across duplicate runs used for statistical analyses.

Bomb calorimetry analysis

Fecal pellets were collected from individual mice and lyophilized for 24h prior to 

determination of energy content via bomb calorimetry. After completion of the drying 

process, 100–200 mg of dried stool was pressed into a pellet using a pellet press, and dried 

masses of the pressed pellets were recorded. Gross energy content was measured using an 

isoperibol oxygen bomb calorimeter with a semimicro oxygen bomb (Models 6200 and 

1109, respectively, Parr Instrument Co.). The calorimeter energy equivalent factor was 

determined using benzoic acid standards.

Microbial physiology analysis

Fresh fecal pellets were placed into an anaerobic chamber (Coy Laboratory Products) 

containing 5% H2 / 10% CO2 / 85% N2 within 10 minutes of production. Bacterial 

physiology was assessed under anaerobic conditions according to validated protocols19,20 

using 2 fluorescent nucleic acid stains, propidium iodide (Sigma-Aldrich) and SYBRGreenI 

(Invitrogen) (Supplementary Notes). Propidium iodide (PI) is excluded from bacterial cells 

with intact membranes due to its size and hydrophilicity, and therefore PI is commonly used 

to assess bacterial membrane damage50. SYBRGreenI is used for total bacterial cell counts 

by flow cytometry, as it enters all bacteria irrespective of membrane status. Extensive data 

show that SYBRGreenI-stained cells can be grouped into two clusters, low nucleic acid-

containing (LNA) and high nucleic acid-containing (HNA) bacteria, according to their 
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relative fluorescence and scatter characteristics20,51. Both groups have discernible biomass 

and activity levels, and within a given community HNA cells are considered to be more 

active than LNA cells20,52,53. Fresh fecal samples were stained for 10 min with PI at 0.04 

mg/mL final concentration (Sigma-Aldrich) or 15 min with SYBRGreenI at 1X final 

concentration (Invitrogen). Fluorescent beads (3.4 μm, Spherotech) were added as an 

internal standard to determine cell abundance, and their density was determined for every 

flow cytometry analysis with Countbright beads (Invitrogen). All cytometric measurements 

were made using a LSRFortessa flow cytometer (Becton Dickinson) equipped with solid-

state Coherent Sapphire 100 mW 488 nm and 50 mW 561 nm lasers, and standard filter 

setup. Data were analyzed with FlowJo software version 7.6.3 (Tree Star).

In vitro bacterial growth assays

We selected for screening 15 gut bacterial isolates with high prevalence and abundance 

across 1,267 publicly available human fecal metagenomes54, and representing the five major 

phyla from the human gut (Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and 

Verrucomicrobia). Strains were grown and assayed in brain-heart infusion (BHI) medium 

supplemented with L-cysteine hydrochloride (0.05% w/v), hemin (5 μg/mL), vitamin K (1 

μg/mL) and resazurin (0.0001% w/v). Arginine-dependent Eggerthella lenta was grown and 

assayed in supplemented BHI plus arginine (1% w/v). Chlorogenic acid (Sigma-Aldrich) 

and caffeic acid (Sigma-Aldrich) were dissolved directly in BHI medium, while our positive 

control myricetin (TCI America) was dissolved in DMSO present at a final concentration of 

1%. Minimum inhibitory concentration (MIC) assays were performed using the broth 

microdilution method outlined by the Clinical Laboratory Standards Institute55, with some 

changes. Briefly, assays were performed in triplicate in round-bottom 96-well plates 

(Corning, Costar) in a final volume of 100 μL. Plates were prepared in an anaerobic chamber 

(Coy Laboratory Products) containing 5% H2 / 10% CO2 / 85% N2 and were allowed to 

equilibrate for 3 h before bacteria were added. Inoculated plates were incubated at 37°C for 

24 h, with plates containing slow-growing Akkermansia muciniphila and E. lenta grown for 

48 h. Absorbance values were measured at a wavelength of 600 nm (A600 nm) using a plate 

reader (Tecan). Relative growth was calculated by subtracting A600 nm values from sterile 

controls and normalized to a growth control (BHI only or BHI plus 1% DMSO). MICs were 

defined as growth conditions that yielded a relative growth <0.1.

Metabolomics assays

Two different chromatography approaches were used to characterize the plant metabolites. 

Reverse phase chromatography was used for the non-polar metabolites, and this approach 

was complimented by normal phase chromatography with hydrophilic interaction liquid 

chromatography (HILIC) for polar metabolites and to characterize compounds either not 

retained or subject to matrix effects on the reverse phase column56–60. Raw and cooked 

samples of the six plant foods fed to mice in the PF study were reserved at the time of diet 

preparation and stored at -80°C for metabolomics analysis. Raw and cooked foods were 

lyophilized to dryness and then powdered using a mortar and pestle. In a 2 mL screw-top 

tube, the powdered tissue was suspended in 80% MeOH/20% H2O (0.2 g tissue per 1 mL of 

solvent). This suspension was vortexed for 30 s and then placed in an ultrasonicating bath at 

room temperature, sonicating for 30 min. Then, the tube was vortexed for 30 s, after which it 
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was centrifuged at 2000 rpm for 10 min. The supernatant was aspirated and stored at -20°C 

until analysis. Extraction controls, containing only the extraction solvent, were also 

prepared. Prior to LC-MS analysis, extracts were centrifuge-filtered (0.22 μm, UFC40GV0S, 

Millipore), transferred to glass vials, then methanol containing internal standards was added 

to each vial. For non-polar metabolite analysis, 2-Amino-3-bromo-5-methylbenzoic acid 

(ABMBA) was added to a final concentration of 1 μg/mL, and for polar metabolite analysis, 

13C-15N labeled amino acids (767964, Sigma) were added to a final concentration of 15 

μM. All chromatography was performed using an Agilent 1290 LC stack, with MS and 

MS/MS fragmentation data collected in both positive and negative ion mode using a Thermo 

QExactive (for HILIC) or Thermo QExactive HF (for C18) mass spectrometer 

(ThermoFisher Scientific, San Jose, CA). For each 2 μL sample injection, full MS spectra 

was acquired between m/z 80–1200 at 60,000 resolution for C18, and between m/z 70–1050 

at 70,000 resolution for HILIC, with fragmentation data acquired using stepped collision 

energies of 10, 20 and 40 eV at 17,500 resolution. Sample injection order was randomized 

and an injection blank of only methanol run between each sample. To detect non-polar 

metabolites, samples were chromatographically separated using a C18 column (Agilent 

ZORBAX Eclipse Plus C18, #959757, 50x2.1 mm 1.8 μm) warmed to 60°C with a flow rate 

of 0.4 mL/min equilibrated with 100% buffer A (100% LC-MS water w/ 0.1% formic acid) 

for 1 minute, followed by a linear gradient to 100% buffer B (100% acetonitrile w/ 0.1% 

formic acid) at 8 minutes, and then isocratically held at 100% B for 1.5 minutes. To detect 

polar metabolites, samples were chromatographically separated using a HILIC column 

(Agilent InfinityLab Poroshell 120 HILIC-Z, #673775–924, 150x2.1mm, 2.7 μm) warmed to 

40°C with a flow rate of 0.45 mL/min equilibrated with 100% buffer B (95:5 

acetonitrile:water w/ 5 mM ammonium acetate) for 1 minute, followed by a linear gradient 

diluting buffer B down to 89% with buffer A (100% water w/ 5 mM ammonium acetate and 

5 μM methylene-di-phosphonic acid) over 10 minutes, then down to 70% B over 4.75 

minutes, then down to 20% B over 0.5 minutes, and then isocratically held at 20% B for 2.25 

minutes. The raw metabolomics data are available for download at https://opengut.ucsf.edu/

CookingData.tar.gz.

Metabolomics analysis

Features, high intensity signals narrowly contained at a given retention time and m/z, were 

detected using the MZMine software v 2.2461. Parameters for processing are contained in 

the original XML files used by MZMine (Supplementary Data 1 and Supplementary Data 2 

for negative and positive acquisition mode, respectively). Additional Python scripts were 

used to identify minimum and maximum retention time bounds for each peak, filter peaks 

that were not at least 3 times higher in a sample compared to all injection blanks, and filter 

peaks that did not have at least one MS/MS spectrum. Metabolite tables are provided in 

Supplementary Data 3 and Supplementary Data 4.

Metabolite identification

Chemical standards were used for identifications based on matching m/z better than 5 parts 

per million (ppm), retention time difference <0.2 minutes for C18 and ≤0.5 for HILIC, 

and/or matching fragmentation patterns with a score >0.5 as calculated by the Stein & Scott 

“composite” algorithm37 with modifications. Here the mass weight term is set to 0, the 
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intensity weight term is inversely proportional to the log of the number of aligned m/z values 

plus one, and the dot product and ratio of peak pair terms are averaged using the geometric 

mean. For each identification, peaks were integrated from a minimum to a maximum 

retention time and 5 ppm about a theoretical m/z. To complement the final identifications 

and processed data in Supplementary Table 7, we also provide the unfiltered initial 

compound identifications and raw peak heights (intensity) in Supplementary Data 5 (C18) 

and Supplementary Data 6 (HILIC). Compounds with a detected retention time <1 min were 

excluded from subsequent analysis. For compounds detected by multiple chromatography 

methods or ionization modes we selected a single representative dataset based on intensity 

and prioritizing HILIC. When two or more chemical standards co-eluted, shared the same 

m/z value, or were not distinguished by their fragmentation patterns, the ambiguity of the 

assigned identity was captured in the column “unresolvable compounds” of Supplementary 

Table 7. For each identified compound, a measure of confidence is provided in 

Supplementary Table 7: (i) absolute value of the difference in retention time from the 

standard; (ii) mass error (ppm) of detected m/z versus theoretical m/z; and (iii) MS/MS 

score comparing experimental MS/MS fragmentation pattern to standard. As defined by the 

Metabolomics Standards Initiative62, any two of these orthogonal measures supports a Level 

1 identification for these non-novel metabolites. A total of 215 Level 1 compounds were 

identified. 185 exceeded Level 1 (high confidence assignments by all 3 measures) and an 

additional 30 were categorized as “unresolvable compounds” due to structural isomers. The 

identified compounds were added to Metabolite Atlas63 to generate extracted ion 

chromatograms for each sample, shown together with matches between the experimental 

MS/MS spectra to the MS/MS spectrum of the chemical standard in Supplementary Data 7.

Differential metabolite analysis

A prior of 966.67 was added to all peak heights (2/3 of the lowest non-zero abundance) 

before a log2 transformation. Then, FDR-corrected Welch’s t-tests were carried out with a 

FDR<0.1 and an absolute log2 fold change>1 considered to be significant. FDR was carried 

out within each analysis mode and plant food type. Ordination of metabolomics data was 

carried out using the ropls package64. The density heat maps were created using the 

stat_density_2d function of ggplot265 with 100 bins.

Statistical analysis

Statistical analyses and data visualization were performed in Prism 7 (GraphPad Software) 

and/or R version 3.5.0. Unless otherwise stated, to evaluate treatment effects where subjects 

were not explicitly matched across time points, we used unpaired t-tests, ANOVA, or two-

way ANOVA with Holm-Sidak correction for multiple comparisons. To compare across time 

points for the same individual, we used paired t-tests or repeated measures ANOVA with 

Holm-Sidak correction for multiple comparisons. All pairwise postdoc comparisons were 

evaluated unless otherwise indicated. Non-parametric tests were employed when data 

violated the underlying assumption of normal distribution. Significance was set at p<0.05 or 

FDR<0.05 unless otherwise noted.
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Data Availability

16S rDNA and RNA sequencing data have been deposited in the NCBI Sequence Read 

Archive under accession PRJNA504908. Metabolomics raw data are available for download 

at https://opengut.ucsf.edu/CookingData.tar.gz. Figure source data and additional study data 

are available by request (carmody@fas.harvard.edu or peter.turnbaugh@ucsf.edu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cooking impacts gut microbiota structure and function in tuber-fed mice.
(a) Bray-Curtis principal coordinate plot showing that diets of meat or tuber rapidly and 

reproducibly reshaped the murine gut microbiota (meat n=12, tuber n=11). Clusters indicate 

that diet substrate was a strong predictor of community structure, with communities 

consistently responding within 24 h after the switch from chow to whole-food diets. Note: 

the Day 1 meat sample clustering with chow reflects a mouse that did not consume any meat 

within the first 24 h. (b) Hierarchical clustering of RNAseq-based gut microbial gene 

expression (Ward.D2 algorithm). Clusters indicate that expression profiles were strongly 

differentiated by diet substrate and, within tuber diets, by cooking. (c) Bray-Curtis principal 

coordinate plot showing that gut microbial communities were similar among mice fed meat 

served raw/free-fed (MRF), cooked/free-fed (MCF), or cooked/restricted (MCR) (n=4 
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animals per treatment) (Supplementary Fig. 1a). (d) Relative abundance of the four most 

abundant bacterial phyla in the distal guts of mice fed meat or tuber served raw or cooked 

versus a baseline diet of chow, incorporating a single endpoint sample per mouse (n=3–4 

animals per treatment). (e) Bray-Curtis principal coordinate plot showing that gut microbial 

communities were clearly distinct among mice fed tuber served raw/free-fed (TRF) versus 

cooked/free-fed (TCF) or cooked/restricted (TCR) (n=4 animals per treatment), a pattern 

established within 24 h of diet administration. TCF and TCR samples clustered together, 

confirming that effects were attributable to cooking rather than cooking-associated 

differences in host energy balance. (f-h) Compared with cooked tuber, the raw tuber diet 

produced a unique profile that included (f) lower α-diversity as judged by the Shannon 

Diversity Index, (g) lower proportion of bacteria from the Firmicutes versus Bacteroidetes 

phyla, and (h) qualitatively lower bacterial abundance as assessed by qPCR. In f-h, 

comparisons across tuber treatment groups reflect a single endpoint sample per individual 

(n=3–4 animals per treatment). (d,f-h) Data are mean±s.e.m.; statistics reflect one-way 

ANOVA with Holm-Sidak correction for multiple comparisons.
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Figure 2. Starch digestibility drives cooking-related changes in gut microbial community 
structure.
(a-j) Host phenotype and microbial community changes in (a-e) conventional mice 

[CONVR] fed semi-purified diets with low-digestibility starch [LDS] or high-digestibility 

starch [HDS] for 28 days (n=11 animals per treatment) (Supplementary Fig. 2a), or (f-j) 
germ-free [GF] or conventionalized [CONVD] mice fed LDS or HDS diets for 14 days (GF 

n=6 and CONVD n=6 animals per treatment) (Supplementary Fig. 2e). (a,f) Cumulative 

food intake over the feeding trial. (b,g) Body fat as a percentage of body mass, measured by 

EchoMRI. (c,h) Bray-Curtis principal coordinate plots showing LDS and HDS diets induced 

distinct gut microbial communities. In h, we include data from donor feces and the pooled 

inoculum. Recipient microbial communities cluster with donor samples for 24 h post-
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inoculation, then diverge by diet. Mirroring the patterns observed in mice fed raw tuber Fig. 

1f–g), the LDS diet was associated with a consistent trend towards (d,i) lower α-diversity 

and (e,j) lower proportions of Firmicutes versus Bacteroidetes compared with the HDS diet. 

Bar charts show mean±s.e.m. and reflect a single endpoint sample per individual; statistics 

in a-b,d-e,i-j reflect two-tailed unpaired t-tests, statistics in f-g reflect two-way ANOVA 

with Holm-Sidak correction for multiple comparisons. (k-l) Gut microbial profiles in mice 

fed common plant foods served raw (orange) or cooked (green), including starchy (sweet 

potato, white potato, corn, pea) and non-starchy (carrot, beet) foods, and foods with 

relatively low-digestibility (sweet potato, white potato) and high-digestibility (corn, pea) 

starch (n=4 animals per treatment; total n=48). Points reflect individual distances from 

baseline, with the band reflecting mean±s.e.m. (k) All plant foods except corn altered 

Faith’s phylogenetic diversity compared to the chow baseline. However, only sweet potato 

and white potato differed in α-diversity when served raw versus cooked. (l) Similarly, all 

plant foods altered gut microbial community structure, as measured by unweighted UniFrac 

distances from baseline. However, the effects of cooking on β-diversity were only significant 

in sweet potato, white potato, and corn. Statistics in k-l reflect linear mixed effect models 

analyzing the effect of time on diet (PDiet) and its interaction with food preparation 

(PCooking).
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Figure 3. The raw tuber diet impairs gut microbial physiology and bacterial load.
(a) We assessed treatment-induced differences in gut microbial physiology and bacterial 

load among mice reared for 4 days on chow, chow plus 0.1% w/w ampicillin via water 

supply (positive control), or ad libitum diets of tuber served cooked (TCF) or raw (TRF) 

(n=3 animals per treatment). (b) Percentage of cells in the fecal gut microbial community 

with membrane damage as indexed by propidium iodide staining (PI+). (c) Percentage of 

cells in the fecal gut microbial community with relatively high activity levels, based on high 

nucleic acid content (HNA). (d) Number of bacterial cells per mL of fecal suspension. The 

gut microbial communities of mice fed chow and cooked tuber remained close to their 

baseline values across all three indices of microbial community robustness. By contrast, 

those of mice fed ampicillin or raw tuber exhibited marked impairment, with high rates of 
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membrane damage, low proportions of highly active cells, and reduced bacterial load. Panels 

b-d reflect one data point per individual. Data are mean±s.e.m.; statistics reflect one-way 

ANOVA with Holm-Sidak correction for multiple comparisons. (e-g) Metabolomics analysis 

of 6 plant foods in raw and cooked forms (n=4 animals per treatment; total n=48) highlights 

candidates for the antimicrobial effects of raw plant food diets. (e) Partial least squares 

discriminant analysis plots showing that cooking affects compound abundance across all 6 

food types. (f) Density volcano plots demonstrate that cooking overwhelmingly reduces the 

abundances of metabolites detected by mass spectrometry in sweet potato and white potato. 

Skewedness (D’Agostino test) is denoted for each plant food. (g) Heat map of identified 

metabolites significantly altered by cooking (FDR<0.1 and |log2FC|>1 in sweet potato 

and/or white potato). Individual features and their methods of quantification (HILIC or C18 

chromatography) are listed in Supplementary Table 7.
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Figure 4. Cooking-induced changes in the gut microbiota are ecologically significant.
(a-d) Gut microbiotas conditioned on raw versus cooked tuber diets have differential 

impacts on host energy status. (a) Gnotobiotic mice were colonized with gut microbiotas 

harvested from conventional donors fed raw versus cooked tuber (n=6 animals per treatment, 

n=3 germ-free controls per donor group; see Methods). (b-d) Accounting for 5-fold 

differences in cecal mass with colonization (b), a gut microbiota conditioned on a raw tuber 

diet had a significant impact on host energy status after 14 days, as indexed by (c) change in 

body mass and (d) MRI-based body fat expressed relative to body mass. These effects 

suggest that the gut microbiota helped compensate for lower energetic returns on the raw 

tuber diet. Panels b-d reflect one data point per individual. Data are mean±s.e.m.; statistics 

reflect one-way ANOVA with Holm-Sidak correction for multiple comparisons. (e-i) 
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Consumption of raw versus cooked plant diets alters the gut microbiota in humans (n=8, 

crossover design). (e) Unweighted UniFrac principal coordinate plots showing that gut 

microbial communities clustered by individual. Study participants are represented by a 

letters, colored by diet phase, with the ellipse representing the participant-specific 95% 

confidence interval. (f-g) Changes in gut microbial (f) α-diversity and (g) β-diversity versus 

baseline, indexed by Faith’s Phylogenetic Distance and unweighted UniFrac distance, 

respectively. The plant-based diet affected both α-diversity and β-diversity, while cooking 

had significant effects on β-diversity alone. In f-g, individual participants are represented by 

letters, with the central ribbon representing the mean±s.e.m.; statistics reflect linear mixed 

effect models analyzing the effect of time on diet (PDiet) and its interaction with food 

preparation (PCooking). (h) Despite high correlations between OTUs that differed in 

abundance on raw and cooked diets, we detected 46 OTUs that differed uniquely on raw and 

59 that differed uniquely on cooked. Colors reflect OTUs significantly affected by time on 

raw (orange), cooked (green), or both diets (blue). (i) Phylogenetic trees summarizing 1,858 

OTUs and internal nodes (phylogenetic isometric log transform) showed significant fold 

changes on the raw and cooked diet treatments. Clade taxonomy was assigned by a 

consensus naming scheme.
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