
 Open access Posted Content DOI:10.1101/557660

Cooler: scalable storage for Hi-C data and other genomically-labeled arrays
— Source link

Nezar Abdennur, Leonid A. Mirny

Institutions: Massachusetts Institute of Technology

Published on: 22 Feb 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Hierarchical Data Format, File format and Python (programming language)

Related papers:

 Cooler: scalable storage for Hi-C data and other genomically labeled arrays.

 mirnylab/cooler: v0.8.5

 Efficient storage and analysis of quantitative genomics data with the Dense Depth Data Dump (D4) format and d4tools.

The GCTx format and cmap{Py, R, M} packages: resources for the optimized storage and integrated traversal of dense
matrices of data and annotations

 Bekvaem: integrative data explorer for hi-c data

Share this paper:

View more about this paper here: https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-
3ejncm998f

https://typeset.io/
https://www.doi.org/10.1101/557660
https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f
https://typeset.io/authors/nezar-abdennur-481zpk6rb4
https://typeset.io/authors/leonid-a-mirny-zwvv8sl7ap
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/hierarchical-data-format-nljts4s9
https://typeset.io/topics/file-format-wgxtttsf
https://typeset.io/topics/python-programming-language-2r76vmj5
https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-427tc87z6z
https://typeset.io/papers/mirnylab-cooler-v0-8-5-4ym0f8a8pk
https://typeset.io/papers/efficient-storage-and-analysis-of-quantitative-genomics-data-gveeqlbue8
https://typeset.io/papers/the-gctx-format-and-cmap-py-r-m-packages-resources-for-the-3dms05p18a
https://typeset.io/papers/bekvaem-integrative-data-explorer-for-hi-c-data-5bm1528o0t
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f
https://twitter.com/intent/tweet?text=Cooler:%20scalable%20storage%20for%20Hi-C%20data%20and%20other%20genomically-labeled%20arrays&url=https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f
https://typeset.io/papers/cooler-scalable-storage-for-hi-c-data-and-other-genomically-3ejncm998f

Cooler: scalable storage for Hi-C data and

other genomically-labeled arrays

Nezar Abdennur1� and Leonid Mirny1,2

1Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States

Most existing coverage-based (epi)genomic datasets are one-

dimensional, but newer technologies probing interactions (phys-

ical, genetic, etc.) produce quantitative maps with two-

dimensional genomic coordinate systems. Storage and compu-

tational costs mount sharply with data resolution when such

maps are stored in dense form. Hence, there is a pressing need

to develop data storage strategies that handle the full range of

useful resolutions in multidimensional genomic datasets by tak-

ing advantage of their sparse nature, while supporting efficient

compression and providing fast random access to facilitate de-

velopment of scalable algorithms for data analysis. We devel-

oped a file format called cooler, based on a sparse data model,

that can support genomically-labeled matrices at any resolution.

It has the flexibility to accommodate various descriptions of the

data axes (genomic coordinates, tracks and bin annotations),

resolutions, data density patterns, and metadata. Cooler is

based on HDF5 and is supported by a Python library and com-

mand line suite to create, read, inspect and manipulate cooler

data collections. The format has been adopted as a standard by

the NIH 4D Nucleome Consortium. Cooler is cross-platform,

BSD-licensed, and can be installed from the Python Package In-

dex or the bioconda repository. The source code is maintained

on Github at https://github.com/mirnylab/cooler.

Correspondence: nezar@mit.edu

Introduction

Recent years have seen a ramp in production of large

datasets that map associations between genomic loci. Of note

are high-throughput chromosome conformation capture (3C)

technologies (1, 2), such as Hi-C (3) and its variants, which

produce two dimensional maps of chromosomal contacts.

These technologies have undergone incremental improve-

ments in technological resolution (cutting frequency, capture

radius), biological sampling (cell numbers, library complex-

ity) and technical sampling (sequencing depth), making it

possible to resolve features at increasingly finer scales. Hi-C

and related experiments also span a growing range of experi-

mental scales, e.g. from single cells to large cell populations,

unbiased vs. specific enrichment methods; for a review, see

(4). As a result, there is a need for data structures that are flex-

ible enough to accommodate data of massive size and varying

degrees and patterns of sparsity, and easily adapt to new ex-

perimental techniques and novel metadata.

In the case of 3C-based experiments, pairs of sequence tags

identify chimeric ligation junctions between DNA fragments.

It is natural to subject these paired tags to binning, either

by assigning them to putative restriction fragments, or more

commonly, by aggregating them with respect to genomic in-

tervals of some fixed size. Such gridded binning also sup-

presses count noise and increases effective coverage (5). The

result is a quantitative genomic matrix, whose dimensional

axes comprise a series of fixed or variable-length genomic

intervals.

Today, processed Hi-C data and similar two-dimensional

datasets are often still persisted using flat text files. For large

and high-resolution datasets, this poses bottleneck challenges

for basic processing, analysis and visualization. There exist

compression and indexing strategies for tabular text files that

mitigate these challenges to some degree by enabling ran-

dom access (6). However, binary formats can provide more

efficient and compressible storage, faster I/O, and preserve

numerical precision. Several custom binary formats have

been developed for Hi-C data, including butlr (7), hic (8),

and MRH (9). They are useful in that they organize the data

more efficiently and permit random access, but their strict

byte layouts makes them rather inflexible for accommodat-

ing different data types, metadata or additional information.

A popular alternative is the HDF5 container format (10),

which provides the freedom to organize collections of ed-

itable multidimensional array data and metadata in binary

form in a hierarchy similar to that of a file system. HDF5

is referred to as “self-describing” because objects can be in-

spected for their storage metadata, such as type, compres-

sion, and array shape. This enables it to serve as a flexi-

ble container for specific applications without constraining

users to a strict preordained data organization. These fea-

tures and its performance have made HDF5 very popular

for storing large scientific datasets, and it has been made

its mark in the Hi-C field for some time, in software pack-

ages such as hiclib (11), hifive (9), gcMapExplorer (12),

HiCExplorer (13) and cworld (https://github.com/

dekkerlab/cworld-dekker).

All the HDF5-based Hi-C formats in the tools mentioned

use dense representations, i.e. full two-dimensional arrays

of counts or transformed counts – including zeros for un-

observed interactions; however, this strategy scales poorly

with finer binning, whereby both size and sparsity of the

data increase. For example, if we sample one billion con-

tacts between kilobase-long fragments spanning the human

reference genome from a population of cells, we are guar-

anteed to fill less than 1% of the trillions of elements in the

available 2D space. Moreover, DNA contact frequency also

exhibits a characteristic density pattern whereby contacts are

Abdennur et al. | bioRχiv | February 21, 2019 | 1–7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://github.com/mirnylab/cooler
https://github.com/dekkerlab/cworld-dekker
https://github.com/dekkerlab/cworld-dekker
https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

much more densely sampled near the diagonal in cis. Sparse

representations are not only critical for scalable storage: al-

gorithms such as matrix balancing and PCA can be adapted to

operate using only non-zero elements, and very finely binned

maps can be used to look at patterns averaged over many ge-

nomic loci. Storage that accommodates a wide range of data

resolutions is also necessary to visually explore the full depth

of scale of such large datasets.

Here we present a data model, an implementation and a sup-

port library for a sparse, scalable HDF5-based genomic array

format called cooler. We first describe a general sparse data

model for genomically-labeled arrays, designed with Hi-C

data in mind, but flexible enough to accommodate any binned

genomic data describing associations, correlations, or inter-

actions, such as linkage disequilibrium statistics. We then

present its implementation as a file format in HDF5 that can

support genomic matrices at any resolution as well as multi-

resolution files, with a support software library in Python,

also called cooler. The library provides the functionality

to create, aggregate and manipulate the contents of cooler

files, provides an application programming interface (API) to

materialize genomic range queries in both tabular and array

forms. Its design supports both sequential and random ac-

cess, ideal for the development of out-of-core data process-

ing algorithms. A command line interface is shipped with

the cooler package for convenient scripting, application and

pipeline integration.

Data model

We outline a simple but flexible data model for representing

multidimensional binned genomic data termed genomically-

labeled sparse arrays (GLSAs). In the context of data struc-

tures, matrices and tensors are normally referred to as arrays,

their individual shape dimensions are sometimes also termed

axes. We will refer to the discrete units along the array axes

as bins. Throughout we assume that the array axes are ho-

mogeneous, i.e. correspond to the same genome assembly,

binned in the same way. A two-dimensional genomically-

labeled array is a data structure that assigns unique quantita-

tive values to pairs of bins obtained from an interval partition

of a reference genome assembly. These pairs of bins make

up the coordinates of the array’s elements. Because they are

often visualized as heatmaps, we also use the term “pixels” to

refer to elements of 2D arrays. By omitting pixels possessing

zero or no value, the representation becomes sparse.

A genomically-labeled array of dimension two or greater can

be represented with a single table similar to the BEDPE for-

mat, where each non-zero array element is described by a

record listing the genomic coordinates of its bins and addi-

tional bin-related attributes alongside the element’s quantita-

tive value(s) (Figure 1b, right). In Hi-C, for example, addi-

tional bin-related quantities include normalization weights or

A/B compartment signal. However, at the scale of Hi-C data,

this representation is limited by the fact that bin-related at-

tributes (coordinates, weights, etc.) can be duplicated many

times throughout the table, in numbers greatly exceeding the

total number of bins.

chroms

name: String

length: int

bins

chrom: Enum

start: int
end: int... ...

elements

N
dims}

bin1: int

bin2: int...

[value columns]...

a

b

c

annotate

element selection

bins

annotated selection

bin2

b
in
1

bin1 ≤ bin2

� format
format-version
metadata
assembly
storage-mode
...

bins

chroms

pixels

indexes

name

length

chrom

start

end

bin1_id

bin2_id

count

chrom_offset

bin1_offset

�

�

�

�

�

�

�

�

[axis columns]

Fig. 1. Data model for genomically-labeled sparse arrays and cooler format. a, Di-

agram of the GLSA data model. A multidimensional genomically labeled array can

be represented via a decomposition that distinguishes the attributes describing the

genomic intervals (table labeled bins) that make up the coordinates of the array’s

axes from the actual non-zero elements of the array (table labeled elements). The

element table contains one or more numerical value columns and simple integer

coordinates that reference rows of the bin table (depicted using arrows). The bin

table’s records describe a sequence of ordered, non-overlapping genomic intervals,

minimally described by the reference sequence (chrom), and start, and end posi-

tions. The chrom column is further encoded as an integer enumeration to reference

a third table labeled chroms, which contains attributes describing the reference se-

quences themselves, such as their genomic lengths. b, Any selection of rows of the

element table can be annotated by joining with the appropriate columns of the bin

table. c, For symmetric matrices, such as Hi-C maps, only upper triangular pixels

are stored to eliminate duplication. Right, a diagram of a cooler data collection’s

hierarchical structure. The three tables are modeled as HDF5 groups (depicted

as folders) while the table columns are stored as 1D arrays, which are chunked

and compressed internally by HDF5. A reserved set of metadata HDF5 attributes

are associated with the root group of the data collection, including a flag indicating

whether the matrix is to be interpreted as symmetric.

We eliminate such redundancy by replacing the single table

with two separate ones (Figure 1a). The first is a bin table that

describes the complete genomic bin segmentation on both

axes of the matrix, such that each bin-related attribute is fully

described by a column, or one-dimensional array. The second

table contains distinct axis columns (bin1_id, bin2_id)

that reference the rows of the bin table: the resulting pixel

table is a condensed representation of the nonzero elements

of the array. Conveniently, this corresponds to the classic

coordinate list (COO) representation for sparse arrays (14).

For completeness, we include a third chromosome table to

list the chromosomes (or other scaffolds) of the genome as-

sembly, their genomic lengths, and any other chromosome-

specific attributes. Note that while the bin and chromosome

tables tend to have a relatively small memory footprint, it is

the pixel table that can greatly exceed memory storage for

large datasets.

Furthermore, for symmetric matrices, such as Hi-C, we re-

duce data requirements and preserve a unique representa-

tion by keeping only unique pixels and orienting them to lie

within the upper triangle of the matrix, discarding their lower

2 | bioRχiv Abdennur et al. | Cooler

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

triangular transpose elements (Figure 1c). Altogether, for a

given ordering of the chromosomes of an assembly, this de-

composition uniquely represents a given genomically-labeled

2D array.

Given any collection of rows from the pixel table, its full rep-

resentation (or any subset of bin-related attributes) can be re-

covered inexpensively at the application level by performing

relational joins between the axis columns of the pixel table

and the desired bin attributes in the bin table. We refer to this

as element annotation (Figure 1b).

Cooler format

We implemented the GLSA data model for 2D arrays using

HDF5, defining a file format called cooler, with the recom-

mended extension .cool. A full specification can be found

in the online documentation. We outline the key elements in

this section.

Specification. HDF5 files are organized hierarchically, akin

to a file system within a file, with two primary structures,

groups and datasets. Groups serve the role of directories and

contain zero or more groups or datasets. Datasets are multi-

dimensional arrays, which can be flexibly sized, chunked and

passed through various I/O filters, including checksumming

and compression. Both groups and datasets can be assigned

key-value user metadata, called attributes, and like POSIX

file systems can be referenced with relative or absolute paths

separated by slashes.

HDF5 does not natively support sparse arrays or relational

data structures: its datasets are dense multidimensional ar-

rays. Therefore, we model a table as a group of equal-length

1D arrays representing columns. Although HDF5 does sup-

port row-oriented storage using compound data types (i.e.

structured arrays), we chose to implement column-oriented

storage because of the advantages it provides, including

cheap addition or removal of columns, efficient slicing along

columns, and more efficient compression (15). Our simple

table model thus allows for easy addition of columns and

appending of rows, but not random insertion of rows. This

was deemed reasonable since the raw datasets are normally

write-once, but global data transformations are not uncom-

mon. Moreover, it does not enforce a specific ordering on the

columns, though a conventional order for required columns

is provided in the specification.

A schematic of the array hierarchy representing a single ma-

trix is shown in Figure 1c. Three HDF5 groups representing

the chrom, bin and pixel tables live directly beneath the col-

lection’s root group. Our specification permits any number

of additional columns in the three tables and any additional

group hierarchies and metadata, as long as they are not nested

within the group of a table. For example, additional 1D sig-

nal tracks can be appended to the bin table, and pixel tables

can contain multiple value columns (e.g., the color bands of

an image). An additional group called indexes lives along-

side the three tables and contains two index arrays described

below.

We term the complete object hierarchy representing a ma-

trix a data collection. The specification requires that some

standard metadata be provided in the attributes of the data

collection’s root group (Figure 1c). We reserve an additional

attribute slot for storing serialized custom user metadata in

JSON format: for example, experimental details, processing

logs or mapping statistics. Since all versions of the HDF5 li-

brary ship with zlib compression, for maximum portability, it

was chosen as the default compression filter for all columns.

Indexing. We further stipulate that the records of the pixel ta-

ble must be sorted lexicographically by the bin ID along the

first axis, then by the bin ID along the second axis. This way,

the bin1_id column can be substituted with an array of off-

sets that serves as a lookup index for the rows of the matrix,

stored under indexes/bin1_offset (Figure 1c). With this in-

dex, we obtain a compressed sparse row (CSR) sparse matrix

representation (14). Given an enumeration of chromosomes,

the bin table must also be lexicographically sorted by chro-

mosome then by start coordinate. Then similarly, the chrom

column of the bin table will reference the rows of the chrom

table, and can also be substituted with an offset array, stored

under indexes/chrom_offset (Figure 1c). Because of the effi-

cient compression of sorted columns, we preserve the orig-

inal bin1_id and chrom columns so that the indexes may be

dispensable for a reader that does not wish to use them.

Flavors. Although the standard cooler file contains a single

data collection located at the file’s root group, we allow a

cooler file to store multiple data collections anywhere in the

group hierarchy of an HDF5 file, as long as they are not se-

quentially nested. Any number of data collections is permit-

ted, and each individual data collection can be referenced

using its qualified group path. We therefore support a flex-

ible URI syntax to locate data collections within a file (see

below) and provide two conventional “flavors” of the file lay-

out: the single resolution and multi-resolution or “zoomified”

cooler (often suffixed .mcool), which is ideal for interac-

tive multiscale visualization, as exemplified by HiGlass (16)

(Figure 2).

Cooler package

We provide a Python-based convenience library to manage

cooler data collections. It provides tools to create and append

data to collections, to merge, aggregate and normalize them,

and to and query their contents and metadata. To identify

cooler data collections that may lie at any level of the group

hierarchy of a file, we support a URI syntax consisting of a

file path, optionally followed by double colon :: followed

by a fully qualified HDF5 group path. If the double colon

and group path are omitted from the URI, the data collection

is interpreted as being located in the file’s root group.

Command line interface. The cooler Python package ships

with a command line interface (CLI) for most common ma-

nipulations (Figure 3a). They are provided as subcommands

under a top-level cooler command namespace. We briefly

Abdennur et al. | Cooler bioRχiv | 3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

Fig. 2. Multiresolution cooler files can be synchronously browsed with contin-

uous pan and zoom. Snapshot of the HiGlass web application (16) display-

ing two zoomified (multiresolution) cooler files storing different 2D genomic data

types in two “views” linked by location and zoom level with synchronized pan-

ning and zoom. HiGlass provides a continuous genome-wide Google Maps-like

user interface that automatically and smoothly adjusts data resolution. The Hi-

Glass client requests the necessary data to render heatmap tiles from a Python-

based server using the cooler library. The views contain additional genomic and

epigenomic tracks along their top and left borders, also synchronized. Left: a

Hi-C map for GM12878 lymphoblastoid cells from (17). Right: a heatmap dis-

playing locally averaged linkage disequilibrium (LD) r values between all pairs

of human variants derived from the 1000 Genomes Project, Phase 3 (18). Pair-

wise LD statistics were calculated genome-wide on all variants over a 5 Mb sliding

window using tomahawk (https://github.com/mklarqvist/tomahawk)

and the output was ingested into a cooler file using cooler cload at a 1 kb-

resolution aggregation and further aggregated using cooler zoomify. Bor-

ders: hg19 coordinates and gene annotation tracks as well as CTCF ChIP-seq

bigwig signal tracks (blue bars) from ENCODE (19). The top border track displays

Epilogos (https://epilogos.altiusinstitute.org/) tracks summariz-

ing ChromHMM state annotations over 127 cell types in the Roadmap Epigenomics

Project’s Core 15-state model (20). This figure can be browsed interactively online

at https://higlass.io/app?config=W4DNgqjXRNWPQ7Nbz7NLnQ.

describe the main commands below, grouped by theme. All

these actions are also available and further customizable pro-

grammatically through the Python API.

Ingestion. There are several commands used to create cooler

data collections from input data. The first required input is a

definition of the bin segmentation of the genome assembly to

which the interaction data was mapped. This can be provided

either as a BED file, or in the case of a fixed bin size resolu-

tion, alternatively as a file listing the chromosome lengths (a

chrom-sizes file) along with the bin size (resolution) in base

pairs. The second required input is either (1) a list of records

describing aggregated data (i.e. a matrix) or (2) a list of un-

aggregated paired tags.

If the input data are unaggregated paired tags, the command

cooler cload will aggregate the pairs according to the

provided bin segmentation. If the input is already binned, the

cooler load command will convert the input matrix into

the cooler format.

Aggregation. Cooler data collections at one or more base res-

olutions can be aggregated or coarsened to lower resolutions

using the cooler coarsen command. Moreover, recur-

sively aggregated multi-resolution cooler files can be gener-

ated using the cooler zoomify command. The resulting

files are suitable both for data analysis and for multiscale vi-

sualization (21).

Merging. Any combination of cooler data collections with

compatible bin axes, such as technical or biological repli-

cates of an experiment, can be pooled together in a memory-

efficient manner using the cooler merge command.

Balancing. The de facto standard method for normalizing Hi-

C data is matrix balancing, also known as iterative correc-

tion (11). Because is it such a common transformation, we

include this functionality in the cooler package. The output

is a vector of balancing weights (the reciprocal of the biases

described in (11)). These weights are applied by multiply-

ing each pixel value by the weights associated with its two

genomic bins.

The cooler balance command performs bin-level filter-

ing and balancing using a parallel and out-of-core implemen-

tation of iterative correction with extensive options. Balanc-

ing weights are normally stored as columns in the bin table of

a data collection and applied on-the-fly during querying. Al-

ternatively, one can generate a new data collection of trans-

formed counts.

View/Export. The contents of the chrom, bin and pixel ta-

bles may be serialized as delimited text using the cooler

dump command, which also supports genomic range queries

and pixel annotation. Additionally, the cooler show com-

mand provides a lightweight interactive matplotlib visualiza-

tion to inspect and explore the data.

Python library. The cooler library provides programmatic

access to all of the above functions as well as an API to select

arbitrary ranges of data from the tables and perform 2D range

queries on matrices (Figure 3b), powered by the h5py (22)

Python interface to HDF5. It provides both tabular and 2D

array-based interfaces to the sparse (and, for symmetric ma-

trices, upper triangular) data representation in the file. It un-

derstands both global array indices and genomic coordinate

ranges.

To integrate seamlessly into the Python data ecosystem, the

cooler package’s API materializes queries in several com-

mon scientific data structures, including dense NumPy arrays,

SciPy sparse matrices and Pandas data frames. Furthermore,

selections of pixels in data frame form can be annotated with

genomic bin columns as depicted in Figure 1b using the an-

notate function.

The combined CLI and API of the cooler package makes

it suitable for use in scripts and pipelines and for inclusion

in other software libraries. Thanks to its ease of integration

with Python-backed tools, it has already been successfully

integrated into 3D genome browsers, pipelines and visual-

ization tools, including HiGlass (16), the WashU Epigenome

Browser (23), HiCExplorer (13), and HiCPlotter (24). The

cooler package also provides the flexibility to facilitate inter-

active data analysis in environments such as the Jupyter Note-

book platform (25). A comprehensive suite of tools dedicated

to Hi-C data analysis using cooler files is being developed as

part of a package called cooltools and will be presented else-

where.

4 | bioRχiv Abdennur et al. | Cooler

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://github.com/mklarqvist/tomahawk
https://epilogos.altiusinstitute.org/
https://higlass.io/app?config=W4DNgqjXRNWPQ7Nbz7NLnQ
https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

aggregate

cooler coarsen
cooler zoomify

combine

cooler merge

view/export

cooler dump
cooler show

normalize

cooler balance

bins/weight

bins/weight_cis

bins/weight_trans

bins

pairs matrix

ingest
cooler cload cooler load

*.1kb.cool

*.mcool

::resolutions/1000

::resolutions/2000

::resolutions/5000

...

↸ � � | � � � � | �

�

�

hg19.chrom.sizes:1000

hg19.DpnII.bins.bed

or

interact

In [1]: import cooler

In [2]: c = cooler.Cooler('out.1kb.mcool::resolutions/10000')

In [3]: selector = c.matrix(sparse=True)

In [4]: result = selector.fetch('chr4:10M-11M', 'chr5')

�

...

...

...

...

.........

...

numpy NDArray

scipy Sparse Matrix

pandas DataFrame

...

pandas DataFrame

1D range selector

chroms, bins, pixels

2D range selector

matrix

a

b

Fig. 3. Cooler command line interface and Python library. a, Summary of the

main categories of cooler commands available with the cooler Python package,

illustrating the flow of data. The main operations include the ingestion of file or

text streams to create new coolers, aggregation and coarsening of existing coolers

to lower resolutions, merging of axis-compatible matrices, normalization of cooler

matrices by iterative correction, utilities to serialize and stream out the data and

metadata inside a cooler file and to process range queries, and a lightweight viewer

to visually inspect a matrix. For example, one uses either the load command

to ingest pre-aggregated data already in matrix form, or the cload command to

aggregate paired tag records into a matrix. The genomic bin segmentation defining

the axes of the matrix must be provided separately by providing either a path to a

BED file or a path to a chromosome sizes file along with a specified fixed bin size.

b, The cooler Python library provides a Cooler class that exposes data range

selectors to facilitate data retrieval and analysis. The individual chrom, bin and pixel

tables are accessible using 1D range selectors that accept column and row-range

selections and yield pandas data frame output. A cooler’s matrix values are also

exposed using a 2D range selector that processes range queries provided either as

genomic coordinate intervals in UCSC-style notation (using the fetch method) or

as integer matrix coordinates (using Python slice syntax). The retrieved 2D range

data may be materialized as dense NumPy arrays, sparse matrices, or data frames.

For symmetric coolers, the file’s upper triangular data will be appropriately mirrored

in the array and sparse matrix outputs.

Implementation. Cooler is implemented as a Python pack-

age and supports Python versions 2.7 and 3.4 or greater and

works on Linux, Mac OS X and Windows platforms. The

cooler package is open source, BSD licensed, and the source

code is maintained on GitHub at https://github.com/

mirnylab/cooler. The documentation is hosted at

https://cooler.readthedocs.io.

Cooler can be installed using Python’s pip package manager,

$ pip install cooler

or from the bioconda distribution channel (26) using the

conda package manager.

$ conda install -c bioconda cooler

For docker users, the command line interface is also available

through BioContainers (27).

$ docker run quay.io/biocontainers/cooler

cooler --help

Discussion

We present a sparse data model and file format for

genomically-labelled arrays with minimal redundancy but

enough flexibility to support a wide range of data types, data

sizes and future metadata requirements. A sparse represen-

tation in particular is crucial for developing robust tools and

algorithms for use on increasingly high-resolution multidi-

mensional genomic data sets that need to operate on subsets

of data at a time. While we developed a command line suite

and Python API to create, inspect and manipulate cooler data

collections, we also set out to define a simple enough specifi-

cation that it could be easily interpreted across programming

environments using the established APIs of the underlying

storage layer.

In selecting a storage layer on which to implement our sparse

array data model, HDF5 was chosen because it is an open-

source, portable and performant format for scientific data

with widespread use and whose self-describing generic data

structures are well suited to data modeling. Furthermore, we

required exchangeable encapsulated files, rather than sharded

files or distributed databases, because the former are still in-

dispensable for modern bioinformatic workflows and data

analysis practices. Popular binary formats such as the current

versions of MATLAB’s mat files and Unidata’s NetCDF4

are built as abstractions on top of HDF5 (28) and it has

been used to store petabytes of mission critical data, such as

NASA’s Earth Observation System, for decades (29). Impor-

tantly, HDF5 supports chunking and compression, arrays of

unlimited size, efficient array subset selection (slicing), and

high level APIs exist for a wide variety of programming lan-

guages, including C/C++, Java, Python, Perl, and R.

Nevertheless, the high-level GLSA data model can be im-

plemented using a variety of storage strategies for differ-

ent goals. For example, because the model minimally

fragments the data while eliminating duplication, it can

be very useful for text-based interchange for multidimen-

sional genomic arrays or parts thereof. Indeed, for Hi-

C data, a two-file text format based on a bin file and up-

per triangular element file was introduced by the HiCPro

pipeline (30). Other open source backends in which GLSAs

could be implemented include Apache Parquet (https:

//parquet.apache.org/), a cloud-optimized colum-

nar binary format for big tabular data; an emerging ar-

ray storage technology called TileDB that provides na-

tive high performance sparse array support (https://

tiledb.io/); and a new format called Zarr (https:

//github.com/zarr-developers/zarr) that pro-

vides an HDF5-inspired implementation of chunked, com-

pressed, N-dimensional arrays that can work on top of a va-

riety of storage layers (file system hierarchies, zip files, or

Abdennur et al. | Cooler bioRχiv | 5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://github.com/mirnylab/cooler
https://github.com/mirnylab/cooler
https://cooler.readthedocs.io
https://parquet.apache.org/
https://parquet.apache.org/
https://tiledb.io/
https://tiledb.io/
https://github.com/zarr-developers/zarr
https://github.com/zarr-developers/zarr
https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

key-values stores). Such new technologies are poised to be-

come more important as community genomic data migrates

increasingly to cloud storage and computing environments.

Of course, our design decisions involved certain tradeoffs.

The data model assigns every genomic bin a global bin ID,

which is sensitive to the chromosome order chosen. This

tradeoff was deemed preferable to more complicated schemes

that add additional bin identifiers or that divide each scaffold-

pair block into a separate group. HDF5 supports a row-

based storage model for tables using compound data types

(structured arrays), but the compression, append, and perfor-

mance benefits of columnar were deemed important enough

to define a column-based storage model. The CSR indexing

scheme in our HDF5 schema is very space-efficient, but not

optimal for 2D range queries because the data are not serial-

ized in a way that strongly preserves 2D locality. However,

by using different sort orders on the element data, the data

model we present can support more sophisticated indexing

schemes, such as space-filling curves (31). Finally, the data

model implemented describes two-dimensional arrays with

homogeneous sets of axes. Though not yet implemented in

the cooler package, handling heterogeneous axes is a mat-

ter of including separate chromosome and bin tables for each

distinct axis. The data model also extends naturally to multi-

dimensional tensors by including additional axis columns in

the element table.

Cooler provides a scalable solution to tackling the analysis

and visualization of big Hi-C data and other genomically-

labeled matrices at any data resolution, scaling to massive

data sizes without incurring the read and write bottlenecks

of dense storage. It is also amenable to external-memory

(often called out-of-core) algorithms that can be controlled

to maximally exploit multiple cores and disk I/O while not

overwhelming memory resources (32). The cooler package’s

command line tools facilitate integration into scripts and

workflows, and its Python API allows users to leverage

the powerful resources of the Python data ecosystem while

the portable HDF5 format makes it readily accessible

in other environments such as Java, and R. The cooler

format has adopted as a standard for Hi-C data storage,

along with hic (8) and the pairs text format (https:

//github.com/4dn-dcic/pairix/blob/

master/pairs_format_specification.md),

by the 4D Nucleome Consortium’s Data Coordination and

Integration Center, and is already supported by a number

of genomic analysis and visualization tools, including

HiGlass (16).

ACKNOWLEDGEMENTS

We greatly thank Anton Goloborodko and Maxim Imakaev for many extensive

discussions, contributions to code development, and providing feedback on the

manuscript. We are grateful to Peter Kerpedjiev for helpful discussions and for Hi-

Glass integration. We also thank Geoffrey Fudenberg, Sergey Venev, Ilya Flyamer,

Joachim Wolff, members of the Mirny lab, and members of Nils Gehlenborg’s and

Peter Park’s groups for feedback, contributions, and animated participation on the

public issue tracker. We acknowledge support from the National Institutes of Health

Common Fund 4D Nucleome Program (DK107980), NIH (GM114190), and the Na-

tional Science Foundation (Physics of Living Systems: 1504942). This preprint is

formatted using a LATEXclass by Ricardo Henriques (CC-BY).

Bibliography

1. Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing chromosome

conformation. Science, 295(5558):1306–1311, 2002.

2. Annette Denker and Wouter De Laat. The second decade of 3C technologies: detailed

insights into nuclear organization. Genes & development, 30(12):1357–1382, 2016.

3. Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev, Tobias

Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, et al.

Comprehensive mapping of long-range interactions reveals folding principles of the human

genome. Science, 326(5950):289–293, 2009.

4. James OJ Davies, A Marieke Oudelaar, Douglas R Higgs, and Jim R Hughes. How best

to identify chromosomal interactions: a comparison of approaches. Nature methods, 14(2):

125, 2017.

5. Bryan R Lajoie, Job Dekker, and Noam Kaplan. The Hitchhiker’s guide to Hi-C analysis:

practical guidelines. Methods, 72:65–75, 2015.

6. Heng Li. Tabix: fast retrieval of sequence features from generic tab-delimited files. Bioinfor-

matics, 27(5):718–719, 2011.

7. Yanli Wang, Bo Zhang, Lijun Zhang, Lin An, Jie Xu, Daofeng Li, Mayank NK Choudhary,

Yun Li, Ming Hu, Ross Hardison, et al. The 3D Genome Browser: a web-based browser for

visualizing 3D genome organization and long-range chromatin interactions. BioRxiv, page

112268, 2017.

8. Neva C Durand, James T Robinson, Muhammad S Shamim, Ido Machol, Jill P Mesirov,

Eric S Lander, and Erez Lieberman Aiden. Juicebox provides a visualization system for hi-c

contact maps with unlimited zoom. Cell systems, 3(1):99–101, 2016.

9. Michael EG Sauria, Jennifer E Phillips-Cremins, Victor G Corces, and James Taylor. HiFive:

a tool suite for easy and efficient HiC and 5C data analysis. Genome Biology, 16(1):237,

2015.

10. The HDF Group. Hierarchical Data Format version 5, 2000-2018.

11. Maxim Imakaev, Geoffrey Fudenberg, Rachel Patton McCord, Natalia Naumova, Anton

Goloborodko, Bryan R Lajoie, Job Dekker, and Leonid A Mirny. Iterative correction of Hi-C

data reveals hallmarks of chromosome organization. Nature methods, 9(10):999, 2012.

12. Rajendra Kumar, Haitham Sobhy, Per Stenberg, and Ludvig Lizana. Genome contact map

explorer: a platform for the comparison, interactive visualization and analysis of genome

contact maps. Nucleic Acids Research, 45(17):e152–e152, 2017.

13. Joachim Wolff, Vivek Bhardwaj, Stephan Nothjunge, Gautier Richard, Gina Renschler, Ralf

Gilsbach, Thomas Manke, Rolf Backofen, Fidel Ramírez, and Björn A Grüning. Galaxy HiC-

Explorer: a web server for reproducible Hi-C data analysis, quality control and visualization.

Nucleic Acids Research, 2018.

14. Youcef Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report

90.20, Research Institute for Advanced Computer Science, NASA Ames Research Center,

1990.

15. Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores:

How different are they really? In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’08, pages 967–980, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376712.

16. Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum, Kasper Dinkla, Hen-

drik Strobelt, Jacob M. Luber, Scott B. Ouellette, Alaleh Azhir, Nikhil Kumar, Jeewon

Hwang, Soohyun Lee, Burak H. Alver, Hanspeter Pfister, Leonid A. Mirny, Peter J. Park,

and Nils Gehlenborg. HiGlass: web-based visual exploration and analysis of genome

interaction maps. Genome Biology, 19(1):125, Aug 2018. ISSN 1474-760X. doi:

10.1186/s13059-018-1486-1.

17. Suhas S P Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov,

James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, and

Erez Lieberman Aiden. A 3D map of the human genome at kilobase resolution reveals

principles of chromatin looping. Cell, 159(7):1665–1680, December 2014.

18. 1000 Genomes Project Consortium et al. A global reference for human genetic variation.

Nature, 526(7571):68, 2015.

19. ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the

human genome. Nature, 489(7414):57, 2012.

20. Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza

Heravi-Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, Michael J Ziller, et al.

Integrative analysis of 111 reference human epigenomes. Nature, 518(7539):317, 2015.

21. Jérôme Waldispühl, Eric Zhang, Alexander Butyaev, Elena Nazarova, and Yan Cyr. Storage,

visualization, and navigation of 3D genomics data. Methods, 142:74–80, 2018.

22. Andrew Collette. Python and HDF5. O’Reilly, 2013.

23. Daofeng Li, Silas Hsu, Deepak Purushotham, and Ting Wang. Chromatin interaction data

visualization in the WashU Epigenome Browser. bioRxiv, page 239368, 2017.

24. Kadir Caner Akdemir and Lynda Chin. HiCPlotter integrates genomic data with interaction

matrices. Genome Biology, 16(1):198, 2015.

25. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bus-

sonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul

Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter notebooks – a publishing

format for reproducible computational workflows. In F. Loizides and B. Schmidt, editors,

Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87 –

90. IOS Press, 2016.

26. Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe, Christopher H

Tomkins-Tinch, Renan Valieris, Johannes Köster, and Team Bioconda. Bioconda: sustain-

able and comprehensive software distribution for the life sciences. Nature methods, 15(7):

475, 2018.

27. Felipe da Veiga Leprevost, Björn A Grüning, Saulo Alves Aflitos, Hannes L Röst, Julian

Uszkoreit, Harald Barsnes, Marc Vaudel, Pablo Moreno, Laurent Gatto, Jonas Weber, et al.

BioContainers: an open-source and community-driven framework for software standardiza-

tion. Bioinformatics, 33(16):2580–2582, 2017.

28. Matthew T Dougherty, Michael J Folk, Erez Zadok, Herbert J Bernstein, Frances C Bern-

stein, Kevin W Eliceiri, Werner Benger, and Christoph Best. Unifying biological image for-

mats with HDF5. Queue, 7(9):20, 2009.

6 | bioRχiv Abdennur et al. | Cooler

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md
https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md
https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md
https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

29. Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An overview

of the HDF5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases, pages 36–47. ACM, 2011.

30. Nicolas Servant, Nelle Varoquaux, Bryan R Lajoie, Eric Viara, Chong-Jian Chen, Jean-

Philippe Vert, Edith Heard, Job Dekker, and Emmanuel Barillot. HiC-Pro: an optimized and

flexible pipeline for Hi-C data processing. Genome Biology, 16(1):259, 2015.

31. Valerio Pascucci and Randall J Frank. Hierarchical indexing for out-of-core access to multi-

resolution data. In Hierarchical and Geometrical Methods in Scientific Visualization, pages

225–241. Springer, 2003.

32. Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations and

Trends® in Theoretical Computer Science, 2(4):305–474, 2008. ISSN 1551-305X. doi:

10.1561/0400000014.

Abdennur et al. | Cooler bioRχiv | 7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/557660doi: bioRxiv preprint

https://doi.org/10.1101/557660
http://creativecommons.org/licenses/by/4.0/

