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Abstract. There is a wide range of modal logics whose semantics goes
beyond relational structures, and instead involves, e.g., probabilities,
multi-player games, weights, or neighbourhood structures. Coalgebraic
logic serves as a unifying semantic and algorithmic framework for such
logics. It provides uniform reasoning algorithms that are easily instan-
tiated to particular, concretely given logics. The COOL 2 reasoner pro-
vides an implementation of such generic algorithms for coalgebraic modal
fixpoint logics. As concrete instances, we obtain in particular reason-
ers for the aconjunctive and alternation-free fragments of the graded
µ-calculus and the alternating-time µ-calculus. We evaluate the tool
on standard benchmark sets for fixpoint-free graded modal logic and
alternating-time temporal logic (ATL), as well as on a dedicated set of
benchmarks for the graded µ-calculus.

1 Introduction

Modal and temporal logics are established tools in the specification and verifica-
tion of systems. While many such logics are interpreted over relational transition
systems, the semantics of quite a number of important logics goes beyond the re-
lational setup, involving, for instance, probabilities [20,30], concurrent games as
in alternating-time logics [1,37], monotone neighbourhoods structures as in game
logic [35] and concurrent dynamic logic [38], or integer transition weights as in
the multigraph semantics [5] of the graded µ-calculus [25]. Coalgebraic logic [4]
provides a uniform semantic and algorithmic framework for these logics, based
on the paradigm of universal coalgebra [40]. It provides reasoning algorithms
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of optimal complexity at various levels of expressiveness, up to the coalgebraic
µ-calculus [3, 21–23]. These algorithms are parametric in the transition type of
systems (weighted, probabilistic, game-based etc.) as well as in suitable choices
of modalities specific to the given system type. Their instantiation to specific
logics requires providing either a set of next-step modal tableau rules satisfying
a suitable completeness criterion [45] or, more generally, a plug-in algorithm that
determines satisfiability for an extremely simple one-step logic that describes the
interaction between modalities, and consists of (conjunctions of) modal opera-
tors applied to variables only [29].

The COalgebraic Ontology Logic solver (COOL) provides reasoning support
for coalgebraic logics based on these generic algorithms. The first version of the
tool [15] provided reasoning support for fixpoint-free coalgebraic hybrid logic
with global assumptions, using a global caching principle [13]. In the present
paper, we present COOL 2, which provides reasoning support for coalgebraic fix-
point logics, specifically for both the aconjunctive fragment and the alternation-
free fragment of the coalgebraic µ-calculus. By instantiation, we obtain in par-
ticular the first implemented reasoners for the graded µ-calculus [26] (for which
a set of coalgebraic modal tableau rules has been described in the literature [45];
however, this rule set has later turned out to be incomplete, cf. Remark 2.3)
and the alternating-time µ-calculus [1]. We describe the structure of the tool in-
cluding implementational details, and present evaluation results, focusing on the
graded µ-calculus and alternating-time temporal logic (ATL). Additional details
on the evaluation can be found in the appendix.

Related Work: We have already mentioned work in coalgebraic logic on which
COOL is based [3,13,21–23,45]. COOL is conceptually a successor of the Coalge-
braic Logic Satisfiability Solver (CoLoSS) [2] but does not share any of its code.
CoLoSS implements fixpoint-free logics, and is entirely unoptimised. The first
version of COOL [15] has been evaluated on fixpoint-free next-step logics.

COOL does cover also various relational modal logics, for which there are
numerous specialised reasoners, including highly optimised description logic rea-
soners such as FaCT++ [49], Pellet [47], RACER [18], and HermiT [12]. As these
systems do not support fixpoint logics, a comparison would be of limited value.
In previous work, COOL has been evaluated on various relational fixpoint log-
ics, and has been shown to perform favourably on Computation Tree Logic [23]
(in comparison to reasoners featured in a previous systematic evaluation [14]),
as well as on the aconjunctive fragment of the modal µ-calculus [22] (in com-
parison to MLSolver [11]). A reasoner for (next-step) graded modal logic has
been evaluated against various description logic reasoners [48], using however
the above-mentioned incomplete set of modal tableau rules.

For the same reasons, we refrain from evaluating COOL 2 against reason-
ers for coalition logic, i.e. the fixpoint-free fragment of the alternating-time µ-
calculus, such as CLProver [33]. The only implemented reasoner for any fragment
of the alternating-time µ-calculus that does include fixpoints still appears to be
the tableau reasoner TATL for alternating-time temporal logic [6, 7]. TATL has
been compared to COOL on random formulas in previous work [23].
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2 Satisfiability in the Coalgebraic µ-Calculus

COOL 2 is a satisfiability checker for the coalgebraic µ-calculus [3], that is, for
the extension of coalgebraic modal logic with extremal fixpoint operators. For-
mulas of this logic are interpreted over coalgebras, where the semantics of modal
operators is defined by means of so-called predicate liftings [45]; we recapitu-
late examples of system types and modalities subsumed by this paradigm in
Example 2.1.

Syntax: Formulas are built relative to a set Var of fixpoint variables and a modal
similarity type Λ, that is, a set of modal operators with assigned finite arities
that is closed under duals, with ♥ ∈ Λ denoting the dual of ♥ ∈ Λ. Formulas
ψ, φ, . . . of the coalgebraic µ-calculus over Λ are given by the grammar

ψ, φ := ⊥ | ⊤ | ψ ∧ φ | ψ ∨ φ | ♥(ψ1, . . . , ψn) | X | µX.ψ | νX. ψ,

where ♥ ∈ Λ has arity n and X ∈ Var. A formula χ is aconjunctive if for every
conjunction ψ∧φ that is a subformula of χ, at most one of the formulas ψ and φ
contains a free fixpoint variableX that is bound by a least fixpoint operator µX.
While the logic does not contain negation as an explicit operator, full negation
can be defined as usual; e.g. we have ¬♥ψ = ♥¬ψ and ¬µX.ψ = νX.¬ψ[¬X/X ],
using ¬¬X = X .

Both the theoretical satisfiability checking algorithm and its implementa-
tion in COOL 2 operate on the Fischer-Ladner closure [21, 24, 27] of the target
formula. The alternation depth (e.g. [21, 29, 34]) of a formula is the maximum
depth of dependent alternating nestings of least and greatest fixpoints within
the formula. Formulas with alternation depth 1 are alternation-free.

Semantics: Formulas are interpreted over F -coalgebras, that is, structures

(C, ξ : C → FC),

where F : Set → Set is a functor determining the branching type of the systems at
hand; thus ξ(x) ∈ FC encodes the transitions from x ∈ C, structured according
to F . Modalities ♥ ∈ Λ of arity n are interpreted as predicate liftings, that is,
families of maps J♥KU : (2U )n → 2FU (for U ∈ Set) that assign predicates on FU
to n-tuples of predicates on U , subject to a naturality condition [36, 43]. On a
coalgebra (C, ξ), the semantics of formulas is defined inductively in the usual
way for the propositional operators and fixpoints, and by J♥(ψ1, . . . , ψn)K =
ξ−1[J♥KC(Jψ1K, . . . , JψnK)] for modalities.

A closed formula ψ is satisfiable if there is a coalgebra (C, ξ) and a state
x ∈ C such that x ∈ JψK. A formula ψ is valid if ¬ψ is not satisfiable.

Example 2.1. (1) The standard modal µ-calculus [24] is obtained using the
functor F = P(A) × P , where A is a fixed set of atoms, the similarity type
Λ = {♦,�, a,¬a | a ∈ A}, and predicate liftings

J♦KC(B) = {(A,Z) ∈ 2A × 2C | Z ∩B 6= ∅} JaKC = {(A,Z) ∈ 2A × 2C | a ∈ A}

J�KC(B) = {(A,Z) ∈ 2A × 2C | Z ⊆ B} J¬aKC = {(A,Z) ∈ 2A × 2C | a /∈ A}
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The expressive power of the modal µ-calculus is demonstrated by the formulas

µX. νY. (p ∧ ♦Y ) ∨ ♦X νX. µY. (p ∧ ♦X) ∨ ♦Y.

The former is a co-Büchi formula expressing the existence of a path on which p
holds forever, from some point on; the latter formula expresses the Büchi prop-
erty that there is a path on which the atom p is satisfied infinitely often.

(2) The graded µ-calculus [26] allows expressing quantitative properties with
the help of modal operators 〈n〉 and [n], n ∈ N; formulas 〈n〉ψ and [n]ψ then
have the intuitive meaning that ‘there are more than n successor states that
satisfy ψ’, and ‘all but at most n successor states satisfy ψ’, respectively. Its
coalgebraic interpretation is based on multigraphs, which are coalgebras for the
multiset functor [5]. A graded variant of the above Büchi property is specified,
e.g., by the formula νX. µY. (p ∧ 〈n〉X) ∨ 〈n〉Y , which expresses the existence
of an infinite n+ 1-ary tree such that the atom p is satisfied infinitely often on
every path in the tree.

(3) The alternating-time µ-calculus (AMC) [41] extends coalition logic [37] with
fixpoints and (modulo syntax) supports modalities 〈D〉 and [D], where D ⊆ N is
a coalition formed by agents from the set N = {1, . . . , n} for some fixed n ∈ N;
formulas 〈D〉ψ and [D]ψ then state that ‘coalition D has a joint strategy to
enforce ψ’ and that ‘coalition D cannot prevent ψ’, respectively. For instance,
the formula νX. µY. νZ. (p ∧ 〈D〉X) ∨ (q ∧ 〈D〉Y ) ∨ (¬q ∧ 〈D〉Z) expresses that
coalition D has a joint multi-step strategy that guarantees that p is visited
infinitely often whenever q is visited infinitely often.

Satisfiability Checking: We proceed to recall the satisfiability checking algorithm
for the coalgebraic µ-calculus that forms the basis of the implementation within
COOL 2. This algorithm adapts the automata-based approach to satisfiability
checking for the standard µ-calculus, and generalises the treatment of modal
steps by parametrizing over a solver for the one-step satisfiability problem of the
logic, which concerns satisfiability of formulae with exactly one layer of next-step
modalities [21]. It thus avoids the necessity of tractable sets of tableaux rules
for modal operators. Under mild assumptions on the complexity of the one-step
satisfiability problem of the base logic at hand (‘tractability’), the algorithm
witnesses a, typically optimal, upper bound ExpTime for the complexity of
the satisfiability problem; unlike a previous algorithm [4], the algorithm thus
has optimal runtime also in cases where no tractable sets of modal tableaux
rules are known, such as the graded (or, more generally, Presburger) µ-calculus
(further cases of this kind include the probabilistic µ-calculus with polynomial
inequalities [21] and the unrestricted form of the alternating-time µ-calculus with
disjunctive explicit strategies [16]).

The algorithm constructs and solves a parity game that characterises satisfi-
ability of the input formula χ. In this game one player attempts to construct a
tableau structure for χ while the opposing player attempts to refute the existence
of such a structure. Modal steps in this tableau construction are treated by us-
ing instances of the one-step satisfiability problem for the logic at hand, thereby
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generalising traditional modal tableau rules. The winning condition of the game
is encoded by a non-deterministic parity automaton Aχ, reading infinite words
that encode sequences of step-wise formula evaluations (so-called formula traces)
within a coalgebra; such words encode branches in the constructed tableau struc-
ture. Conjunctions give rise to nondeterminism in this automaton, and the parity
condition of the automaton is used to accept exactly those words that encode
sequences of formula evaluations in which some least fixpoint is unfolded in-
finitely often. To use the language accepted by Aχ as the winning condition in
a parity game, we transform Aχ to an equivalent deterministic parity automa-
ton Bχ. This automaton then is paired with the tableau construction to yield
a parity game in which the existential player aims to show the existence of a
tableau structure in which all branches are rejected by Bχ, and that is built in
such a way that modalities always are jointly one-step satisfiable. To ensure the
latter property, the modal moves in the game invoke instances of the one-step
satisfiability problem of the base logic. For more details on one-step satisfiability
and the overall algorithm, see the appendix as well as [21].

Corollary 2.2 ([21]). Suppose that the one-step satisfiability problem is
tractable. Then the satisfiability problem of the corresponding instance of the
coalgebraic µ-calculus is in ExpTime.

Remark 2.3. As mentioned above, previous algorithms for the coalgebraic
µ-calculus (also implemented in COOL 2) rely on complete sets of modal
tableau rules, specifically on one-step cutfree complete sets of so-called one-
step rules [45]; such rules (in their incarnation as tableau rules) have a premiss
with exactly one layer of modal operators and a purely propositional conclu-
sion. A typical example is the usual tableau rule for the modal logic K: ‘To
satisfy �a1 ∧ · · · ∧ �an ∧ ¬�a0, satisfy a1 ∧ · · · ∧ an ∧ ¬a0’. It has been shown
that the existence of a tractable one-step cutfree complete set of one-step rules
implies tractability of one-step satisfiability [29], i.e. the approach via one-step
satisfiability is more general.

As indicated in the introduction, a tractable one-step cutfree complete set of
one-step rules for graded modal logic has been claimed in the literature [45, 48]
but has since turned out to be incomplete; we give a counterexample in the
appendix. (A similar rule for Presburger modal logic [28] has also been shown
to be in fact incomplete [29].)

3 Implementation

The previous version COOL [15] only implements fixpoint-free (coalgebraic) log-
ics, such as standard modal logic, probabilistic modal logic, or coalition logic.
The main novelty of the new version COOL 2, described here, is

– the addition of fixpoint constructs to the previously implemented logics, sup-
porting alternation-free and aconjunctive fragments of the resulting µ-calculi,
and implementing on-the-fly solving to allow early termination
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– support for treating modal steps both by tableaux rules (when a suitable rule
set exists), and by one-step satisfiability checking (in the remaining cases)

In more detail, COOL 2 is written in OCaml and implements the satisfiability
checking algorithm described in Section 2, treating modal steps by solving in-
stances of the one-step satisfiability problem4. For logics where a suitable set of
modal tableau rules is implemented, those are used for the treatment of modal
steps, rather than relying on one-step satisfiability (unless the user explicitly
chooses otherwise); in these cases, COOL 2 essentially implements the algo-
rithm described in [29]. The current implementation supports the alternation-
free and the aconjunctive fragments of the standard µ-calculus (both serial and
non-serial), the monotone µ-calculus [19], the alternating-time µ-calculus (i.e.
coalition logic with fixpoint operators), and the graded µ-calculus. Tractable
tableaux rules are available for all cases except for the graded µ-calculus, for
which COOL 2 uses the one-step satisfiability algorithm to decide satisfiability.
In particular, COOL 2 is the only existing reasoner for the graded µ-calculus (as
well as the only reasoner covering the alternating-time µ-calculus beyond ATL).

The concrete logic used can be selected via a command-line parameter set-
ting up the data structures in COOL 2 accordingly before parsing and checking
the syntax of the given formula χ. COOL 2 then builds the determinised au-
tomaton Bχ, yielding the parity game described above in a step-wise manner,
repeatedly adding nodes in expansion steps that explore the game. In the case
of simpler alternation-free formulas, the Miyano-Hayashi method [31] is used to
construct Bχ, resulting in asymptotically smaller games with a Büchi winning
condition; for the more involved aconjunctive formulas, the implementation uses
the permutation method for determinisation of limit-deterministic parity au-
tomata [9,22]. Nodes in the constructed game are marked as either unexpanded,
undecided, unsatisfiable, or satisfiable.

Optional solving steps may take place at any point during the construction
of Bχ, depending on runtime parameters of COOL 2; these steps compute the
winning regions of the partial game that has been constructed so far and ac-
cordingly mark nodes as satisfiable or unsatisfiable, if possible. The reasoner
terminates as soon as the initial node is marked satisfiable or unsatisfiable. If
this does not allow for early termination, the game eventually becomes fully ex-
plored, at which point a final (obligatory) solving step for the complete game is
guaranteed to mark the initial node, thereby ensuring termination.

We detail the implementation of the two main procedures within COOL 2.

Implementation of Expansion Steps. The propositional expansion steps in the
game construction for nodes v are performed using the propositional satisfiabil-
ity solver MiniSat [8] to compute a word that encodes consistent propositional
formula manipulations for v. Afterwards, the successor of v in Bχ under this
word is computed and added to the game.

When the one-step satisfiability based algorithm of COOL 2 is used, modal
expansion steps for nodes v create new game nodes for each subset κ of the

4 Sources are available at https://git8.cs.fau.de/software/cool

https://git8.cs.fau.de/software/cool
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modalities that are to be jointly satisfied at v; this is done by computing the
successor of v in Bχ that is reached by manipulating each formula from κ.

When the tableau-based algorithm of COOL 2 is used, the modal expansion
step for a node v instead computes all applications of a modal rule matching v
and inserts, for each such rule application, and each conjunctive clause κ in the
conclusion of the rule application, the new game node that is reached from v
in Bχ by manipulating the modalities that constitute κ. Intuitively, using tableau
rules reduces the search space by only adding nodes found in the conclusion of
some matching rule application.

Any node that is added by some expansion step is initially marked as un-
decided. Crucially, all expansion steps perform on-the-fly determinisation, that
is, given a game node v and a word that encodes a sequence of formula manip-
ulations, the newly added game node is computed using only the information
stored in v.

Implementation of Solving Steps. A single solving step computes the winning
regions in the parity game that has been constructed up to this point, and marks
nodes accordingly. The game solving is done using either the parity game solver
PGSolver [10] or a native implementation provided by COOL 2 that solves the
game by fixpoint iteration.

If the one-step satisfiability-based algorithm is used, an assigned modal node
v is satisfiable if its modalities are jointly one-step satisfiable in those successors
of v that are satisfiable themselves. An enumerative representation of the game
thus contains existential moves to all subsets Π of subsets of modalities of v that
are sufficiently large for one-step satisfaction of the modalities of v, followed
by universal moves to nodes induced by any κ ∈ Π ; the full game thus is of
doubly-exponential size. This can be avoided by inlining the modal steps, thereby
evading the intermediate nodes Π . The winning region can then be computed
in single-exponential time by using COOL 2’s native fixpoint iteration over a
function that computes the two-tiered modal steps in one go.

Decision procedures for the one-step satisfiability problems in the relational
and the graded case are implemented in COOL 2 along the lines of the algorithms
described in [21, Example 6] (in the graded case, nondeterministic guessing is
replaced with a recursive search procedure).

If the algorithm based on modal tableau rules is used, the treatment of modal
steps follows the tableaux-based algorithm that is given in [3]. States v are sat-
isfiable if for all rule applications that match v, the conclusion of the application
contains a conjunctive clause κ such that the node induced by κ is satisfiable.

COOL 2 also allows the user to specify the desired frequency of optional
game solving steps, including the options once and adaptive. With the option
once, no intermediate solving takes place so that the game is fully constructed
and solved just once, at the very end of the execution. With the option adaptive,
intermediate solving takes places, but the frequency of solving reduces as the size
of the constructed graph increases; this option implements on-the-fly solving and
allows for finishing early in cases where a small model or refutation exists.
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4 Evaluation

We conduct experiments in order to evaluate the performance of the various
algorithms implemented in COOL in comparison with each other, as well as
in comparison with other tools (where applicable).5 Complete definitions of all
formula series used in the evaluation as well as additional experimental results
can be found in the appendix.

Experiments: In a first experiment, we compare COOL 2 with the established
reasoner FaCT++, which supports the description logic SROIQ(D) (subsuming
fixpoint-free graded modal logic), using the following series of formulas from
Snell et al. [48].

Cardinality(n) := 〈n− 1〉¬p ∧ 〈n− 1〉p ∧ [n]¬q ∧ [n]q (Sat)

CardinalityU(n) := 〈n− 1〉¬p ∧ 〈n− 1〉p ∧ [n]¬q ∧ [n− 1]q (UnSat)

Intuitively, the satisfiable Cardinality(n) formulas express that there are at least
2n successors and that both q and ¬q are satisfied in at most n successors,
each; similarly the unsatisfiable CardinalityU(n) formulas state that there are at
least 2n successors, and that q and ¬q hold in at most n and n − 1 successors,
respectively; the latter statements imply that there are at most 2n−1 successors,
yielding a contradiction.

Going beyond next-step formulas, we continue by devising various complex
series of graded µ-calculus formulas that involve (nested) fixpoints and express
non-trivial properties of graded trees, automata and games.

– We obtain a series of unsatisfiable formulas by requiring the existence of
an n + 1-branching tree in which p holds everywhere while at the same time
requiring that this tree contains some state with n+2 successors that satisfy p:

TreeU(n) = (νX. 〈n〉(p ∧X) ∧ [n+ 1]¬p) ∧ (µY. 〈n+ 1〉p ∨ 〈n〉(p ∧ Y )) (UnSat)

– Next we turn our attention to graded formulas involving parity conditions.
We devise a series of valid formulas expressing that graded parity automata can
be transformed to graded Büchi automata accepting a superlanguage of the
original automaton:

ParityToBuechi(n, k) := Parity(n, k) → Buechi(n, k) (Valid)

Here, Parity(n, k) encodes parity acceptance with k priorities and grade n while
Buechi(n, k) expresses Büchi acceptance by a nondeterministic automaton that
eventually guesses the maximal priority that occurs infinitely often; the negated
formula ¬ParityToBuechi(n, k) is unsafisfiable.

– Rabin conditions are given by families of pairs 〈ij , fj〉j≤k of sets ij , fj of
states, and express the constraint that there is some j ≤ k such that states from
ij (infinite) are visited infinitely often and states from fj (finite) are visited

5 Scripts and executables that allow for reproducing our experiments can be found at
DOI 10.5281/zenodo.8042581

https://doi.org/10.5281/zenodo.8042581
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only finitely often. We can express Rabin conditions with k pairs (and one-
step property ψ), Büchi properties and satisfaction of single Rabin-pairs by
formulas Rabin(k, ψ), Buechi(f, ψ) and RabinPair(i, f, ψ), respectively. Then we
obtain valid formulas stating that the existence of an n+ 1-branching tree that
satisfies the Rabin condition on each path implies that there is a path satisfying
a simpler Büchi condition or a single Rabin-pair, respectively:

RabinToBuechi(k, n) := Rabin(k, 〈n〉) → Buechi(i1 ∨ . . . ∨ ik, 〈0〉) (Valid)

RabinToRPair(k, n) := Rabin(k, 〈n〉) →
∨

1≤j≤k RabinPair(ij , fj , 〈0〉) (Valid)

– Coming to games, we specify the winning regions in graded Büchi and
Rabin games by formulas BuechiG(f, n) and RabinG(k, n), respectively; in such
graded games, players are required to have at least n winning moves at their
nodes in order to win. The following valid formulas then express that winning
strategies in graded Rabin games with k pairs guarantee that some node from
i1 ∪ . . . ∪ ik is visited infinitely often:

RabinGame(k, n) := RabinG(k, n) → BuechiG(i1 ∨ . . . ∨ ik, n) (Valid)

In a final experiment on alternating-time formulas, we compare COOL 2
with TATL [6] on the ATL example formulas given in [6] as well as on additional
formula series. For instance, we turn the formula 〈〈1〉〉Gp∧¬〈〈2〉〉F 〈〈1〉〉Gp (written
here using ATL syntax) from [6] into a series Nest(n) with increasing number of
nested operators; formulas then alternatingly are satisfiable and unsatisfiable:

χ(0) = p χ(i + 1) = ¬〈〈2〉〉F 〈〈1〉〉Gχ(i) Nest(n) = 〈〈1〉〉Gp ∧ χ(n),

Results: We conducted all experiments on a virtual machine with four 2, 3GHz
vCPUs processors and 8GB of RAM. We compare with a 64-bit binary of
FaCT++ v1.6.5 and with TATL. We compute all results with a timeout of 60
seconds and average the results over multiple executions. For the execution and
measurement we use hyperfine6. Below, ‘COOL’ and ‘COOL on-the-fly’ refer to
invoking COOL 2 with solving rate once and adaptive, respectively.
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6 https://github.com/sharkdp/hyperfine

https://github.com/sharkdp/hyperfine
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Results for the Cardinality and CardinalityU series are shown in Figure 1 and
Figure 2, respectively. From n = 10 and n = 8 onwards, COOL 2 outperforms
FaCT++ considerably. An explanation for this could be that FaCT++ appears
to treat multiplicities in a näıve way while COOL 2 employs the more efficient
one-step satisfiability algorithm.
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Results for the unsatisfiable tree property are shown in Figure 3. As these
formulas contain fixpoint operators, a comparison with FaCT++ is not possible.
While COOL 2 is generally capable of handling quite large branching factors,
this experiment showcases the drawbacks of on-the-fly solving in the case that a
formula cannot be decided early so that repeated attempts of solving the game
early lead to overhead computations.

Runtimes for COOL 2 (using on-the-fly solving) on the unsatisfiable series of
parity formulas ¬ParityToBuechi(n, k) are shown in Figure 4. The results indicate
that increasing the number of priorities k has a much stronger effect on the
runtime than increasing multiplicities n in the modalities. This is in accordance
with expectations as increasing k leads to much larger determinized automata
and resulting satisfiabilty games, while increasing n only complicates the modal
steps in the game while leaving the global game structure unchanged.

Results for the Rabin families of formulas are given in the table below, with
† indicating a timeout of 60 seconds. COOL 2 is able to handle reasonably large
formulas describing Rabin properties of automata and games, with the series for
n = 1 expressing properties of standard automata (solved using tableau rules),
and the series with n = 2 properties of graded automata with multiplicity 2
(solved using one-step satisfiability).

In accordance with previous experiments on random ATL formulas of larger
sizes in [23], COOL 2 generally outperforms TATL by a large margin, starting
from formulas containing at least five modalities or involving nesting of tem-
poral operators; this trend is confirmed by Figure 5 which shows the stepped
execution times for the series Nest that alternates between being satisfiable and
unsatisfiable
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k/series 1 2 3

RabinToBuechi(k, 1) 0.03 0.51 45.25

RabinToBuechi(k, 2) 0.08 10.56 †

RabinToRPair(k, 1) 0.03 8.38 †
RabinToRPair(k, 2) 0.07 † †

RabinGame(k, 1) 0.05 1.04 †
RabinGame(k, 2) 0.31 43.94 †
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Fig. 5. Runtimes for the ATL series Nest(n)

In summary, COOL 2 shows promising performance in comparison to TATL
and FaCT++, as well as for practical applicability. On graded formulas without
fixpoints, COOL 2 scales much better than FaCT++ with regard to increasing
multiplicities. In the presence of fixpoints, COOL 2 still scales well and can han-
dle multiplicities that should be sufficient for practical use. The formula series
¬ParityToBuechi appears to show the limits of COOL 2 with the current im-
plementation of graded one-step satisfiability checking. Nonetheless, our results
indicate that COOL 2 is capable of automatically proving or refuting involved
properties of (graded) ω-automata and games in reasonable time.

5 Conclusion

We have described and evaluated the current version COOL 2 of the COalgebraic
Ontology Logic reasoner (COOL). Future development will include the imple-
mentation of additional instance logics, such as the probabilistic and graded
µ-calculus with linear inequalities, as well as support for the full coalgebraic
µ-calculus via on-the-fly determinisation of unrestricted Büchi automata, using
the Safra-Piterman construction.

We would like to thank Frederik Hennig for finding and correcting a slight mis-
take in the Rabin-type formulas in an earlier version of this paper; the corre-
sponding runtimes reported in the table above as well as the full formulas in the
appendix have been updated accordingly.
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23. Hausmann, D., Schröder, L., Egger, C.: Global caching for the alternation-
free coalgebraic µ-calculus. In: Concurrency Theory, CONCUR 2016. LIPIcs,
vol. 59, pp. 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016),
https://doi.org/10.4230/LIPIcs.CONCUR.2016.34

24. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983), https://doi.org/10.1016/0304-3975(82)90125-6

25. Kupferman, O., Piterman, N., Vardi, M.: Fair equivalence relations. In: Veri-
fication: Theory and Practice. LNCS, vol. 2772, pp. 702–732. Springer (2003),
https://doi.org/10.1007/978-3-540-39910-0_30

26. Kupferman, O., Sattler, U., Vardi, M.: The complexity of the graded µ-calculus.
In: Automated Deduction, CADE 2002. LNCS, vol. 2392, pp. 423–437. Springer
(2002), https://doi.org/10.1007/3-540-45620-1_34

27. Kupke, C., Marti, J., Venema, Y.: Size measures and alphabetic equivalence in the
µ-calculus. In: Baier, C., Fisman, D. (eds.) Logic in Computer Science, LICS 2022.
pp. 18:1–18:13. ACM (2022), https://doi.org/10.1145/3531130.3533339

28. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Advances in
Modal Logic, AiML 2010. pp. 235–255. College Publications (2010)
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46. Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal log-
ics. In: Theoretical Aspects of Computer Science, STACS 09. pp. 673–684.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik; Dagstuhl, Germany (2009),
https://doi.org/10.4230/LIPIcs.STACS.2009.1855

47. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet:
A practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007),
https://doi.org/10.1016/j.websem.2007.03.004

48. Snell, W., Pattinson, D., Widmann, F.: Solving graded/probabilistic modal logic
via linear inequalities (system description). In: Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR 2012. LNCS, vol. 7180, pp. 383–390. Springer
(2012), https://doi.org/10.1007/978-3-642-28717-6_30

49. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, IJCAR 2006. LNAI,
vol. 4130, pp. 292–297. Springer (2006), https://doi.org/10.1007/11814771_26

https://doi.org/10.1305/ndjfl/1094155277
https://doi.org/10.1093/logcom/12.1.149
https://doi.org/10.1145/23005.23008
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/j.jlap.2006.11.004
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1007/978-3-540-85845-4_40
https://doi.org/10.1145/1462179.1462185
https://doi.org/10.4230/LIPIcs.STACS.2009.1855
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1007/978-3-642-28717-6_30
https://doi.org/10.1007/11814771_26


COOL 2 System Description 15

A Appendix: Additional Details

A.1 Details for Remark 2.3

The following set of modal tableau rules (one-step rules) has been claimed to be
one-step cutfree complete [46, 48]:

〈n1〉p1 ∧ · · · ∧ 〈nu〉pu ∧ ¬〈m1〉q1 ∧ · · · ∧ ¬〈mv〉qv∑u
i=1 ripi −

∑v
i=1 siqi > 0

for ri, si ∈ N \ {0}, subject to the side condition

u∑

i=1

ri(ni + 1)−
v∑

i=1

simi ≥ 1.

The conclusion of the rule denotes a propositional formula (in conjunctive nor-
mal form) representing the Boolean function obtained by reading the numerical
inequality as a constraint on Boolean variables pi, qi, with true interpreted as 1
and false as 0. In the relevant instance of the one-step logic, models consist of a
set X , a valuation τ of the variables pi, qi as subsets of X , and a finite multiset µ
over X . Given these data, the conclusion φ of (an instance of) the rule, a purely
propositional formulas, is interpreted as a subset JφKτ of X , using the Boolean
algebra structure of the powerset. The premiss is evaluated w.r.t. satisfaction
by µ, with the expected clauses for the propositional operators, and with 〈n〉a,
for a variable a, being satisfied if µ(τ(a)) > n, where µ(A) =

∑
x∈A µ(x) for

A ⊆ X . The premiss is satisfiable over τ if JφKτ 6= ∅, and the conclusion is
satisfiable over τ if it is satisfied by some multiset µ over X in the sense just
defined.

In the one-step logic, the rules are then applied to conjunctions of modal
literals, i.e. formulas of the form either 〈n〉a or ¬〈n〉a, for a a variable, requiring
an exact match of the rule premiss with a subset of the conjuncts (thus incor-
porating weakening into the rule application). Such formulas are called one-step
clauses. The rules are read as tableau rules, i.e. to establish that the premiss
is satisfiable, one needs to establish that the conclusions of all matching rule
applications are satisfiable.

The rules are easily seen to be one-step sound, i.e. if for any rule instance
matching a given one-step clause, the conclusion is propositionally unsatisfiable
over a valuation τ , then the premiss is also unsatisfiable over τ . The rule set is
one-step complete if, given a valuation τ in the powerset of X and a one-step
clause χ, whenever all rule matches to χ have satisfiable conclusions, then χ is
satisfiable.

We show that the latter property fails. To this end, consider the set X =
{a, b, c, d}, propositional variables pA for all A ⊆ X , the valuation τ given by
τ(pA) = A, and the one-step clause χ consisting of the positive literals 〈2〉pA for
all A ⊆ X such that |A| = 2, and the negative literal ¬〈6〉pX . First, note that χ is
clearly unsatisfiable over τ : A multiset µ over X would have to satisfy µ(A) ≥ 3
for all A ⊆ X such that |A| = 2, so at least three of the four elements ofX need to
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have multiplicity at least 2 under µ; moreover, if any element has multiplicity 0,
then all others need to have multiplicity at least 3. Consequently, the total
weight µ(X) is at least 7, so µ does not satisfy the negative literal ¬〈6〉pX .
On the other hand, none of the rule instances matching χ have unsatisfiable
conclusions. The easiest way to see this is to note that the rules are, with fairly
evident adaptations, still sound for a real-valued relaxation of the logic where µ
may assume non-negative real values (of course, 〈n〉a then means that µ(τ(a)) ≥
n+1); under this semantics, however, χ is satisfiable over τ by taking µ(x) = 3

2
for all x ∈ X .

A.2 Additional Details for Section 2

We give additional details on syntactic notions for the coalgebraic µ-calculus,
and on predicate liftings. Furthermore, we sketch the satisfiability checking al-
gorithm, first introduced in [21]; here we give a presentation of the algorithm in
terms of automata and games, tailored towards our implementation in COOL 2.

Fixpoint operators bind their variable, yielding notions of bound and free
fixpoint variables; a formula then is closed if it does not contain any free vari-
ables. A formula is clean if every fixpoint variable is bound at most once in it.
We restrict attention to closed and clean formulas (being aware of issues with
formula size measures [27]). Variables X that are bound by µX then are µ-
variables, and variables bound by νX are ν-variables. A variable X is active in
a formula ψ if X has a free occurrence in the formula that is obtained from ψ
by exhaustively replacing free occurrences of fixpoint variables by their binding
fixpoint formulas.

E.g. for the formula χ = µX. (p ∨ ♦X) we have θ(X) = χ, and the closure
of χ is a graph with nodes χ, p ∨ ♦χ, p,♦χ and edges χ → p ∨ ♦χ, p ∨ ♦χ → p,
p ∨ ♦χ → ♦χ, and ♦χ → χ. When we refer to the closure, we typically mean
just the set of nodes of this closure graph.

We give more details on Example 2.1:

A coalgebraic modelling of the graded µ-calculus [5] is obtained by using
the functor F = G that maps a set C to the set GC = {θ : C → N |
θ has finite support} of finite multisets over C, the similarity type Λ = {〈n〉, [n] |
n ∈ N}, and predicate liftings

J〈n〉KC(B) = {θ ∈ GC | Σv∈Bθ(v) > n} J [n] KC(B) = {θ ∈ GC | Σv/∈Bθ(v) ≤ n}

The concurrent game functor F maps a set C to the set FC =
{(S1, . . . , Sn, f) | ∅ 6= Si, f :

∏
i≤n Si → C}, where the Si are viewed as sets

of available moves for agent i, and f as an outcome function that evaluates joint
moves of all agents. F -Coalgebras are concurrent game frames [37]. Coalitions
D induce sets SD =

∏
i∈D Si and SD =

∏
i∈N\D Si, and given sD ∈ SD and

sD ∈ SD, the pair (sD, sD) represents an element of
∏

i≤n Si. We use the modal
similarity type Λ = {〈D〉, [D] | D ⊆ N} and the predicate liftings

J〈D〉KC(B) = {(S1, . . . , Sn) ∈ FC | ∃sD ∈ SD. ∀sD ∈ SD. f(sD, sD) ∈ B}

J[D]KC(B) = {(S1, . . . , Sn) ∈ FC | ∀sD ∈ SD. ∃sD ∈ SD. f(sD, sD) ∈ B}
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for B ⊆ C and D ⊆ N .

Additional details regarding the satisfiability checking algorithm sketched in
the main paper are as follows.

Depending on the syntactic structure of the input formula χ, it may be possi-
ble to employ simpler determinisation procedures for the construction of the au-
tomaton Bχ, resulting in asymptotically smaller games. Currently known bounds
for particular fragments of the coalgebraic µ-calculus are summarised in the fol-
lowing table, where n denotes the closure size of the target formula, k denotes
its alternation-depth, and where NCBA and LDBA stand for nondeterministic
co-Büchi automaton and limit-deterministic Büchi automaton, respectively.

fragment type of Aχ determinisation size rank
alternation-free NCBA Miyano-Hayashi [31] O(3n) 2
aconjunctive LDBA permutation method [9, 22] O((nk)!) 2nk
unrestricted NBA Safra-Piterman [39] 2O((nk) logn) 2nk

We sketch the construction of the automata Aχ and Bχ to describe the coal-
gebraic satisfiability game. Recall that the accepted language L(A) of a parity
automaton A = (Q,Σ, δ, v0, Ω) with priority function Ω : Q → N consists of
those infinite words over Σ on which there is an accepting run of A, where a run
is accepting if and only if the maximal priority (according to Ω) that is visited
infinitely often is even. The logical connectives are captured by the alphabet of
the automaton. Propositional connectives are treated by letters from a set Σp,
also encoding choices of disjuncts using letters of the shape (ψ1 ∨ ψ2, b) where
ψ1 ∨ψ2 ∈ cl and b ∈ {1, 2}. For modalities, the automaton needs to work on the
conjunctive satisfiability of a set of operators, so we put

Σs := {κ ∈ P(cl) | ∀ψ ∈ κ. ∃♥ ∈ Λ.ψ = ♥φ}.

The alphabet of the automata is Σ = Σp ∪ Σs. Furthermore, we let choices =
{w ∈ Σ∗

p | |w| ≤ n2} denote the set of propositional words of length at most n2.
The nondeterministic parity automaton Aχ = (cl, Σ,∆, χ,Ω′) reads se-

quences w ∈ Σω of formula manipulations and traces formulas through the clo-
sure. For the transition function we have, for example ∆(ψ1 ∨ψ2, (ψ1 ∨ψ2, b)) =
{ψb} for b ∈ {1, 2}, ∆(ψ1 ∧ ψ1, (ψ1 ∧ ψ1)) = {ψ1, ψ2}, ∆(♥ψ, κ) = {ψ} if
♥ψ ∈ κ ∈ Σs and ∆(♥ψ, κ) = ∅ otherwise. The priority function Ω′ is de-
fined by the alternation of least and greatest fixpoints in the formula, and Aχ

accepts words encoding infinite traversals through formulas where the outermost
unfolded fixpoint is a least fixpoint. We now consider the deterministic parity au-
tomaton Bχ = (Dχ, Σ, δ, v0, Ω) that is obtained from Aχ by co-determinisation

(L(Aχ) = L(Bχ)), noting that Bχ is a parity automaton with at most 2nk priori-
ties by the results from [39]. Then Bχ accepts infinite traversals through formulas
for which there is no formulas trace (run of Aχ) on which the outermost fixpoint
that is unfolded infinitely often is a least fixpoint.

The set Dχ consists of macro-states, that is, data structures organising el-
ements of cl in way that depends on the concrete determinisation construction
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that is used (see the table above), e.g., as Safra-trees [39] or permutations [9].
The labelling function l : Dχ → P(cl) assigns to each macro-state v ∈ Dχ its
label l(v), i.e. the set of formulas that occur in v. We denote by cores and states

the sets of all states in Dχ that have an unsaturated or a saturated label, respec-
tively; here, a set of formulas is saturated if all its elements are either modalised
formulas ♥ψ or ⊤, and unsaturated otherwise. We extend δ to words over Σ in
the usual way and to subsets of Σs by putting δ(v,A) = {δ(v, a) | a ∈ A} for
v ∈ Dχ, A ⊆ Σs.

Definition A.1 (One-step satisfiability problem [32, 42, 44]). Let V be
a finite set, Λ(V ) = {♥a | a ∈ V,♥ ∈ Λ}, and let Θ ⊆ P(V ). We interpret a ∈ V
and γ ⊆ Λ(V ) over Θ by

JaKΘ0 = {u ∈ Θ | a ∈ u} JγKΘ1 =
⋂

♥a∈γJ♥KΘJaKΘ0 .

We refer to the data (γ,Θ) as a one-step pair (over V ) and say that (γ,Θ) is
satisfiable (over F ) if JγKΘ1 6= ∅.

Example A.2. (1) For the relational modal µ-calculus (Example 2.1.1.),
where Λ = {♦,�}, the one-step satisfiability problem is to decide, for a given
one-step pair (γ,Θ) over V , whether there is A ∈ JγKΘ1 , that is, a subset A ∈ PΘ
such that for each ♦a ∈ γ, there is u ∈ A such that a ∈ u, and for each �b ∈ γ
and each u ∈ A, b ∈ u. Equivalently, one needs to check that for each ♦a ∈ γ
there is u ∈ Θ such that a ∈ u and moreover b ∈ u for all �b ∈ γ.

(2) For the graded µ-calculus (Example 2.1.2.), the one-step satisfiability
problem is to decide, for a one-step pair (γ,Θ), whether there is a multiset
β ∈ BΘ such that

∑
u∈Θ|a∈u β(u) > m for each 〈m〉a ∈ γ and

∑
u∈Θ|a/∈u β(u) ≤

m for each [m]a ∈ γ. This problem can be solved via a nondeterministic algo-
rithm that goes through all u ∈ Θ, guessing multiplicities β(u) ∈ {0, . . . ,m+1}
where m is the greatest index of any diamond modality 〈m〉 that occurs in γ.
This multiplicity is used to update |V | counters that keep track of the total

measure β([[a]]
Θ
0 ) for a ∈ V and then forgotten. Once all multiplicities have

been guessed, the algorithm verifies that β ∈ [[γ]]
Θ
1 , using only the final counter

values [26, Lemma 1].

Recall (e.g. [17]) that parity games are history-free determined infinite-
duration two-player games given by data G = (V∃, V∀, E, v0, Ω), consisting of
disjoint sets V∃ and V∀ of nodes belonging to the existential and universal player,
respectively, a set E ⊆ V × V of edges (where V = V∃ ∪ V∀), an initial node v0,
and a priority function Ω : E → N that assigns priorities Ω(e) to edges e ∈ E. A
play is a finite or infinite sequence π = v0, v1, . . . of nodes such that (vi, vi+1) ∈ E
whenever applicable. Finite plays are required to end in nodes without outgoing
moves, and then are won by the player that does not own the last node in the
play; infinite plays π ∈ V ω are won by the existential player if and only if the
maximal priority visited in π is even (and by the universal player otherwise).
The existential player wins the game G if she has a strategy to move at her nodes
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such that she wins every play that is compatible with this strategy; otherwise,
the universal player wins G.

Now we are ready to characterise satisfiability in the coalgebraic µ-calculus
by parity games. Recall that Bχ = (Dχ, Σ, δ, v0, Ω) is a deterministic parity
automaton with 2nk priorities.

Definition A.3 (Satisfiability games). The satisfiability game Gχ =
(V∃, V∀, E, v0, Ω) for χ is a parity game with sets of nodes V∃ = Dχ and
V∀ = Dχ×P(Σs). The other components of the game are defined by the follow-
ing table, where Ω(v, τ) denotes the maximal Ω-priority that is visited by the
partial run of Bχ that leads from v to δ(v, τ) by reading τ letter by letter.

node owner moves to priority
v ∈ cores ∃ {δ(v, τ) ∈ states | τ ∈ choices} Ω(v, τ)

v ∈ states ∃ {(v, Ξ) ∈ V∀ | Jl(v)K
l[δ(v,Ξ)]
1 6= ∅} Ω(v)

(v, Ξ) ∈ V∀ ∀ {δ(v, κ) | κ ∈ Ξ} 0

Thus the existential player attempts to show the existence of a specific sub-
automaton of Bχ, intuitively by selecting, at each core node v of Bχ, some non-
modal word τ that saturates v, leading to a state node. For modal steps at
state nodes v, the existential player has to provide a set Ξ of letters (selecting
a set of modal out-edges of v) such that the label of v is one-step satisfiable in
the labels of the selected successors of v in Bχ. The universal player then can
challenge any letter κ ∈ Ξ and perform the corresponding modal step by moving
to δ(v, κ). The existential player has to make her choices in such a way that for
every compound word that results from the choices, the corresponding run of Bχ

is accepting (that is, does not contain infinite deferrals of least fixpoints), and
never visits nodes with ⊥ in the label.

Given a set G ⊆ Dχ, we let win∃G and win∀G denote the winning regions for
the existential and the universal player, respectively, in the partial game Gχ|G
that is obtained from Gχ by removing all nodes that are not contained in G.
Nodes in this partial game Gχ|G may be undetermined so that we in general do

not have win∃G∪win∀G = G. However, we do have win∃Dχ
∪win∀Dχ

= Dχ. While the
number of nodes in Gχ|G is doubly exponential in n (Σs is singly exponential,
so P(Σs) is doubly exponential), we use a fixpoint computation over (subsets
of) Dχ [21] to compute the sets win∃G and win∀G in singly exponential time.

Definition A.4 (Game solving). Given a set G ⊆ Dχ, we define the one-step
solving function fG : P(G)2nk → P(G) by

fG(X) ={v ∈ cores | ∃τ ∈ choices. δ(v, τ) ∈ XΩ(v,τ) ∩ states}∪

{v ∈ states | Jl(v)K
l[δ(v,Σs)∩XΩ(v)]

1 6= ∅}

where X = X1, . . . , X2nk ⊆ G. This function intuitively encodes one step in the
partial game Gχ|G that is obtained from Gχ by removing all nodes that are not
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contained in G. The winning regions in Gχ|G then can be characterised by the
nested fixpoints EG and AG, defined by

EG = η2nkX2nk. . . . η1X1.fG(X) AG = η2nkX2nk . . . η1X1.fG(X),

where ηi = µ for odd i, ηi = ν for even i, where ν = µ and µ = ν, and where
fG(X) = Dχ \ fG(X).

We note that nodes in the partial game Gχ|G may be undetermined so that we
in general do not have EG ∪AG = G. However, we do have EDχ

∪ADχ
= Dχ.

Algorithm 1 Satisfiability checking by global caching; input: formula χ;

Initialise set of unexpanded nodes U = {v0} and expanded nodes G = ∅.

(1) Expansion: Choose some unexpanded node u ∈ U , remove u from U , and add u to
G. Add to U all nodes in the sets {δ(u, τ ) ∈ states | τ ∈ choices} \ G (if u ∈ cores) or
{δ(u, κ) | κ ∈ Σs, κ ⊆ l(u)} \G (if u ∈ states).

(2) Optional game solving: Compute win∃G and/or win∀G. If v0 ∈ win∃
G, then return

‘satisfiable‘, if v0 ∈ win∀
G, then return ‘unsatisfiable‘.

(3) If U 6= ∅, then continue with Step 1. Otherwise, G = Dχ; continue with Step 4.

(4) Final game solving: Compute win∃G. If v0 ∈ win∃
G, then return ‘satisfiable‘, otherwise

return ‘unsatisfiable‘.

Theorem A.5 ([21]). Existential player wins Gχ if and only if χ is satisfiable,
and Algorithm 1 computes the winning regions in Gχ on-the-fly.

(The proof given in [21] elides the game formulation and instead shows directly
that the fixpoint captures satisfiability; however, equivalence of the game and
the fixpoint computation is straightforward.)

A.3 Additional Details for Section 4

The omitted formulas for the parity conditions in Section 4 are defined as follows.

Parity(n, k) = µXk. νXk−1. . . . .νX2. µX1.
∨

1≤i≤k

pi ∧ 〈n〉Xi

These formulas express that ‘there is an n + 1-branching tree starting here in
which each path satisfies the parity condition encoded by the priorities pi’. This
property implies that ‘there is an n+ 1-branching tree such that for every path
there is an even priority pi that occurs infinitely often on the path and priorities
larger than pi occur only finitely often on the path’ :

Buechi(n, k) = µX. 〈n〉X ∨
∨

1≤i≤k,i even

νY. µZ.
∧

j>i

¬pj ∧ ((pi ∧ 〈n〉Y ) ∨ 〈n〉Z))
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The formulas Buechi(f, ψ), RabinPair(i, f, ψ) and Rabin(k, ψ) for the rabin
properties 〈ij , fj〉j≤k in Section 4 are defined as follows.

Buechi(f, ψ) = νX. µY. ((f ∧ ψ(X)) ∨ (¬f ∧ ψ(Y )))

RabinPair(i, f, ψ) = µX. νY. µZ. (f ∧ ψ(X)) ∨ (¬f ∧ i ∧ ψ(Y )) ∨ (¬f ∧ ¬i ∧ ψ(Z))

Rabin(k, ψ) = µX2k+1.Disj(2k, [], ψ)

Disj(c, p, ψ) =
∨

j /∈p

νXp:j
c . µXp:j

c−1.Disj(c− 2, p : j, ψ)

Disj(0, p, ψ) = (fp(1) ∧ ψ(X2k+1))∨
∨

j≤k

((
∧

j′≤j

¬fp(j′) ∧ ip(j) ∧ ψ(X
p|j
2(k−j)+2))∨

(
∧

j′≤j

¬fp(j′) ∧ ¬ip(j) ∧ ψ(X
p|j
2(k−j)+1)))

Here, p is a partial permutation over [k] = {1, 2, . . . , k}, that is, p is a list
of elements of [k] without duplicates; the empty permutation is denoted by [].
We write j /∈ p to denote the fact that j ∈ [k] does not occur in the partial
permutation p. By p : j we denote the partial permutation that is obtained by
concatenating p and j (that is, by appending j to the end of the list p). Finally,
p|i denotes the permutation that is obtained from p by keeping just the first i
entries, and p(j) denotes the j-th entry in p.

The full formulas for Büchi and Rabin games mentioned in Section 4 are as
follows.

The formula θ = AG((v∃∧¬v∀)∨(¬v∃∧v∀)) expresses that every node belongs
to exactly one of the two players v∃ or v∀. We also introduce graded formulas
Cpreni (X) stating that player i ∈ {∃, ∀} can ensure that X is reached in the next
step with at least (all but at most) n moves:

Cpre
n
∃(X) = (v∃ ∧ 〈n〉X) ∨ (v∀ ∧ [n]X) Cpre

n
∀(X) = (v∀ ∧ 〈n〉X) ∨ (v∃ ∧ [n]X)

The winning regions in graded Büchi and Rabin games then are defined by

BuechiG(f, n) = θ ∧ Buechi(f,Cpren∃) RabinG(k, n) = θ ∧ Rabin(k,Cpren∃)

The comparison between TATL and COOL 2 is based on the following for-
mulas taken from [6]:

(1) p

(2) p ∧ q

(3) p ∨ q

(4) p→ q

(5) 〈〈1〉〉Xp

(6) 〈〈1〉〉Fp

(7) 〈〈1〉〉Gp

(8) 〈〈1〉〉pUq

(9) ¬〈〈1〉〉pUq
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(10) ¬〈〈1〉〉Fp

(11) 〈〈1, 2〉〉pUq ∧ 〈〈1, 2〉〉Xr

(12) 〈〈1, 2〉〉pUq ∧ 〈〈3, 4〉〉Xr

(13) 〈〈1, 2〉〉pUq ∧ 〈〈2, 3〉〉Xr

(14) 〈〈2, 1〉〉pUq ∧ 〈〈3, 2〉〉Xr

(15) 〈〈〉〉pUq ∧ 〈〈1, 2〉〉Xr

(16) ¬〈〈1, 2〉〉Xp ∧ 〈〈1〉〉Gp

(17) ¬〈〈1, 2〉〉Xp ∧ 〈〈1, 2, 3〉〉Gp

(18) ¬p ∨ 〈〈1〉〉Fp

(19) p ∧ ¬p

(20) (p ∧ q) ∧ 〈〈1〉〉G¬(p ∧ q)

(21) 〈〈1〉〉Gp ∧ ¬〈〈2〉〉F 〈〈1〉〉Gp

(22) 〈〈1〉〉Xp ∧ ¬〈〈1〉〉Xp

(23) 〈〈1〉〉pUq ∨ ¬〈〈1〉〉Gq

(24) 〈〈1, 2〉〉pU(¬〈〈1〉〉Gp)

(25) 〈〈1〉〉(¬〈〈1, 2〉〉Gp)Uq

(26) 〈〈〉〉G〈〈〉〉pUq

(27) ¬〈〈1〉〉Gp ∧ 〈〈1, 2〉〉Xp ∧ ¬〈〈2〉〉X¬p

(28) 〈〈1〉〉Xp ∧ 〈〈2〉〉Xq ∧ 〈〈1, 2〉〉Xr ∧ ¬〈〈1〉〉Xr ∧ ¬〈〈3〉〉Xq

(29) ¬〈〈1〉〉Xr ∧ ¬〈〈3〉〉Xq ∧ 〈〈1〉〉Xp ∧ 〈〈2〉〉Xq ∧ 〈〈1, 2〉〉Xr

(30) ¬〈〈1〉〉Xr ∧ 〈〈1〉〉Xp ∧ 〈〈2〉〉Xq ∧ ¬〈〈3〉〉Xq ∧ 〈〈1, 2〉〉Xr

(31) 〈〈1, 2, 3〉〉G〈〈2, 3, 4〉〉G(p ∧ q)

(32) 〈〈1, 2, 3〉〉G〈〈2, 3〉〉G(p ∧ q) ∧ 〈〈4〉〉X¬p

(33) ¬¬〈〈1〉〉pUq

(34) ¬(〈〈1〉〉Gp ∨ 〈〈1〉〉G¬p)

(35) ¬(〈〈1〉〉Gp ∧ 〈〈1〉〉G¬p)

(36) ¬〈〈1〉〉pU¬〈〈2〉〉qUr

(37) 〈〈1〉〉G¬q ∧ 〈〈2〉〉pUq

(38) 〈〈1〉〉Gp ∧ ¬〈〈1, 2〉〉Gp

(39) ¬〈〈1〉〉Xp ∧ 〈〈2〉〉X¬p

(40) 〈〈1〉〉Xp ∧ 〈〈2〉〉X¬p

(41) 〈〈1〉〉pUq ∧ 〈〈2〉〉qUr ∧ 〈〈2〉〉G¬r

(42) 〈〈1〉〉pUq ∧ 〈〈2〉〉qUr ∧ 〈〈1〉〉G¬r

The results of the comparison between COOL 2 and TATL on these formulas
are shown in Figure 6.

Furthermore, we turn formula 36, that is, the formula ¬〈〈1〉〉pU¬〈〈2〉〉q U r into
a formula series with increasing number of nested temporal operators, defined
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Fig. 6. Runtimes on selected ATL formulas [6]

inductively by

ψ(0) = ¬〈〈2〉〉q U r

ψ(i + 1) = ¬〈〈(i mod 2) + 1〉〉pi mod 2 Uψ(i) (i > 0)

The according experiment results depicted in Figure 7 show that COOL 2 out-
performs TATL on this formula series by a large margin, with runtime for
COOL 2 remaining almost constant as n increases while TATL quickly runs
into timeouts of 60 seconds. This presumably is due to the nesting of temporal
operators.
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