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Cooling the UK housing stock post-2050s 

 

Abstract 

This paper investigates the risk of projected post-2050s overheating in existing, 

retrofitted and new-build dwellings in the UK. As previous research has shown, 

passive measures may not be sufficient in mitigating overheating risk. Therefore, 

mechanical cooling technologies that may be deployed to ‘adapt’ to a warming 

climate are tested for energy and CO2 implications. For retrofits, heating demand is 

projected to remain dominant, whereas in post-2016 new-build, greater cooling 

system efficiency will be important. Thermal mass is shown to reduce future 

cooling load. The heat recovery element of MVHR may be rendered unnecessary 

in super-efficient homes. Ceiling fans coupled with natural ventilation may be 

sufficient in providing thermal comfort in the north of England. Ultimately, not 

planning for future overheating and cooling systems could create a new 

performance gap in design, construction and occupant behaviour. 
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Practical application 

Overheating, already experienced in dwellings throughout the UK and projected to 

increase in occurrence, should be considered in all new design and retrofit. 

Dwellings designed to meet thermal comfort performance targets may be at risk of 

non-compliance as a result of a warming climate. Furthermore, dwellings designed 

to meet energy performance targets may be at risk of non-compliance as a result 

of potential need for cooling systems. The findings have implications for policy-

making in relation to decarbonisation of the electricity grid, implementation of the 

Green Deal and upgrading building regulations to future-proof new and existing 

housing against a warming climate. 
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1. Introduction 

Choices made today in the building sector can have long lasting effects. Whereas 

in other sectors technological change can take place in 20 years or less, buildings 

built today can last up to 100 years or beyond.1 In the UK over 80% of existing 

homes will still be standing in 2050 which emphasises the need for a massive 

retrofit of existing homes to meet Government CO2 reduction targets2. As a result, 

there is great urgency in reshaping how energy is used and this places significant 

weight on policy decisions that will impact the way buildings are built or retrofitted 

throughout the remainder of the decade.  

 

Heating and cooling energy consumption is influenced by the quality of the building 

envelope, occupant behaviour and the climate.1,3 Climate change within this 

century has the potential to make naturally ventilated buildings that have otherwise 

been at low risk of overheating have thermally unacceptable interior 

environments.4,5 The vast majority of dwellings in the UK are free-running in 

summer. Though this may suggest the domestic sector in the UK has, for the most 

part, been sufficiently thermally comfortable throughout the summers, research has 

shown that this could already be changing,6,7 is projected to further change in the 

future, and will be difficult to passively mitigate beyond the middle of the 

century.8,9,10 Furthermore, improved standards of airtightness, greater reliance on 

mechanical ventilation and increased levels of insulation in new-build homes and 

existing houses driven by National Green Deali programme and Government’s CO2 

targets, could aggravate the risk of overheating post-2050s. This explains why 

building regulations and policy schemes like the Green Deal and Zero Carbon new 

homes from 2016 will need to integrate probabilistic future climate change analysis  

in order to future-proof buildings.11 
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To further complicate matters, recent research7,8,10 has shown that post-2050s, 

passive measures (thermal mass, night-time ventilation and shading) may not be 

effective in providing sufficient thermal comfort and that some kind of active cooling 

systems may be necessary in some locations of the country. Particularly, with 

further urbanisation and a warmer climate leading to higher urban temperatures 

and local conditions making natural ventilation less desirable (due to noise, air 

pollution and security concerns), the move to install domestic air-conditioning 

would seem obvious and attractive. Heating energy demand is projected to 

decrease and future cooling demand will increase assuming an uptake of cooling 

technologies. Collins et al.3 demonstrated a projected 26-32% heating demand 

reduction by the 2080s. Similar changes have been simulated in Germany, 

Portugal, Austria12 and Slovenia.13 

 

These changes will have an impact on the proportion of energy distribution and 

resultant CO2 emissions since most homes are heated by natural gas. Measures to 

reduce space heating and water use (or switch from gas to electricity via heat 

pumps for example) and the expected rise in demand for electrical consumer 

goods in the future will cause the domestic sector’s share of energy use to be 

increasingly dominated by electricity.3,14 The use of gas as a primary domestic fuel 

source could shift to electricity in the future for two reasons: 

1. First, the government focus on heat pumps as a viable heating source 

through the Renewable Heat Incentive (RHI), the Green Deal and the 

Affordable Warmth Obligation (funding stream of the Energy Company 

Obligation for low income and fuel poor)15,16 and 

2. Second, the potential uptake of air conditioning or heat pumps for future 

cooling in response to the climatic change projected cooling demand 

increase in addition to heating demand decrease.3,7,8  
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Within this context, this paper specifically investigates, through dynamic thermal 

simulation, the overheating risk posed by a changing climate post-2050s, and the 

subsequent electricity implications of the potential uptake of cooling technologies in 

order to ‘adapt’ typical home types found in the suburban domestic sector. This 

investigation is performed through case study houses located in three English 

cities, assuming a responsive uptake of various cooling techniques in the face of 

climate change and the residual effects of current regulatory measures, such as 

the Green Deal and the 2016 Zero Carbon new-build target.  

 

2. Method 

Thermal simulation of future conditions was performed on a number of English 

suburban house archetypes located in three English cities using Integrated 

Environmental Solutions Virtual Environment’sii (IES VE) ModelIT, Apache and 

VistaPro software. The houses are modelled with current, retrofitted and Zero 

Carbon new-build characteristics. This section presents the methods used for 

preparing the investigation and analysing the results. 

 

2.1 Future weather data for simulation 

Previous research has shown that in some locations in England, homes 

(depending on a number of different characteristics) are projected to overheat 

during the 2050s climate period and beyond even after a suite of passive cooling 

measures are applied.7,8 This paper advances the investigation by addressing the 

concern that passive measures are ineffective in completely mitigating overheating 

risk. So what will it take to remain thermally comfortable in the climate period 

following the 2050s climate period?  
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Probabilistic future weather year (FWY) datasets from the UK Climate Projections17 

(UKCP09) are used to simulate the impact of climatic change. The simulated 

projections are 2080s climate period (representing potential conditions from 2070-

2099); high emissions scenario (IPCC SRES A1FI), an emissions scenario path 

roughly being currently followed given the current CO2 emissions and global 

economic, technical, and social trajectory;18,19 and 50-90% probabilities, allowing 

the probabilistic range to cover the ‘central estimate’ (50%) to ‘very unlikely to be 

greater than’ (90%). Design summer year (DSY) files of these projections are used 

to assess overheating in hot summers but not in extreme or heat wave conditions. 

The future weather data were attained from the output of the Engineering and 

Physical Science Research Council (EPSRC)-funded PROMETHEUS project.20 

FWY files and locations used in the study are listed in table 1. 

 

Table 1  

 

2.2 Modelling the domestic archetypes 

Twelve suburban housing archetypes are used for testing (three built-forms over 

four built-age groups). The built-form archetypes listed in table 2 are the most 

common housing types in England.21 The four built-age groups are pre-1919, 

1950s, early-2000s and Zero Carbon Homes (circa-2016). 

 

Table 2  

 

All homes are modelled and simulated with a south-facing front orientation. That is, 

the living room (proxy) of each home has primary south facing glazing. South 

orientation was selected as a beginning default position but it is beyond the scope 

of the paper to explore all possible orientations. Though the south orientated living 
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room has been shown to have moderate overheating relative to other orientations, 

the living room experiences greater overheating than the bedrooms during 

respective occupied hours.7 

 

2.3 Baseline construction 

There are three levels of baseline construction (following proportion of English 

stock): pre-1919 (21%) solid wall, 1950s (20%) unfilled cavity and early-2000s 

(<13%) filled cavity.21 Overheating assessment of baseline construction types 

include natural ventilation during occupied hours of the summer season. Heating 

and cooling set-points for the living room are 21°C and 23°C respectively (mid-

range domestic recommended operative temperatures22). Set-points remain the 

same throughout all simulations (i.e. between the base construction and the Zero 

Carbon homes) though highly insulated conditions have been shown to provide 

comfort at lower temperatures due to the radiant heat exchange.23 All baseline 

homes are heated with boilers using natural gas. The boiler efficiency of the pre-

1919 and 1950s homes is 70% and the efficiency for the early-2000s homes is 

78%. 

 

Table 3 lists the construction characteristics for each home. Wall and ground floor 

construction vary with age. Homes pre-2000 are modelled without wall insulation. 

Alternatively, the pre-1919 and 1950s homes have loft insulation of 100 mm, given 

that by 2008 roughly 85% of English homes had 100 mm or more of loft 

insulation;24 the early-2000s homes have 150mm of loft insulation. Furthermore, all 

homes are modelled with double glazing as by 2008, 90% of households had some 

level of double glazing.24 All pre-1919 and 1950s homes are modelled without 

cylinder or pipework insulation, resulting in higher internal gains. All baseline 
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homes have the same internal gains and infiltration rates (1.3 mean dwelling ach). 

For axonometrics, plans and room dimensions of the homes see the appendix. 

 

Table 3  

 

2.4 Green Deal retrofit 

The Green Deal retrofit is applied to each baseline construction for each archetype 

and location. Table 4 details the construction changes for the Green Deal 

retrofitting of the homes. The specific changes are taken from a theoretical Green 

Deal package outlined in the Department of Energy and Climate Change (DECC) 

report25 on Green Deal implementation planning. Where the homes are solid-

walled, internal insulation will be used because it is less expensive than external 

insulation.25 It is presumed that after Green Deal assessment, a majority of 

homeowners will choose the insulation which will provide the energy savings with 

the greatest payback benefit due to cost (easier to meet the Golden Ruleiii). In 

addition, external insulation is expected to face greater opposition when retrofitting 

older or protected facades.26 Cavity wall homes receive both cavity fill insulation 

and internal insulation to meet the U-value 0.22 W/m2K. This external wall U-value 

is loosely based on Building Regulations Part L 2013 consultation.27 All homes 

receive a boiler efficiency upgrade of 91% and water heating system upgrades 

reduce the internal gains of the homes.  

 

The retrofit changes are intended for space and water heating demand and energy 

use reduction; however, as the climate changes and overheating becomes a 

challenge, these measures can be both beneficial and potentially problematic. 

Insulation, specifically internal insulation, has been shown to increase the risk of 

overheating (in some cases through the reduction of exposed thermal mass). 
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Alternatively, reduction of internal gains from pipework insulation (for example) will 

help reduce overheating risk and/or future cooling demand.8 The Green Deal 

package does not include passive measures for overheating reduction explored in 

previous research7,8 (e.g. shading). It is not expected that many homeowners will 

immediately take up shading (for example) as a part of their Green Deal package 

since without cooling demand, it will not present savings toward the Golden Rule. 

 

Table 4  

 

2.5 Zero carbon new-build 

Table 5 lists the construction details for the modelled Zero Carboniv homes. For 

each location there are three built forms (table 2) of Zero Carbon home. The Zero 

Carbon homes are modelled with decreased air permeability (1 m3/h/m2 @50Pa) 

and mechanical ventilation with heat recovery (MVHR). MVHR is only used in the 

heating season; therefore, in the analysis when heating energy and CO2 emissions 

are calculated the figures include MVHR consumption. The boiler efficiency is 91%. 

 

Table 5  

 

Though there is awareness of the risk of overheating in new homes28 leading to 

wider application of external shading in the future, shading is not assumed in the 

current Zero Carbon home model. This is done so that the homes can share this 

common feature with the other models (in order to reduce variables).  

 

2.6 Assessing overheating 

CIBSE29 guidance on identifying overheating in conjunction with Integrated 

Environmental Solution’s VistaPro advanced comfort analysis are used to identify 
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overheating in all free-running simulations of the homes. The following limitations 

are present. First, TM52 is designed for non-domestic analysis. Second, though 

the simulations cover existing, new-build and potentially infirm occupants, Category 

II, ‘normal level of expectation for new buildings and renovations’ alone is used to 

allow for cross-comparison between all variables. Deeper analysis is shown for a 

select group of houses, specifically looking at criterion 1, where overheating is 

defined as more than 3% of total occupied hours exceeding the interior Category II 

upper threshold. 

 

3. Overheating in the homes 

Table 6 shows the overheating results (pass or fail) for all homes, locations (except 

Bristol), and occupancy profiles described in the methodology. When two criteria 

pass, the home is not ‘overheated’ (indicated by a box. In most cases O2 

surpasses O1 in failure for all criteria except criterion 3. Daily weighted 

exceedance (criterion 2) is generally much higher for O2 and upper limit 

temperature (criterion 3) is generally the same for both occupant types. Bristol is 

not shown because every dwelling failed all criteria with the exception of one: O2 

detached Zero Carbon at 50% probability for criterion 1. 
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Table 6  

 

Figure 1 shows the overheating results for all O1 homes in Stockport according to 

criterion 1. To illustrate the probabilistic range, the beginning point of each bar in 

the graph indicates 50% probability and the end point indicates 90%. Between the 

three cities, Oxford has the largest probabilistic range of overheating between 50% 

and 90% probabilities and Stockport has the smallest. Only a few homes are able 

to avoid criterion 1 overheating (Stockport overheats least). The regulatory 

changes, e.g. Green Deal and Zero Carbon, though not in all cases, can result in 

homes with less overheating than the control homes. The relatively small reduction 

in overheating risk is attributable to lower internal gains in the retrofitted homes and 

in the case of the Zero Carbon homes, a combination of external insulation and 

higher internal mass appear to be beneficial. The reductions in overheating risk are 

however not very significant and should be adapted with passive measures.7,8  

 

 

Figure 1 Bristol, Oxford and Stockport overheating. Note: the bars represent the 

probabilistic range of 50-90%. 

 

Increasing the efficiency of existing constructions will continue to contribute to 

beneficial reduction of heating demand into the 2080s climate period (figures 2 & 

3). This is also true for the Zero Carbon model, however, analysing the period with 

the warmest external temperatures outside the summer season, it appears that by 

the 2080s the cooling season could expand widely in higher efficiency homes. In 

addition, for Zero Carbon homes there is a risk of overheating outside the summer 

season (figure 2).  
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Figure 2 Bristol temperatures in three variables during the warmest week in 2080s 

high e. 50%. 

 

The Zero Carbon homes are naturally ventilated in the summer with mechanical 

ventilation off. However, in the heating season the MVHR is on and in override 

mode when heating is not necessary. MV without HR is found to beneficially 

reduce the internal temperature in the heating and shoulder seasons; the internal 

temperature difference can be 3-4°C greater if a sealed home has no MV. As an 

example, a Zero Carbon home in Bristol during the coldest week in 2080s high 

emissions 50% probability had thermally comfortable living room temperatures 

between 20-23°C when the MV operated without HR (figure 3). At the same time if 

the home was sealed without MV, the living room temperatures were 23-27°C. This 

may suggest that climate change will negate the need for MV/MVHR in homes that 

are able to naturally ventilate in these seasons or at least the heat recovery 

element of MVHR where secure ventilation is needed. 

 

Figure 3 Bristol temperatures in three variables during the coldest week in 2080s 

high e. 50%. 

 

The next section will explore cooling options as a route to reducing overheating 

and the potential energy implications of these systems. Because current CO2 

reduction policy is focussed on Green Deal retrofits and Zero Carbon homes, the 

systems are tested on these homes. 

 

4. Active cooling 

Four cooling approaches for the future homes using O1 occupancy are explored in 

this section. These are fans, heat pumps (with cooling capacity), air-conditioning 
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and solar air-conditioning. The cooling methods work to do one or both of the 

following for the occupants: increase air velocity to affect both convective and 

evaporative heat losses from the body, and thus influence thermal comfort30 and/or 

physically remove heat from the occupied space. 

 

Assessing the projected future energy use of dwellings using these systems is the 

ultimate purpose of the investigation. The suitability of particular systems in 

meeting thermal comfort or determining the ideal future cooling system is not the 

specific intent. Furthermore, it is beyond the scope of this investigation to estimate 

system efficiency and results (e.g. extensive samples of performance curves or 

validation with actual system hourly thermal load data). This would alternatively be 

recommended for actual case study investigations and not necessarily a broad 

look at future estimations over a wide range of housing conditions. 

 

The cooling energy use assessment assumes a sealed home for the entire year, 

i.e., windows are not opened in the simulations. Specifically this scenario results in 

the greatest potential consumption for each system. Additionally, it can provide a 

glimpse into the difficult conditions where occupants are restricted from opening 

windows for comfort due to local noise, pollution or for security purposes. The fan 

assessment, on the other hand, assumes the same window opening pattern of the 

free-running homes in the overheating assessment. Though it may seem 

inconsistent, fan energy is not wasted when windows are open. 

 

4.1 Fans 

Fans are an inexpensive (in both cost and carbon emissions) tool which can 

increase the comfort threshold by up to 3°K.31 Fans do not cool the ambient air but 

can draw in cooler air from outside and/or increase heat loss by increasing the 
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efficiency of all normal methods of heat loss, but particularly by evaporation and 

convection methods.32 In addition, ceiling fans at low speeds (below 0.2 m/s at 

head height) have been found to be effective in de-stratification of warm air, 

reducing heating costs in the heating season. This is particularly more effective in 

spaces with high ceilings.33 

 

The adaptive thermal comfort model suggests that thermal environments slightly 

warmer than normally preferred can still be acceptable to building occupants, 

therefore the introduction of airflow with higher velocities (removing sensible and 

latent heat from the body) can create a more desirable scenario for these 

occupants.30 In one study modelling a fan, Ho et al.34 demonstrated that though a 

ceiling fan distributed the air in the space, mixing in the warmer air from above, 

slightly increasing the temperature in the space, the chilling effect of the fan 

increased the sense of thermal comfort in the zone below the fan. There is a limit 

however; a systematic review ultimately could not support or refute the 

effectiveness of fan use during heatwaves but suggested that a fan might increase 

heat loss if the temperature is below 35°C.32  

 

The sufficiency of fans to meet thermal comfort requirements will need to be 

established before a fan is considered an option against which to compare other 

energy consumption results. To test the effectiveness of a ceiling fan in an 

overheated space, the predicted mean vote (PMV)22 is used on three sample 

houses, one from each city. The mid-terrace Zero Carbon homes are selected for 

assessment due to their relatively higher overheating levels. First, to establish fan 

air speeds, the air speeds of a domestic ceiling fan and box fan were assessed 

using an anemometer at approximately 1 m from the fans (table 7). For the ceiling 

fan, this distance is based on head height for an individual sitting under the fan.  
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Table 7  

 

Though higher air speeds can be achieved with the use of a box fan pointing 

directly at the occupant (up to 3-4 m/s), the air speed is restricted at 1.2 m/s. The 

reasons for this are: 

1. The assessment is done to provide thermal comfort in a relaxed state 

(ceiling fan above head) as opposed to a heat stressed state (sweating 

individual standing directly in front of a box fan to cool off). 

2. The box fans, with higher speeds, create what is believed to be an 

unacceptable amount of noise (table 7) considering the typical occupancy 

activities of a living room, e.g. watching television, having a conversation.  

 

4.1.1 Thermal comfort and fans 

Figure 4 graphs the internal temperature, mean radiant (M.R.) temperature, relative 

humidity and the required air speed to reach a PMV of 0. Static and not graphed 

are the metabolic rate of 1 and the clothing insulation value of 0.5. Each graph 

presents four different days in the 2080s high emissions scenarios for each city. 

The four days represent in the following order, the day with the:  

1. highest internal temperature at 50% probability 

2. second highest internal temperature at 50% probability 

3. highest internal temperature at 90% probability 

4. second highest internal temperature at 90% probability 

 

 

Figure 4 Internal thermal comfort conditions using a ceiling fan 
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At 50% probability, thermal comfort in the Oxford and Stockport Zero Carbon mid-

terrace’s living rooms appear to be manageable with a ceiling fan. On the hottest 

day in Oxford the ceiling fan is required at the highest setting for a majority of the 

evening. In Stockport, a medium or lower setting appears to be sufficient for 

achieving a PMV of 0. In Bristol however, on the hottest day, the PMV is 1.5, 

slightly warm with a 50% predicted percentage dissatisfied (PPD). At 90% 

probability, Oxford changes radically. The hottest day proves to be unacceptable 

where a majority of the evening is beyond a PMV of 3 (off the graph); a ceiling fan 

alone would be insufficient for thermal comfort. As the second day shows, thermal 

comfort is barely manageable and for a majority of the evening >75% would be 

dissatisfied. This is also considered to be insufficient. Stockport, where 

temperatures remain below 35°C for the entire probabilistic range, appears to be 

manageable with a ceiling fan where at worst, there is 50% PPD which tapers off 

quickly on the hottest day at 90% probability. 

To calculate the energy use for a ceiling fan the following assumptions are made: 

 The hours for ceiling fan use for each home are simply taken from the 

number of hours overheated from the preceding overheating analysis; the 

fan is not used if the temperature is below the Cat. II maximum threshold. 

In reality, it is recognised that the fan use would not be this rigidly 

controlled. 

 As wattage ratings from fans are given for the highest speed, this wattage 

will be used as a constant, i.e., lower speed setting, though sufficient for 

thermal comfort, will not be used to calculate a reduced energy use. 

 To best represent the future condition, the wattage rating from the highest 

efficiency fan available from a manufacturer is used. This is 17.5 Watts for 

the high speed setting.35 



17 
 

 Though ceiling fans are considered insufficient to provide thermal comfort 

above 35°C, fan energy use is still counted against these hours. The 

temperature threshold of 35°C is shown to determine when the ceiling fan 

is insufficient in providing thermal comfort. 

 

4.3 Heat pumps 

Heat pumps are able to heat and cool a home. This makes heat pumps versatile 

for seasonally distinguishable climates. The basic function of a heat pump is to 

transfer heat from one body to another. The most common heat pumps in the 

domestic sector are ground mass to liquid (ground source heat pumps (GSHP)) or 

air to liquid (air source heat pumps (ASHP)).16 Heat pump efficiencies are based 

on the coefficient of performance (COP) or the ratio of heat energy output to the 

electrical energy input. The Energy Saving Trust36 discovered considerably low 

actual efficiencies in a field trial of 83 heat pumps throughout the UK (GSHP mean 

2.3 and ASHP mean 2.2). According to Gupta and Irving,16 a heating COP of 

greater than 2.6 would be required to justify the carbon intensity of a heat pump as 

compared to a highly efficient gas fired boiler. According to Lowe,14 GSHP 

technology coupled with plausible developments in electricity supply could result in 

a fourfold reduction of the carbon intensity as compared with gas boilers. Dwellings 

with solar photovoltaic panels would help reduce the carbon intensity and justify 

electrically driven technologies like the heat pump. As an example Zero Carbon 

homes have the option to use solar PV to meet the second tier, low carbon heat 

and power technologies, for code compliance.  

 

In the UK, the RHI is a programme similar to the Feed-in Tariff but for heat energy 

and without the import/export feature. GSHPs and ASHPs (among others) are 

eligible for the RHI as long as the COP is greater than 2.9.37 Based on this and the 
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specifications for an advanced heat pump,38 the homes are modelled using an 

ASHP with a heating COP of 2.97 for 55°C water output and an air intake of 7/6°C 

(dry/wet). The cooling energy efficiency ratio (EER) is 4.12 for 18°C water output 

and an air intake of 35°C.  

 

4.4 Standard air conditioning 

The air conditioner (AC), like the heat pump, works to transfer heat from one body 

to another. Typically ACs work to cool the indoor air by transferring or rejecting 

heat from a building. Many AC systems also work to regulate the humidity of the 

indoor air. The heat that is removed from the building, unless used for other 

purposes is simply rejected to the outside. This aspect is of concern for increasing 

the heat island effect in urban areas. Alternatively, heat capture such as in an AC 

with heat recovery for water heating has a twofold energy benefit; heating water 

and reducing the energy used by the air conditioner for cooling.39 Advances such 

as these are more beneficial than the typical standard AC unit. However, where 

currently 75% of mechanical cooling systems are reversible heat, cooling only 

appliances are expected to disappear from the EU market.40 The UK’s adoption of 

EU efficiency standards for heat pumps would suggest that the UK, by the time 

cooling becomes a necessity, would follow the same trajectory as the EU. 

 

Air conditioning is rated based on its EER. This is the ratio between the output 

cooling (thermal) power and the input electrical power in cooling mode. The EER is 

used to define the energy classes for labelling. By 2008, ‘Class A’ air conditioners 

held 61% of the market in Italy and Spain. A ‘Class A’ EER is 3.2 for systems up to 

12kW.41 For the simulation of standard AC, the Eurovent Class A rating (EER 3.2) 

is used. For future considerations, this could be a mid-range energy rating by mid-

century.  
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4.5 Solar air conditioning 

An advanced version of the air conditioner is the solar-AC or solar absorption 

chiller. Absorption chillers are currently used primarily in industrial applications but 

are technologically advancing to be appropriately sized for domestic use and have 

been tested in domestic applications. Cost is also currently high, but exposure, 

demand and energy price change could trigger wide marketability in the future.42 

To cool the house with a domestic scaled absorption chiller, hot water is pumped 

through an absorption chiller (significantly more efficient than standard ACs). 

Absorption chilling uses a thermally activated vapour compression cycle, with 

Lithium Bromide as its absorbent and water as refrigerant. Both substances are 

environmentally benign.42 The absorption cycle is energized by a heat medium (hot 

water) at 80-85°C from a solar thermal energy collector (vacuum tube) or any other 

available heat source such as industrial waste water or cogeneration system. 

Storing the hot water allows the system to operate outside of sunshine hours.43 

Climate change projections 50-90% probabilities in all locations show an increase 

in annual and summer mean solar radiation (due to decrease in cloud cover).17 

Climate change should present greater opportunities for both solar electrical and 

thermal energy generation  

 

Solar-AC is a highly efficient cooling option (with reported electricity use reductions 

from 50-70%) equivalent to the highest current EER 5.71.41,44,45 For the simulation 

of the future solar-AC, the current, highest EER of 5.71 is used.  

 

5. Results and discussion 

As is detailed in this section, ceiling fans consume far less energy than the heat 

pump and AC options. Ceiling fans are an affordable and low energy step-wise 

solution that can effectively increase the adaptive thermal comfort threshold 
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(especially when coupled with other passive solutions). The fan however may not 

always be sufficient in meeting the thermal comfort needs of the occupant. As is 

shown in the study the sufficiency of fans to meet thermal comfort needs will 

depend on the probabilistic intensity of future change.  

 

5.1 Fan energy use 

Table 8 presents the calculated maximum, mean and minimum energy 

consumption and occupied hours above 35°C considering all Green Deal retrofitted 

and Zero Carbon homes.  

 

Table 8  

 

If theoretically we can assume that the ceiling fan has the capacity to create a 

cooling effect on the occupants at temperatures below 35°C where a PPD of <50% 

is attained, this would reset the overheating threshold to 35°C. In this case, all 

cities at 50% probability could attain this equilibrium at low energy cost. Also so 

could most houses in Stockport at 90% probability. Houses in Bristol at 90% 

probability would have difficulty and houses in Oxford at 90% probability continue 

to be severely overheated.  

 

5.2 Heat pump, AC and solar-AC energy use 

Figure 5 graphs the heat pump energy use for the Green Deal and Zero Carbon 

houses for the three cities. The following graphs demonstrate annual space 

heating and cooling only and do not include water heating and unregulated loads. 

 

Figure 5 Heat pump space heating and cooling energy use 
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All retrofitted houses demonstrate the same internal gains and occupancy patterns 

(O1). It appears that from the energy use comparisons, cooling energy use is less 

affected by the thermal properties of the houses than heating energy requirement 

(e.g. compare early-2000s with Pre-1919). The Zero Carbon house is significantly 

different with superlative thermal properties for all elements, greater airtightness 

levels and MVHR. The Zero Carbon house also has greater internal thermal mass 

(by a factor of 13 kJ/(m2K)) than the retrofitted homes. An interesting detail is seen 

in both Bristol and Oxford where the 90% probability cooling load for the retrofits 

surpass the Zero Carbon cooling load while at 50% probability they do not. This 

can be attributed to the thermal mass properties in the Zero Carbon home, 

regulating the temperature swings. This feature is notably more beneficial in the 

90% probabilistic projection. The benefit of thermal mass in reducing overheating 

vulnerability is also demonstrated in Gupta and Gregg8 and Tillson et al.5 Figure 6 

demonstrates this in the living room temperatures (cooled during occupied hours 

via heat pump) for two days in Oxford. The temperature swings during the hours 

that are not cooled are significantly more pronounced in the early-2000s houses at 

90% probability. This state of daily heat ‘recovery’ requires greater energy use to 

cool the space. 

 

Figure 6 Temperature swing comparisons for two houses in Oxford at 50 and 90% 

probability 

 

Figure 7 graphs the AC energy use for the Green Deal and Zero Carbon houses 

for the three cities. Space heating is supplied by the high efficiency boiler that is 

standard for the Green Deal renovated and Zero Carbon houses. 

 

Figure 7 AC and gas boiler energy consumption 



22 
 

 

The standard AC cooling energy use follows the same pattern as the heat pump 

cooling energy use. AC consumption is generally 300-600 kWh higher; this 

however is simply a factor of the EER of the particular system. In addition, where 

the heat pump simulation assumes a precise COP, the heating energy use is 

significantly lower than the boiler which is used alongside the AC in figure 7. As 

with the heat pump, it appears that the Zero Carbon houses’ relative increase in 

cooling is notably offset by the greater decrease in heating energy. With the 

AC/boiler combination, this question should be assessed through CO2 emissions. 

As an example, table 9 compares the mid-terrace Zero Carbon house with the 

early-2000s house in Stockport. Given these calculations, higher fabric efficiency is 

of greater importance when using less efficient equipment for heating; the 

increased cooling load as a result is of less consequence. This increased electricity 

demand is potentially further offset by the integration of solar PV on Zero Carbon 

new-builds as a route to meet full Zero Carbon compliance. 

 

Table 9  

 

Figure 8 graphs the solar-AC energy use for the Green Deal and Zero Carbon 

houses in Oxford. As with the standard air conditioning, space heating is supplied 

by the high efficiency boiler and the consumption is identical. Though only Oxford 

is shown, Bristol and Stockport consumptions are proportionately similar to those 

shown in figure 7, i.e., Bristol at 90% consumes slightly less than Oxford and is 

almost identical at 50%. Stockport consumes the least cooling energy. 

 

Figure 8 Oxford solar-AC and gas boiler energy consumption 
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Much of the previous analysis remains the same for the application of the solar-AC. 

The solar-AC, however, with the greatest EER is the most efficient system for 

cooling. Though this is true, the heat pump, in complete annual energy use and 

CO2 emissions is the overall most efficient option for the retrofitted houses. The 

Zero Carbon houses, because they demand far less heating, perform better with 

the most efficient cooling option. Table 10 demonstrates this point with two mid-

terrace houses in Stockport. 

 

Table 10  

 

Table 11 demonstrates through two cases the impact climate change will have on 

the future CO2 emissions. The future change (comparing standard AC and heat 

pump) in carbon emissions is calculated for the Zero Carbon (least heating 

demand) and pre-1919 (greatest heating demand) versions of a mid-terrace home 

in Oxford (greatest cooling demand). The calculations demonstrate that, based on 

current emission factors, the future climate will slightly reduce the carbon 

emissions of the retrofitted home but will notably increase the CO2 emissions of the 

Zero Carbon home (discounting a renewable energy source). 

 

Table 11  

 

This raises a key question: will a Zero Carbon home designed for the current 

climate remain Zero Carbon? Though there are a number of options for 

alternatively offsetting CO2 emissions to comply with the proposed Zero Carbon 

regulation, e.g. solar PV, the Zero Carbon Hub47 proposes that fabric energy 

efficiency meet a standard (FEES) depending on house typology. For the mid-

terrace home (74m2) in Oxford, demonstrated in table 11, the maximum energy 
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demand for space conditioning (heating and cooling) is 39 kWh/m2/yr. In the 

current climate the home is 9 kWh/m2/yr. Using the most energy intensive 

adaptation in the study (AC plus boiler) the probabilistic range (50-90% probability) 

for the future energy demand is 26 – 27 kWh/m2/yr. Therefore, energy demand will 

rise but the home will remain compliant with FEES in the 2080s at high emissions 

scenario. Depending on efficiencies of systems and the operational reality (failed 

commissioning, occupant behaviour, etc.) of the dwelling, there could still be a risk 

of future non-compliance. Higher EER systems are ideal and in a projected future 

climate are more important for Zero Carbon homes than higher efficiency heating 

systems. Alternatively, in thermally less-efficient dwellings, heating system 

efficiency will remain considerably important. 

 

5.3 Thermal mass, shading and ventilation 

This paper and other recent work5,7,8,9,10 demonstrated that overheating is projected 

to dramatically impact many built-forms and built-ages throughout England. 

Overheating is projected to impact a significant portion of house types in the 

southeast, southwest and north but at 50% probability some house types in the 

north, particularly those with high thermal mass and low internal gains may avoid 

overheating. Though the current study did not focus on a range of previously 

recommended passive measures,7,8 thermal mass should be assessed for its 

benefit in reducing overheating and subsequent cooling load and extreme 

temperature swings. Because thermal mass can be present in existing housing, 

external (as opposed to internal) insulation is recommended where applicable. 

 

Though not tested in the current study, external shading, which had the greatest 

impact in reducing overheating hours,7,8 is highly recommended for both Green 

Deal retrofitted dwellings and Zero Carbon Homes in order to reduce cooling 
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demand. Currently, however, a barrier to external shading exists where for 

example; a policy like the Green Deal depends on current fuel bill reduction to 

justify measures. Without assessment of probabilistic future change, the benefit of 

shading cannot be realised with the exception of a small number of cases. Ideally, 

passive measures like external shading will precede exploration of active cooling in 

the domestic sector. 

 

In some projections, the MVHR energy use outweighs the heating energy demand 

in the Zero Carbon home. As Sassi23 demonstrated through post-occupancy 

evaluation of a Passivhaus flat in Cardiff, an occupant lived comfortably not 

knowing how to turn on the MVHR, ventilating as per need and using only 40% of 

the predicted primary energy use. As the climate in the UK warms and highly 

insulated homes show almost no need for heating, MVHR or specifically the heat 

recovery element of MV may be rendered unnecessary. Ventilation, however, is 

always essential. 

 

Future investigations could evaluate the detailed impact of a number of passive 

measures on the reduction of cooling demand, a wide range of COPs and EERs 

for systems, different occupancy patterns, dwellings ages, location and 

orientations. In addition, future work should evaluate the implications of a 

widespread uptake of active cooling on the National Grid. In the EU, the fast 

uptake and extensive summer use of small residential air conditioners in Italy, 

Spain, Greece and southern France are among the main drivers for increases in 

electricity consumption and power peak;41 clearly the electrical power structure will 

need to adapt to accommodate a likewise reaction in the UK. The National Grid48 is 

currently balancing the uptake of heat pumps, modelling a ten-fold increase in 

electricity demand contribution to domestic heat by 2050 and the regulatory 
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requirements for carbon emissions reductions. Decarbonising the electricity grid 

ahead of these potential changes is essential. As a result, grid projections include 

almost completely phasing out coal by 2025, phasing out gas by 2050 and 

increasing wind generation by roughly 130%.48 

 

6. Conclusion 

The future climate is projected to change the thermal comfort conditions in 

England. There is much potential to adapt to this feasibly and effectively by 

exhausting passive measures first, and then seeking the most efficient active 

systems possible when absolutely necessary. This may indicate a shift from gas to 

electricity but with a projected future solar radiation increase and scaling-up of 

home or community-level electricity generation (solar PV, solar farms, wind 

turbines, CHP) the UK could be on a path to create a culture and economy of 

decentralised energy supply and management whilst gradually shifting the grid 

from one fuel to the next. 

 

As the climate warms in the future, UK dwellings may be required to accommodate 

unfamiliar technologies (such as mechanical cooling) to meet thermal comfort 

needs. These changes will likely impact design and require commissioning, 

maintenance and further occupant training and education. If adequate foresight is 

not put into planning for these systems, there is a risk that a new performance gap 

would be created in design, construction and occupant behaviour, leading in 

increase in energy use and associated CO2 emissions. 
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Appendix 

The modelled house forms are shown below in figures A.1 – A.3. The dimensions 

and forms of all homes are adapted from Allen and Pinney49 

 

Figure A.1 Perspective image, site plan and floor plans of the detached home  

 

Figure A.2 Perspective image, site plan and floor plans of the semi-detached home 

 

Figure A.3 Perspective image, site plan and floor plans of the mid-terrace home  
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Tables 

Table 1 Location and FWY information (external conditions) 
City (UKCP09 5km 
grid sq.) 

FWY Summer mean 
[°C] 

Summer hrs. >30°C 
[%] 

Bristol (3600175) 
2080 high emissions 
50% 

20.39 3.6 

2080 high emissions 
90% 

23.52 14.4 

Oxford (4550210) 
2080 high emissions 
50% 

20.20 2.7 

2080 high emissions 
90% 

23.82 18.9 

Stockport (3900390) 
2080 high emissions 
50% 

19.33 0.7 

2080 high emissions 
90% 

22.30 8.0 
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Table 2 House archetype details and characteristics 

Type % of type 
in England Area Occupant details 

O1: Two working adults without dependants: 
living room occupancy: 17:30-22:30,  
heating/cooling pattern: 7:00-9:00 & 16:00-23:00, 
heating: 1 Oct - 30 April / cooling: 1 May - 30 Septb 
--------------- 
O2: Two non-working adults without dependants: 
living room occupancy: 9:00-22:30 (30% intensity 
from 14:00-17:00),  
heating/cooling pattern: 7:00-23:00, 
heating: 1 Oct - 30 April / cooling: 1 May - 30 Septb 

Detached 17% 98 
m2 

Semi-
detached 

26% 
(36%)a 

84 
m2 

Mid-
terrace 

19% 74 
m2 

 

a 36% includes the end-terrace type 

b The heating season and cooling seasons were kept constant through the projections. This 

is justified by the responsiveness of the system to a set-point as opposed to continuous 

heating or cooling on at all times. In all scenarios without mechanical cooling, windows are 

open during occupancy hours when temperatures are above 22°C in the cooling season. 
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Table 3 Construction details for the baseline homes 
Construction Materials U-value 

[W/m2K] 
Pre-
1919 

1950s 2000s 

Glazing uPVC double glazing 2.0    
Internal and 
party walls 

16mm plaster – 105mm brick – 16mm plaster N/A    

Internal floors 10mm plasterboard – 200mm cavity (floor joists) – 
20mm timber flooring – 10mm carpet 

N/A    

Roof 16mm plasterboard – 100mm glass fibre quilt – 
loft space – 7mm tiling board –  10mm roofing tiles  

0.35   
Roof 
(2002-2006) 

16mm plasterboard – 150mm glass fibre quilt – 
loft space – 7mm tiling board –  10mm roofing tiles 

0.2   

Ground floor  
(1900-1944) 

Clay soil – 150mm cavity – 100mm cavity (floor 
joists) – 20mm timber flooring – 10mm carpet 

1.5    

Ground floor  
(1950-1976) 

Clay soil – 100mm concrete slab – 38mm floor 
screed – 10mm carpet 

1.5   
Ground floor  
(2002-2006) 

Clay soil – 120mm insulation – 100mm concrete 
slab – 38mm floor screed – 10mm carpet 

0.25   

External walls 
(1900-1919) 

105mm brick –105mm brick – 16mm plaster 2.0    

External walls 
(1930-1976) 

105mm brick – 50mm cavity – 100mm concrete 
block – 16mm plaster 

1.4   
External walls 
(2002-2006) 

105mm brick – 70mm insulation – 100 mm 
concrete block – 16mm plaster 

0.35   

 
  



39 
 

Table 4 Construction details for the Green Deal retrofitted homes (bold text 
indicates change) 

Construction Materials/ Details U-value 
[W/m2K] 

Pre-
1919 

1950s 2000s 

Glazing No change 2.0    
Internal and 
party walls 

No change N/A    

Internal floors No change N/A    
Roof 16mm plasterboard – 270mm glass fibre quilt – 

loft space – 7mm tiling board –  10mm roofing tiles  
0.14   

Ground floor  No change 1.4    
External walls 
(1900-1919) 

105mm brick –105mm brick – 100mm internal 
insulation – 16mm plaster 

0.22    

External walls 
(1930-1976) 

105mm brick – 50mm cavity fill insulation – 
100mm concrete block – 60mm internal 
insulation – 16mm plaster 

0.22   

External walls 
(2002-2006) 

105mm brick – 70mm insulation – 100 mm 
concrete block – 40mm internal insulation – 
16mm plaster 

0.22   
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Table 5 Construction details for the Zero Carbon home 
Construction Materials U-value [W/m2K] 
Glazing Timber frame triple glazing 0.7 
Internal and 
party walls 

16mm plaster – 105mm brick – 16mm plaster N/A 

Internal floors 10mm plasterboard – 200mm cavity (floor joists) – 20mm timber flooring 
– 10mm carpet 

N/A 

Roof 16mm plasterboard – 350mm glass fibre quilt – loft space – 7mm tiling 
board –  10mm roofing tiles  

0.11 

Ground floor  
 

Clay soil – gravel – 200mm under slab insulation – 100mm concrete 
slab – 38mm floor screed 

0.11 

External walls 
 

100mm external insulation – 105mm block – 100mm insulation – 
100mm block – 16mm plaster 

0.11 
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Table 6 Overheating results for all homes in Oxford and Stockport (pass or fail) 

   
Occupant type 1 (O1) Occupant type 1 (O2) 

   
2080s H 50% 2080s H 90% 2080s H 50% 2080s H 90% 

 
Criterion: 1 2 3 1 2 3 1 2 3 1 2 3 

O
xf

or
d 

Pre-1919 
baseline 

D F F P F F F F F P F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

1950s 
baseline 

D F F P F F F F F P F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

2000s 
baseline 

D F F P F F F F F P F F F 
SD F F P F F F F F P F F F 
MT F F F F F F F F F F F F 

Pre-1919 
green deal 

D F F P F F F F F F F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

1950s 
green deal 

D F F P F F F F F F F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

2000s 
green deal 

D F F P F F F F F P F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

Zero 
Carbon 

D F F P F F F P F P F F F 
SD F F P F F F F F F F F F 
MT F F P F F F F F F F F F 

St
oc

kp
or

t 

Pre-1919 
baseline 

D F F P F F F F F P F F F 
SD F F P F F F P F P F F F 
MT F F P F F F F F P F F F 

1950s 
baseline 

D F F P F F F F F P F F F 
SD P F P F F F P F P F F F 
MT F F P F F F F F P F F F 

2000s 
baseline 

D P F P F F F P F P F F F 
SD F F P F F F P F P F F F 
MT F F P F F F F F F F F F 

Pre-1919 
green deal 

D F F P F F F F F F F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

1950s 
green deal 

D P F P F F F P F P F F F 
SD P F P F F F P F P F F F 
MT F F P F F F F F P F F F 

2000s 
green deal 

D F F P F F F F F P F F F 
SD F F P F F F F F P F F F 
MT F F P F F F F F P F F F 

Zero 
Carbon 

D P P P F F F P F P F F F 
SD P F P F F F P F F F F F 
MT P F P F F F P F P F F F 
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Table 7 Air speed and sound measurements of domestic fans 

 Ceiling fan Box fan 
Speed 
setting 

1 2 3 1 2 3 

Air speed 
[m/s] 

0 – 0.4 0.4 – 0.8 0.8 – 1.2 1.2 1.2 – 2.0 2.0 – 3.0 

Decibels [dB] 30 33 40 50 60 66 
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Table 8 Summary of ceiling fan energy use and hours greater than 35°C 
 Bristol Oxford Stockport 
 [kWh] Hours 

>35 
[kWh] Hours 

>35 
[kWh] Hours 

>35 
50% probability 
Maximum 1.9 3 1.5 0 1.0 0 
Mean 1.6 1 1.3 0 0.6 0 
Minimum 1.3 0* 0.9 0 0.3 0 
90% probability 
Maximum 4.6 40 6.4 78 2.7 12 
Mean 4.1 31 6.0 68 2.2 4 
Minimum 3.7 24 5.4 56 1.6 0* 

 
* For 50% probability in Bristol and 90% probability in Stockport the maximum temperature 

in the Zero Carbon houses did not go above 34.9°C, whereas all other houses did (if just 

once). 
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Table 9 Air conditioning and boiler energy and CO2 emissions for two mid-terrace 
houses in Stockport at 50% probability 

 Heating 
[kWh] 

Cooling 
[kWh] 

Total 
[kWh] 

Heating 
[kgCO2] 

Cooling 
[kgCO2] 

Total 
[kgCO2]a 

Early-2000s 3,115 1,136 4,251 572 506 1,078 
Zero Carbon 273 1,518 1,791 94 676 770 

 

a Current CO2 factors are used for calculations: grid electricity: 0.445 kgCO2e per unit / 

natural gas: 0.184 kgCO2e per unit.46  
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Table 10 Energy and CO2 emissions comparison between the solar-AC and the 
heat pump for two mid-terrace houses in Stockport at 50% probability 

 Heating 
[kWh] 

Cooling 
[kWh] 

Total 
[kWh] 

Heating 
[kgCO2] 

Cooling 
[kgCO2] 

Total 
[kgCO2] 

a 
Solar-AC + gas boiler 
Early-2000s 3,115 513 3,628 572 228 800 
Zero Carbon 273 702 975 94 312 406  
Heat pump 
Early-2000s 552 769 1,321 246 342 588  
Zero Carbon 106 1,030 1,136  47 458 505 

 

a Current carbon factors are used for calculations: grid electricity: 0.445 kgCO2e per unit / 

natural gas: 0.184 kgCO2e per unit.46 
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Table 11 Current and future energy and CO2 emissions for two mid-terrace houses 
in Oxford 

 Heating 
[kWh] 

Cooling 
[kWh] 

Total 
[kWh] 

Heating 
[kgCO2] 

Cooling 
[kgCO2] 

Total 
[kgCO2] 

a 
Current condition - gas boiler b 

Pre-1919 9,010 - 9,010 1,654 - 1,654 
Zero Carbon 662 - 662 166 - 166 
AC + gas boiler at 50% probability 
Pre-1919 5,439 1,116 6,555 999 497 1,496 
Zero Carbon 296 1,591 1,887 99 708 807 
AC + gas boiler at 90% probability 
Pre-1919 3,201 1,852 5,053 588 824 1,412 
Zero Carbon 178 1,795 1,973 77 799 876 
Heat pump at 50% probability 
Pre-1919 1014 755 1769 451 336 787 
Zero Carbon 130 1080 1210 58 481 539 
Heat pump at 90% probability 
Pre-1919 576 1258 1834 256 560 816 
Zero Carbon 130 1219 1349 58 542 600 

 

a Current carbon factors are used for calculations: grid electricity: 0.445 kgCO2e per unit / 

natural gas: 0.184 kgCO2e per unit.46 

b It is assumed here that for the current climate, cooling is not necessary. 
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Figures

 

 

Figure 1 Bristol, Oxford and Stockport overheating. Note: the bars represent the 

probabilistic range of 50-90%. 
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Figure 2 Bristol temperatures in three variables during the warmest week in 2080s 

high e. 50%. 

 

Figure 3 Bristol temperatures in three variables during the coldest week in 2080s 

high e. 50%. 
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Figure 4 Internal thermal comfort conditions using a ceiling fan 
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Figure 5 Heat pump space heating and cooling energy use 
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Figure 6 Temperature swing comparisons for two houses in Oxford at 50 and 90% 

probability 
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Figure 7 AC and gas boiler energy consumption 
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Figure 8 Oxford solar-AC and gas boiler energy consumption 

 

Figure A.1 Perspective image, site plan and floor plans of the detached home  

 

Figure A.2 Perspective image, site plan and floor plans of the semi-detached home 
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Figure A.3 Perspective image, site plan and floor plans of the mid-terrace home  
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Endnotes 

 

                                                      
i The Green Deal is a UK Government initiated private investment in the carbon 

reduction of existing building stock. Energy efficiency improvements will be offered 

by the private sector to homeowners and businesses at little or no upfront cost with 

payment recouped through customers’ energy bills.24 

 

ii IES VE was selected partly due to the wide international use by both research 

and practice communities, and the extensive historical testing and 

verification.50,51,52 Building models are simplifications of reality; to add to this, there 

is inevitable uncertainty to model predictions when it comes to simulating a number 

of variables, e.g. occupant patterns, heating and cooling systems and air 

permeability rates. This is further intensified when considering the uncertainties of 

FWYs and climate change modelling.  

 

iii The Golden Rule is the central mechanism for determining which measures can 

be financed by using the Green Deal. The rule: “Estimated savings must be greater 

than or equal to repayments.” The caveat: “Actual savings may be less than these 

repayments (if your energy use changes or if energy prices fall)”.24  

 

iv The new approach to meet Zero Carbon has been defined as a tiered process 

which includes, first, fabric improvement; second, low carbon heat and power 

technologies; and third, further reduction of regulated emissions if necessary via 

‘allowable solutions’ (e.g. carbon funds, extension of district heating network to 

neighbouring development).47 


