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COOLING SCHEDULES FOR OPTIMAL ANNEALING*^

BRUCE HAJEK

University of Illinois at Champaign-Urbarui

A Monte Carlo c^timization technique called "simulated annealing" is a descent algorithm
modified by random ascent moves in order to escape local minima which are not global
minima. Tlie levd of randomization is determined by a control parameter T, called tempera-
ture, which tends to zero according to a deterministic "cooling schedule". We give a simple
necessary and suffident conditicm on the cooling sdiedule for the algorithm state to converge
in probability to the set of globally minimiim cost states. In the spedal case that the cooling
schedule has parameuic form r({) » c/log(l + / ) , the condition for convergence is that c be
greater than or equal to the depth, suitably defined, of the deepest local minimum which is not
a global minimum state.

1. Introductioii. Suppose that a function V defined on some finite set 5^ is to be
minimized. We assume that for each state x in y that there is a set N{x), with
N{x) c y , whidi we call the set of neighbors of x. Typically the sets N{x) are small
subsets of £^. In addition, we suppose that there is a transition probability matrix R
such that R(x, ;') > 0 if and only if 7 e N{x).

Let 7\, T2,... be a sequence of strictly positive numbers such that

(1.1) T^>T2> ... and

(1.2) lim r^ = 0.
*r-»oo

Consider the following sequential algorithm for constructing a sequence of states
XQ, Xi,... .An initial state XQ is chosen. Given that A'̂  = x, a potential next state Y^
is chosen from N{x) with probability distribution P[Yi^ = y\X^ = xj = R(x, y). Then
we set

]t with probability p^,
^i. • where

t otherwise.

This specifies how the sequence X^, X2,... is chosen. Let S^* denote the set of
states in y at which V attains its minimum value. We are interested in determining
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whether

(1.3) lim
k

The random process X = {X/^: k-^ 0) produced by the algorithm is a discrete time
Markov chain. The one-step transition probability matfix at step k is

0 a y € N{x) said y ¥= X,

R{x, >')exp(- [K(>') - V(x)] V r J if ^ e Nix) and y-^ x.

We will motivate the choice of transition probabilities in the algorithm^ by briefiy
considering the algorithm under three simplifying assumptions. A state y is reachable
from state x if x = yot'd there is a sequence of stat^ x = XQ, Xj^,...,Xp= y lor some
p > 1 such that Xjt+i e N{x^) for 0 ^ k < p. The first assumption is that (y> N) is
irreducible, by which we mean that given any two states x and y, y is reachable frcan
X. The second assumption is that T,^ is equal to T, for some constant T > 0. Hie third
assumption is that R is reversible, which, by definition, means that there is a
probability distribution a on y , necessarily the »}uilibrium distribution for R, such
that a(x)R(x, y) = a{y)R{y, x) for all x, >> in y . A simple example for which the
third assumption is valid is the case that

0 otherwise,

and the neighbor system is symmetric in the sense that x ^ N(y) if and only if
y e N{x) for each pair of states x, y.

By the assumption that Ti^=^ T for all A:, the Markov chain X has a stationary
one-stq) transition probability matrix P, P = P,^ for ikll k. It then easily follows from
the reversibility assumption on R that, if we define a probability distribution Vj. on S^
by

( ^ ) / where Ẑ  = Ea(

then P is re\^rsible with equilibrium lUsbibution my.
By the assumption that ( y , iV) is irreducible (and the fact that P is aperiodic if

S^* i' £/' since P(i, i) > 0 for some i in that case), the, Maikov ergodic convergence
theorem [6] impUes that

(1.4) U m P [ J f t € y » ] = Ys ""TKX).

Examinatiffli of m^ so(m yields ttiat ^ right-hand »de of (1.4) can be made artntrarily
close to one by chocMsing T small. Thus,

Bmf Um
T—fi\k-*ai,T^»

1.
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The idea of the simulated annealing algorithm is to try to achieve (1.3) by letting T^
tend to zero as k (time) tends to infinity.

We now return to the original case that the sequence {T,^) is nonincreasing and has
Umit zero. We will not require that R be reversible. Instead, a much weaker assump-
tion will be made with the help of the following definition. We say that state y is
reachable at height E from state x if x = j ' and F(x) < E, or if there is a sequence of
states X = XQ, Xi,..., Xp = X for some /? > 1 such that x̂ ^̂ .̂  e N{x^) for 0 < fe < />
and K(Xt) < £ for 0 < fe < ;». We will assume that {&", V, N) has the following
property.

Property WR {Weak reversibility): For any real number E and any two states x and
y, X is reachable at height E from y if and only if j ; is reachable at height E from x.

State X is said to be a local minimum if no state y with V{y) < V(x) is reachable
from X at height V{x). We define the depth of a local minimum x to be plus infinity if
X is a global minimum. Otherwise, the depth of x is the smaUest number E, E > 0,
such that some state y with V{y) < V(x) can be reached from x at height V(x) + E.
These definitions are illustrated in Figure 1.1.

We define a ctq) for (£^, V, iV) to be a set C of states such that for some number E,
the following is true: For every x ^ C, C = {y: y can be reached at height E from
X }. For example, by Property WR, if £ > V{x) then the set of states reachable from x
at height £ is a cup. Given a cup C, define F(C) = min{F(x): x e C} and
V{C) = adn{Viy): >- « C and ^̂  G N{X) for some x in C}. The set defining K(C) is
empty if and only if C = y , and we set V{6^) = + oo. We call the subset B of C
defined by i? = {x e C: V(x) = V(C)} the bottom of the cup, and we call the number
d(C) defined by d(C) = K(C) - F(C) the depth of the cup. These definitions are

12

TO

Fiotflue 1.1. The gr^di pictuied stises bom a triplet (y, V, N). Nodes conapoad to elements in y.
y{x) for X in ^ is indkated by ibt scale at left Arcs in tt^ grqdi reprej^t ordered pairs of sutes (x, y)
aidi Htst X s N(y). Property fVR is satisfied fax Ae exanqiie ̂ lown.

States Xi, Xj and X3 sse gjobd minimum States X4, x^ and Xj are locd minima of depdts 5.0,6.0, and
2.0, it^>e( îvely. State xs is «)t a bxal minuman. State Xj is t^iAMt at hdg^t 1.0 fnnn x̂  and states x,
is fNdaUe at b e ^ 12.0 £R8B X,.
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FIGURE 1.2. AcapC is endosed with dashed lines. K(C) = 5, V(C) - 12, d{C) - 7 and the bottom B

of C contains two states.

illustrated in Figure 1.2. Note that a local minimum of depth J is an element of the
bottom of some cup of depth d.

THEOREM 1. Assume that (S^, V, N) is irreducible and satisfies WR, and that (1.1)
and (1.2) hold.

(a) For any state x that is not a local minimum, hmi^_^^P{X^ = x] = 0.
(b) Suppose that the set of states B is the bottom of a cup of depth d and that the states

in B are local minima of depth d. Then hm,^_,^P[Xi^ e fi] = 0 if and only if

(c) (Consequence of (a) and (b)) Let d* be the maximum of the depths of all states
which are local but not global minima. Let S^* denote the set of global minima. Then

(1.5)

if and only if

(1.6)

Um
A:—»oo

= 1

REMARKS. (1) If r^ assume the parametric f<»in

(1.7)
+ 1)

c(»idition (1.6X and hence aiso cca^don (1.5), is true if and only 'd c> d*. liiis
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result is consistent with the work of Geman and Geman (2). TTiey cmisidered a modd
which is nearly a special case of the model used here, and they proved that conditicm
(1.5) holds if (r^) satisfies equation (1.7) for a sufficiently large constant c. They gave a
value of c which is sufficient for convergence and which is substantially larger than d*.

Gidas [4] also addressed the convergence properties of the annealing algorithm. The
Markov chains that he considered are more general than those that we consider. He
required little more than the condition that the one-step transition probability matrices
P,^ converge as k tends to infinity. In the special case of annealing processes, he gave a
value of c (actually, c here corresponds to I /CQ in Gidas' notatitm) which he
conjectured is the smallest such that Equation (1.7) leads to Equation (1.5). His
constant is different from the constant d* defined here. Gidas also considered
interesting convergence questions for functionals of the Markov chains.

Geman and Hwang [3] showed that in the analogous case of nonstationary diffusion
processes that a schedule of the form (1.7) is sufficient for convergence to the global
minima if c is no smaller than the difference between the maximum and minimum
value of V. We conjecture that the smallest constant is given by the obvious analogue
of the constant d* that we defined here, although the proof that we give here does not
readily carry over to the diffusion case.

(2) Some information on how quickly convergence occurs in Equation (1.5) can be
gleaned from Theorems 3 and 4 in §§3 and 4 respectively, and from the proofs in [2-4].

(3) It would be interesting to know the behavior of min„^^K(J^„) rather than the
behavior of V{X^).

(4) It would be interesting to study convergence properties when the schedule (r^) is
randonf and depends on the algorithm states.

(5) If X is a local minimum of depth d and no other local minimum y with
V^^y) = K(x) can be reached from x at height V(x) + d, then there is a cup of depth
d such that x is the only state in the bottom of the cup. Thus, under the conditions of
Theorem 1, lim^_«PIA]t = x] = 0 if and only if (1.6) is true. We conjecture that this
last statement is true for any local minimum of depth d.

EXAMPLES. (1) The examples in Figure 1.1 and Figure 1.2, d* = 6 and d* = 7,
respectively.

(2) Cemy [1] and Kirkpatrick et al. [7] independently introduced simulated anneal-
ing. They and, by now, many others have applied the simulated annealing algorithm to
difficult combinatorial problems. We will briefiy consider the maximum matching
problem, even though this problem is easy in the sense that efficient polynomial-time
algorithms are known for solving it.

Consider an undirected graph. A matching M is a subset of edges of the graph such
that no two edg« in M have a node in common. We take the state space 5^ in the
annealing setup to be the Mt of all matchii^, and we let V(M)be negative one times
the number of edges in M. The maximum matching problem is then to find Af in 5^ to

e V(M). Suppose that the state of the annealing algorithm at the b^inning of
h h d i h ll

() pp
the i^th iteration is M. Suî >ose an edge of the graph is then chosen at random, with all
edges bemg equally likely. If the edge is not in M and can be added to M, then the
n ^ t state is obtained by adding the edge to M. If the edge is in Af, then die next state
is obtained by rraiowng the ed^ from M with probability exp(-l/3jt). OUierwise,
the next state is at/ain M. Tbis correspcHids to RiM, M') - 1/L if A/' can be obtained
from M by addii^ an ed^ to ca sub&actii^ an ed^ &CBn M, whoe L is the numbo-
of edges of the grj^h; and RiM, M') - 0 for other M' distinct from M.

It is wdl known tlmt if a matdung M does not have maximum cardinality then
edges ean be altema^y subtracted and added until' two can be added at once.

d* is at msA one (it is ZHO for srane graphs), no matter how large the
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(a) (b)

1 -

FIGURE 1.3. Diagram (a) arises ftom a triple {y, V, N) and diagram (b) is obtained by "fllling-in" the

(3) Consider (y, V, N) giving rise to Figure 1.3. Note that d* = 3. Now suppose
that (Tfc) satisfies (1.1), (1.2),

(1.8) +00, and

(1.9)
k-l

Since ^4 is reachable at height V(xj^) + 2 and since (1.8) is assumed, one might
(correctly) guess that if the process starts at x^ then it will eventually reach x^ with
probability one. By similar reasoning, one might then (incorrectly) guess that the
process must eventaally reach Xy. However, by Tiieoron 1 and (1.9), lim^t-oo-^I-** ~
X7] ^ 1. What happens is that if ^ is l a i ^ so that Tĵ  is small and if the process is in
state X4 at time k, then it is much more likely that As process hits state x^ before it
hits (if eves') state x^. We think of the cup consisting of state X4 alone as being
"filled-in" (see Figure 1.3), so that to get from x^ to x^, Uie process has to climb up
three levds. Roughly q>eaking, the small dq>ression in K at X4 does not allow the
process to always make it up three levels by going up two at a time and "resting" in
between. l U s would not be mie if condition WR were violated by, for example, setting
the probability of jumping frcan X4 to X3 to zoo.

Tbis papa is (vganized as follows. In §2 we state Hieorem 2, which is a generaliza-
tioa of TiMCHian 1. TIM rest of the {uqper is devoted to proving Theorran 2. The theorem
will first be proved under the as^impticm that {y,V,N)has^e "continuous inoease"
ptopaty, ^f/bkk is formulated in §2. In §§3 and 4 we state and prove Thec»«ms 3 and
4, whi(^ (tesoflje how ibs proems exits from a aip. Tbt proof of Theorem 2, induding
how to ronove tbe oontinuom moease a^umptkm, is presented in §5. There is an
inteiplay in §5 between the tmsesWLy and aifficieacy of condition (1.6).

2. f^aienMsaiaieA4i'nmoaml. It mil be M p M to goiasAze nieOTom 1 befcve
proving it. We as^nie tiir<Hig^out the paper Um (S^, F, .Af) is medadhhe and has the
pF^>aty WR ^kfi i^ in §1. Tfarcnigboat die r^aaindo^ of the pap& (X,: / > 0) wiU ht
assumed to satisfy 0 < A, < 1, A, is mmincî Kiang in t, and iim4_.^A, <« 0. Soppc^e
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that (X,: t>O)is defined by X, = Y^ for {4 < r < [4+1 where (({4, Y^): A: > 0) is a
homogeneous Markov random process with state space [0, + 00) x .5^ and one-step
transition probabilities

where for some strictly positive constants D, a, Cj and C2:
A.I 0( - ,5 , x) is a probability distribution function with $(5 - , 5, x) = 0,

fo'i^ ~ s)<^{dt, s, x) < D, and £[min{A:: Uk> t + a}\Uo=' t, YQ = x] < I/a for all
f > 0, X G y .

A.2 For r > 0 and 0 < A < 1, g(-, •, r. A) is a probability transition matrix with

*'<-»'< Q{x, y,t,\)^ C2A<''(̂ >-•'(-»* if ;; G N(X)

Q{x,y,t,\) = O ]iy^N{x)\J{x}.

Note that 7^+i is conditionally independent of (t̂ o, l o ' - ' ^ * - i . ^*-i '^t) given
(4+1 n

For example, if (3" :̂ /t > 0) and /? are as in §1 and "/^" denotes the indicator
variable of a set A, we can let A, = exp(-l/r(,j), $(r, ,s, x) =/(,^^+i} and
e(x, ;;, ̂  A) = R(x, y)\;(ny)-'nx)r for ^ ¥=;;. Then (X,: f > 0) sampled at integer
times has the same transition probabilities as{X^: k> 0) does in §1. When A, $ and
Q are chosen as in this example. Theorem 2 below reduces to Theorem 1.

If instead we let <^{t,s,x) = I^,^^^{l- exp( -{t - s))), then Jf is a continuous-time
analogue of the process in §1.

THEOREM 2. (a) For any state x that is not a local minimum, lim, _ ^P[ A', = x] = 0.
(b) Suppose that B is the bottom of a cup C of depth d and that the states in B are local

minima of depth d. Then ]im,_^P[X, eB] = O if and only if j^\'',dt = +oo.
(c) (Consequence of (a) and (b)). Let d* be the maximum of the depths of all states

which are local but not global minima. Let S^* denote the set of global minima. Then
y*] = 1 if and only if f^K' dt = + oo.

Let £"0, El,..., Eg denote the possible values of V(x) as x varies over £^, ordered
so that EQ < El < • • • < E^. We will first prove Theorem 2 under the assumption
that {6^,V,N) has the following property:

Continuous Increase Property. Given any two states x and y, if V{x) = £, and
V(y) = EJ and y > / + 2, then >< « N{x).

The (5*", V, N) in Figure 1.1 does not have the continuous increase property, while
the one in Figure 1.2 does.

3. How aqis r « m ^ ov«r.

3.1. Theorem statement and initial steps of proof. Suppose that C is a cup, and let
m and ^ be the int^eis such that £„ is the minimum and £^ is the maximum value
of V{x), for X in C. We assume that k<q (otherwise C is all of S^), so that
0 ^ m < k < q. Let F =" {y: y ̂  C and y e N(x) for some x e C}. By the continu-
ous increase property, V(x) = E^+i for all x e F. Define u and g by u = £^+1 - £4
and g°* Ef^- £„. TTien d-u-¥ g, where d is the depth of C. Let © =
{Sf, V, N, D, a, Ci, C2) where D, a, Cj and Cj are the constants appearing in
tions A.1 and A.2.
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and

where T ( C ) == U^^ and W = imn{k

THEOREM 3. There exist « > 0 and A > 0 depending only on © and C so that for
every time tg > 0, every x^ e C, every y^^ F arid every (A,: t>G) such that A,̂  < A

"̂  ds = +oo the following conditions hold:

(a)

(b)

The theorem will be proved by induction once we establish it for a cup C with the
aid of the following hypothesis.

Induction Hypothesis: If C is any cup such that the depth of C is strictly smaller
than the dqjth of C, then Theorem 3 is true for C.

In the remainder of this subsection, we briefiy exploit the induction hypothesis. The
two properties in Theorem 3, (a) and (b), that we need to establish for C are then
proven in the next two subsections, respectively. The set of states C can be partitioned
into (disjoint) sets A,Ci,...,Cp such that Q, . . . ,C^ are cs^s, A = {x e C: K(x) =
£4} and max{F(x): x e C,} = £/fc.-i. This is illustrated in Figure 3.1. In the special
case that m = A:, the partition consists of the single set .4. In general, two elements x
and ^ of C with K(x) < E^ and V(y) < £4 are in the same partition set C, if and
only if X can be reached from y at height £t_i.

Tlie depth of C, for each i is at most g, which is smaller than the depth, d, of C.
Therefore, we can apply the induction hypothesis to C, for each /. We thus get e, and
A, for each i, and by tsldng the smallest of these we get c and A dq>ending only on ©

V

FlOintE 3.1. The pvtitkm of a ciq> C intoa tq) teyer A wad caps &i»n
diieetly leadied. A state S ia >1 k iadkaited fn«t « îcfa Fcsa be dunrdy readied.

tte tc^ layer can be
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and C such that if A, < A and x^ e C, for some / then

and for every y such that y & A n N(x) for some x G C,

P[hit y upon first jump out of C,|(t/o, l̂ o) = ('<,. ^«)] > «•

3.2. Proof of Theorem 3, Part a. In this subsection we prove part a of Theorem 3
under the induction hypothesis and its consequences described in §3.1. Let /1° =
{xeA: Af(x)nf # 0 } .

LEMMA 3.2.1. Let K = {rsan{k > 0: Y,^^ A°} A W)-¥ \. There is a constant D^

depending only on © and C such that for every x^ e C and every /„ > 0 with X, < A,

(3.1) E^j^'Kl^,^^^^ dt\{U^, Fo) = (?„, x j

PROOF. Let JJ, = 0, let /+ i = niin{)t > /,: 7^ G y4} A FF for / > 0 and consider
the discrete-time random process f = (7^) where Y^= Yj. The induction hypothesis
described in §3.1 and the fact that Y first visits a state in A upon exiting any of the C,,
implies that 7 has the following properties:

• Any state in v4 is reachable from any other state in A (not necessarily in one step).
• There exists e > 0 depending only on © and C so that, for x and y in A such that

a direct transition of 7 is possible, /'[f^+j = y\^k\ > « on the event {7^ = x}, where
^1^ is the o-algebra generated by {U,: 0 < / < 7̂  + 1) and {Y,: 0 < / < 7^).

• There exists a constant Dj depending only on © and C such that

Let Af=min{y>0: YjG^ A°KJ F). The first two properties stated imply that
£[Af Kt/o, YQ) = (?„, x^)] < DJ for some constant Dj depending only on © and C. The
third property implies that

is a submartingale, so that the A:th term has nonnegative expectation for each k.
Letting k tend to infinity and using the fact Af = /jf + 1, this yields

t^, 7o = x

Since Af > A,/^"^ for s > t^, this implies Equation (3.1) for D^ = DjD^. •
Let c, = C2max(|Ar(x) n /"I: x G ^ } , /:„ = 0,

fe>iS:,:7.G^°} A J F ] + 1 f o r / > l , and



320 BRUCE HAJEK

LEMMA 3.2.2. For 1 ^ i <j < + co

PROOF. We prove the Lemma by backwards induction on i. Inequality (3.2) is true
if / = j . Suppose for some /, j with 1 < / < 7 < +00 that (3.2) is true with / + 1 in
place of i. Then Lemma 3.2.1 and the fact that ^(Kf, Kj) =
<&(A:,+I, KJ) imply that (writing p(k) for X\)

Then using the fact that $(*r;, Kj) = 0 unless W > Kg, or equivalently, unless Yf^ G C,
and Assumption A.2, we find

which completes the proof of the lemma. •
We now complete the proof of Theorem 3, part a. By the monotone convergence

theorem we obtain by letting / = 0 and letting j tend to infinity in (3.2) that
EmKi,W)\U^^,Y^^_i] ^ Di/c, and by Lemma 3.2.1, E^O, KMU^, Y^) =
(t^, xJ] < Di. Thus

£[*(0, W)\{Uo, Yo) = {tg, Xg)] < Diil + c,)/c,

which implies part a of Theorem 3.

3.3. Proof of Theorem 3, Part b. We prove Theorem 3, (b) under the induction
hypothesis stated in §3.1, thereby completing the inductive proof of Theorem 3. We
will continue to refer to {/4, Q , . . . , C^} and F, which were defined in the first two
subsections.

Fix tg^ 0, Xg^ C aad yg G F. Choose a state x G ̂  so that >>„ G N{x). TTiroughout
this subsection we will assume that {UQ, Y^) = (tg, Xg) and A, < A. Let (/^, 7^, ^i)/t > 0
be defined as in the proof of Lemma 3.2.1. Then let

L* = min{/>0: 7 , G F } , LQ = 0 and

L,+i = nun{/ > L,: 7, = x) A L* for i > 0.

Note that 7^.. = IF and 7^, = 7^.. Define events (F,: / > 0) and (G: i > 1) by
^0 = {JL. = ^h G, = {IF = JL, + 1}, and //, = (/^ + 1 < »F = 4 J for / > 1.

LEMMA 3.3.2. The following inequalities hold for some positive constants Aj ond D^

depending only on © and C

(3.3) ^

(3.4) P[Hi] ^ P[Gi]Ds f o r i> l .
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PROOF. Let Z^ = I^Y^eF)• Assumption A.1 implies that (writing v(n) for A'J;):

Z , -

is a supermartingale. Since Ẑ ^ is equal to /{j^_^j, Hj is true if and only if
Z^̂ ĵ — Z^ .̂ 1 = 1. Using this fact, the optional sampling theorem for super-
martingales and the fact that A is nonincreasing, we obtain

Now (Lj^.1 - L, - 1)"̂  is the number of times 7 visits states in A - {x} before
visiting {x} U F. By the argument in Lemma 3.2.1, we thus conclude that £[(L,+i -
L, - 1)"^|^£, ] < D^, where Dj depends only on © and C. Hence,

(3.5)

If i = 0, this implies that P[Ho] < CjDgAi. For / > 1, Assumption A.2 implies that

(3.6)

Since P[Hi\^i^ ] = 0 off the event {7^ = x}, we deduce from (3.5) and (3.6) that
P{Hi\^L} < D'SPIGI\^L,] for ^5 = Ac3Ai> which yields />[tf,] < fisPIG,]. Lemma
3.3.2 is proved. •

Now

which by (3.3) impUes that P[7i._i = x] > (1 - D^X^yil + D^). Since
yo\^f-i = x]^ C1A3 we thus infer that

which impUes part b of Theorem 3. The proof of Theorem 3 by induction is complete.

4. Upper bound on ciq> exit iwobability. We continue to assume that irreducibility,
WR, A.1, A.2 and the continuous increase assumption hold.

THEOREM 4. TTiere exist A^ > 0 and F > 0 depending only on © such that the

following is true. If C is a cup with depth d and bottom B, A, < A^, x^ G .B and r ^ t

then

P[X, ^Cfort^s^ r|(l/o, Y^) = {t, xJ]

there are cmly finitely many cups, it suffices to prove die theorem for a
particular ciq) C. Let F, m and it be as d^n«l in the b^inning of §3. We can assume
th^ k < q, max othowise d^ Ht^otem is trivial, and for ease of notation we assume
that m == 0. Hence d = £̂ 4̂ 1 - £0.
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FIGURE 4.1. A cup C and the set F of states directly above C ate shown. The cup is partitioned into a
set of smaller cups, each of which is e&drded with dashed lines, and a set 7. Hie set / is itself partitioned
into subsets, each of which is enclosed by a rectangle and consists of states in / with a common value of V.

Given x in C, let h{x) denote the smallest height at which a state in B can be
reached from x. There is a partition {/,Q,...,C;v} of C such that J ~ [x^ C:
h{x) = F(x)} and each C, is a cup. In fact, if x G C and h{x) > F(x), then x G q
for some ; and C, is the set of all states that can be reached from x at height strictly
less than h{x). This is illustrated in Figure 4.1. The partition has the property that 7
cannot jump direcdy from one of the cups of the partition to another without visiting a
state in / . Define L^^.! by L^+i = £ and let Ay = £,+i - Ej for 0 <7 < k.

LEMMA 4.1.

is true. Let 1

Then

There is a constant c depending only on © and C such that the following
j ^ k, x & Lj, t > 0 and

min{ m:

= {t,x)\

PROOF OF L£MMA 4.1. TTiere exist x e Lj and ^ e Lo U • • • ULy_i such that
y G N{x), and sudi that starting hwa. x, 7can reach x without altering Lj^i. Hence,
the expected cardinality of {n: 1 < n < ^ aiul I4 ^ ^j) ^ bounded by a ccnstant
d^>aidii% atiy cm. 6 and C Heoee, the tormoa <a& be dediu^ fr<Hn Assunqjtion A2
and a maitingate aipin^it similar to ^ t osed in tte proofs of Looanias. 3.2.1 and
3.2.2. •
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Define A = min( A,|0 < / < / ( : } and choose A^ with 0 < A^ < 1 so small that cA^ <
0.5, where c is given by Lemma 4.1.

LEMMA 4.2. Consider a discrete time Markov chain Z with state space { 0 , 1 , . . . ,

k + l} and one-step transition probabilities

ifj = / - H ,

Pi.j = ( 1 - cA '̂ / / ; = / - 1,
otherwise,

for 0 < i ^ k. Then, for A < A^

(4.1) P[Zhitsk + 1 beforeithits 0|Zo = 1] < (2c)*A^*-'-^'.

PROOF. Define x, for 1 < / < A: + 1 by

X, = P[Z hits A: + 1 before it hits / - l|Zo = / ] .

The left-hand side of (4.1), which we wish to bound, is Xj. Now, considering the case
ZQ = / and conditioning on the value of Zj, we obtain the relation

or

Because cA^ < 0.5, the denominator on the right-hand side is at least 0.5, so that
X, < 2cA'^'x,+i, 1 < /• < it. Since x^+i = 1, this implies the lemma. •

LEMMA 4.3. Suppose A, < Â  and x G LJ. Then

P[Yvisits Fbefore visiting B\iYo,Uo) = (/ ,x)] < (2c)*Af'*'-^'.

PROOF. Define Ro = t and

Rj^i = min{n > Ry. 7« G J and V{Y„) * V{YJ,)].

Lemma 4.1 implies that the process (F(7« ))y>o is stochastically bounded [5] above by
the Markov chain E^, and thus has a smaller chance of hitting £<.+i before hitting £o
than does £z. The lemma is thus a consequence of Lemma 4.2. •

PROOF OF THEOREM 4. We will assume

(f/o. 5o) = ( ' . Xg), where Xg G 5 , A, < A ,̂ >F= min{y: Y^^F),

So = 0, S,+i = min{y > Sr.YjGB) AfV for / ^0, N* = min{/: 7s G f }

A-Q* = 0, A'*+i = min{/ > K*: f/̂  > t/^. + a} for n > 0.

Let 9?. denote die a-dgebra generatal by {Uy. 0 <y =C S, + 1) and Yy 0 < j < S,).
TTien by Lemma 4.3 and Assumpdon A.2

P[N* = I + 1|^J < cX% +1 for / > 0,
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Hence

I
J'O ' J,>o

is a submartingale.
Since (1) {N* > K*) ^ 9^., (2) the process in (4.2) is a submartingale and A is

nonincreasing, (3) Assumption A.1 implies that E\K*^.i ~ A^/I^j^,] < I /a , and (4)
{^K: > ^ + «fl} on the event {N* > K*}, we have

P[N* > K*.^i\^

Taking expectations, we get P[N* > K*^i]> (1 - cX'',+„^/a)P[N* > K*], so by
induction on n.

n
j-O

Thus, since {X, e C for t ^ s < r) a {N* > K^^^_,y^^^.i], if we suppose that A, is
so small that cA^/a < x, where x is the positive solution to 1 - x = exp(—2x), then

( , ) -(2c/a)
j-o \

This implies Theorem 4. •

5. Pmoi (rf Theorem 2.

5.1. Towards sufficiency ofthe integral condition. Let £ > 0 and let
Wg= {x|x is a local minimum of dq>th stricdy larger than £ } ,
/?£ = {x|x is reachable from y at height V{y) + £ for some y B W^}.

We remind the reader that condition WR is in effect. The purpose of this subsection is
to prove the following lemma, which will be used in the next section.

LEMMA 5.1. / /

(5.1) rAf

JQ

then

(5.2) t—aa

Hie imx>f mil be pr^eated afta* Om fcAcnmng tennoa is proved. Tl» tenma is
illustrated in Figure 5.1.
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V

FP-8834

FIGURE 5.1. The partition of a set 5^ into a subset J and a set of cups, corresponding to £ = 3. The
caps are enclosed by dashed lines, and all other states are in / . States in the subset Rg of / are hatched.

LEMMA 5.2. There is a partition {J,Ci,...,C^} of y such that
(1) / = {x G y\WE is reachable from x at height F(x)},
(2) Ci,...,Cff are cups of depth at most E,
(3) 7 cannot jump directly from one ofthe cups to another without visiting a state in J.

PROOF. For x G ^ define a cup C, by Ĉ  ={>»!>' is reachable from x at height
F(x)}. Fix X such that C^r\J * 0 . Then for y&C^r\J,y'is reachable from x at
height F(x), and W^ is reachable from y at height V{y). Tbe first of diese facts
implies that V{y) < F(x). Then the two facts together imply that W^ is reachable
from X at hei^t F(x), which is to say that x G / . We have shown that if Q n 7 is
nonempty, thsi x G 7. Equivalraidy, we have shown that C^dJ^ 0 i fx«£/ .

Suppose that the depth of a cup Q exceeds £. Let >> be a state in the bottom of the
cup. Then ^̂  is a local minimum of dq)th greater than £, so that y G JF^, and hence,
>> e 7. Therefore, c^r\J * 0 , so that x G / . We have just shown that if the depth of
a cup Ĉ  exceeds £, then x G 7. Equivalendy, the dq)th of Q is at most £ for any
x^J.'

Givrai any x and y, eidier C, c C^, C, c C, or C, n Ĉ  = 0 . Tlius, the set of
maximal sets from die collecdon «"= {Q: x€J} together widi die set J forms a
partition of 9' with the desired properties (1) and (2).

Choose X so that C, is a maximal set in «", and let >' be a state not in C, that can be
readied in one step ttom a state in Q. Since V{y) is larpr than die maximum of V
over C, (whic* h^)pais to be F(x)), some state in C, is readiable from y at lewl
V(y). fh«ef<Me C, n Ĉ  is nonempty, so that C, is a propfs subset of C .̂ Since C, is

d in tte cdlection f, it follows that Ĉ  is not in «', «*idi means that ye^J.
partition thus has propaty (3) as vttXL. u
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PROOF OF LEMMA 5.1. Set A^ = 0, A,^_i = min{A: > A/. U^^J) for i > 0, a =

nun{ J: 7^ G J F ^ } and /3 = min{/ > a: 7^ ^ RE)- Since there are only finitely many
cups, we can choose A > 0 in l^eorem 3 to dq)end only on ©, and we also suppose
that A < A^ where A^ appears in Theorem 4. By Theorem 3, part a and properties (2)
and (3) in Lemma 5.2, there is a constant D , depending only on © such that if A, < A
then

on the event { i^ > / ( , } . By Theorem 3, part b and property (1) in Lemma 5.2, there
exists e > 0 dep)ending only on © such that: for any state x G / there is a sequence of
distinct states x = Xo, . . . ,x^ such that F(xo) > F(Xi) > ••• > F(Xp), x^ G W^

and P[Y^,^^ = ^y+i|7^^ = Xj, t/^ = /] > c for 0 <y < p and t > tg. This implies that
there exists a constant Dg depending only on © such that £[o|f/o = tg, YQ = Xg] < Z)g
for Xg^9' and t > tg. Hence

, = tg, ro = X,

so that

(5.3)

Note that 7^ must be in the bottom of a cup of depth at least £ -i- y, where
y = min{J(C) — £: C is a cup with d{C) > E). Hence, by Theorem 4, and the fact
(A,) is nonincreasing, there exists a constant F depending only on © such that for

(5.4) „ 1̂0 = Xg\ > expl •

Since X^G R^it f/< < r < U^^, we can combine (5.3) and (5.4) to yield

(5.5)

In view of condition (5.1), pvoi any c > 0, if r is sufficiendy l a i ^ thai there exists a
large interval of time [ti, t2] with /j < r such that the right-lumd side of (5.5) is at least
1 - € if f̂  G [tl, /j]. Giwn the process (U^, 7^: k > 0) with UQ = 0, we let p = min{ifc:
f4 > M- We can choose r, and hence fj - ti, so large that P[Up < /j] > 1 ~ «• By
conditioning on (t/^, 7^), we then obtain that P[X^ G ^ ^ m = 0, 7o = x] > (1 - e)^
for all X G .5^. Lenuna 5.1 is proved. •

5.2. Proof of Theorem 2 under the continvmts increase assimqttitm. In this l
tion we wiU prove Tlieoran 2 under the additional assunqjtiaa that the continuous
iiM3rea% pr(q>aty holds. The proof of Theo^m 2 without this assumpti(Mi is outlined in
the next ^b^ction.

When £ — 0, /{^ is d» set of local nuniraa and the i n t ^a l ccmdition (5.1) is
true. Lemma 5.1 thus impUK part (a) of Tbeoam 2.
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We will next prove the "if" half of part (b) of Theorem 2. Let B denote the bottom
of a cup C of depth £ and suppose that the states in £ are local minima of depth £.
We must show that P[X, G S] has limit zero as t tends to infinity if the integral of Â
is infinite. In view of Lemma 5.1 it is sufficient to prove that B and i?^ are disjoint.
For the sake of contradiction, suppose that x e B n R^;. Then there is a state y so
that the following three statements are true:

(i) X is a local minimum of depth £.
(ii) / is a local minimum of depth stricdy greater than £.
(iii) X is reachable from y (and vice-versa) at height F(>') -I- £.
We consider two cases. First consider the case that F(x) < F(>'). By (i), there is a

state 2 with V(z) < F(x) that can be reached from x at height F(x) + £ (and hence
at height V(y) + £) . In view of (iii), this implies that the state z can also be reached
from y at height V{y) + £. Since V(z) < vly), this contradicts (ii).

Now consider the case that F(x) > V(y). By (iii), y can be reached from x at
height V(y) + £, and this height is strictly smaller than F(x) + £. This contradicts

(i)-
We obtain a contradiction in either case, so we have proved that B and R^ are

disjoint. This completes the proof of the "if" half of part (b) of Theorem 2 under the
continuous increase assumption. To prove the "only if" half of part (b) we again let B
denote the bottom of a cup C of depth £, we suppose that the states in B are local
minima of ^ p t h £, and we assume that A is ^ven such that /o"Af dt < +00. We want
to prove that P[X, G B] does not converge to zero as t tends to infinity.

Let F be the unique nonnegadve number such that the integral of A"̂  is infinite if
0 < r < f and the integral is finite if r > F. Then F < £, and we define a cup C as
foUows. If F < £ we choose a state y in B and let C = {x: x is reachable from y at
hei^t V(y) -I- F} (in which case depth (C) > F) and if F = £ we let C = C. We let
B' denote the bottom of C and then the following three facts are easy to verify: (1) If
d denotes the depth of C then the integral of A** is finite; (2) any state inC - B' is
either not a local minimum or is a local minimum of depth stricdy smaller than F, and
(3) B' is a subset of B.

By the first of these facts and Theorem 4,

(5.6) Uminfi>[Jir,G C ] > 0 .
/-•ao

By the second of these facts, part (a) of Theorem 2 and the "if" half of part (b) of
Theorem 2,

(5.7) lim P[;if, - x] = 0 for X G C - B'.
/ - • o o

From (5.6) and (5.7) we conclude that hm'mf,^^P[X, G B'] > 0, and from die third
fact, this inequality is true widi B' rq}laced by B. This completes the "only if" half of
part (b) of 'Dieorem 2, and hence the theorem itself, under the continuous increase
assun^Jtion.

5.3. Proof of Tiieorem 2 in general. Suppose the conditions of Theorem 2 are
satisfied, but that the continuous increase property is violated. We will construct a new
system {^, Q, V, 4 ) sadsfying the conditions of Tlieorem 2 and (1) the continuous
mciatse pw^jerty holds so diat, by what we proved so far, Tiieorem 2 applies to the
iww i^ton, (2) ^ c £^, (3) if X G y , then x is a local minimum of d^th d for the
original ^ ^ m if and only if it is a local minimum of dqpth d for the new ^stem, and
(4) if the oripoal and new syston start in the san^ state, dien tl» process (X,: t >0)
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, ,V

FIGURE 5.2. Example of (S^, V, N) which violates the continuous increase assumption, and the new
system.

has the same distribution for the two systems. The idea of the construcdon is to add
new states so that the process can visit a state in each intermediate level when moving
upward, and the holding tim^ of the new states are zero. We now give the construc-
don. An example is shown in Figure 5.2.

Let £0 < £1 < • • • < £ , denote the values of F(x) as x ranges over S. For each x
in S, define ^ ( x ) so diat H(x) = i if F(x) = £,. Define U(x) = Ef,^^y^i if F(x) < £,,
and t/(x) = + 00 if F(x) = £,. In the following, x and y always denote states in y
with y G N(x), and s,t> 0. Set

=̂= U U {(x, I, y): y G N{X), V{y) > U(x),

F(x)=F(x), F((x,O)) = F(x), F((x,/,

< / <

y(x, /, A) = fl +
[

Q(x, y, t, - 1)1,
Jy: y(y)> U{x) J

e(x,(x,O),/,A) = l,

e((x,O), (x, 1, y), t. A) = {Q{x, y, t, A)A^W-''W)/y(x, t, X) if V{y) > U(x),

fi((x,O), y, t, X) - e(x, y, t, A)/y(x, t. A) if V{y) < U(x),

, i, y), (x, i + 1, y), t, X) = A^'--^' if ^(x) < / < Hiy) - 1,

, /, y), y, t. A) = A^O')-̂ ' if H{x) < i = H{y) - 1,

,i,y),y,t,X)^l-X^'*^-^' itHix)<i<H{y).

of ^ skot q>edficd are zoo. T^e iua^boibood structure for die new syistem can
now be spe<a&d by y & Niz) fw >», z G y if and only if Qiz, y, t,X)>Q fw sonw
(cquivateatly for all) I, A wiA i 3 s O m d O < A < L I t e a n b e i^sctod timy(x,t,X)h
a » expected nuadto^ (tf ^t& tt» wew proems mdces to state (x,0) befiw; readui^ a
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state in y, given the process starts in state x. Verificadon that the construcdon has the
desired properdes (l)-(4) is elementary and is left to the reader. The following is also
easy to check: (5) if, for the original system, B is the bottom of a cup of depth d and
the states in B are local minima of depth d, then the same is true oi B = B U {(x,0):
X G B} for the new system. Theorem 2 is immediately implied by properdes (l)-(5) of
the construcdon.

Adcnowlef^eiiients. The author is grateful for the comments and encouragement of
the referees, assodate editor and editor.
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