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We have conducted extremely long molecular dynamics (MD) simulations of glasses to microsecond
times, which close the gap between experimental and atomistic simulation timescales by 2 to 3 order
of magnitude. Static, thermal, and structural properties of silica glass are reported for glass cooling
rates down to 5 × 109 K/s and viscoelastic response in silica melts and glasses are studied over 9
decades of time. We present results from relaxation of hydrostatic compressive stress in silica and
show that time-temperature superposition holds in these systems for temperatures from 3500 K to
1000 K.

I. INTRODUCTION

Silica is a ready glass former which is commonly stud-
ied experimentally, theoretically and computationally, as
a model material for strong glass formation. Atomistic
simulation of silica has provided a molecular window into
the structure and the dynamics that dictate the various
regimes of glassy response.

Silica is known to locally form well-defined tetrahedra
of SiO4, where silicon forms the tetrahedral center with
oxygen surrounding. Each oxygen, in turn, bridges the
tetrahedral corners, bonding between two silicon centers.
The glassy disorder at mid- and long-range comes from
the variation in orientation of adjacent tetrahedra. Silica
structure has been studied experimentally using neutron
diffraction as well as by simulation. In some cases, the
timescales of molecular simulation overlap well with those
of the dominant physics, as in the study of mode-coupling
theory (MCT) where nanosecond times are sufficient to
validate the theory in supercooled silica above 3300 K.
However, at lower temperatures, the physical timescales
quickly extend by orders of magnitude.

Molecular dynamics (MD) has been extensively used
to study silicate glasses [1–3] in areas of nanosecond ag-
ing of silica [4–6], pressure and shear response [7–9], and
cooling-rate effects [10–13]. In this work, we use the
BKS interatomic potential [14], which has been used fre-
quently to study the glass properties of silica, and has
been demonstrated to capture experimentally observed
behavior. Horbach and Kob [15] showed that BKS pre-
dictions agreed well with experimental SiO2 neutron scat-
tering experiments [16]. They also showed that BKS
dynamic results agreed well with mode-coupling theory
above a calculated critical temperature Tc of 3330 K.
This value agreed with extrapolations from prior exper-
imental data [17]. Vollmayr, et al. [18] showed that the
potential captures silica’s anomalous density dependence
on temperature. The BKS potential captures the qual-
itative features of the density maximum, but overpre-
dicts the temperature of the peak at 4800 K compared
to experimental observations [19, 20] near 1800 K. Di-
rect comparison of the glass transition temperature, Tg

is not possible because Tg is a function of the cooling
rate, and cooling rates differ greatly between experiment

and simulation. Two papers have attempted to extrapo-
late simulation Tg out to experimental rates. Vollmayr,
et al. [18] calculated 2525 K, while Horbach and Kob [15]
calculated 1380 K, compared to the experimental value
of Tg = 1446 K[21]. In both cases, the extrapolations
were made across cooling rates that differed by 8 to 10
orders of magnitude.
The BKS potential has also been used to explore the

fragile-to-strong transition in silica [15, 22, 23]. The
fragile-to-strong transition refers to the change in vis-
cosity dependence on temperature from super-Arrhenius
to Arrhenius behavior in the temperature range of 3300
K to 4000 K. Our simulations of stress relaxation explore
a range of temperatures which almost exclusively sam-
ple melts/glasses below this transition, where silica is a
strong glass.
In this work, we extend the accessible timescales of

molecular simulation of silica to microseconds. We be-
gin with a brief summary of our simulation approach
and methodology, followed by our results, reported in
two subsections. First, we present the effect of extended
cooling rates on the macroscopic and microscopic prop-
erties of glass structure. Second, we report the long-
time stress relaxation properties of silica glass, includ-
ing explicit testing of the viscoelastic property of time-
temperature superposition and the mechanisms for stress
relaxation via subtle structural relaxation.

II. METHODOLOGY

Classical MD simulation was used to model the
microsecond behavior of silica glass, using Sandia’s
LAMMPS [24] code. Silica was modeled with the BKS
interatomic potential [14], with long-range electrostatics,
as shown in Equation 1. The BKS potential has been
shown to capture much of the behavior of silica glass
with a highly efficient two-body interaction. The poten-
tial combines a Coulomb interaction with an exponential
core repulsion and a dispersion term. The exponential
and dispersion terms were cutoff at 1.0 nm. The long-
range electrostatics were calculated with the PPPM al-
gorithm [25] with accuracy of 10−4. A time step of 1.0 fs
was used, throughout. The BKS interatomic potential, as
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Aij (Kcal/mol) bij (1/Å) cij (Kcal/mol Å6) F0
ij (eV/Å) V0

ij (Kcal/mol) K (Kcal/mol/Å2) Charge

Si-O 415 182.844 4.87318 3 079.50877 1 187.85 376.5 1000.0 qSi = 2.4

O-O 32 026.355 2.76000 4 035.6575 1 441.37 1 372 1000.0 qO = −1.2

TABLE I: Interatomic potential parameters for BKS silica with modified harmonic core.

with all Buckingham-style potentials, is known to have an
unphysical and undesired run-away attractive core when
atoms get closer than a critical radius. Although rare,
this can cause problems in high-temperature melts. We
follow Vollmayr et al. [18] in correcting this deficiency by
replacing the potential with a harmonic core (Equation 2)
for rij < Rc, where R

Si−O
c = 1.188 Å and RO−O

c = 1.441

Å.

Vij =
qiqj
rij

+Aije
−bijrij −

cij
r6ij

rij ≥ Rc (1)

Vij =
1

2
Kr2ij − F 0

ijrij + V 0
ij rij < Rc (2)

where the values for the parameters qi, Aij , bij , cij (un-
changed from Ref. [14]), F 0

ij and V 0
ij and K are given in

Table I. F 0
ij and V 0

ij were calculated so that energy and
force are continuous at Rc. The potential is implemented
through a LAMMPS pair table, which is available from
the author upon request.
The glass systems were created from β-cristobalite

crystal through a melt-quench process. The initial crys-
tal was melted with a linear temperature ramp from 300
K to 8000 K over 0.1 ns. The melt was then equilibrated
for 2.2 ns at 8000 K to remove all residual order from
the original crystal, before a linear temperature quench
was imposed to 300 K to rapidly resolidify the silica. The
cooling rate was varied from 7.7×1013 K/s to 5×109 K/s
to study the effect of the quench rate on the properties
of the glass. These rates correspond to simulation times
of 0.1 ns and 1 µs, respectively. Silica samples of rela-
tively modest size were used so that the systems could be
run efficiently for very long times. Samples consisted of
13,824 atoms with dimensions of 12.0 nm × 4.5 nm × 2.5
nm with periodic boundary conditions in all directions.
During the equilibration and temperature ramps a con-
strained pressure and temperature (NPT) ensemble was
used, with the pressure held at 1 atm. A Nosé-Hoover
damping coefficient of 100 fs was used to couple the ther-
mostat and 1000 fs was used to couple the barostat.
For the stress relaxation simulations, compression was

imposed by a hydrostatic affine deformation strain ap-
plied to produce a 3% volumetric strain. This strain was
imposed instantaneously, which produced an immediate
stress on the system. The systems were then held in a
constrained volume and energy (NVE) ensemble with an
additional weak Langevin thermostat to prevent energy
drift over very long simulation times. The thermostat
damping coefficient was 1 ps. The initial glass had been
cooled at 5 × 1011 K/s for these simulations, and had a

density of 2.24 g/cc. The longest simulations were run
out to a billion timesteps, which each took more than six
months of wall time on 8 cores.
Due to the very long simulations runs, we opted to

study larger systems, using spatial averaging rather than
averaging over multiple simulation instances as is often
done. We found that the larger system averages were
quite smooth, and gave good statistics. Comparison with
previously published results [18], which averaged 20 in-
stances of much smaller (1002 atoms vs our 13,824 atoms)
simulations, showed very good agreement, even when the
systems had clearly diverged from equilibrium.

III. RESULTS

A. Glass property dependence on cooling rate

Cooling rates in experimentally cooled glasses are of-
ten on the timescale of degrees per second or degrees per
minute, whereas atomistic simulations cool glasses at tril-
lions of degrees per second. This mismatch of timescale is
sometimes bridged with theory, and sometimes ignored.
It has been shown for instance that glass/melt diffusion
rates and glass transition rates can be scaled across this

FIG. 1: (Color online) Plot of the density vs temperature for
seven glass quenches completed with linear cooling rates, γ,
ranging from 7.7× 1013 down to 5× 109. All quenches qual-
itatively capture silica’s anomalous density. Density, ρ(T ), is
independent of ramp rate down to approximately 4500 K.
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FIG. 2: (Color online) Plot of density, ρ, at 300 K, as a
function of the glass quench cooling rate, γ. The blue dashed
line is the experimental value. The red dashed line is a linear
extrapolation fit to data in the range above 3 × 1012. The
statistical error is smaller than the data points.

huge data gap [15]. Another approach is simply to mea-
sure macroscopic glass properties and structure and show
that they are in reasonable agreement, regardless of the
glass-formation procedure. [1]

Here, we extend the glass cooling rate in atomistic sim-
ulation by 2 to 3 order of magnitude over previous stud-
ies, down to 5×109 K/s. Vollmayr, et al. [18] presented a
similar study, but computational considerations limited
their slowest cooling rate to 3 × 1012 K/s. We repro-
duce to good accuracy previously reported data where it
overlaps our current cooling rates, as noted below.

Figure 1 shows a plot of the density dependence of
silica for quench rates ranging from 7.7 × 1013 K/s to
5.0 × 109 K/s. The figure should be read from right
to left, as temperatures are linearly ramped downward.
The silica density anomaly is clearly seen as the hump
in the data near 4800 K. Above this peak, the density-
temperature relationship is independent of quench rate.
To the left of the peak, below 4500 K, as temperatures
continue to drop the system turns glassy and the density
is strongly dependent on the rate of quench. Densities
at low temperature differ by approximately 5% over the
range of quench rates explored here. Below 2000 K, the
density response for all rates shows a typical solid-like
linear thermal contraction with decreasing temperature.
The onset of this regime is rate dependent, ranging from
2000 to 3000 K. Data was recorded every 0.1 ps during
the quench and density is averaged in 1 kelvin bins. Thus,
the slower ramp rates appear smoother due to improved
statistical averages, but all rates show comparable den-
sity fluctuations for a given temperature.

Figure 2 shows the final density of each glass at 300
K plotted as a function of cooling rate, γ, on a semi-log
plot. These data are the final densities from the quench
curves shown in Fig. 1. Error bars are smaller than the

data points. The results capture silica’s unusual char-
acteristic of density decrease for decreasing cooling rate.
In most glasses, density increases as cooling rates are
slowed. The unusual trend in silica is due to the den-
sity hump anomaly, discussed above. The slowest cooling
rates show a divergence from linear, perhaps, toward an
asymptotic approach to the experimental value of 2.20
g/cc (blue dashed). However, we note that predicting
the onset of asymptotic behavior is difficult. Vollmayr et
al [18], argued that such an asymptote was not possible
since for very small cooling rates the density would need
to invert and begin to increase with decreasing cooling
rate. We see no evidence of such an inversion at the rates
we modeled. The red dashed line is a linear fit to our data
above 3×1012 K/s cooling rates and extrapolated to 1010

K/s. Comparing this extrapolated trend from the higher
rates with our measured data below 1012 K/s highlights
the nonlinear (possibly asymptotic) response.
The thermal expansion coefficients of the final glasses

also depend on the rate at which it was cooled. The
thermal expansion coefficient at constant pressure, αP

can be calculated from discrete simulation by

αP =
1

ρ

∆ρ

∆T
(3)

where ρ is the density and T is the temperature. Graph-
ically, the thermal expansion corresponds to the slope in
density vs temperature curves such as in Figure 1. The
error bars, here also, are smaller than the data point.
Figure 3 shows αP as a function of the cooling rate, on
a semi-log plot, evaluated between 300 and 800 K.. The
data can be reasonably fit with a linear trend in αP vs
log(γ). However, the trend appears to soften at both the
high and low ends of this range of cooling rates. The

FIG. 3: (Color online) Plot of the thermal expansion coef-
ficient at constant pressure, αP , calculated at 300 K, as a
function of the glass quench cooling rate, γ. The blue dashed
line is the experimental value. The red dashed line is a linear
extrapolation fit to data in the range above 3 × 1012. The
statistical error is smaller than the data points.



4

FIG. 4: Partial coordination number z as a function of glass cooling rate, γ. (a) Silicon coordination number with oxygen, (b)
Oxygen coordination number with silicon. Optimal coordination is z=4 for silicon, and z=2 for oxygen.

experimental value of the thermal expansion coefficient
[26] is also shown with a blue dashed line. Here, it is
not possible to argue that the high-rate simulation re-
sults asymptotically approach the low-rate experimental
value, as the value for 5× 109 K/s crosses below the ex-
perimental value. As in Figure 2, the red dashed line in
Fig. 3 is a linear fit to our data above 3× 1012 K/s and
extrapolated to 1010 K/s. We measured thermal expan-
sion coefficients significantly below what would have been
expected by extrapolating from higher cooling rates.
We turn now to the microscopic dependence of glass

structure on cooling rate, with investigation of the par-
tial coordination numbers, bond angle distributions and
the radial distribution functions for glasses of different
cooling rates.
A primary measure of microscopic structure is the co-

ordination number of atoms within a glass. The coordi-
nation number z gives the number of neighbors within
a given radius of an atom. In silica, the silicon-centered
tetrahedra give dominant coordination numbers of z = 4
for silicon and z = 2 for oxygen, for rSi−O = 0.215 nm.
But, over- and under-coordination are always present in
glassy states, and give us information about the relax-
ation of the glass structure.
Figure 4 shows the probability of finding various co-

ordinations numbers in Si and O for glasses formed at
various cooling rates. We observe that as rates of cooling
decrease, we see a higher percentage of perfect tetrahe-
dral coordination number for both silicon and oxygen.
Even at our highest cooling rate of 7.7× 1013 K/s fewer
than 10 in 1000 silicon atoms have other than z = 4, and
a similar percentage of oxygen atoms have other than
z = 2. Vollmayr, et al. have previously reported that
the over- and under-coordination rates drop rapidly with
cooling rate down to approximately 1 × 1013 K/s and
then appear to plateau below that. Our results agree
with this down to rates of 5 × 1011 K/s, but we show
that at still slower cooling rates, the over-coordination
drops further. This is particularly interesting since for

both silicon and oxygen, the continued drop brings the
over-coordination and under-coordination of both silicon
and oxygen into parity. At the higher cooling rates, over-
coordination is always dominant. At our slowest cooling
rate of 5× 109 K/s only approximately one silicon atom
out of every thousand has other than perfect tetrahedral
coordination. This reduction in non-ideal structure, and
particularly the reduction of over-coordination appears
consistent with trends in density with decreasing cooling
rate.

A common quantitative measure of the bonding struc-
ture is the radial distribution function (rdf) [27], which
measures the average order between atom pairs in a ma-
terial and is given by

rdf(rn) =
V hn

2πN2r2n∆r
(4)

where V is the total volume, N is the total particle num-
ber, hn is the count within the nth radial shell whose
center is a distance rn from the particle, and has shell
thickness ∆r.

The subtlety of the microscopic changes can be seen
very clearly in Figure 5, which shows the rdf for the
silicon-silicon, silicon-oxygen, and oxygen-oxygen pairs.
Each plot includes the rdf structure for three glass quench
cooling rates. The fastest quench rate studied in this
work, 7.7 × 1013 K/s, is shown in black. The slowest
quench rate we were able to achieve, 5×109 K/s, is shown
in green. An intermediate rate is shown in red, to illus-
trate the evolution. We see that the glass quench cooling
rate does not dramatically alter the rdf. The location of
the first four neighbor peaks are not significantly shifted,
however the peak height and trough depth are notably
sharpened for the first two nearest neighbors, indicating
an increase in the short-range order. This is likely due
to better relaxed states in the relative orientation of ad-
jacent SiO4 tetrahedra. This increased order, however,
does not extend beyond 0.8 nm.
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FIG. 5: (Color online) Radial distribution function plots for
(a) Si - Si, (b) Si - O, and (c) O - O at 300 K after a quench
ramp down from 8000 K. Three rates are shown fastest 7.7×
1013 in solid black, medial 3.1 × 1012 in dash-dot red and
slowest 5× 109 in dash green.

In Figure 6 we show the angular distribution proba-
bilities for the O-Si-O and Si-O-Si angles in the SiO2

structure for three cooling rates.. The O-Si-O angle is
a measure of the distortion of the tetrahedral building
block structure. The Si-O-Si angle measures the arrange-
ment of these tetrahedra elements relative to each other.
The O-Si-O, as expected, is peaked near the tetrahedral

FIG. 6: (Color online) Distribution functions for the Si-O-Si
and O-Si-O angles plotted together. Three rates are shown,
fastest 7.7× 1013 in solid black, medial 3.1× 1012 in dash-dot
red and slowest 5 × 109 dash green. The vertical line is the
ideal tetrahedral angle.

angle, agreeing well with experimental measures. We see
that with decreasing cooling rate, the angle distribution
becomes more sharply peaked and the peak shifts very
slightly toward the ideal angle. The Si-O-Si angle peak,
on the other hand, does not sharpen with slower cooling
rates, but does shift to larger angle by approximately 5
degrees. Very similar observations were made by Voll-
mayr, et al. in a faster range of cooling rates. We note,
as they do, that the trends in Si-O-Si angle indicate a
more open structure with decreased cooling rate, which
is consistent with observed lower density final glasses.
These measures of glass properties as a function of

cooling rate indicate that BKS glasses depend signifi-
cantly on the cooling rates used to create them. Extrap-
olation of these properties across many orders of mag-
nitude is challenging, as demonstrated by these studies,
which indicate anticipated trends in properties can’t al-
ways be reliably extrapolated from faster cooling rate
data. This is seen to be the case specifically in both
macroscopic properties such as thermal expansion and
microscopic properties such as coordination number. In
terms of agreement with experimental measures, it may
be that further decrease in cooling rate does not improve
the BKS glass properties. While the density would likely
improve, the thermal expansion which is already below
measured values, is likely to continue to drop. If this is
the case, then a cooling rate of 5× 1010 K/s may be the
optimal rate of cooling for agreement with experimentally
measured properties.

B. Viscoelastic stress relaxation in silica

We study the viscoelastic behavior of silica glasses and
melts across nine decades of time by taking femtosec-
ond time resolution simulations out to microsecond sim-
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ulation durations. Two defining viscoelastic behaviors -
versus elastic media - are the relaxation of stress over
time, and the temperature dependence of this relaxation
[28]. Viscoelastic materials alleviate internal stresses by
internal structural changes, but this response takes a
characteristic time which is a function of temperature.
This property is well-studied in polymeric systems [29–
31], where the timescales for relaxation can be on the
order of minutes to hours. The phenomenon has also
been studied in glass systems experimentally [32, 33].
We studied stress relaxation by instantaneously com-

pressing an equilibrated glass isotropically and measuring
the total virial pressure on the system as a function of
time while holding the compressed volume constant. We
defined the bulk stress relaxation modulus, K, as

K(t) = −V
∆P (t)

∆V
(5)

where V is the volume of the glass sample, ∆V is the
amount of initial volume reduction, and P is the total
system pressure. K is a function of time through the
pressure, which can change with time due to structural
relaxation within the glass. This relaxation is a signa-
ture of viscoelastic response, versus the typical elastic
response in solids. We conducted a series of simulations,
with 3% initial strain, at several temperatures varying
from 3500 K to 1000 K. These temperates span the previ-
ously calculated glass transition temperature. The prin-
ciple of time-temperature superposition [34] predicts that
the relaxation of the modulus, K will depend on the tem-
perature, and that the relaxation dynamics at each tem-
perature will follow the same master curve in stress vs.
log(time), which is only shifted horizontally in log(time)
to account for response rates at different temperatures.
Figure 7a shows the time evolution of K for six differ-

ent temperatures, running from 3500 K down to 1000 K
in 500 K increments. The curves for each temperature
exhibit an initial plateau modulus, K0, of approximately
50 GPa followed by a drop in the modulus to a final
plateau value, Kf , of approximately 15 GPa. For the
higher temperatures the initial plateau is extremely brief
or not seen, while for the lowest temperatures the transi-
tion and final plateau are not observed even in the time-
frame of these extremely long simulations. Although di-
rect comparison is not possible, the experimentally mea-
sured bulk modulus of 36.9 GPa for fused silica at room
temperature is between our values of K0 and Kf . This
value is consistent with a partial relaxation, although our
partial relaxations at 1500 K only relax to approximately
43 GPa over microsecond times.
As expected, the rate of stress modulus relaxation to

K0 depends on the temperature of the sample. The
fastest relaxation occurs at 3500 K, where the system
relaxation is complete within 100 ps. At 3000 K, this
same process takes approximately 10 times longer. At
2500 K and 2000 K, only very slight stress relaxation
has occurred in the first nanosecond, a typical simula-
tion duration for molecular dynamics system equilibra-

FIG. 7: (Color online) (a) The bulk stress relaxation modulus
plotted vs log time plotted from picosecond to microsecond
times for temperatures from 3500 to 1000 K. (b) The same
data, smoothed and shifted horizontally, collapse to show the
master curve for silica.

tion, however, these systems ultimately reach K0, but
only after 100 and 1000 ns, respectively. It should be
stressed, that these are extremely long simulations – far
longer than what would ordinarily be used to equilibrate
a glass system. On timescales typical to molecular dy-
namics ( < 1 ns), these viscoelastic glasses would appear
elastic.

The Figure 7b shows the same relaxation data, but
each relaxation curve is smoothed and displaced hori-
zontally by a shift factor, aT (T ). The horizontal shift,
aT (T ), is determined for each temperature’s curve by
scaling time until all curves appear to best collapse.
If a feature of the master relaxation curve occurs at
to before and at tscaled is scaled time after the shift,
then aT = to/tscaled. Here we have arbitrarily selected
aT (T = 2000K) = 1. The data forms a reasonable
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FIG. 8: (Color online) Partial intermediate scattering func-
tion before and after stress relaxation at 2000 K.

master curve for BKS silica which spans nine decades of
time. No vertical shift was necessary to achieve this col-
lapse of data. The two lowest temperature simulations,
1000 and 1500 K, exhibited only slight relaxation over
the timescales of microseconds. Therefore, it was diffi-
cult to determine the appropriate horizontal shift factor,
aT for these curves. In these cases, the data was shifted
by the minimum factor which was consistent with the
master curve.

Figure 8 shows the structure of the glass before and
after stress relaxation for the 2000 K stress relaxation

FIG. 9: (Color online) The log of the shift factor plotted vs
the temperature. The data are fit two both Arrhenius and
WLF theories. Error bars are smaller than the data points in
the plot.

through the partial intermediate scattering function.

Fab(k, t) =
1

N

Na∑

i=1

Nb∑

j=1

eik·(ri(t)−rj(t)) (6)

where N is the number of atoms, k is the reciprocal space
vector, r is the real space position and a and b refer to
the atom type. The response shown here, for 2000 K, is
indicative of similar plots for all temperatures measured.
We see that the significant stress relaxation is the result
of only very subtle structural change within the glass. In
fact, with the exception of small differences in the peak
at the k = 1.75 Å−1 we see that the before and after
scattering functions appear identical within the fluctua-
tions. A more thorough study of the correlation between
structural and stress relaxation on these timescales could
be very interesting.
Two theories predict the shift values, aT , near the glass

transition, the Williams-Landel-Ferry (WLF) theory [35]
and below Tg, the Arrhenius behavior. WLF theory gives
for the shift factor,

log10aT =
−C1 × (T − T0)

C2 + T − T0
(7)

while the Arrhenius behavior is given by,

log10aT = A(
1

T
−

1

T0
) (8)

where C1, C2 and A are fit parameters and T0 is usually
associated with Tg for the material.
Figure 9 shows the calculated shift factors extracted

from Figure 7b versus temperature. These data were
fit to WLF theory with with Eq. 7 with parameters,
C1 = 15.11, C2 = 4511 and T0 = 2128 K. We also fit to
Arrhenius theory with Eq.8 to data in the temperature
range where silica has previously been shown to exhibit
Arrhenius behavior (i.e. below 3500 K [15] and above
Tg [18, 28]. The Arrhenius fit yeilded fit paraemters of
A = 24550 and T0 = 2311 K. As discussed above, the
shift factors at 1000 and 1500 K are only lower bounds
because these systems did not fully relax to K0 on sim-
ulation timescales. These predicted shifts in the relax-
ation times can be used to predict the degree of relax-
ation which would occur in simulations too long to con-
duct. Below Tg, WLF theory is generally a better esti-
mate for the shift factors associated with stress relaxation
[28]. We believe these fits could be used to determine pa-
rameters for accelerated dynamics simulations in which
extremely long relaxation times are artificially modeled
through manipulation of an effective temperature.

IV. CONCLUSIONS

In conclusion, we have studied statics and dynamics
of a simple, but accurate, glass model out to microsec-
ond times. These simulation times, represented a two to
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three order of magnitude improvement over previously
published studies of glass cooling rate effects, and pro-
vided 9 decades of temporal evolution for the study of
viscoelastic properties near the glass transition tempera-
ture.
We found that glasses formed by cooling rates from

7.7 × 1013 K/s to 5 × 109 K/s showed significant dif-
ferences in their final static properties. Over this range
of cooling rates, the final glass density dropped by 4.5
%, from 2.31 g/cc to 2.22 g/cc. The thermal expansion
coefficient of the final glass dropped from 3.15 × 10−6

1/K to 0.25 × 10−6 1/K, and notably fell below the ex-
perimental value. Both of these macroscopic observables
deviated from linear trends in log(γ) extrapolated from
faster cooling rates. The microscopic structure was mea-
sured in the coordination number, the radial distribution
functions and angular probabilities of the glasses. The
observed macroscopic changes were achieved with rela-
tively modest changes to glass structure. A drop in the
over-coordination of silicon and oxygen, and increasing
Si-O-Si angle particularly point to an opening of the glass
structure that is consistent with decreasing density. In
the rdf, slightly deeper wells and sharper peaks of the
second and third neighbor peaks were observed, with lit-
tle change in the first peak, and no significant shift in

peak locations.

We were able to clearly observe viscoelastic behavior in
the long time behavior of silica melts and glasses. Time-
temperature superposition was observed in the stress re-
laxation bulk modulus extracted from six temperatures,
ranging from 3500 K to 1000 K. The master curve for
stress modulus relaxation was extracted and shift factors
were compared with theory. This demonstration of ro-
bust time-temperature superposition in silica simulation
will lead to well-characterized accelerated stress relax-
ation techniques.
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