
Cooley-Tukey FFT on the Connection Machine

Citation
Johnsson, S. Lennart and Robert L. Krawitz. 1991. Cooley-Tukey FFT on the Connection Machine.
Harvard Computer Science Group Technical Report TR-24-91.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35059722

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:35059722
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Cooley-Tukey%20FFT%20on%20the%20Connection%20Machine&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Cooley-Tukey FFT on the Connection

Machine

S. Lennart Johnsson

Robert L. Krawitz

TR-24-91

September 1991

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

Cooley-Tukey FFT on the Connection Machine

S. Lennart Johnsson

1

and Robert L. Krawitz

Thinking Machines Corp.

245 First Street,

Cambridge, MA 02142

Johnsson@think.com,rlk@think.com

Abstract

We describe an implementation of the Cooley Tukey complex-to-complex FFT on the Con-

nection Machine. The implementation is designed to make e�ective use of the communica-

tions bandwidth of the architecture, its memory bandwidth, and storage with precomputed

twiddle factors. The peak data motion rate that is achieved for the interprocessor commu-

nication stages is in excess of 7 Gbytes/s for a Connection Machine system CM-200 with

2048 oating-point processors. The peak rate of FFT computations local to a processor

is 12.9 Gops/s in 32-bit precision, and 10.7 Gops/s in 64-bit precision. The same FFT

routine is used to perform both one- and multi-dimensional FFT without any explicit data

rearrangement. The peak performance for a one-dimensional FFT on data distributed over

all processors is 5.4 Gops/s in 32-bit precision and 3.2 Gops/s in 64-bit precision. The

peak performance for square, two-dimensional transforms, is 3.1 Gops/s in 32-bit precision,

and for cubic, three dimensional transforms, the peak is 2.0 Gops/s in 64-bit precision.

Certain oblong shapes yield better performance. The number of twiddle factors stored in

each processor is

P

2N

+ log

2

N for an FFT on P complex points uniformly distributed among

N processors. To achieve this level of storage e�ciency we show that a decimation-in-time

FFT is required for normal order input, and a decimation-in-frequency FFT is required for

bit-reversed input order.

1 Introduction

The main contribution of this paper is an e�cient adaptation of the well known Cooley-Tukey

[1] Fast Fourier Transform to multi-processors interconnected by a Boolean cube network.

The focus is on three issues: e�cient use of the communications bandwidth, e�cient use

of the memory bandwidth, and minimum storage requirements with precomputed twiddle

factors. The algorithms we describe have been implemented on the Connection Machine sys-

tems CM-2 and CM-200, and are part of the Connection Machine Scienti�c Software Library.

Performance data is provided for both one-dimensional and multi-dimensional complex-to-

complex Fourier Transforms. The implementation uses a mix of radix-2, 4 and 8 kernels

for the computations involving only local data, while computations requiring interaction

between data in di�erent memory units only use radix-2 kernels.

1

Also a�liated with Division of Applied Sciences, Harvard University, Cambridge, MA 02138

1

The Discrete Fourier Transform (DFT) is de�ned by

X(l) =

P�1

X

j=0

!

lj

P

x(j); 8l 2 [0; P � 1]; !

P

= e

�

2�i

P

:

and the Inverse Discrete Fourier Transform (IDFT) is de�ned by

~x(j) =

1

P

P�1

X

l=0

!

�lj

P

X(l); 8j 2 [0; P � 1]; !

P

= e

�

2�i

P

:

The coe�cients w

lj

P

are known as twiddle factors. We consider both decimation-in-time, DIT,

and decimation-in-frequency, DIF, versions of the Cooley-Tukey FFT [1]. The decimation-

in-time FFT is de�ned by the splitting formula

X(l) =

P

2

�1

X

j

0

=0

!

lj

0

P

2

x(2j

0

) + !

l

P

P

2

X

j

0

=0

!

lj

0

P

2

x(2j

0

+ 1); 8l 2 [0;

P

2

� 1]

X(l +

P

2

) =

P

2

�1

X

j

0

=0

!

lj

0

P

2

x(2j

0

)� !

l

P

P

2

X

j

0

=0

!

lj

0

P

2

x(2j

0

+ 1); 8l 2 [0;

P

2

� 1]

and the decimation-in-frequency FFT is de�ned by the splitting formula

X(2l

0

) =

P

2

�1

X

j=0

!

l

0

j

P

2

(x(j) + x(j +

P

2

)); 8l

0

2 [0;

P

2

� 1];

X(2l

0

+ 1) =

P

2

�1

X

j=0

!

l

0

j

P

2

!

j

P

(x(j)� x(j +

P

2

)); 8l

0

2 [0;

P

2

� 1]:

The data interactions for the two splitting formulas, also known as butteries, are shown

in Figures 1 and 2. The splitting formulas above de�ne radix-2 FFTs. Higher radix FFTs

such as radix-4 and radix-8 FFT are de�ned similarly, see e.g. [13]. Details of a Connection

Machine implementation are reported in [12].

Both the DIF and the DIT FFT reorder the data from normal to bit reversed order (or the

converse). The most important di�erence between the DIF and DIT FFTs with respect

to distributed memory systems is that the DIF and DIT FFTs use the twiddle factors in

opposite order. This di�erence causes a di�erence in the demand for twiddle factor storage

by a factor of log

2

N for an N processor system, as discussed in section 4.

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

u

u

u

u

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

[4]

[4]

[4]

[4]

[0]

[0]

[0]

[0]

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

[6]

[6]

[2]

[2]

[4]

[4]

[0]

[0]

�

�A

Au

�

�A

Au

�

�A

Au

�

�A

Au

�

�A

Au

�

�A

Au

�

�A

Au

�

�A

Au

[7]

[3]

[5]

[1]

[6]

[2]

[4]

[0]

Index

binary

x(15) 1111

x(14) 1110

x(13) 1101

x(12) 1100

x(11) 1011

x(10) 1010

x(9) 1001

x(8) 1000

x(7) 0111

x(6) 0110

x(5) 0101

x(4) 0100

x(3) 0011

x(2) 0010

x(1) 0001

x(0) 0000

Index

binary

1111 X(15)

0111 X(7)

1011 X(11)

0011 X(3)

1101 X(13)

0101 X(5)

1001 X(9)

0001 X(1)

1110 X(14)

0110 X(6)

1010 X(10)

0010 X(2)

1100 X(12)

0100 X(4)

1000 X(8)

0000 X(0)

Figure 1: Decimation-in-time FFT.

The Connection Machine systems CM-2 and CM-200 have up to 2048 oating-point proces-

sors that support operations in both 32-bit and 64-bit precision. The memory is distributed

among the processing units, with a maximum of 4 Mbytes of memory per unit, and a total

memory of 8 Gbytes. Each processing unit has a single 32-bit wide data path to its memory.

Data paths internal to the oating-point unit are 64-bits wide. The processing units are

interconnected as an 11-dimensional Boolean cube, with two channels between every pair of

nodes. Data may be sent on all 22 (11� 2) channels concurrently.

The data layout has a signi�cant impact on performance for most distributed memory ar-

chitectures. In order to maximize the potential for parallelism data arrays are distributed

evenly over the processor memories. Two common schemes for assigning data to processors

are the consecutive (block) allocation, and cyclic (scatter) allocation [6, 3]. The two types

of data allocation are illustrated in Figure 3 for a 32 element array distributed among 8

memory units. All Connection Machine compilers use the consecutive allocation scheme.

However, for the FFT a cyclic data allocation would yield a lower communication time in

some cases [11]. For multi-dimensional data arrays, the ability to con�gure the Connection

Machine processors as a multi-dimensional array with axes lengths being arbitrary powers

of two can be exploited for enhanced performance. The processor con�guration is controlled

by compiler directives.

The focus of the algorithm development presented here is an unordered FFT. The presented

algorithms fully utilize the communication system. Reordering for ordered transforms is

3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

u

u

u

u

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

u

u

u

u

[6]

[4]

[2]

[0]

[6]

[4]

[2]

[0]

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

�

�

�

�

�

�

A

A

A

A

A

A

u

u

[4]

[0]

[4]

[0]

[4]

[0]

[4]

[0]

�

�A

A u

�

�A

A u

�

�A

A u

�

�A

A u

�

�A

A u

�

�A

A u

�

�A

A u

�

�A

A u

[0]

[0]

[0]

[0]

[0]

[0]

[0]

[0]

Index

binary

x(15) 1111

x(14) 1110

x(13) 1101

x(12) 1100

x(11) 1011

x(10) 1010

x(9) 1001

x(8) 1000

x(7) 0111

x(6) 0110

x(5) 0101

x(4) 0100

x(3) 0011

x(2) 0010

x(1) 0001

x(0) 0000

Index

binary

1111 X(15)

0111 X(7)

1011 X(11)

0011 X(3)

1101 X(13)

0101 X(5)

1001 X(9)

0001 X(1)

1110 X(14)

0110 X(6)

1010 X(10)

0010 X(2)

1100 X(12)

0100 X(4)

1000 X(8)

0000 X(0)

Figure 2: Decimation-in-frequency FFT.

Consecutive data allocation

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

Cyclic data allocation

P

0

P

1

P

2

P

3

P

4

P

5

P

6

P

7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Figure 3: Consecutive and cyclic data allocation of 32 elements to 8 processors.

4

performed explicitly. Reordering algorithms that fully use communications systems allowing

concurrent communication on multiple channels are presented in, for example, [7, 8, 9]. An

implementation on the Connection Machine is presented in [2]. For reference we include

performance data for some ordered transforms. Interleaving the reordering with the FFT

computation o�ers no advantage on a system allowing concurrent communication on all

channels, unlike the case with communication restricted to one channel at a time [15, 16].

We also restrict the algorithmic considerations to data allocated to processors using the

standard binary encoding, which is advantageous for the Cooley-Tukey FFT. For multi-

processors con�gured as Boolean cube networks, a binary-reected Gray code [14] is often

used. In such an encoding successive array elements are allocated either in local memory, or in

an adjacent processor. This type of data allocation is advantageous for algorithms requiring

nearest neighbor communication, such as for instance relaxation algorithms. Algorithms

that compute a Cooley-Tukey FFT on such a data allocation without loss of e�ciency are

presented in [10].

The outline of this paper is as follows. We �rst review the mapping of the radix-2 FFT to

Boolean cube networks. Particular emphasis is placed on e�ective use of the communication

system [11]. We then briey review the issues in e�cient use of the data path between a

oating-point unit and its memory, followed by a detailed account of twiddle factor com-

putation and storage in the distributed memory system. We focus on the consecutive data

allocation, since all Connection Machine compilers use this allocation scheme. Whenever

a cyclic data allocation would result in signi�cantly di�erent conclusions we will state the

di�erence. A few details of the implementation are given in Section 6, and performance

data are reported in Section 7. Potential improvements of the current implementation are

reviewed in Section 8.

2 Radix-2 FFTs on Boolean Cubes

For the radix-2 Cooley-Tukey FFT the data interaction in stage q, 0 � q < p, with stages

labeled from input to output, is between data with indices i and i � 2

p�1�q

. � denotes

the bit-wise exclusive-or function. For example, in Figures 1 and 2 a 16-point transform is

computed with the data interaction in the �rst stage being between data elements that di�er

by 8 in their indices. In the second stage the interaction is between elements that di�er by

4 in their indices, etc.

In a Boolean cube network nodes can be labeled such that there is one adjacent node for

every bit in the node address, i.e., for every node with address i in a Boolean cube of n

dimensions and N = 2

n

nodes, there are n neighbors with addresses i� 2

j

, 0 � j < n. The

data interaction for the radix-2 Cooley-Tukey FFT matches well with the connectivity of

the Boolean cube. For a precise assessment of the communication requirements we consider

in some detail the consecutive allocation of data to memory units. In the data index space

the allocation can be represented as follows, where x

i

denotes one bit in the encoding of the

indices. The total number of bits required for the encoding of the data indices is p for a data

set of size P = 2

p

.

5

Consecutive assignment: (x

p�1

x

p�2

: : : x

p�n

| {z }

rp

x

p�n�1

x

p�n�2

: : : x

0

| {z }

vp

)

Bits assigned to the processor address �eld are labeled rp, and bits in the encoding of indices

assigned to the local memory address �eld are labeled vp. With consecutive data allocation

the n most signi�cant bits identify the processor, and the least signi�cant p�n bits identify

the local memory addresses. Thus, there are

P

N

elements per processor. For instance, a data

array of 1024 points require 10 bits for its binary encoding. With a consecutive mapping

to 128 processors, there are 8 data points per processor. Seven bits are required for the

encoding of processor addresses, and three for the local addresses. With the consecutive

mapping elements 0 though 7 are mapped to the �rst processor, elements 8 through 15 to

the second processor, etc. The three least signi�cant bits of the data index encoding are

used for local memory addresses.

For the consecutive data allocation the �rst n steps require inter-processor communication,

while the last p�n steps are local to a processor. If the data is allocated in bit-reversed order,

then the most signi�cant bit in the data index corresponds to address bit 0, and the least

signi�cant index bit to address bit p�1. The order of the inter-processor communication and

the local reference phases are reversed. With the data in normal input order, the �rst stage

in the Cooley-Tukey FFT requires communication in the most signi�cant cube dimension.

The following n � 1 stages require communication in successively lower dimensions. By

exchanging all

P

N

local data elements between pairs of processors the computations can be

split between a pair of processors; one computes the \top" of a buttery, one the \bottom".

A direct implementation of the above scheme yields poor utilization of the communication

system. In each of the �rst n stages only one cube dimension per stage is used. The

communications e�ciency is

1

n

. By pipelining the FFT stages the e�ciency can be improved

to almost 100%. Table 1 illustrates the idea of pipelining FFT stages. Columns represent

processors, and rows local memory addresses. The �rst �ve memory locations are shown.

The data allocation is assumed consecutive, and the entries in the table show the cube

dimensions in which data are exchanged during the �rst four time steps. After the pipeline

startup of n� 1 stages, all n dimensions are used for every time step until the pipeline shut

down takes place. Once the pipeline is �lled, n data items are exchanged in all processors

in every stage, until the pipeline shut down phase is reached. The total number of element

exchanges in sequence is

P

N

+n�1, which is an improvement over the non-pipelined algorithm

by a factor of approximately n.

Our FFT implementation on the Connection Machine uses the above scheme to achieve full

utilization of the communication capabilities of the architecture. The two channels between

each pair of nodes are used to exchange concurrently the real and imaginary parts of a data

point.

6

Time Memory Processor

Step location 0 1 2 3 4 5 6 7

0 2 2 2 2 2 2 2 2

1 - - - - - - - -

0 2 - - - - - - - -

3 - - - - - - - -

4 - - - - - - - -

0 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2

1 2 - - - - - - - -

3 - - - - - - - -

4 - - - - - - - -

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 - - - - - - - -

4 - - - - - - - -

0 - - - - - - - -

1 0 0 0 0 0 0 0 0

3 2 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2

4 - - - - - - - -

Table 1: The communication for the �rst four steps of a radix-2 FFT with pipelined stages.

3 Minimizing local data motion

The most e�ective use of a memory hierarchy with respect to data transfer bandwidth [4, 5]

is to use a high radix FFT algorithm. For each level in the hierarchy the radix shall be equal

to the size of the maximum data set that �ts in the memory at that level. With a single

data path between a oating-point unit and its memory, the radix shall be chosen according

to the number of registers in the oating-point unit. Table 2 summarizes the arithmetic and

data motion requirements for radix-2, 4, and 8 FFT. Only the most signi�cant terms are

accounted for. The reduction in the need for memory bandwidth is much more signi�cant

than the reduction in the number of arithmetic operations. An FFT based on radix-8 kernels

requires about 1/3 as many memory references as a radix-2 based FFT. The reduction in

the required number of arithmetic operations is about 20%. The Connection Machine FFT

uses a combination of radix-2, 4, and 8 kernels as required to �t the size of the local data

set. A higher radix than 8 is not used because of shortage of registers in the oating-point

unit.

7

Arithmetic Storage

FFT Operations References

Add Mult Total Data Twiddles Total

Radix-2 3Pp 2Pp 5Pp 4Pp Pp 5Pp

Radix-4

22

8

Pp

12

8

Pp

17

4

Pp

16

8

Pp

6

8

Pp

11

4

Pp

Radix-8

66

24

Pp

32

24

Pp

49

12

Pp

32

24

Pp

14

24

Pp

23

12

Pp

Table 2: Arithmetic and memory operations for radix-2, 4, and 8 FFTs.

4 Twiddle Factors

The total number of twiddle factors needed for a radix-2 FFT of size P = 2

p

is

P

2

� 1, and

for a radix-R FFT it is (R� 1)

P

R

. With precomputed twiddle factors stored in a distributed

memory, it is important to minimize the need either for redundant storage of twiddle factors,

or for communication of twiddle factors. Below we discuss the issues related to computation

and allocation of twiddle factors for a radix-2 FFT on a distributed memory architecture.

Computation and storage of twiddle factors for high radix FFT are presented in [12]. In the

analysis below the order of the input data is assumed to be normal.

4.1 Decimation-in-time (DIT) FFT

For a radix-2 DIT FFT in-place algorithm, the exponents of the twiddle factors for stage

q are !

(j

p�q�1

)(j

p�q

j

p�q+1

:::j

p�1

)2

p�1�q

P

, q 2 [0; p � 1], and q = 0 for the �rst stage. Note that

the address is bit-reversed and shifted for the proper exponent. The twiddle factors for

stage 0 are all !

0

P

. If the FFT of size P = 2

p

is computed on a Boolean p-cube, then node

P � 1 requires p � 1 distinct twiddle factors. For a P element transform performed on an

N processor Boolean cube with consecutive data allocation, stages 1 through n � 1 each

requires one twiddle factor per stage and processor. All

P

N

local elements have the same

twiddle factor in a given processor. The last p� n stages are local, and the maximum total

number of twiddle factors required per processor is

P

N

� 1.

We will now prove the claims made above. In the consecutive data allocation the assignment

of data indices to processors is (j

p�1

j

p�2

: : : j

p�n

jfj

p�n�1

j

p�n�2

: : : j

0

g), where fj

p�n�1

j

p�n�2

: : : j

0

g

denotes the set of values assumed by the bits within the braces. Clearly, for q < n none of the

data index bits mapped into local memory enters into the twiddle factor exponent. Hence,

all local data elements have the same twiddle factors for the stages requiring inter-processor

communication. The last stage, which is local, requires

P

2N

twiddle factors, since the set

of exponents are computed from (f(j

0

)(j

1

j

2

: : : j

p�n�1

gjj

p�n

: : : j

p�1

). In processor zero the

twiddle factors for stages n < q < p � 1 are always a subset of the twiddle factors for stage

p � 1, whereas in processor N � 1 successive stages have unique twiddle factors. Hence, a

maximum total of

P

p�n

k=1

P

2

k

N

=

P

N

�1 di�erent twiddle factors per processor is needed for the

local stages, and the second part of the claim has been veri�ed.

8

Allocating twiddle factor storage uniformly across all processors yields a total twiddle factor

storage of P +(n�2)N , which for P � N is about twice the storage required on a sequential

or shared memory computer. For P = N uniform twiddle factor storage across processors

yields a total storage of (n � 1)N , which exceeds the sequential storage by a factor of

approximately 2(n� 1).

With cyclic allocation the p � n most signi�cant bits are mapped into local memory. The

last n steps require communication, and di�erent local elements often have di�erent twid-

dle factors. For instance, consider processor (011 : : : 1), which in the cyclic allocation is as-

signed indices (fj

p�1

j

p�2

: : : j

n

gj011 : : : 1). The last stage requires twiddle factors with indices

(1 : : : 110jfj

n

j

n+1

: : : j

p�1

g), or

P

N

twiddle factors. The second to last stage requires another

P

N

twiddle factors in processor (011 : : : 1), since the index set (1 : : : 110fj

n

jj

n+1

: : : j

p�1

g0) is

disjoint from the set for the last stage. In general, at least (n � 1)

P

N

twiddle factors are

required in a processor for the cyclic data allocation and a DIT FFT.

4.2 Decimation-in-frequency (DIF) FFT

For an in-place radix-2 DIF FFT the twiddle factors required for the buttery computation

in stage q is !

(j

p�q�1

)�(j

p�q�2

j

p�q�3

:::j

0

)2

q

P

. The exponent of the twiddle factor for a pair of

complex elements in a buttery computation is formed from address bits 0 through p� q�2

shifted left q steps with an end-o� shift.

With a consecutive data allocation at least one processor needs

P

N

twiddle factors for each of

the �rst n�1 stages. The sets of twiddle factors for di�erent stages are disjoint. For instance,

consider the processor with address (j

p�1

j

p�2

: : : j

p�n+1

j

p�n

) = (11 : : : 10). This processor

contains the data indices (11 : : : 10jfj

p�n�1

j

p�n�2

: : : j

0

g), with the consecutive allocation.

Shifting this set of addresses left by one step yields a new set of addresses if n > 2. This

property holds for n� 1 left shifts, i.e., the �rst n� 1 stages. For n = 1 it is easily seen that

P

N

twiddle factors are needed, and for n = 2 processor (11) requires 3

P

2N

twiddles. Hence, at

least (n� 1)

P

N

twiddles are required in some processor.

For a cyclic allocation the �rst n stages are local to a processor. The sets of twiddle

factor indices required for the stages local to a processor are (fj

p�2

j

p�3

: : : j

n

gjj

n�1

: : : j

0

),

(fj

p�3

j

p�4

: : : j

n

gjj

n�1

: : : j

0

)2, : : : : : : : : :, (j

n�1

: : : j

0

)2

p�n�1

, for stages 0, 1, etc., or a max-

imum total of

P

p�n

m=1

2

p�n�m

=

P

N

� 1 for any processor. After the �rst p � n stages the

remaining n stages consist of

P

N

independent FFTs of size N , each with one element per

processor. All

P

N

FFTs have the same twiddle factor for a given buttery stage and pro-

cessor. A maximum of n� 1 twiddle factors per processor is needed for the inter-processor

communication stages (one for each buttery stage, except the last). Hence, for cyclic data

allocation and a radix-2 DIF FFT of size 2

p

computed on N processors, n < p, the maximum

number of distinct twiddle factors needed in a processor is

P

N

+n� 2, the same as for a DIT

FFT with consecutive data allocation.

9

4.3 Bit-reversed input

With the input in bit-reversed order the traversal of the bits in the address �eld is from the

least signi�cant bit to the most signi�cant bit. The indices used for twiddle factor compu-

tation for the DIF FFT are obtained by using bit-reversed addresses, instead of addresses

in normal order. Analogously, the DIT FFT uses addresses in normal order for the index

computation, instead of bit-reversed addresses for normal order input.

With the input data in bit-reversed order the DIF FFT requires the least twiddle factor

storage for the consecutive data allocation, while the DIT FFT requires the least storage for

the cyclic data allocation. The preferred combinations of data allocation and FFT type are

the opposite to those preferred with normal order input.

4.4 Reduced twiddle factor storage

For the consecutive data allocation, normal order input, and a radix-2 DIT FFT, the set

of twiddle factor indices in the last stage is (fj

1

j

2

: : : j

n�1

gjj

n

: : : j

p�1

). The highest or-

der bit j

1

corresponds to bit position p � 2. Hence, (f1j

2

: : : j

n�1

gjj

n

: : : j

p�1

) =

P

4

+

(f0j

2

: : : j

n�1

gjj

n

: : : j

p�1

). But, !

j+

P

4

P

= !

j

P

� e

�

2�i

P

P

4

= �i � !

i

P

. Notice that multiplica-

tion by �i, which is associated with a 90-degree rotation, simply involves exchanging the

real and imaginary parts of !

i

P

and negating the imaginary, which requires only one negation.

Therefore, half of the twiddle factors can be obtained from the other half with no arithmetic.

This property is true for all on-processor stages. The same property is true for

� decimation-in-frequency FFT, cyclic data allocation, and normal input order,

� decimation-in-time FFT, cyclic data allocation, and bit-reversed input order,

� decimation-in-frequency FFT, consecutive data allocation, and bit-reversed input or-

der.

The observation can be generalized to bits p � 3; p � 4; : : : in the twiddle factor index, but

complex arithmetic is required for all of them. Bit p � 3 is associated with a 45-degree

rotation, i.e., �

1+i

p

2

. However, these rotations do require complex arithmetic.

4.5 Summary

We conclude that the preferred combinations of data allocation, input order, and FFT type

with respect to twiddle factor storage are:

� normal input order, consecutive data allocation, decimation-in-time FFT

� normal input order, cyclic data allocation, decimation-in-frequency FFT

10

FFT Data Twiddle Max. number

alloc. index of twiddles

stage q per proc.

Normal input order

DIT consec. fj

p�q

j

p�q+1

: : : j

p�n�1

gjj

p�n

: : : j

p�1

2

p�1�q
P

N

+ n� 2

cyclic j

p�q

j

p�q+1

: : : j

n�1

jfj

n

: : : j

p�1

g2

p�1�q

� (n� 1)

P

N

DIF consec. j

p�q�2

j

p�q�3

: : : j

p�n

jfj

p�n�1

: : : j

0

g2

q

� (n� 1)

P

N

cyclic fj

p�q�2

j

p�q�3

: : : j

n

gjj

n�1

: : : j

0

2

q
P

N

+ n� 2

Bit-reverse input order

DIT consec. j

q�1

j

q�2

: : : j

p�n

jfj

p�n�1

: : : j

0

g2

p�1�q

� (n� 1)

P

N

cyclic fj

q�1

j

q�2

: : : j

n

gjj

n�1

: : : j

0

2

p�1�q
P

N

+ n� 2

DIF consec. j

q+1

j

q+2

: : : j

n�1

jfj

n

: : : j

p�1

g2

q
P

N

+ n� 2

cyclic fj

q+1

j

q+2

: : : j

p�n�1

gjj

p�n

: : : j

p�1

2

q

� (n� 1)

P

N

Table 3: Radix-2 twiddle factor storage for DIF and DIT FFT for di�erent data allocation

schemes and input orders.

� bit-reversed input order, consecutive data allocation, decimation-in-frequency FFT

� bit-reversed input order, cyclic data allocation, decimation-in-time FFT

The storage requirements and the formula for the twiddle factor index computations are

summarized in Table 3. With 90-degree rotations performed \on-the-y", the storage re-

quirements for on-processor twiddles is reduced by a factor of two compared to what is stated

in Table 3.

5 FFT on multi-dimensional arrays

Computing an FFT along a single axis of a multi-dimensional array implies a number of

independent one-dimensional FFTs. The number of FFTs is determined by the product of

the length of the axes on which the FFT is not performed. Using the pipelined type of

FFT algorithm described above, there is no need for data rearrangement between FFTs on

di�erent axes. Pipelining can be performed over all inter-processor dimensions being part

of any FFT, as long as successive axes have no local components. If the axes have local

components, such that the inter-processor dimensions are interleaved with local dimensions,

then the communication pipeline must be broken for the local buttery stages.

Each axis in a multi-dimensional FFT has its own set of twiddle factors. The twiddle factors

for an axis is a subset of the twiddle factors for the longest axis. With axes of length

P

1

� P

2

� : : : P

k

the minimum number of twiddle factors is

max

`

(P

`

)

2

. With separate storage

of the twiddle factors for each axis the total storage is

P

`

P

`

2

.

11

6 Implementation

All compilers for the Connection Machine systems use the consecutive data allocation scheme.

In order to minimize the twiddle factor storage with precomputed twiddle factors, a decimation-

in-time FFT is used for data in normal input order, and a decimation-in-frequency FFT is

used for bit-reversed input order. 90-degree rotations are performed \on-the-y". The in-

verse Discrete Fourier Transform uses conjugated twiddle factors, and requires no additional

storage. The inter-processor communication stages are pipelined, as described above, but

for multi-dimensional FFTs each axis is treated independently. In order to simplify the im-

plementation no sharing of twiddle factors between axes takes place. Likewise, each stage of

each axis has its own set of twiddle factors.

For the FFT stages requiring inter-processor communication the following implementation

detail deserves to be mentioned. The Connection Machine systems CM-2 and CM-200 are of

the SIMD variety. In the buttery computations one processor in a pair performs a complex

addition and the other a complex subtraction. By integrating the negation of one of the

operands into the communication both operations can be performed concurrently with no

measurable loss in e�ciency.

For a data array axis with d bits assigned to the processor address �eld, d data elements

are exchanged in each communication, except during the start-up and shut down of the

communications pipeline. d buttery computations can be performed after each communi-

cation. The buttery computations belong to di�erent stages, and require di�erent twiddles.

A local data element is updated d times in sequence. Then, it will not be updated until the

local phase, if any. In order to reduce the number of loads and stores to local memory, the

local data items are cached in the register set of the oating-point unit. Twiddle factors are

(re)read from memory. The data caching scheme is used for up to 10 dimensions. For 11 di-

mensions there are insu�cient registers in the oating-point unit, resulting in a performance

loss, as can be seen from the timings in the next section.

For the local stages of the FFT a mix of radix-2, 4, and 8 kernels are used. Each kernel comes

in several varieties depending upon the number of twiddle factors required, and whether or

not the twiddles are cached in the register set. The radix-8 kernels yield the best performance,

and for an FFT of a given size as many stages as possible are performed using these kernels.

When the FFT cannot be computed using only these kernels, then one radix-2 or radix-4

stage is used. Details of the implementation are given in [12].

The scheduling of the radix-2 kernels attempts to minimize the loading of twiddle factors.

Consider the DIF FFT in Figure 2. In the �rst stage all twiddle factors are di�erent,

but in the second stage each twiddle factor that is used is repeated twice. In the third

stage each twiddle factor is repeated four times, etc. Hence, by performing the buttery

computations in suitable order a twiddle factor needs to be retrieved only once frommemory.

It is easily veri�ed that the same property is true for a DIT FFT. Furthermore, the 90-degree

rotation property is used to further reduce the number of twiddles needed. It is possible to

load a number and perform a unary operation (in this case, negation) on it in the same

cycle, which eliminates the need to perform any arithmetic whatsoever to use the rotated

12

twiddle. The radix-4 and radix-8 kernels reload their twiddle factors each time, due to lack

of su�cient registers. In these cases, however, the twiddle factor loading can be overlapped

with computation e�ciently.

The kernels for the local DIT and DIF FFT are very similar, but di�er slightly in how the

pipelines in the oating-point unit are organized. This di�erence result in a performance

di�erence of up to about 7% in 32-bit precision, and up to about 11% in 64-bit precision, as

seen from the tables in the next section.

The twiddles for all radix-2 stages are computed by the following algorithm.

1. extract the p� 1 highest order bits of the data element index, i.e., bits 1 through p� 1

into a word t with bit locations 0 to p� 2.

2. bit-reverse the extracted word t.

3. perform p � q � 1 steps of end-o� left shifts of t with bits p � q � 2 to 0 set to zero,

q = f0; 1; : : : ; n� 1g.

Each value of q corresponds to a di�erent buttery stage. The computation is performed by

all oating-point units concurrently. The computations are completely uniform. The twiddle

factor computation for radix-4 and 8 stages is analogous, but somewhat more complex [12].

In our implementation there is a separate table for each stage. Each table is organized such

that a sequence of twiddle factors are accessed with a stride of one. Within each table the

twiddle factors are stored in bit-reversed order. The same set of tables are used for both the

DIF and DIT FFT, and for both forward and inverse FFTs.

7 Performance measurements

The performance measurements below have been made on a Connection Machine system

CM-200 with 2048 64-bit oating-point units. All performance data refer to a complex-

to-complex FFT, CCFFT, implemented as described above, and included as part of the

Connection Machine Scienti�c Software Library version 3.0. The order of the input data

is normal in all cases unless otherwise speci�ed. We provide data for both ordered and

unordered transforms. All oating-point rates are based on 5N log

2

N arithmetic operations

for a transform of size N .

The performance of the local kernels for di�erent sizes is given in Table 4 and Figure 4.

The peaks in Figure 4 correspond to data sizes for which only radix 8 FFT's are used. The

performance for 64-bit precision is about 75-80% of the performance for 32-bit precision; the

di�erence is entirely due to the fact that the data path between each oating-point unit and

its memory is 32-bits wide. Data paths internal to the oating-point unit are 64-bits wide.

The performance of the DIT kernels is 90 - 95% of the DIF kernel performance for most

sizes; the di�erence here is entirely due to implementation details of the pipelines. Table

5 gives performance data for ordered local transforms. Large ordered transforms are about

13

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

32 0.18 0.17 0.23 0.21 9.077 9.476 7.211 7.896

64 0.35 0.33 0.43 0.39 11.293 12.032 9.170 10.171

128 0.84 0.80 1.12 1.07 10.958 11.396 8.157 8.567

256 1.94 1.82 2.48 2.24 10.825 11.504 8.449 9.378

512 3.92 3.66 4.92 4.42 12.051 12.887 9.599 10.669

1k 9.07 8.69 12.05 11.34 11.565 12.065 8.700 9.249

2k 20.66 19.44 26.60 24.01 11.167 11.865 8.671 9.609

4k 41.79 39.29 53.00 47.75 12.043 12.809 9.496 10.541

8k 93.65 89.69 123.92 115.60 11.644 12.159 8.800 9.434

16k 207.86 196.21 268.28 242.17 11.300 11.971 8.755 9.699

32k 419.82 395.98 535.17 482.54 11.989 12.711 9.405 10.431

64k 920.42 881.03 1213.82 1126.12 11.666 12.187 8.846 9.535

128k 2005.73 1897.08 2737.99 2593.42 11.376 12.027 8.333 8.798

256k 4355.31 4167.26 11.094 11.595

Table 4: Performance data for local, unordered, CCFFT on a 2048 processor CM-200.

10% slower than unordered transforms; for transforms of size 1024 the ordered transform is

about 20% slower than the unordered transform.

The performance for the inter-processor communication stages is considerably less than for

the local stages. The communication time is constant regardless of the number of processors

over which the data set is distributed. With communication in d dimensions, d butteries

can be computed for each communication. The construction of the arithmetic pipelines for

the DIT and DIF CCFFT for the inter-processor stages is almost identical, except for the

case where 11 processor dimensions are used. In this case the DIF pipeline is about 5% less

e�cient in 32-bit precision, and 2.5% less e�cient in 64-bit precision. The e�ciency of the

arithmetic pipeline is constant for d in the range 2 { 10. With a communication time that is

almost independent of d, it follows that the overall e�ciency of the inter-processor buttery

stages increases with the number of processors over which the data set is distributed. The

peak inter-processor data motion rate exceeds 7 Gbytes/s for 11 processor dimensions, as is

apparent from Table 6 and Figure 5. The oating-point rates are scaled to a 2048 processor

CM-200. For instance, in calculating the oating-point rates for FFT on a data set spread

across 512 processors, it is assumed that 4 such computations are performed concurrently

on distinct data sets and processors.

The performance for one-dimensional DIF CCFFT computations for a few di�erent sizes of

the data set is given in Table 7 and Figure 6. The performance di�erence between the DIT

and DIF versions is about 2 { 3% in 32-bit precision, and about 1% in 64-bit precision. The

di�erence is due to the di�erence in e�ciency of the local kernels. The performance for large

one-dimensional FFTs is largely determined by the inter-processor buttery stages. These

stages smooth out the variations in the performance of the local kernels, and a monotonic

14

- Log FFT size

0 5 10 15 20

6

Gops/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

r

r

r

r

r

r

r

r

r

r

r

r

r

r

DIF, 32-bit precision

b

b

b

b

b

b

b

b

b

b

b

b

b

DIT, 64-bit precision

Figure 4: The performance of local, unordered, DIF CCFFT on a 2048 processor CM-200.

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

32 0.23 0.23 0.33 0.32 7.062 7.155 4.965 5.201

64 0.45 0.43 0.63 0.59 8.680 9.123 6.192 6.631

128 1.04 1.01 1.53 1.49 8.814 9.075 5.977 6.178

256 2.35 2.24 3.32 3.08 8.916 9.354 6.309 6.805

512 4.74 4.49 6.59 6.10 9.961 10.516 7.162 7.742

1024 10.74 10.37 15.45 14.74 9.765 10.116 6.786 7.112

2048 24.04 22.84 33.47 30.87 9.595 10.101 6.892 7.473

4096 48.65 46.16 66.83 61.58 10.346 10.903 7.531 8.173

8192 107.41 103.48 151.64 143.33 10.152 10.538 7.191 7.608

16384 235.51 223.91 323.89 297.81 9.973 10.490 7.252 7.887

32768 475.21 451.45 646.46 593.88 10.591 11.149 7.786 8.475

65536 1031.33 992.09 1436.59 1349.00 10.411 10.823 7.474 7.960

131072 2227.67 2119.29 3183.99 3039.30 10.243 10.766 7.166 7.507

262144 4801.31 4615.54 10.064 10.469

Table 5: Performance data for local, ordered, CCFFT on a 2048 processor CM-200.

15

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

2 248.57 248.59 428.38 430.17 0.337 0.337 0.196 0.195

4 251.08 251.13 435.45 437.00 0.668 0.668 0.385 0.384

8 256.44 256.44 445.30 447.04 0.981 0.981 0.565 0.563

16 262.95 262.90 459.00 460.64 1.276 1.276 0.731 0.728

32 269.86 269.87 472.19 474.17 1.554 1.554 0.888 0.885

64 276.63 276.64 485.77 487.56 1.819 1.819 1.036 1.032

128 283.32 283.32 500.68 502.50 2.073 2.073 1.173 1.169

256 290.09 290.03 513.06 514.70 2.313 2.314 1.308 1.304

512 296.85 296.85 525.59 528.48 2.543 2.543 1.436 1.429

1024 303.62 303.65 540.31 542.03 2.763 2.763 1.553 1.548

2048 328.89 346.91 570.25 589.93 2.806 2.660 1.618 1.564

Table 6: Performance data for pure inter-processor unordered CCFFT on a 2048 processor

CM-200, 8192 elements/processor.

-

Log(FFT size)

Log(Number of FFT)

0 5 10

11 6 1

6

Gops/s

0

1

2

3

r

r

r

r

r

r

r

r

r

r

r

DIT/DIF 32-bit precision

b

b

b

b

b

b

b

b

b

b

b

DIT/DIF 64-bit precision

Figure 5: The oating-point rate for pure inter-processor, unordered, CCFFT on a 2048

processor CM-200, 8192 elements/processor.

16

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

1M 24.98 25.84 41.16 41.89 4.198 4.058 2.547 2.503

2M 50.65 52.52 84.01 88.65 4.347 4.193 2.621 2.484

4M 103.28 106.57 172.15 173.95 4.467 4.329 2.680 2.652

8M 206.51 213.01 339.77 342.37 4.671 4.529 2.839 2.818

16M 422.53 436.59 691.90 703.12 4.765 4.611 2.910 2.863

32M 865.08 889.48 1405.81 1416.91 4.848 4.715 2.984 2.960

64M 1733.71 1781.97 2803.52 2829.55 5.032 4.896 3.112 3.083

128M 3547.64 3652.48 5749.73 5819.32 5.107 4.961 3.151 3.114

256M 7259.64 7439.44 11809.21 11981.89 5.177 5.052 3.182 3.136

512M 14862.54 15251.33 5.238 5.104

Table 7: Performance data for one-dimensional, unordered, CCFFT on a 2048 processor

CM-200.

Machine 1M points 16M points

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

size Time(msec) Speedup Time(msec) Speedup Time(msec) Speedup Time(msec) Speedup

128 373.01 1.00 616.90 1.00 6424.98 1.00 10606.91 1.00

256 184.51 2.02 305.27 2.02 3198.41 2.00 5237.77 2.03

512 94.00 3.97 156.57 3.94 1581.96 4.06 2593.47 4.09

1024 47.10 7.92 82.50 7.48 802.97 8.00 1325.68 8.00

2048 25.84 14.44 41.89 14.73 436.59 14.72 703.12 15.09

Table 8: Speedup of one-dimensional CCFFT as a function of the number of CM-200 pro-

cessors.

increase in performance is observed with increased transform size.

Some sample speedup �gures for the computations as a function of machine size are given

in Table 8. The speedup is almost perfect for both the FFT's of one million and 16 million

points. The loss of e�ciency for the largest con�guration is due to the decrease in e�ciency

for the inter-processor communication stages, when 11 inter-processor dimensions are in-

volved in the FFT. The marginally better than perfect speedup that is achieved in some

cases is due to the e�ciency variations of the local FFT stages. For instance, a 1 million

point data set has 8k points per processor for a 128 processor con�guration, but 4k points

per processor in a 256 processor con�guration. The latter uses only radix-8 kernels, which

are the most e�cient.

Timings for two- and three-dimensional CCFFT are given in Table 9, and shown in Figure 7.

The signi�cant increase in performance for the two-dimensional CCFFT between the 1024�

1024 array and the 2048� 2048 array is due to one of the axis being local to a processor for

the larger array. The subsequent minor decrease in performance for the next larger array

17

- FFT size

Millions of points

0 1 2 4 8 16 32 64 128 256 512

6

Gops/s

0

1

2

3

4

5

r

r

r

r

r

r

r

r

r

r

DIT FFT, 32-bit precision

b

b

b

b

b

b

b

b

b

DIT FFT, 64-bit precision

Figure 6: The execution rate for one-dimensional, unordered, DIT CCFFT on a 2048 pro-

cessor CM-200.

is due the fact that the axis distributed over all processors also has a local component of

length two. This part of the axis requires a radix-2 kernel, which is less e�cient than the

radix-4, and the radix-8 kernels normally used. For reference, performance data for ordered

two and three-dimensional transforms are given in Table 10. The execution time increases

by 50 - 100% for our examples, considerably more than for entirely local transforms.

7.1 Optimizing the con�guration of the address space

With pipelining of communications the number of element transfers in sequence is

P

N

+d�1,

where

P

N

is the number of elements per processor, and d the number of inter-processor

dimensions over which an axis subject to transformation is spread. Hence, the number of

element transfers in sequence is approximately independent of the number of axis d, except if

d = 0 in which case no communication is required. The number of arithmetic operations are

clearly independent of the data layout. Hence, if load balance can be achieved by allocating

all axes subject to transformation to local memory, then the best possible performance

for a given array is achieved. If such an allocation is not feasible, either because of poor

load balance, or because the data set is too large to �t in local memory, then optimizing

performance represents a trade-o� between the e�ciencies of the local kernels, and the

inter-processor stages. The variation in e�ciency is small. We consider the one and multi-

dimensional cases in some detail below.

18

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

256� 256 2.8 2.8 4.7 4.7 1.862 1.856 1.118 1.115

512� 512 10.6 10.8 17.6 17.8 2.227 2.181 1.340 1.325

1024� 1024 43.0 43.0 71.1 73.1 2.439 2.439 1.476 1.435

2048� 2048 103.3 106.7 171.5 173.8 4.464 4.326 2.691 2.655

4096� 4096 487.1 501.5 760.6 770.6 4.133 4.014 2.647 2.613

8192� 8192 1868.1 1921.8 2986.0 3022.7 4.670 4.539 2.922 2.886

16384� 16384 7470.4 7648.2 11846.3 11916.6 5.031 4.914 3.172 3.154

64� 64� 64 10.6 10.6 17.6 17.6 2.221 2.228 1.342 1.342

128� 128� 128 79.3 78.9 134.0 133.7 2.777 2.791 1.643 1.647

256� 256� 256 724.2 721.8 1180.4 1176.4 2.780 2.789 1.706 1.711

512� 512� 512 5608.4 5554.7 9227.5 9128.8 3.231 3.262 1.964 1.985

Table 9: Performance data for two and three-dimensional, unordered, CCFFT on a 2048

processor CM-200.

- Log(Axis Length)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6

Gops/s

0

1

2

3

4

5

r

r

r

r

r

r

r

2-D, 32-bit precision

b

b

b

b

b

b

b

2-D, 64-bit precision

s

s
s

s

3-D, 32-bit prec.

c

c

c

c

3-D, 64-bit prec.

Figure 7: The execution rate for two and three-dimensional, unordered, DIT CCFFT on a

2048 processor CM{200.

19

Axis Time, msec Gops/s

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

256� 256 4.62 4.63 8.05 8.06 1.134 1.132 0.652 0.650

512� 512 16.77 16.98 29.66 29.77 1.407 1.389 0.795 0.793

1024� 1024 68.55 68.71 122.73 124.39 1.530 1.526 0.854 0.843

2048� 2048 183.36 186.66 329.43 331.76 2.516 2.472 1.401 1.391

4096� 4096 907.03 923.01 1598.08 1609.40 2.220 2.181 1.260 1.251

8192� 8192 3393.68 3448.63 6049.18 6091.06 2.571 2.530 1.442 1.432

16384� 16384 13715.35 13894.09 24409.33 24475.00 2.740 2.705 1.540 1.535

64� 64� 64 18.89 18.89 32.10 32.11 1.249 1.249 0.735 0.735

128� 128� 128 123.10 122.71 221.53 221.27 1.789 1.794 0.994 0.995

256� 256� 256 1101.56 1100.11 1930.29 1927.64 1.828 1.830 1.043 1.044

512� 512� 512 8302.94 8251.76 14655.03 14560.63 2.182 2.196 1.236 1.244

Table 10: Performance data for two and three-dimensional, ordered, CCFFT on a 2048

processor CM-200.

7.2 One-dimensional FFT

The execution time for a single one-dimensional FFT is minimized by spreading the data over

as many oating-point units as possible. For multiple one-dimensional FFTs we distinguish

between two cases. If the number of instances of the one-dimensional FFT is at least half

the number of processors, and the length of the axis on which the transform is performed

�ts in local memory, then maximum performance is attained if the data is layed out with

the FFT axis local to a processor. The other case is where there are fewer instances, or the

axis subject to transformation will not �t in local memory. In this case the performance is

fairly independent of the layout. The optimum layout is mostly determined by the variation

in the e�ciency of the local FFT kernels as a function of the local axis length. The e�ciency

of the arithmetic for the interprocessor communication stages is constant, except for d = 1

and d = 11, for which cases the e�ciency is lower. The communication time is constant

with d. Table 11 shows performance data for one-dimensional FFT on a 4096 � 4096 data

array for various data layouts. The peak performance is achieved for the axis subject to

transformation entirely local. The performance for the FFT axis spread over more than

one processor is fairly constant, with a noticeable drop o� for the FFT axis spread over all

processors. The performance variation for the FFT axis spread over 2 to 1024 processors is

about 10% in both 32-bit and 64-bit precision. For d = 11 the performance decreases by

another 10%.

7.3 Multi-dimensional FFT

Optimal e�ciency is attained by maximizing the number of axes that has no non-local

component. The performance variation once an axis is distributed across processors is minor,

20

Local Time, msec Gops/s

length of 32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

axis 0 DIT DIF DIT DIF DIT DIF DIT DIF

4096 83.94 78.66 106.60 95.73 11.992 12.796 9.443 10.515

2048 331.28 326.38 535.21 526.45 3.039 3.084 1.881 1.912

1024 323.69 320.79 532.24 528.16 3.110 3.138 1.891 1.906

512 318.95 314.95 524.15 517.99 3.156 3.196 1.920 1.943

256 324.90 321.28 538.93 532.72 3.098 3.133 1.868 1.890

128 323.21 321.36 543.97 542.66 3.114 3.132 1.851 1.855

64 320.53 317.79 540.21 536.74 3.140 3.168 1.863 1.875

32 328.40 326.18 556.65 553.25 3.065 3.086 1.808 1.819

16 331.51 330.89 567.28 568.38 3.037 3.042 1.774 1.771

8 328.72 327.03 561.13 561.48 3.062 3.078 1.794 1.793

4 342.73 342.12 587.73 587.97 2.937 2.942 1.713 1.712

2 398.74 419.52 641.37 665.16 2.525 2.399 1.569 1.513

Table 11: Performance of unordered CCFFT along one axis of a 4096�4096 array on a 2048

processor CM-200.

- Processor dimensions

for FFT axis

0 5 10

6

Gops/s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

r

r

r

r

r r

r

r

r

r

r

r

DIF 32-bit precision

b

b b

b

b

b

b

b

b
b

b

b

DIF 64-bit precision

Figure 8: Total execution rate for one-dimensional, unordered, CCFFT on a 4096 � 4096

array as a function of the con�guration of a 2048 processor CM-200.

21

Local Time, msec Gops/s

axis 32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec.

length DIT DIF DIT DIF DIT DIF DIT DIF

4096 485.49 500.34 757.98 770.68 4.147 4.024 2.656 2.612

2048 681.96 675.88 1132.61 1123.06 2.952 2.979 1.778 1.793

1024 654.05 649.90 1097.09 1091.76 3.078 3.098 1.835 1.844

512 653.05 648.55 1097.75 1092.43 3.083 3.104 1.834 1.843

256 654.92 649.30 1099.37 1089.70 3.074 3.101 1.831 1.848

128 645.21 641.13 1087.37 1082.66 3.120 3.140 1.852 1.860

64 645.33 641.32 1087.34 1082.70 3.120 3.139 1.852 1.859

32 654.82 649.23 1099.20 1089.65 3.075 3.101 1.832 1.848

16 652.59 647.95 1094.04 1088.97 3.085 3.107 1.840 1.849

8 654.74 650.95 1096.36 1093.12 3.075 3.093 1.836 1.842

4 679.62 674.27 1130.14 1123.14 2.962 2.986 1.781 1.793

2 487.10 501.52 760.58 770.56 4.133 4.014 2.647 2.613

Table 12: Performance of a two-dimensional unordered CCFFT on a 4096 � 4096 array

computed on a 2048 processor CM-200.

as can be seen in Table 12. For a two-dimensional FFT of shape 4096 � 4096 the worst

performance once an axis is distributed across processors is at most 5% below the peak in

32-bit precision, and at most 3.5% below peak in 64-bit precision. The di�erence between a

distributed axis, and a local axis is about 20% in 32-bit precision and close to 30% in 64-bit

precision.

Smaller and high-dimensional FFTs cannot always be layed out in such a way as to have

only one axis with any non-local component. Figures 10 and 11 present various two and

three dimensional FFTs layed out optimally on di�erent size machines. Notice the discon-

tinuity as the machine size exceeds the axis length in both the two and three dimensional

transforms. The performance degradation is caused by an axis changing from being entirely

local to becoming distributed over at least two processors for the larger machine size. Other

performance uctuations are minor. For example, the point at which the FFT axis length

equals the machine size runs relatively slightly faster than the other transforms in the series,

and the point at which the FFT axis length is exactly twice the machine size runs relatively

slightly slower. The reason is that in the former case the looping is exceptionally simple.

In the latter case one local stage is needed for the axis with a non-local extent. This local

stage is performed with a radix-2 kernel, which is less e�cient than the radix-4 and radix-8

kernels used normally. Very careful inspection will show other similar e�ects due to minor

di�erences in the kernels.

22

-

Dimensions for FFT axis

0 5 10

6

Time (msec)

0

200

400

600

800

1000

1200

r

r

r r
r

r r

r

r

r

r

r

DIT 32-bit precision

b

b

b
b

b

b b

b

b

b

b

b

DIT 64-bit precision

Figure 9: Total execution time for a two-dimensional unordered CCFFT on a 4096 � 4096

array as a function of the con�guration of 2048 CM-200 processors.

-

Dimensions for FFT axis

0 5 10

6

Time (msec)

10

�3

10

�2

10

�1

1

10

r

r

16384 � 16384

b

b

b

b

b

b

4096 � 4096

r

r

r

r

r

r

r

r

1024 � 1024

b

b

b

b

b

b

b

b

256 � 256

Figure 10: Total execution time for two-dimensional unordered CCFFT on CM-200 con�g-

urations ranging from 16 to 2048 processors.

23

-

Dimensions for FFT axis

0 5 10

6

Time (msec)

10

�3

10

�2

10

�1

1

10

r

r

r

512 � 512 � 512

b

b

b

b

b

b

256 � 256 � 256

r

r

r

r

r

r

r

r

128 � 128 � 128

b

b

b

b

b

b

b

b

64 � 64 � 64

r

r

r

r

r

r

r

32 � 32 � 32

Figure 11: Total execution time for three-dimensional unordered CCFFT on CM-200 con-

�gurations ranging from 16 to 2048 processors.

8 Summary and Discussion

We have presented a multi-processor FFT adapted for e�cient use of both the communication

system and the memory bandwidth. We have also shown that the data layout and twiddle

factor usage demands that both decimation-in-time FFT and decimation-in-frequency FFT

are supported to accommodate data in either normal or bit-reversed order, when the twiddle

factors are precomputed. Supporting only one type would increase the twiddle factor storage

by a factor of log

2

N for N processors. Multi-dimensional FFTs are performed with no

explicit data rearrangement.

The peak performance for the entirely local complex-to-complex FFT is about 12.9 Gops/s

in 32-bit precision and about 10.7 Gops/s in 64-bit precision. The peak performance for

one-dimensional FFT in the range one million to half a billion points is in the range 4.2 - 5.2

Gops/s in 32-bit precision, and in the range 2.5 - 3.2 Gops/s in 64-bit precision. In 32-bit

precision, the peak rates for two-dimensional complex-to-complex FFTs are in the range 1.8

- 5.0 Gops/s, and for cubic three-dimensional complex-to-complex FFTs the range is 2.2 -

3.2 Gops/s. In 64-bit precision the corresponding numbers are 1.1 - 3.2 Gops/s and 1.3

- 2.0 Gops/s, respectively. The peak data motion rate between processors is in excess of 7

Gbytes/s. The performance for the corresponding ordered transforms is about 10 - 20% less

for transforms on data entirely local to each processor, and 2/3 - 1/2 for transforms on data

sets spread over several processors.

Despite the fact that cubic three-dimensional FFTs do not perform as well on large machines

as two-dimensional FFTs, certain three-dimensional shapes perform very well, particularly

on smaller machines. This is due to the fact that communication pipelining is done only

24

within a given array axis, but not across axes.

Once an axis subject to transformation is distributed across processors, the performance

is quite insensitive to the actual con�guration of the set of processors. The performance

di�erence as a function of the number of processors over which an instance of the array axis

subject to transformation is distributed is in the 5 - 10% range.

The load balance for the FFT stages requiring inter-processor communication can be im-

proved. Only one processor in a pair computing a buttery performs a useful complex

multiplication. A partitioning type of algorithm, in which all stages are performed locally,

as described in [11, 15, 16], results in perfect arithmetic load balance. In many cases, how-

ever, the e�ciency for such an algorithm on the Connection Machine systems will not be

higher. It may even be lower, as we will explain below.

The partitioning type of FFT also has the advantage that only half the data set is communi-

cated in each inter-processor communication stage, as opposed to all of the data in the direct

pipelined algorithm used for the Connection Machine implementation. However, with the

consecutive data allocation at least one of the processor dimensions must be used twice for

this type of FFT [11, 15, 16]. With concurrent communication on all channels the number

of element transfers in sequence is the same as for the direct pipelined algorithm used in our

implementation. Hence, for normal order input and consecutive data allocation the parti-

tioning type FFT does not o�er any reduction in the communication requirements. Indeed,

because of low level features of the Connection Machine architecture, each communication

in such an FFT implementation would require longer time, and the savings in time due to

improved arithmetic load balance would be nulli�ed in most cases. However, for cyclic data

allocation the partitioning type FFT would o�er a moderate improvement, since in this case

no inter-processor dimension needs to be used more than once for an unordered FFT [11].

Acknowledgment

The authors express their sincere thanks to the anonymous referees whose comments, sug-

gestions and careful reading of the manuscript helped to greatly improve the presentation.

References

[1] James C. Cooley and J.W. Tukey. An algorithm for the machine computation of complex

fourier series. Math. Comp, 19:291{301, 1965.

[2] Alan Edelman. Optimal matrix transposition and bit-reversal on hypercubes: All-to-all

personalized communication. Journal of Parallel and Distributed Computing, 11(4):328{

331, 1991.

[3] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and David W. Walker. Solving Problems on Concurrent Processors. Prentice-

Hall, 1988.

25

[4] W. Morven Gentleman and G. Sande. Fast Fourier transforms { for fun and pro�t. In

Proceedings { Fall Joint Computer Conference, 1966, pages 563{578. AFIPS, 1966.

[5] J.W. Hong and H.T. Kung. I/O complexity: The red-blue pebble game. In Proc. of the

13th ACM Symposium on the Theory of Computation, pages 326{333. ACM, 1981.

[6] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on

hypercube architectures. J. Parallel Distributed Computing, 4(2):133{172, April 1987.

[7] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n-cube

con�gured ensemble architectures. SIAM J. Matrix Anal. Appl., 9(3):419{454, July

1988.

[8] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting

and personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249{

1268, September 1989.

[9] S. Lennart Johnsson and Ching-Tien Ho. Maximizing channel utilization for all-to-

all personalized communication on Boolean cubes. In The Sixth Distributed Memory

Computing Conference, pages 299{304. IEEE Computer Society Press, 1991.

[10] S. Lennart Johnsson and Ching-Tien Ho. Boolean cube emulation of buttery networks

encoded by Gray code. Journal of Parallel and Distributed Computing, 20(3):261{

279, 1994. Department of Computer Science, Yale University, Technical Report,

YALEU/DCS/RR-764, February, 1990.

[11] S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin, and Alan Ruttenberg. Com-

puting fast Fourier transforms on Boolean cubes and related networks. In Advanced

Algorithms and Architectures for Signal Processing II, volume 826, pages 223{231. So-

ciety of Photo-Optical Instrumentation Engineers, 1987.

[12] S. Lennart Johnsson, Michel Jacquemin, and Ching-Tien Ho. High radix FFT on

Boolean cube networks. Technical Report Department of Computer Science, Yale Uni-

versity, Technical Report YALEU/DCS/RR-751, November 1989, Thinking Machines

Corp., November 1989. To appear in the Journal of Computational Physics.

[13] Alan V. Oppenheimer and Ronald W. Schafer. Digital Signal Processing. Prentice-Hall,

Englewood Cli�s. NJ, 1975.

[14] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

[15] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5:197{210, 1987.

[16] Charles Tong and Paul N. Swarztrauber. Ordered Fast Fourier transforms on a ma-

sively parallel hypercube multiprocessor. Journal of Parallel and Distributed Comput-

ing, 12(1):50{59, May 1991.

26

