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COOLING SCHEDULES FOR OPTIMAL ANNEALING*!

BRUCE HAJEK
University of Illinois at Champaign-Urbana

A Monte Carlo optimization technique called “simulated annealing” is a descent algorithm
modified by random ascent moves in order to escape local minima which are not global
minima. The level of randomization is determined by a control parameter T, called tempera-
ture, which tends to zero according to a deterministic “cooling schedule”. We give a simple
necessary and sufficient condition on the cooling schedule for the algorithm state to converge
in probability to the set of globally minimum cost states. In the special case that the cooling
schedule has parametric form T(¢) = ¢/log(l + t), the condition for convergence is that ¢ be
greater than or equal to the depth, suitably defined, of the deepest local minimum which is not
a global minimum state.

1. Introduction. Suppose that a function ¥ defined on some finite set % is to be
minimized. We assume that for each state x in & that there is a set N(x), with
N(x) c &, which we call the set of neighbors of x. Typically the sets N(x) are small
subsets of %. In addition, we suppose that there is a transition probability matrix R
such that R(x, y) > 0 if and only if y € N(x).

Let T}, T;, ... be a sequence of strictly positive numbers such that

(1.1) T,>T,> ... and
(1.2) lim T, = 0.
k— o0

Consider the following sequential algorithm for constructing a sequence of states
Xy, Xy, ... . An initial state X, is chosen. Given that X, = x, a potential next state Y,
is chosen from N(x) with probability distribution P[Y, = y|X, = x] = R(x, y). Then
we set

X = Y, with probability p,, N
k+1 — Xk Oth . , where
[V(Yk) - V()"

T,

-t

This specifies how the sequence X, X,,... is chosen. Let &* denote the set of
states in % at which ¥ attains its minimum value. We are interested in determining
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whether

(1.3) ., lim P[X, €% = 1.

The random process X = (X, : k > 0) produced by the algorithm is a discrete time
Markov chain. The one-step transition probability matgix at step k is

Pk(x’ y) = P[Xk+1 =y X, = x]

0 if y¢ N(x) and y # x,
R(x, y)exp(—[V(y) = V(x)]*/T,) if y € N(x)and y # x,
1- Y P(x,2) if y=x.

z2%Xx

We will motivate the choice of transition probabilities in the algorithm by briefly
considering the algorithm under three simplifying assumptions. A state y is reachable
from state x if x = y or if there is a sequence of states x = x,, Xy5.--, X, =y for some
P = 1 such that x,,, € N(x,) for 0 < k < p. The first assumption is that (¥, N) is
irreducible, by which we mean that given any two states x and y, y is reachable from
x. The second assumption is that T, is equal to T, for some constant T > 0. The third
assumption is that R is reversible, which, by definition, means that there is a
probability distribution @ on %, necessarily the equilibrium distribution for R, such
that a(x)R(x, y) = a(y)R(y, x) for all x, y in &. A simple example for which the
third assumption is valid is the case that

1 :
R(x,y) = {IN(x)] if y € N(x),

0 otherwise,

and the neighbor system is symmetric in the sense that x € N(y) if and only if
y € N(x) for each pair of states x, y.

By the assumption that T, = T for all k, the Markov chain X has a stationary
one-step transition probability matrix P, P = P, for all k. It then easily follows from
the reversibility assumption on R that, if we define a probability distribution 7 on %
by

mr(x) = a(x)exp(— V(;) )/ZT, where Z.= ga(x)exp[— V(;) ],

then P is reversible with equilibrium distribution 7.

By the assumption that (%, N) is irreducible (and the fact that P is aperiodic if
F* = & since P(i, i) > 0 for some i in that case), the Markov ergodic convergence
theorem [6] implies that

(1.4) klim PlX,e#*]= Y w (x).
o &y

Examination of 7, soon yields that the right-hand side of (1.4) can be made arbitrarily
close to one by choosing T small. Thus,

lim[ lim P[Xke.?‘]]sl.
T=0| koo, T,mT
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The idea of the simulated annealing algorithm is to try to achieve (1.3) by letting T,
tend to zero as k (time) tends to infinity.

We now return to the original case that the sequence (7} ) is nonincreasing and has
limit zero. We will not require that R be reversible. Instead, a much weaker assump-
tion will be made with the help of the following definition. We say that state y is
reachable at height E from state x if x = y and ¥(x) < E, or if there is a sequence of
states x = Xxg, Xy,..., X, = x for some p > 1 such that x,,, € N(x,) for 0 < k <p
and V(x,) < E for 0 € k < p. We will assume that (5, ¥, N) has the following
property.

Property WR (Weak reversibility): For any real number E and any two states x and
», x is reachable at height E from y if and only if y is reachable at height E from x.

State x is said to be a local minimum if no state y with V(y) < ¥(x) is reachable
from x at height ¥(x). We define the depth of a local minimum x to be plus infinity if
x is a global minimum. Otherwise, the depth of x is the smallest number E, E > 0,
such that some state y with ¥(y) < V(x) can be reached from x at height V(x) + E.
These definitions are illustrated in Figure 1.1.

We define a cup for (&, ¥, N) to be a set C of states such that for some number E,
the following is true: For every x € C, C = { y: y can be reached at height E from
x }. For example, by Property WR, if E > V(x) then the set of states reachable from x
at height E is a cup. Given a cup C, define J(C)=min{V(x): x € C} and
V(C) = min{¥(y): y & C and y € N(x) for some x in C}. The set defining V(C) is
empty if and only if C =%, and we set V(%) = + 0o0. We call the subset B of C
defined by B = {x € C: V(x) = ¥(C)} the bottom of the cup, and we call the number
d(C) defined by d(C) = V(C) — V(C) the depth of the cup. These definitions are

AV

12

FIGURE 1.1. The graph pictured arises from a triplet (%, ¥, N). Nodes correspond to elements in &.
V(x) for x in & is indicated by the scale at left. Arcs in the graph represent ordered pairs of states (x, y)
such that x € N(»). Property WR is satisfied for the example shown.

States x,, x, and x, are global minimum. States x,, x; and x, are local minima of depths 5.0, 6.0, and
2.0, respectively. State x is not a Jocal minimum. State x, is reachable at height 1.0 from x; and states x,
is reachable at height 12.0 from x,. ;
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FIGURE 1.2. A cup C is enclosed with dashed lines. ¥(C) = 5, V(C) = 12, d(C) = 7 and the bottom B
of C contains two states.

illustrated in Figure 1.2. Note that a local minimum of depth 4 is an element of the
bottom of some cup of depth d.

THEOREM 1. Assume that (%, V, N) is irreducible and satisfies WR, and that (1.1)
and (1.2) hold.

(a) For any state x that is not a local minimum, lim, , P{X, = x]=0.

(b) Suppose that the set of states B is the bottom of a cup of depth d and that the states
in B are local minima of depth d. Then lim, _  P[X, € Bl=0 if and only if

k=1Xp(—d/T,) = + 0.

(c) (Consequence of (a) and (b)) Let d* be the maximum of the depths of all states
which are local but not global minima. Let #* denote the set of global minima. Then

(1.5) klim P[X,e&*] =1

if and only if

(1.6) Y exp(—d*/T,) = + 0.
kw1

REMARKS. (1) If T, assumes the parametric form

(1.7) T, = m

then condition (1.6), and hence also condition (1.5), is true if and only if ¢ > d*. This



COOLING SCHEDULES FOR OPTIMAL ANNEALING 315

result is consistent with the work of Geman and Geman [2]. They considered a model
which is nearly a special case of the model used here, and they proved that condition
(1.5) holds if (T,) satisfies equation (1.7) for a sufficiently large constant c. They gave a
value of ¢ which is sufficient for convergence and which is substantially larger than J*.

Gidas [4] also addressed the convergence properties of the annealing algorithm. The
Markov chains that he considered are more general than those that we consider. He
required little more than the condition that the one-step transition probability matrices
P, converge as k tends to infinity. In the special case of annealing processes, he gave a
value of ¢ (actually, ¢ here corresponds to 1/C, in Gidas’ notation) which he
conjectured is the smallest such that Equation (1.7) leads to Equation (1.5). His
constant is different from the constant d* defined here. Gidas also considered
interesting convergence questions for functionals of the Markov chains.

Geman and Hwang [3] showed that in the analogous case of nonstationary diffusion
processes that a schedule of the form (1.7) is sufficient for convergence to the global
minima if ¢ is no smaller than the difference between the maximum and minimum
value of V. We conjecture that the smallest constant is given by the obvious analogue
of the constant d* that we defined here, although the proof that we give here does not
readily carry over to the diffusion case.

(2) Some information on how quickly convergence occurs in Equation (1.5) can be
gleaned from Theorems 3 and 4 in §§3 and 4 respectively, and from the proofs in [2-4].

(3) It would be interesting to know the behavior of min, .,V(X,) rather than the
behavior of V(X,).

(4) It would be interesting to study convergence properties when the schedule (7, ) is
randond and depends on the algorithm states.

(5) If x is a local minimum of depth 4 and no other local minimum y with
V(y) = V(x) can be reached from x at height V(x) + d, then there is a cup of depth
d such that x is the only state in the bottom of the cup. Thus, under the conditions of
Theorem 1, lim, _, , P{X, = x] = 0 if and only if (1.6) is true. We conjecture that this
last statement is true for any local minimum of depth 4.

ExampLES. (1) The examples in Figure 1.1 and Figure 1.2, d* = 6 and d* =7,
respectively.

(2) Cerny [1] and Kirkpatrick et al. [7] independently introduced simulated anneal-
ing. They and, by now, many others have applied the simulated annealing algorithm to
difficult combinatorial problems. We will briefly consider the maximum matching
problem, even though this problem is easy in the sense that efficient polynomial-time
algorithms are known for solving it.

Consider an undirected graph. A matching M is a subset of edges of the graph such
that no two edges in M have a node in common. We take the state space & in the
annealing setup to be the set of all matchings, and we let V(M) be negative one times
the number of edges in M. The maximum matching problem is then to find M in & to
minimize V(M ). Suppose that the state of the annealing algorithm at the beginning of
the k th iteration is M. Suppose an edge of the graph is then chosen at random, with all
edges being equally likely. If the edge is not in M and can be added to M, then the
next state is obtained by adding the edge to M. If the edge is in M, then the next state
is obtained by removing the edge from M with probability exp(—1/T,). Otherwise,
the next state is again M. This corresponds to R(M, M’) = 1/L if M’ can be obtained
from M by adding an edge to or subtracting an edge from M, where L is the number
of edges of the graph; and R(M, M’) = 0 for other M’ distinct from M.

It is well known that if a matching M does not have maximum cardinality then
edges can be alternately subtracted and added until two can be added at once.
Equivalently, d* is at most one (it is zero for some graphs), no matter how large the

graph is.
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FiGuRe 1.3. Diagram (a) arises from a triple (&, V, N) and diagram (b) is obtained by “filling-in” the
cup {x4}.

(3) Consider (&, V, N) giving rise to Figure 1.3. Note that d4* = 3. Now suppose
that (7)) satisfies (1.1), (1.2),

2]

(1.8) Y exp(-2/T,) = +, and
k=1

(1.9) 3 exp(=3/T,) < +c.
k=1

Since x, is reachable at height V(x;) + 2 and since (1.8) is assumed, one might
(correctly) guess that if the process starts at x, then it will eventually reach x, with
probability one. By similar reasoning, one might then (incorrectly) guess that the
process must eventually reach x,. However, by Theorem 1 and (1.9), lim, _,  P{ X, =
x,] # 1. What happens is that if k is large so that 7} is small and if the process is in
state x, at time k, then it is much more likely that the process hits state x, before it
hits (if ever) state x,. We think of the cup consisting of state x, alone as being
“filled-in” (see Figure 1.3), so that to get from x; to x,, the process has to climb up
three levels. Roughly speaking, the small depression in ¥ at x, does not allow the
process to always make it up three levels by going up two at a time and “resting” in
between. This would not be true if condition WR were violated by, for example, setting
the probability of jumping from x, to x, to zero.

This paper is organized as follows. In §2 we state Theorem 2, which is a generaliza-
tion of Theorem 1. The rest of the paper is devoted to proving Theorem 2. The theorem
will first be proved under the assumption that (%, V, N) has the “continuous increase”
property, which is formulated in §2. In §§3 and 4 we state and prove Theorems 3 and
4, which describe how the process exits from a cup. The proof of Theorem 2, including
how to remove the continuous increase assumption, is presented in §5. There is an
interplay in §5 between the necessity and sufficiency of condition (1.6).

2. Generalization of Theorem 1. It will be helpful to generalize Theorem 1 before
proving it. We assume throughout the paper that (&, ¥, N) is irreducible and has the
property WR defined in §1. Throughout the remainder of the paper (A ¢ > 0) will be
assumed to satisfy 0 <A, < 1, A, is nonincreasing in ¢, and lim,, ,A, = 0. Suppose
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that (X,: t > 0) is defined by X, =Y, for U, <t < U, where (U,,Y,): k> 0)isa
homogeneous Markov random process with state space [0, + 00) X % and one-step
transition probabilities

o0
P[Uk+1 >u, Y =yU,Y):0<i< k] = f O(Y,, y,1,A)®(d1, U, Y,),

where for some strictly positive constants D, a, ¢, and ¢,:
A.l ®(-,s,x) is a probability distribution function with ®(s —,s,x) =0,
(¢t ~ s)®(dt, s, x) < D, and E[min{k: U, >t +a}|lU;=1t, Y, = x] < 1/a for all
t>0, xes.
A2Fort>0and 0 <A <1, Q(, -, 1t A)is a probability transition matrix with

AV VN < O(x, y, 1, ) < AV jf y e N(x)

O(x,y,t,A) =0 if y & N(x)J{x}.

Note that Y,,, is conditionally independent of (U,,¥,,...,U,_;, Y, _, Uy) given
Wis1s Yo)-

For example, if (T,: k > 0) and R are as in §1 and “I,” denotes the indicator
variable of a set 4, we can let A, =exp(—1/T;,)), ®(t,5,x)=1,,,41, and
Q(x, y,t,A) = R(x, y)A; VO~V for x # y. Then (X, t > 0) sampled at integer
times has the same transition probabilities as (X,: k > 0) does in §1. When A, ® and
Q are chosen as in this example, Theorem 2 below reduces to Theorem 1.

If instead we let @(z, 5, x) = I, ;,(1 — exp(—(z — 5))), then X is a continuous-time
analogue of the process in §1.

THEOREM 2. (a) For any state x that is not a local minimum, lim,_,  P[ X, = x] = 0.

(b) Suppose that B is the bottom of a cup C of depth d and that the states in B are local
minima of depth d. Then lim, , _P[X, € B] = 0 if and only if [*X%dt = + co.

(c) (Consequence of (a) and (b)). Let d* be the maximum of the depths of all states
which are local but not global minima. Let #* denote the set of global minima. Then
lim,_ P[X, € %* =1ifand only if [PN" dt = + o0.

Let E,, E,,..., E, denote the possible values of V(x) as x varies over &, ordered
so that E, < E; < --+ < E_. We will first prove Theorem 2 under the assumption
that (&, V, N) has the following property:

Continuous Increase Property: Given any two states x and y, if V(x) = E; and
V(y)=E; and j > i+ 2, then y & N(x).

The (&, ¥, N) in Figure 1.1 does not have the continuous increase property, while
the one in Figure 1.2 does.

3. How cups runneth over.

3.1. Theorem statement and initial steps of proof. Suppose that C is a cup, and let
m and k be the integers such that E,, is the minimum and E, is the maximum value
of V(x), for x in C. We assume that k < g (otherwise C is all of &), so that
Osm<gk<gqg.Llet F={y y¢ Cand y € N(x) for some x € C}. By the continu-
ous increase property, V(x) = E,,, forall x € F. Define u and gby u = E,,, — E,
and g=E, —E,. Then d=u+g, where d is the depth of C. Let 6 =
(#,V,N, D, a,c,,c,) where D, a, ¢, and c, are the constants appearing in Assump-
tions A.1 and A2, :
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THEOREM 3. There exist € > 0 and A > O depending only on © and C so that for
every time t, > 0, every x, € C, every y, € F and every (A,: t > 0) such that A, <X
and f,:"}\”i ds = + oo the following conditions hold:

o

E| [N do( %) = (1 5)] < £ (@)
, .

where 7(C) = U, and W = min{k > 0: Y, € F};
PYy =y /(U Yo) = (1, x,)] > . (b)

The theorem will be proved by induction once we establish it for a cup C with the
aid of the following hypothesis.

Induction Hypothesis: If C’ is any cup such that the depth of C’ is strictly smaller
than the depth of C, then Theorem 3 is true for C".

In the remainder of this subsection, we briefly exploit the induction hypothesis. The
two properties in Theorem 3, (a) and (b), that we need to establish for C are then
proven in the next two subsections, respectively. The set of states C can be partitioned
into (disjoint) sets 4,C,,...,C, such that C,,...,C, are caps, 4 = {x € C: V(x) =
E,} and max{V(x): x € C;} = E,_,. This is illustrated in Figure 3.1. In the special
case that m = k, the partition consists of the single set A. In general, two elements x
and y of C with V(x) < E, and ¥V(y) < E, are in the same partition set C; if and
only if x can be reached from y at height E, _,.

The depth of C, for each i is at most g, which is smaller than the depth, 4, of C.
Therefore, we can apply the induction hypothesis to C, for each i. We thus get ¢, and
A, for each i, and by taking the smallest of these we get € and A depending only on 6

Ficure 3.1. The partition of a cup C into-a top layer 4 and cups from which the top layer can
directly reached. A state X in A is indicated from which F can be directly reached. :
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and C such thatif A, < X and x, € C, for some i then

[/ N asi(Uy, ¥y) = (1, x, )]

L

<l
€

and for every y such that y € 4 N N(x) for some x € C,

P [hit y upon first jump out of C,{(Uj,, Y,) = (1,, x,)] > €

3.2. Proof of Theorem 3, Part a. In this subsection we prove part a of Theorem 3
under the induction hypothesis and its consequences described in §3.1. Let A° =
{x€eA: N(x)NF+ 2}.

LemMMA 32.1. Let K= (min{k > 0: Y, € A°} A W) + 1. There is a constant D,
depending only on © and C such that for every x, € C and every t,> 0 with X o SA,

U
G E| [“Mlcuny (0, Y0) = (10 52)] < DY,
0

PrROOF. Let J,=0,let J ;= min{k > J: Y, € A} A W for i > 0 and consider
the discrete-time random process ¥ = (¥,) where 7, = Y,.. The induction hypothesns
described in §3.1 and the fact that Y first visits a state in A upon exiting any of the C
implies that Y has the following properties:

® Any state in A is reachable from any other state in 4 (not necessarily in one step).

® There exists ¢ > 0 depending only on 8 and C so that, for x and y in A such that
a direct transition of Y is possible, P[Y,,, = y|#,] > ¢ on the event (Y, = x }, where
&, is the o-algebra generated by (U: 0 <i<J,+ 1) and (Y;: 0 < i < J)).

® There exists a constant D, depending only on © and C such that

E fUh”HAgIU(U }dtl_g?] < D,.

U1

Let M = min{j> 0: fi € A°U F). The first two properties stated imply that
E[MKU,, Y;) = (t,, x,)] < D, for some constant D; depending only on © and C. The
third property implies that

U*+l
(MAk— sz’ NI dr,fk)

k>0

is a submartingale, so that the kth term has nonnegative expectation for each k.
Letting k tend to infinity and using the fact M = J + 1, this yields

u
E[]; KA{I{I(UW) atilly = t,, Yo = xo] < D,D;.

Since A$ > A /Ny for s > t,, this implies Equation (3.1) for D, = D,D;. =
Let ¢; = czmax{lN(x) NFl: x€ A}, K,=0,

K = [min{k>K:Y, €4} AW]+1 fori>1, and

i y
(), k) = _,;jkxil(s<Uw} ds.
/
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LEMMA 322, Forlgi<j< +oo
(32) E[®(K,, K;) Uy, Yx-1] < Dy/ey.

PROOF. We prove the Lemma by backwards induction on i. Inequality (3.2) is true
if i = j. Suppose for some i, j with1 €i<j < + o that(32)istruewithz+lin
place of i. Then Lemma 3.21 and the fact that' ®(X,, K;) = ®(K, K;,;) +
®(K,,y, K,) imply that (writing »(k) for X, )

E[®(K,, K,)Ux, Yy | < Dy(K,) + Dy/cs.

Then using the fact that ®(K, X;) = 0 unless W > K, or equivalently, unless Yx € C,
and Assumption A.2, we find

E[Q(Ki’ Kj)IUK,’ YK,-l] = E[E[q)(Ki’ Kj)‘UK,, YK,’ YK,~1] I{YK’EC}lUK,’ YK,—l]
< (Dw(K)) + DI/CB)P[YK, € C|Ug, YK,——I]
< (D (K;) + D, /c;)(1 = ¢v(K;)) < Dy /e,

which completes the proof of the lemma. =

We now complete the proof of Theorem 3, part a. By the monotone convergence
theorem we obtain by letting i = 0 and letting j tend to infinity in (3.2) that
E[®(K,, W)|Uk,, Yx,_1] < Dy/c; and by Lemma 3.2.1, E[®(0, K\){Up, Yp) =
(to’ xo)] < Dl' Thus

E[@(0, W)Uy, Xo) = (1,, x,)] < Dy(1 + ¢5) /e
which implies part a of Theorem 3.

3.3.  Proof of Theorem 3, Part b. We prove Theorem 3, (b) under the induction
hypothesis stated in §3.1, thereby completing the inductive proof of Theorem 3. We
will continue to refer to {4,C,,...,C,} and F, which were defined in the first two

subsections.
Fixt,> 0, x, € C aand y, € F. Choose a state X € A4 so that y, € N(X). Throughout

this subsection we will assume that (Uy, Yy) = (¢,, x,) and A, < X. Let (J;, ¥y, )50
be defined as in the proof of Lemma 3.2.1. Then let

L*=min{/>0:Y,€ F}, Ly=0 and
Lo,=min{{>L:¥,=%} AL* fori> > 0.

Note that J,. = W and Y, = Y,.. Define events (H;: i > 0) and (G, i > 1) by
Hy={J, =W}, G,=(W=1J, +1},and H = (J, +1<W=1J, }foris 1l

LEMMA 3.3.2.  The following inequalities hold for some positive constants D, and D
depending only on © and C

(3.3) P[H,] < DX,

(34) P[H,] < P[G,]Ds fori> 1.
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PROOF. Let Z, = Iy,  r). Assumption A.1 implies that (writing »(n) for X, ):

(kAL*)-1
zZ, - Z c;v(],-f- l),fk

Jj=0 k>0

1s a supermartingale. Since Z, is equal to I{;,.y,, H, is true if and only if
Z, . —Z;,1=1 Using this fact, the optional sampling theorem for super-
martmgales and the fact that A is nonincreasing, we obtain

PlH|#,| = E|Z,,, ~ Z, |#.] < e(Jy, + VE[(Lisy - L, - 1)717,].

Now (L;,; — L, — 1)* is the number of times Y visits states in 4 — {X} before
visiting {x} U F. By the argument in Lemma 3.2.1, we thus conclude that E{(L,,, —
L; — 1)*|#, ] < Dy, where D depends only on © and C. Hence,

(3.5) P[H|#, ] < ;D (J;, + 1).
If i = 0, this implies that P[H,] < ¢; DA} . For i > 1, Assumption A.2 implies that
(3.6) P[G|#, ] = ep(J;, + 1)’(& -%)

Since P[H;|#;]=0 off the event {YL = X}, we deduce from (3.5) and (3.6) that
PH|#, ] < DSP[G [#.] for Ds = D6c3/c1, which yields P[H,] < D;P{G,;]. Lemma
332is proved ]

Now

P[¥._, =x]= E‘,IP[G,-] > iP[H,.]/Ds =(1- P[H,] - P[¥,._, = X])/Ds

which by (3.3) implies that P[Y,e_;=X]> (1 = D\ )/ + Ds). Since P[Y, =
YolYe_1 = X] 2> ¢,/c; we thus infer that

P[YW=yo] =

o 1 - DXy,
;1 1+ D

which impiies part b of Theorem 3. The proof of Theorem 3 by induction is complete.
]

4. Upper bound on cup exit probability. We continue to assume that irreducibility,
WR, A.1, A2 and the continuous increase assumption hold.

THEOREM 4. There exist A\,> 0 and T > 0 depending only on © such that the
following is true. If C is a cup with depth d and bottom B, A, < A,, x,E Bandr>t

then
P[x, e Cfort<s<rlpYy) =(t,x,)] > cxp(—I‘(X’,’ + /’}\dxds)).

Since there are only finitely many cups, it suffices to prove the theorem for a
particular cup C. Let F, m and k be as defined in the beginning of §3. We can assume
that k < g, since otherwise the theorem is trivial, and for ease of notation we assume
that m = 0. Hence d = E, ,, — E,,.
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}F

FiGURE 4.1. A cup C and the set F of states directly above C are shown. The cup is partitioned into a
set of smaller cups, each of which is encircled with dashed lines, and a set J. The set J is itself partitioned
into subsets, each of which is enclosed by a rectangle and consists of states in J with a common value of V.

Given x in C, let h(x) denote the smallest height at which a state in B can be
reached from x. There is a partition {J,C,,...,Cy} of C such that J = {x € C:
h(x) = V(x)} and each C, is a cup. In fact, if x € C and hA(x) > V(x), then x € C,
for some i and C, is the set of all states that can be reached from x at height strictly
less than A(x). This is illustrated in Figure 4.1. The partition has the property that ¥
cannot jump directly from one of the cups of the partition to another without visiting a
state in J. Define L, ,; by L,,, = Fandlet A, =E,,, — E; for0<j<k.

LEMMA 4.1. There is a constant ¢ depending only on © and C such that the followmg
istrue. Let1 s j<k,x€L; t>0and ,

$=min{m:Y,€LyU---UL,_; UL, }.
Then
P[Y; € L, (U, Yo) = (1, x)] < A}

PrOOF OF LEMMA 4.1. There exist X € L; and y € LyU --- UL;_, such that
¥ € N(X), and such that starting from x, ¥ can reach x without entering L, ,. Hence,
the expected cardinality of {n: 1< n<{ and U, € L,;} is bounded by a constant
depending only on © and C. Hengce, the lemma can be deduced from Assumption A.2
andamartmgalcargumemsnmﬂartothatasedmthepmofsofbemmasBZIam
322. =
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Define A = min{A,|0 < i < k} and choose A, with 0 <A, < 1 so small that cAj <
0.5, where c is given by Lemma 4.1.

LEMMA 4.2. Consider a discrete time Markov chain Z with state space {0,1,...,
k + 1} and one-step transition probabilities

cAd ifj=i+1,
Pij=\1—cA ifj=i—-1,
0 otherwise,
for 0 <i< k. Then, for A\ <A,
(4.1) P[ Z hits k + 1 before it hits 0|Z, = 1] < (2¢)“ABen By,

ProoF. Define x, for1 <i<k +1by
x, = P[Z hits k + 1 before it hits i — 1|Z, = i].

The left-hand side of (4.1), which we wish to bound, is x;. Now, considering the case
Z, = i and conditioning on the value of Z;, we obtain the relation

CAA'xH'l
1= A (1 - %)

X, = CAA'{xi‘Fl - (1 - xi+1)xi} or X, =

Because c}\‘f, < 0.5, the denominator on the right-hand side is at least 0.5, so that
x; € 2¢Ax,, 1, 1 <i < k. Since x,,, = 1, this implies the lemma. =

LEMMA 4.3. Suppose A, < A, and x € L,. Then
P [ Y visits F before visiting B|(Yy, Uy) = (¢, x)] < (2¢)*AEn1=
ProOF. Define R, = ¢ and

R,,,=min{n>R;:Y,€Jand ¥(Y,) # V(¥ )}.

Lemma 4.1 implies that the process (¥( YRJ ));» o is stochastically bounded [5] above by
the Markov chain E,, and thus has a smaller chance of hitting E, ,, before hitting E,
than does E,. The lemma is thus a consequence of Lemma 4.2. =
PrROOF OF THEOREM 4. We will assume
(Up, Yp) = (1,x,), wherex,€ B,A, <A, W=min{,:Y,€F},
So=0, S,,=min{j>S:Y,€B} AW fori>0, N*=min{i: Y5 €F)

Kr=0, Kr,=min{i>K* U > Ugs +a} forn>0.

Let &, denote the o-algebra generated by (U: 0 </ < §;+1) and ¥: 0 <j < §).
Then by Lemma 4.3 and Assumption A.2

P[N*=i+UF] <X,y fori>0,
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where ¢ = (2¢)*c,|L,}. Hence

, GAN*)-1
(4.2) I(l)N‘) - Z EAdUs"‘l’gi
Jj=0 ! i»0
is a submartingale.
Since (1) {N* > K>} € F., (2) the process in (4.2) is a submartingale and A is
nonincreasing, (3) Assumption A.1 implies that E[K%, ~ K,*|9.] < 1/a, and (4)
{Uks = t + na} on the event { N* > K *}, we have

P[N* > K% 19x: ] = (1 - E[Lkzoowe) = Iz one) 92 ) I we s x2)
> (1 - E[(Kx, - K,,‘)E)\U”"lgx:])lw.>x: :
> (1- Ay, 2/a) Inesxey 2 (1 - OV 00/8) e s k2

Taking expectations, we get P[N* > K* 1> (1 — ¢\, ,./a)P[N* > K*], so by
induction on n,

n

P[N* > K:ﬁ-i] > I_I( cAd+ja/a)

=0

Thus, since (X, € Cfort <s<r} C {N*>K® _, .+1), if we suppose that A, is
so small that ¢A?/a < x, where x is the positive solution to 1 — x = exp(—2x), then

[(r—1)/a] . [(r—1)/a]
Plx,eCfort<s<r]< I (1 - EA‘f+j,/a) <exp| —(2¢/a) L M.,
Jj=0 j=0

< exp(-(za/aZ){xz+ frk‘ﬁds}).
1
This implies Theorem 4. =

5. Proof of Theorem 2.

5 1. Towards sufficiency of the integral condition. Let E > 0 and let
= {x|x is a local minimum of depth strictly larger than E},
= {x|x is reachable from y at height V(y) + E for some y € W }.
We remmd the reader that condition WR is in effect. The purpose of this subsection is
to prove the following lemma, which will be used in the next section.

Lemma 51. If

(5.1) j”xfd: = 400,
0
then
(5.2) lim P[X, € Re] = 1.

The proof will be presented after the following lemma is proved. The lemma is
illustrated in Figure 5.1.
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FP-8834

FIGURE 5.1. The partition of a set & into a subset J and a set of cups, corresponding to E = 3. The
cups are enclosed by dashed lines, and all other states are in J. States in the subset R of J are hatched.

LEMMA 5.2. There is a partition {J,C,,...,Cy} of & such that

(1) J = {x € $|Wy is reachable from x at height V(x)},

(2) Cy,...,Cy are cups of depth at most E,

(3) Y cannot jump directly from one of the cups to another without visiting a state in J.

Proor. For x € & define a cup C, by C, = { y|y is reachable from x at height
V(x)}. Fix x such that C, N J # @. Then for y € C, N J, y is reachable from x at
height V(x), and W is reachable from y at height V(y). The first of these facts
implies that V(y) < V(x). Then the two facts together imply that W is reachable
from x at height ¥(x), which is to say that x € J. We have shown that if C, N J is
nonempty, then x € J. Equivalently, we have shown that C, NJ = & ifxel.

Suppose that the depth of a cup C, exceeds E. Let y be a state in the bottom of the
cup. Then y is a local minimum of depth greater than E, so that y € Wy, and hence,
y € J. Therefore, ¢, N J # @, so that x € J. We have just shown that if the depth of
a cup C, exceeds E, then x € J. Equivalently, the depth of C, is at most E for any
x&J.

Given any x dnd y, either C,C C,, C,C C, or C,N C, = @. Thus, the set of
maximal sets from the collection €= {C,: x & J} together with the set J forms a
partition of % with the desired properties (1) and (2).

Choose x so that C, is a maximal set in ¥, and let y be a state not in C, that can be
reached in one step from a state in C,. Since ¥(y) is larger than the maximum of V
over C, (which happens to be ¥(x)), some state in C, is reachable from y at level
V(). Therefore C, N C, is nonempty, so that C, is a proper subset of C,. Since C, is
maximal in the collection €, it follows that C, is not in ¥, which means that y € J.
The partition thus has property (3) as well. =
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PROOF OF LEMMA 5.1. Set 4;=0, 4,,,=min{k>A: U, €J}fori> 0, a=
min{i: Y, € W} and B = mm{z a: Y, &€ R;}. Since there are only finitely many
cups, we can choose A > 0 in Theorem 3 to depend only on 8, and we also suppose
that A < A, where A, appears in Theorem 4. By Theorem 3, part a and properties )]
and (3) in Lemma 5. 2 there is a constant D, depcndmg only on © such thatif A, < A
then

E| [*\as,,7, | <D,
U,

A,

on the event {U, > t,}. By Theorem 3, part b and property (1) in Lemma 5.2, there
exists € > 0 depending only on © such that: for any state x € J there is a sequence of
distinct states x = x,,..., x, such that V(x,) > V(x)) 2 --- 2 V(x,), x, € W,
and P[Y, =x,,|Y, =x,U =t]>efor0<j<pand > ¢, This implies that
there exists a constant D; depending only on O such that E{a|ly =1,, ¥, = x,] < Dy
for x,€ % and t > t,. Hence

E[fUAG)\f asiUp=1t,, Yy = xo] < D;Dg

L3

so that

(5.3) PlU, <rly=1,Y=x,] 21~ D.,Ds/f';\fds.
1,

Note that Y, must be in the bottom of a cup of depth at least E + y, where
Y= mm{d(C) — E: C is a cup with d(C) > E}. Hence, by Theorem 4, and the fact
(A,) is nonincreasing, there exists a constant I' depending only on © such that for
r>t,,

° A = 1o =X, - :+ s .
(54) P[Uﬁ >rilp=1t,Yy=x ] > exp( r(}\Ea Y4 ./AE-FY ds))
to

Since X, € Ry if U, < r < U,,, we can combine (5.3) and (5.4) to yield

(5:5)
PlX, € RyjUy=1,,Y,=x,] > exp(—-l‘X’,a()\f’ + f’;\fds')) - D-,Da/f';\fds
t, t,

In view of condition (5.1), given any ¢ > 0, if r is sufficiently large then there exists a
large interval of time [#,, 1,] with ¢, < r such that the right-hand side of (5.5) is at least
1 — eif 1, € [1,, 1,]. Given the process (U,, Y;: k > 0) with U, = 0, we let p = min{k:
U, > t;}. We can choose r, and hence ¢, — 1,, so large that P[U, <1,] > 1 — e By
conditioning on (U,, ¥,), we then obtain that P[X, € R;|U, =0, Yo =x]>(1—-¢)?
for all x € . Lemma 5.1'is proved. =

5.2.  Proof of Theorem 2 under the continuous increase assumption. In this subsec-
tion we will prove Theorem 2 under the additional assumption that the continuous
increase property holds. The proof of Theorem 2 without this assumption is outlined in
the next subsection.

When E = 0, R, is the set of local minima and the integral condition (3.1) is always
true. Lemma 5.1 thus implies part (a) of Theorem 2.
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We will next prove the “if” half of part (b) of Theorem 2. Let B denote the bottom
of a cup C of depth E and suppose that the states in B are local minima of depth E.
We must show that P[X, € B] has limit zero as ¢ tends to infinity if the integral of A¥
is infinite. In view of Lemma 5.1 it is sufficient to prove that B and R are disjoint.
For the sake of contradiction, suppose that x € B N R. Then there is a state y so
that the following three statements are true:

(i) x is a local minimum of depth E.

(ii) y is a local minimum of depth strictly greater than E.

(ili) x is reachable from y (and vice-versa) at height ¥(y) + E.

We consider two cases. First consider the case that ¥(x) < V(y). By (i), there is a
state z with ¥(z) < ¥(x) that can be reached from x at height V(x) + E (and hence
at height V(y) + E). In view of (iii), this implies that the state z can also be reached
from y at height V(y) + E. Since V(z) < V(y), this contradicts (ii).

Now consider the case that V(x) > V(y). By (iii), y can be reached from x at
height V(y) + E, and this height is strictly smaller than V(x) + E. This contradicts
@)

We obtain a contradiction in either case, so we have proved that B and R, are
disjoint. This completes the proof of the “if” half of part (b) of Theorem 2 under the
continuous increase assumption. To prove the “only if” half of part (b) we again let B
denote the bottom of a cup C of depth E, we suppose that the states in B are local
minima of depth E, and we assume that X is given such that [°AE dr < + c0. We want
to prove that P[X, € B] does not converge to zero as ¢ tends to infinity.

Let F be the unique nonnegative number such that the integral of A" is infinite if
0 < r < F and the integral is finite if r > F. Then F < E, and we define a cup C’ as
follows. If F < E we choose a state y in B and let C’ = {x: x is reachable from y at
height ¥(y) + F} (in which case depth (C") > F)and if F = E we let C' = C. We let
B’ denote the bottom of C’ and then the following three facts are easy to verify: (1) If
d denotes the depth of C’ then the integral of A’ is finite; (2) any state in C’ — B’ is
either not a local minimum or is a local minimum of depth strictly smaller than F, and
(3) B’ is a subset of B.

By the first of these facts and Theorem 4,

(5.6) liminf P[ X, € C'] > 0.

tind- <]

By the second of these facts, part (a) of Theorem 2 and the “if” half of part (b) of
Theorem 2,

5.7 lim P[X,=x]=0 forxe C' - B.
=0

From (5.6) and (5.7) we conclude that liminf, ,  P[X, € B’] > 0, and from the third
fact, this inequality is true with B’ replaced by B. This completes the “only if” half of
part (b) of Theorem 2, and hence the theorem itself, under the continuous increase
assumption.

5.3. Proof of Theorem 2 in general. Suppose the conditions of Theorem 2 are
satisfied, but that the continuous increase property is violated. We will construct a new
system (%, 0, V, ®) satisfying the conditions of Theorem 2 and (1) the continuous
increase property holds so that, by what we proved so far, Theorem 2 applies to the
new system, (2) Fc P, () if x €, then x is a local minimum of depth d for the
original system if and only if it is a local minimum of depth 4 for the new system, and
(4) if the original and new system start in the same state, then the process (X,: 1 > 0)
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FIGURE 5.2. Example of (&, V, N) which violates the continuous increase assumption, and the new
system.

has the same distribution for the two systems. The idea of the construction is to add
new states so that the process can visit a state in each intermediate level when moving
upward, and the holding times of the new states are zero. We now give the construc-

tion. An example is shown in Figure 5.2. :
Let E, < E, < --- < E_denote the values of ¥(x) as x ranges over S. For each x

in S, define H(x) so that H(x) = i if V(x) = E,. Define U(x) = Eg,y.1 if V(x) < E,,
and U(x) = + oo if ¥(x) = E,. In the following, x and y always denote states in &
with y € N(x), and s, ¢ > 0. Set

F= Uy({x,(x,o)} U {(x.i,»): y € N(x),¥V(y) > U(x), H(x) < i < H(y)}),

P(x) = V(x), V((x.0)="(x), V((x.i,y))=E,

d(1,s,x) = 0(1,s, x), <‘I\>(t,s,f)=1(,>s) iftes-2,

y(x,t,A) =1+ Y 0(x, p, 1, N)(WR-VO) — 1),
y:V(»)>U(x)

O(x,(x,0),1,1) =1,
0((x,0),(x,1, ), £, A) = (Q(x, y, £, NPV D) y(x, 1, X) if ¥(p) > U(x),
O((x,0), ., ) = @(x, y, t, \)/¥(x, ,A) if ¥(y) < U(x),
O((x, i, ), (x,i+1,y),2,A) =AB«~E if H(x) <i< H(y) -1,

O((x,i, ), y, 1, \) =N"E it H(x) <i=H(y) - 1,

O((x,i,y), y, 1, A) =1 = AB=1=E i H(x) <i < H(y).
Values of Q not specified are zero, The nei structure for the new system can
now be specified by y € N(z) for y, z € & if and only if Q(z, y, 1, A) > 0 for some

(equivalently for all) ¢, A with ¢ > 0 and 0 < A < 1. It can be checked that v(x, £, A) is
the expected number of visits the new process makes to state (x,0) before reaching a
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state in &, given the process starts in state x. Verification that the construction has the
desired properties (1)-(4) is elementary and is left to the reader. The following is also
easy to check: (5) if, for the original system, B is the bottom of a cup of depth d and
the states in B are local minima of depth d, then the same is true of B = B U {(x,0):
x € B} for the new system. Theorem 2 is immediately implied by properties (1)-(5) of
the construction.
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