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This figure shows the results from the CoolPINNs framework for forward and inverse problems.

Heat is supplied to the bottom of the plate, and the top surface is free to convect and radiation. A

flowing fluid through an embedded vasculature—in the shape of a sine wave—regulates the plate’s

temperature. The forward problem calculates the temperature field, whereas the inverse problem

predicts thermal conductivity using noisy temperature data.
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Abstract. Emerging technologies like hypersonic aircraft, space exploration vehicles, and batteries

avail fluid circulation in embedded microvasculatures for efficient thermal regulation. Modeling

is vital during the design and operational phases of these engineered systems. However, many

challenges exist in developing a modeling framework. What is lacking is an accurate framework

that (i) captures sharp jumps in the thermal flux across complex vasculature layouts, (ii) deals

with oblique derivatives (involving tangential and normal components), (iii) handles nonlinearity

because of radiative heat transfer, (iv) provides a high-speed forecast for real-time monitoring, and

(v) facilitates robust inverse modeling. This paper addresses these challenges by availing the power

of physics-informed neural networks (PINNs). We develop a fast, reliable, and accurate Scientific

Machine Learning (SciML) framework for vascular-based thermal regulation—called CoolPINNs: a

PINNs-based modeling framework for active cooling. The proposed mesh-less framework elegantly

overcomes all the mentioned challenges. The significance of the reported research is multi-fold.

First, the framework is valuable for real-time monitoring of thermal regulatory systems because

of rapid forecasting. Second, researchers can address complex thermoregulation designs since the

approach is meshless. Finally, the framework facilitates systematic parameter identification and

inverse modeling studies, perhaps the most significant utility of the current framework.

ABBREVIATIONS

FEM Finite Element Method PDE Partial Differential Equation

PINN Physics-Informed Neural Network ROM Reduced-Order Model

SciML Scientific Machine Learning VTR Vascular-based Thermal Regulation

1. INTRODUCTION AND MOTIVATION

Thermal regulation systems are used in diverse engineering applications like satellites [1], space

re-entry vehicles [2], photovoltaics [3], geothermal heating and cooling systems [4], head cooling

systems [5], bio-printing [6], and extravehicular activity space suits [7]. In all these cases, main-

taining the temperature within a specific range is vital for the system’s optimal performance. For

instance, the efficiency of the photovoltaic system reduces with an increase in system’s mean surface

temperature [8]. Likewise, low temperatures reduce capacity in lithium-ion batteries, while high

temperatures degrade battery life [9].

Key words and phrases. Scientific machine learning (SciML); physics-informed neural networks (PINNs); thermal

regulation; microvasculatures; active cooling; verification; inverse problems.
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An efficient method for thermal regulation is circulating a fluid through vasculatures embed-

ded in the structural component. We refer to this method as vascular-based thermal regulation

(VTR)—the paper’s primary focus. Prevalent in biological systems (e.g., cardiovascular system),

VTR can maintain body temperature within the desired range, even when the surrounding tem-

perature is considerably different [10, 11]. Because of its ability to transport large amounts of heat

compared to traditional methods, VTR is sought-after even in the synthetic world. Further, new

fabrication techniques (e.g., deflagration of sacrificial components [12] and vaporization of sacri-

ficial components [13]) have simplified the manufacturing of vasculatures in synthetic composite

materials. Diverse applications of VTR include spacecrafts [14, 15], hypersonic vehicles [16], bat-

tery packs [17], multifunctional metamaterials [18], photovoltaics [19], biomedical [20], and shape

memory alloys [21].

Many VTR applications require the vasculature cross-sections to be smaller than the component

size to minimize their weight and volume. Secondly, unless the vasculature volume fraction is

very low, including a vascular network within a component substantially affects its mechanical

properties like strength, stiffness, and interlaminar shear strength [22, 23]. This is very critical

for VTR applications like the casing of battery packs in electric vehicles, in which the composite

panels containing vasculatures also provide structural support. Therefore, the hydraulic diameters

of the vasculatures are often tiny compared to the panel dimensions [22, 24, 25]. For these practical

considerations, we focus on vasculatures with small hydraulic diameters in thin structural panels.

Modeling is irreplaceable during the design and operational phases of VTR applications. Ac-

curate modeling of VTR will require a solution of a 3D heat transfer equation coupled with the

heat transfer by fluid flow inside the vasculature. However, two simplifications in the underlying

governing equations can be made for vasculatures with small hydraulic diameters in thin panels.

First, the temperature variation along thickness in thin panels will be small and a two-dimensional

heat transfer model is sufficient. Second, the thermal load over the vasculature could be represented

as a line load for vasculatures with a hydraulic diameter much smaller than the panel dimensions.

With these two simplifications, the heat transferred by the fluid flow can be modeled by an “oblique

derivative” boundary condition without explicitly modeling the fluid flow in the vasculature [26].

The oblique derivative is untypical as it makes the boundary value problem non-self-adjoint [26, 27].

The mathematical model resulting from these two simplifications closely approximates the cou-

pled thermo-fluids governing equations and is referred to as a reduced order model (ROM) [28].

The ROM is attractive since it reduces the problem dimensionality and eliminates the degrees of

freedom associated with fluid flow. However, approximation of the thermal load over a line leads

to a discontinuity in thermal flux across the vasculature, modeled as a “jump term.” Therefore,

the first requirement of the modeling framework is that the framework should be able to solve the

equation with a jump term.

Another key requirement for the modeling framework is the ability to solve inverse problems for

VTR applications with critical utility, like identifying material degradation of the vasculature panel

by periodically calculating thermal conductivity using panel temperature data. However, solutions

to inverse problems in heat transfer are generally ill-posed because their solution may become unsta-

ble due to small changes in the input parameters. Additionally, solving inverse problems requires

time-consuming iterative solutions using the traditional methods [29]. Therefore, the modeling

framework to solve inverse problems for VTR applications should be robust and computationally

efficient.
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Modeling radiation heat transfer is essential for applications like equipment in space missions.

The inclusion of radiation using the Stefan–Boltzmann law makes the problem non-linear, and the

framework should be able to solve non-linear equations. Optimization studies to achieve efficient

heat transfer for critical operations lead to complex vasculature designs [30], which require very

fine meshes using traditional numerical methods like FEM to provide accurate numerical solutions.

To avoid meshing-related issues, a meshless method will be highly desirable.

Based on the above discussion, the modeling technique should (1) handle sharp jumps in the

heat flux, (2) deal with inverse problems in an efficient and robust manner, (3) easily treat the non-

linearity due to radiation, (4) be a mesh-less method for ease of modeling complex vasculatures,

and (5) be fast and accurate. Currently, a modeling framework with the said features needs to be

improved. However, the recent developments in the Scientific Machine Learning (SciML) methods

have shown promise in developing a framework that can embody all these features.

A SciML method trains an algorithm to identify a pattern within extensive scientific data pro-

vided to it. Once trained, the algorithm can rapidly predict quantities of interest, such as solution

fields. Over the past decade, SciML methods have grown exponentially and have been applied

to a gamut of science and engineering problems. The accompanying reasons for this prolifera-

tion include the need to quickly process the massive data generated by sensors and simulations

[31, 32], increasing need to solve realistic simulations that are multiscale, involve multi-physics

equations, and often need to be solved over large spatial and temporal domains [33], the ability of

the trained ML models to make quick predictions, and advances in high-performance computing.

Specific complex problems for which researchers have used SciML methods are fluid turbulence

[34], reactive-transport systems [35], and the design of alloys [36], to name a few.

One of the widely-used ML architectures at the forefront of developments in SciML is Deep

Learning (DL) [37], a subset of ML that employs multiple hidden layers between a neural network’s

input and output. In a seminal paper by Raissi et al. [38], DL is employed to develop Physics-

informed Neural Networks (PINNs). PINNs exploit the universal function approximation capability

of deep neural networks and the automatic differentiation technique of scientific computing to

constitute a loss term for the governing PDE and boundary conditions of the problem. This loss

term imposes an additional constraint that limits the possible solutions. Therefore, the PINNs

frameworks are efficient compared to the pure data science techniques of finding patterns in a

vast amount of data. Furthermore, DL’s automatic differentiation capability calculates the PDE’s

derivatives more efficiently and accurately than the traditional numerical differentiation [39]. Due

to these advantages, the PINNs framework has been applied to solve various scientific problems

since its publication in 2019 [40, 41]. An overview of PINNs applied to heat transfer problems,

which is the focus of the current paper, is presented below.

Laubscher [42] applied PINNs to solve the forward-posed problem for steady-state multi-species

convective and diffusive flow and heat transfer problems. Cai et al. [43] used PINNs for heat transfer

problems with forced and mixed convection in the thermal design of power electronics. In [44], a

PINNs methodology was developed to solve conduction heat transfer problems with convective heat

transfer boundary conditions, which has applications in additive manufacturing and for parts heated

in ovens. Chen et al. [45] proposed PINNs for a reduced-order model without requiring the extra

high-fidelity snapshots and demonstrated application to steady and unsteady natural convection

problems. A PINNs framework for solving fluid problems in the rarefied and transitional regimes
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with applications in multiscale heat transfer was developed by Lou et al. [46]. A PINNs framework

to achieve accurate urban land surface temperature predictions was developed by Chen et al. [47].

All the aforementioned studies solved the PDEs without a “jump term” (discussed in §2) or

discontinuity in the underlying field. On the other hand, very few attempts have been made to solve

problems involving discontinuity in the underlying field using PINNs. Patel et al. [48] developed a

“control volume PINNs” framework for solving a Burger’s equation for a Riemann problem with

zero viscosity. They employed regularization and artificial viscosity effects to model the rarefaction

shock solution. Mao et al. [49] have solved 1- and 2-dimensional Euler equations with a shock

discontinuity for forward and inverse problems.

We present a PINNs framework meeting all the aforementioned requirements to solve a ROM

for the VTR applications. We refer to this framework as CoolPINNs since we solve the prob-

lems for cooling applications, but the framework is directly applicable to heating applications. We

demonstrate that the CoolPINNs framework solves forward and inverse problems with underlying

non-linear heat transfer equations with a jump term in a fast, robust, and accurate manner. Since

our framework is PINNs-based, it is a meshless method and can easily model complex vascula-

ture geometries. Forward problems for VTR applications have been studied using Finite Element

Methods; e.g., see [28, 50–53]. However, to the best of our knowledge, this is the first application

of PINNs to solve forward and inverse heat transfer problems having a discontinuity in the ther-

mal flux field. The challenges and benefits offered by PINNs for VTR applications are pictorially

depicted in Fig. 1.

The plan for the rest of this article is as follows. We first outline a reduced-order model for

active cooling (§2). We then present the architecture of CoolPINNs: the proposed PINNs-based

modeling framework for active cooling (§3). Next, we illustrate, using representative results, the

salient features of the modeling framework when solving forward problems (§4). After that, we

demonstrate the applicability of the proposed framework to inverse problems (§5). Finally, the

article concludes with concluding remarks alongside possible future works (§6).

2. A MATHEMATICAL MODEL FOR VASCULAR-BASED THERMAL

REGULATION

2.1. Theory and background for the PDEs involving a jump term: Many partial

differential equations (PDEs) describing common physical phenomena like fluid flow, material de-

formation, and heat transfer have the underlying kinematics and balance laws that assume a degree

of smoothness in the fields such as density, strain, and heat flux. However, for certain real-life ap-

plications, the classical degree of smoothness is not achieved at a finite number of surfaces (for 3D)

or lines (for 2D) within the domain. Such a surface or line is commonly called a “singular surface”

or a “singular line.” In such cases, the underlying fields experience finite jump discontinuities at

the singular surfaces but remain smooth in the rest of the domain. A typical example of a singular

surface is the interface of the two dissimilar materials bonded together. Such a singular surface

will have discontinuous stress and temperature gradients for structural and thermal loads. Other

examples of singular surfaces include impact loading of solids, transonic flows in gas dynamics, and

phase transitions in solids where the singular surface corresponds to a wavefront, a shock wave,

and a phase boundary, respectively [54, 55].

For the problem at hand, modeling of the heat carried by the fluid in the vasculature as a

thermal line load leads to a discontinuity or a jump term in the thermal flux across the vasculature.
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Applications Re-entry vehicles Microchips Satellites

Challenges Complex 
geometry

Long solution times, especially for 
inverse problems

Way out:
PINN

Meshless; handles 
complex geometry

Provides 
fast forecast

Can solve 
inverse 

problems

Figure 1. This figures outlines the applications and challenges of VTR and the

advantages offered by modeling using PINNs.

The jump term includes an oblique derivative [27, 56]—in terms of the temperature field. Meaning,

the direction of the gradient makes an oblique angle to the direction of the vasculature. Thus, the

jump term will combine normal derivative and tangential derivative components.

2.2. Problem description and governing equations. Consider a thin flat plate as shown

in Fig. 2 with a thickness t much smaller than its lateral dimensions. The plate has an internal

source that generates heat energy. In practical applications, such a plate could be attached to

a component generating heat, and as such, heat may not be generated within the plate itself.

Heat is conducted within the plate and is transferred to the surroundings through convection and

radiation from the top surface. A vasculature is embedded at the mid-surface of the plate and

has a tiny hydraulic diameter compared to the lateral dimensions of the plate. The vasculature

traverses through the plate, separating the plate mid-surface into two separate sub-domains. A

fluid is circulated through the vasculature to regulate the plate temperature.

To derive the governing equations for the thermal regulation with active cooling, we start with

steady-state heat conduction in a three-dimensional body B with a heat-generating source. We

assume the Fourier model, which takes the following form:

q(x) = −K(x) grad[θ] in B, (1)
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Fluid In

Fluid Out

Airflow

Radiation

𝑄𝑖𝑛𝑡

Vasculature

Figure 2. The figure illustrates a typical active-cooling application. The system

comprises a thin host solid—idealized as a plate—with an embedded vasculature.

An external source supplied heat to the system. Within the body, the transfer of

heat occurs via conduction. At the same time, heat is transferred to surroundings

by convection and radiation. A fluid flows through the vasculature to regulate the

plate’s temperature.

where x is the position vector, θ(x) is the temperature field, q(x) the heat flux vector field, K(x)

the thermal conductivity, and grad[•] is the spatial gradient operator. The balance of energy reads:

−div[q(x)] + F (x) = 0 or div[K(x) grad[θ(x)]] + F (x) = 0 in B, (2)

where div[•] represents the divergence operator, and F(x) is the rate of heat generation per unit

volume.

Since the plate is thin, it is reasonable to assume that the temperature along the plate thickness

direction is constant, and hence a two-dimensional reduced-order model is sufficient. To this end,

we write the governing equation on the mid-plane of the body—which we refer to as the domain

Ω. Assuming that the plate material has a constant thermal conductivity and heat is generated

uniformly over the plate area, Eq. (2) can be simplified as:

tK div[grad[θ(x)]] + f(x) = 0 or tK∇2θ(x) + f(x) = 0 in Ω, (3)

where t is the plate thickness, f(x) (= t F (x)) is the steady-state rate of heat generation per unit

area, and ∇2 is the Laplacian operator. In the above reduced-order model, x is the 2D position

vector.

To account for the heat transferred to the surroundings through convection and radiation, we

modify Eq. (3) as follows:

tK∇2θ(x) + f(x)− hT (θ(x)− θamb)− ε σ (θ4(x)− θ4amb) = 0 in Ω, (4)

where hT is the convective heat transfer coefficient, θamb is the ambient temperature, ε is the

emissivity of the plate material, σ is the Stefan-Boltzmann constant. Equation (4) needs to be
6
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Figure 3. An arbitrary-shaped domain, a vasculature, and the nomenclature used

in the equations.

augmented by a jump condition along the vasculature to account for the heat transported by the

flowing fluid in the vasculature.

Figure 3 shows an arbitrary vasculature, denoted as Γ. Let us denote the two sub-domains

separated by the vasculature using + and − signs. The vasculature geometry is defined by a

position vector x(s) with s denoting the arc-length: s = 0 and s = 1 denote the inlet and outlet of

Γ, respectively. The unit tangent vector to Γ along the fluid flow direction is t̂(x). The unit normal

vector to Γ for the sub-domains + and − are n̂+(x) and n̂−(x). Note that n̂+(x) = –n̂−(x).

With this information, we proceed to define the equations for the “jump term” in the thermal

flux. Note that the temperature field is continuous across the vasculature, but the heat flux (or

temperature gradient) is discontinuous across the vasculature. The jump term for heat flux at any

point x on the vasculature is defined as

[[q(x)]] = q+(x)− q−(x), (5)

where q+(x) and q−(x) are the limiting values of the heat flux at point x on the vasculature as we

approach x from the + and − sub-domains along the direction perpendicular to the vasculature.

To derive the mathematical formula for the jump term in heat flux, we consider an infinitesimal

vasculature segment as shown in Fig. 4. Applying the law of conservation of energy to this segment,

we get

ṁ cf θ +
(
q+(x) · n̂+(x) + q−(x

)
· n̂−(x)) t ds = ṁ cf

(
θ +

dθ

ds
ds

)
, (6)

where ṁ is the mass flow rate of the fluid flow through the vasculature, cf is the specific heat

capacity of the fluid, and ṁcfθ and ṁcf (θ+ dθ
dsds) are the rate at which heat is carried in and out

of the vasculature. Cancelling the common terms on the two sides of the equation and using the
7
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Figure 4. Heat energy balance along a small vasculature segment.

relation n̂+(x) = −n̂−(x), we get

t
(
q+(x)− q−(x)

)
· n̂+(x) = ṁcf

dθ

ds
. (7)

Substituting the expression for the heat flux jump term from Eq. (5), we get the following

expression

t [[q]] · n̂+(x) = ṁ cf
dθ

ds
or t [[q]] · n̂+(x) = ṁ cf grad[θ] · t̂(x). (8)

Equation (8) is referred to as oblique derivative boundary condition in the literature [27, 56]

because the resultant vector of the two vector terms in Eq. (8) is along a direction oblique to the

normal (or tangent) to the boundary.

For defining the boundary value problem, we denote the two-dimensional mid-surface passing

through the vasculature by Ω. The boundary of this domain will be referred to as ∂Ω. The domain

boundary ∂Ω is divided such that ∂Ω = ∂Ωθ ∪ ∂Ωq and ∂Ωθ ∩ ∂Ωq = ∅, where ∂Ωθ and ∂Ωq are

portions of the boundary over which Dirichlet (temperature) and Neumann (heat flux) boundary

conditions are specified.

The above governing equations for the reduced-order model are summarized below:

tK∇2θ(x) + f(x)− hT (θ(x)− θamb)− ε σ (θ4(x)− θ4amb) = 0 in Ω, (9a)

t [[q]] · n̂+(x) = ṁ cf grad[θ] · t̂(x) on Γ, (9b)

q(x) · n̂(x) = qp(x) on ∂Ωq, (9c)

θ(x) = θp(x) on ∂Ωθ, and (9d)

θ = θin at s = 0. (9e)

In above equations, t is the plate thickness, K is the thermal conductivity of the plate material, θ(x)

is the temperature field, f(x) is the heat source term, hT is the convective heat transfer coefficient,

θamb is the ambient temperature, ε is the emissivity, σ is the Stefan-Boltzmann constant, [[q(x)]] is

the jump term for heat flux across Γ, n̂+(x) is the unit normal vector to sub-domain + at Γ, ṁ is

the mass flow rate of the fluid flow through the vasculature, cf is the specific heat capacity of the

fluid, t̂(x) is the unit tangent vector to Γ along the fluid flow direction, q(x) is the heat flux, θp(x)
8
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Figure 5. A schematic showing workflow of CoolPINNs framework to thermal

regulation problems. The CoolPINNs framework consists of two distinct neural

networks shown by the dotted lines. These two networks share the same hyperpa-

rameters and act together to minimize the loss function. The network denoted as

NN contributes to the loss function for the boundary training data. In contrast,

the network denoted as PDE contributes to the loss for the given thermal transport

PDE and brings the physics-informed aspect to the architecture. The resulting pre-

dictions from the framework are verified by comparing the results for mean surface

temperature under flow reversal conditions and are validated by comparing with the

FEM solutions obtained from the Comsol multi-physics package.

and qp(x) are the prescribed temperature and flux on the boundary, and θin is the temperature of

the coolant at the inlet.

Because of the radiation term, the mathematical model is nonlinear. Also, although the cur-

rent discussion focuses on active cooling applications, this setup applies even to active heating

applications. For more details on this reduced-order model, see [28].

3. PROPOSED MODELING FRAMEWORK: CoolPINNs

The PINNs framework developed herein—addressing vascular-based active-cooling applications—

is called CoolPINNs. Nevertheless, the approach is applicable even for general thermal regulation

applications, including heating. The deep learning architecture of the proposed framework com-

prises two separate neural networks, as shown by the dotted lines in Fig. 5. These two networks

share the same hyperparameters and act together to minimize a loss function, which needs to be

constructed carefully. The network denoted as NN contributes to the loss based on the boundary

training data. On the other hand, the network represented by PDE contributes to the loss for

the given PDE and brings the physics-informed aspect into the deep learning neural architecture.
9



The PDE network utilizes the automatic differentiation of neural networks for the spatial dimen-

sions and model parameters [38, 39]. The two networks NN and PDE combinedly “learns” and

“forecasts” the temperature field θL(x).

To define the loss function for the PDE network, we introduce fn(x) obtained by replacing θ(x)

in Eq. (9a) with θL(x):

fn(x) := t K∇2θL(x) + f(x)− hT (θL(x)− θamb)− ε σ (θ4L(x)− θ4amb). (10)

The reason for introducing a new variable is to distinguish between the solution from the neural

network (θL(x)) versus the exact solution of the governing equations (9a)–(9e), denoted by θ(x).

3.1. Forward problems. For forward problems, the governing PDE and boundary conditions

are known a priori ; both are part of the description of the boundary value problem. So, the loss

function consists of two parts. The loss contribution from the PDE (LossPDE) represents the error

residual at the collocation points within the domain and is defined as follows:

LossPDE =
1

NPDE

NPDE∑
i=1

∣∣fn(xi
PDE)

∣∣2, (11)

where NPDE are the number of collocation points defined within the domain, and xi
PDE are the

coordinates of the collocation points within the domain. Further, it is necessary that the training

data is available to account for the boundary conditions: that is, the temperature field for the

collocation points on the Dirichlet part of the boundary (∂Ωθ) and the normal component of the

heat flux for the collocation points on the Neumann part of the boundary (∂Ωq). The loss on the

prescribed boundary conditions (LossBC) is defined as

LossBC =
1

NBCD

NBCD∑
i=1

∣∣θBC(xi)− θL(xi)
∣∣2 +

1

NBCN

NBCN∑
i=1

∣∣qBC(xi)− qL(xi)
∣∣2, (12)

where NBCD and NBCN are the number of boundary points over which Dirichlet and Neumann

boundary conditions are specified, xi denotes a collocation point on the boundary, θBC and qBC are

the prescribed Dirichlet and Neumann boundary conditions at xi, and qL(xi) is the thermal flux at

xi. Mathematically,

qL(xi) = −K grad[θL] · n̂(x)
∣∣∣
x=xi

(13)

Note that the deep neural network solves for θL(x) at all the collocation points, which are on the

domain as well as on the Dirichlet and Neumann parts of the boundary. Thus, the total loss that is

minimized for forward problems during the training process of PINNs—denoted as Lossfw—is the

sum of the above two losses (given by Eqs. (11) and (12)):

Lossfw = LossPDE + LossBC. (14)

3.2. Inverse problems. For inverse problems, the general form of governing equation and

nature of boundary conditions are known except for a few parameters. These parameters, which

need to be predicted, can be a material property (e.g., thermal conductivity, which is the case in

this paper) or even boundary conditions. In order to solve an inverse problem, we need to know

solution (i.e., temperature or heat flux) over a small set of points within the domain; in this paper,

we assume that the temperature is known at a sub-collection of collocation points with the domain.
10



The loss associated with the PDE and BCs are calculated using Eqs. (11) and (12). The loss

associated with the temperature solution over a small set of points within the domain is defined as

follows:

LossU =
1

Nu

Nu∑
i=1

∣∣θu(xi)− θL(xi)
∣∣2, (15)

where Nu is the number of points used for training where temperature solution is known, and θu,

θL are the known and predicted temperatures at the points xi. The total loss minimized for inverse

problems during the training process of PINNs is

Lossinverse = LossPDE + LossBC + LossU. (16)

The solutions for all the problems presented in this paper were obtained using the DeepXDE

package [57]. The jump term condition, shown by Eq. (9b), is modeled using the operatorBC

command in DeepXDE. Note that DeepXDE applies the Dirichlet and Neumann boundary conditions

as “soft constraints” (i.e., these conditions are not enforced exactly). The Dirichlet boundary

conditions were applied exactly using a transform function feature available in DeepXDE. The

number of uniform collocations points used for the geometries shown in Figs. 6(A), 6(B), 6(C) and

6(D) were 1849, 2025, 1936, and 3942, respectively.

4. REPRESENTATIVE NUMERICAL RESULTS — FORWARD PROBLEM

In this section, we demonstrate the accuracy of the developed framework using numerical results

of test cases. We describe the boundary value problem (BVP) for each test case, summarize the

model parameters in the resulting BVPs, and present the CoolPINNs’ hyperparameters. We then

evaluate the accuracy by comparing the numerical solutions under the proposed methodology with

that obtained using the standard Galerkin finite element method.

4.1. Test case descriptions. The CoolPINNs modeling framework has been verified by solv-

ing four test case problems of a square domain with different shapes of vasculature geometries. The

vasculature geometries of practical interest include straight, curved and zig-zag with sharp corners.

The placement of the vasculatures is selected such that the vasculature divides the total domain

into symmetric (Fig. 6(A)), non-symmetric (Figs. 6(B) and 6(C)), and anti-symmetric (Fig. 6(D))

subdomains.

A Dirichlet (temperature) boundary condition (i.e., ambient temperature) is specified at a single

node at the fluid entry location. A Neumann boundary condition is applied on all four boundaries

of the square domain by imposing zero flux representing perfectly insulated boundaries. The

jump boundary condition defined by Eq. (9b) is applied on the entire vasculature. The remaining

parameters in Eqs. (9a)–(9e) are defined in Table 1. The fluid enters at the left end and exits from

the right end of the vasculature as indicated by the arrows in Fig. 6. Note that the coolant material

properties defined in Table 1 are for water, and the domain material is a carbon-fiber-reinforced

polymer (CFRP). An emissivity of 0.95 is used.

Using these test cases, we validated the framework by calculating the error in CoolPINNs

solutions with respect to FEM solutions. We also verified an important property of constant mean

surface temperature of the domain under flow reversal when radiation is excluded. To further

reinforce the efficacy of our methodology, we solved each of the four problems for wide range of

volumetric flow rates of 1 mL/min, 10 mL/min and 100 mL/min.
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(a) Test problem #1: Straight channel at center

of a square domain

 

(b) Test problem #2: Straight channel at off-center

of a square domain

 

(c) Test problem #3: Sine wave channel through

a square domain

 

(d) Test problem #4: Stepped channel through a

square domain
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Neumann BC (zero flux) 
 Dirichlet BC (23 °C) 
 Jump term (Equation 8(b)) 
(e) Legend for boundary conditions

Figure 6. The geometries solved using the developed CoolPINNs framework are

shown above. The vasculature geometries of straight, curved and zig-zag shape are

selected to cover the geometrical configurations of practical interest. All geometries

are square with a side length of 100 mm. With origin at the lower left corner of

each of the geometries, the vasculature starts at co-ordinate (0, 50) and (0, 25)

for geometries A and B, respectively. For geometry C, the vasculature starts at

coordinate (0, 50) with sine wave amplitude of 12.5 mm and wavelength of 66.67

mm. For geometry D, the vasculature is defined by co-ordinates (0, 80), (50, 80),

(50, 20) and (100, 20). Fluid flow is from left to right through the vasculature for all

cases as indicated by the arrows. For the mean surface temperature (MST) study

shown in Figs. 7 and 8, a slight variation of stepped channel geometry D was used;

the coordinates used for MST study were (0, 60), (50, 60), (50, 20) and (100, 20).
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Table 1. Parameters used in the CoolPINNs numerical simulations. The values

are from the experimental literature [18].

Parameter Value

Length L [mm] 100

Width B [mm] 100

Thickness t [mm] 4.15

Emissivity ε [dimensionless] 0.95

Heat transfer coefficient hT [W/m2/K] 13.125

Applied heater flux f0 [W/m2] 1500

Ambient temperature ϑamb [◦C] 23

Heat capacity of fluid cf [J/kg/K] 4800

Density of fluid ρf [kg/m3] 1000

Volumetric flow rate V [mL/min] 1, 10, 100

Thermal conductivity of host CFRP material K [W/m/K] 2.5247

4.2. Hyperparameter tuning. As discussed earlier, the CoolPINNs framework attempts

to find the solution of the PDE at the collocation points by minimizing the loss function using

optimization. The enforcement of the losses associated with the PDE (collocation points inside the

domain) and boundary conditions (collocation points on the domain boundary) helps reduce the

number of possible solutions and improves the framework efficiency. However, the non-convexity

of the loss function poses some challenges as elaborated below.

In Section 1, we have seen that CoolPINNs framework involves training of deep neural networks

(DNNs), objective functions of which are known to be non-convex functions [58]. The non-convexity

of the objective or cost function implies presence of multiple local minima. This implies that

for a given combination of hyperparameters, i.e., number of layers, number of neurons per layer,

learning rate etc., the optimization may converge to a specific local minima rather than the actual

minima. A solution converged to a local minima may not be the most accurate or even can be

a wrong solution. Therefore, hyperparameter sweep or tuning is essential to train CoolPINNs for

determining the parameters (e.g., learning rate, number of epochs) that enable the framework to

converge to the actual minima—needed for getting accurate solutions.

In the current work, we have performed the hyperparameter sweep for the number of hidden

layers, number of neurons per layer, and the learning rate as shown in Table 2. The hyperparameter

values used to obtain the results in Figs. 10–13 are shown in the parenthesis in Table 2.

4.3. Verification using qualitative properties. Mean (or average) surface temperature

(MST) plays an essential role in the design of slender thermal regulation systems. For instance,

MST has been used as one of the metrics to assess performance in studies such as battery packs

[17, 59], multifunctional metamaterials [18], photovoltaic cells [60], and shape memory alloys [61].

Recently, Nakshatrala et al. [62] have shown that MST remains invariant under flow reversal

(i.e., swapping the locations of inlet and outlet) if the following conditions are met:

(1) The domain boundaries are perfectly insulated.

(2) The domain has a constant heat flux source on one face (in other words, the heat generation

rate is uniform over the domain).

(3) The thermal load imposed by the vasculature can be idealized as a line load.
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Table 2. Hyperparameter sweep performed for the four test cases for forward prob-

lems.

Test

case

Coolant

flow (mL/min)

Hidden

layers*

Neurons

per layer*

Learning

rate*

Epochs (Adam

+ L-BFGS-B**)

Straight

vasculature

at center

1 3 to 8 (7) 30 10−4 to 10−3 (10−3) 10k + 15k

10 3 to 7 (4) 30 10−4 to 10−3 (10−4) 10k + 15k

100 3 to 7 (3) 30 10−4 to 10−3 (8× 10−4) 10k + 15k

Straight

vasculature

at quarter

1 3 to 8 (6) 30 10−4 to 10−3 (7× 10−4) 10k + 15k

10 3 to 7 (4) 30 10−4 to 10−3 (10−4) 10k + 15k

100 3 to 7 (3) 30 10−4 to 10−3 (3× 10−4) 10k + 15k

Sine wave

vasculature

1 3 to 8 (3) 30 10−4 to 10−3 (10−4) 10k + 15k

10 3 to 8 (3) 30 10−4 to 10−3 ( 5× 10−4) 10k + 15k

100 3 to 8 (8) 30 to 50 (40) 10−4 to 10−3 (10−3) 10k + 15k

Stepped

vasculature

1 3 to 10 (10) 30 to 50 (50) 10−4 to 10−3 (4× 10−4) 25k + 25k

10 3 to 10 (5) 30 to 50 (30) 10−4 to 10−3 (2× 10−4) 10k + 250k

100 2 to 10 (9) 30 to 90 (30) 10−4 to 10−3 (8× 10−4) 25k + 250k

*: The numbers in the parenthesis indicate the hyperparameter value used to obtain the results

shown in Figs. 10–13.

**: L-BFGS-B stands for Limited-memory Broyden–Fletcher–Goldfarb–Shanno Boxed algorithm

(4) Radiation heat transfer is absent.

(5) Conduction and convection are modeled by Fourier model and Newton’s law of cooling,

respectively.

said differently, the MST under the forward flow condition is the same as the MST under the

reverse flow. We will utilize this invariance property to further verify the CoolPINNs modeling

framework. Note that, for vasculatures dividing the domain in symmetric sub-domains, the forward

and reverse flow problems are essentially the same. Therefore, we solved an active-cooling problem

in which the embedded vasculature divides the domain into non-symmetric sub-domains. For a

two-dimensional domain with uniformly distributed collocation points, mean surface temperature

is simply an arithmetic average of temperature values at all the collocation points.

Figure 7 shows the results under forward and reverse flow conditions, obtained for a non-

symmetric vasculature without radiation. The MST under the forward and reverse flow conditions

are 340.60 K and 340.26 K, respectively—the difference between the two results is 0.1%. Therefore,

the CoolPINNs architecture respects a fundamental property of vascular-based thermal regulation—

MST is invariant under flow reversal.

When radiation heat transfer is also present, the mean surface temperature under flow reversal

is not necessarily invariant, but the MST should be close under both flow conditions. Since all other

studies in the current work included radiation, we provided the flow reversal results accounting for

radiation (see Fig. 8). The mean surface temperatures predicted by CoolPINNs under flow reversal

conditions are close, demonstrating the framework’s effectiveness.

4.4. Comparison with FEM solution. We have solved the four test cases described earlier

using CoolPINNs as well as the finite element method (FEM). For the latter, we have availed the
14



Figure 7. Result obtained for a non-symmetric stepped vasculature with no ra-

diation heat transfer under forward flow (left) and reverse flow (right). The mean

surface temperature for the forward and reverse flow cases is 340.60 K and 340.26 K,

respectively. The percent difference between these two results is 0.1%, which shows

that the current PINNs architecture can capture the invariance of the mean surface

temperature under flow reversal condition.

“weak form” capability available in Comsol—a multi-physics finite element software package [63].

Quadrilateral elements with quadratic interpolation were used for spatial discretization under the

finite element method. Figure 9 shows the meshes that were used to solve the four test problems.

Appendix A presents the results from a numerical convergence study of finite element solutions .

Below, we compare the two sets of results obtained from PINNs and FEM.

Figure 10 shows the results for a straight vasculature passing through the center of the square

domain. The PINN prediction comparison with Comsol FEM solutions for this problem for vol-

umetric flow rates of 1 mL/min, 10 mL/min and 100 mL/min are shown in the top, center and

bottom plots. The PINNs prediction to Comsol solution ratio is greater than 0.96, 0.98 and 0.99

for volumetric flow rates of 1 mL/min, 10 mL/min and 100 mL/min, respectively. The PINNs

prediction to Comsol solution ratio is lower than 1.0 for all the cases, which indicates that the

PINNs is under-predicting the temperatures. The region of relatively smaller PINNs-to-Comsol

ratio (or larger error) in each plot is indicated by red and yellow colors. The larger error gener-

ally appears near the vasculature location. The area of these smaller ratio regions for each case
15



Figure 8. Result obtained for a non-symmetric stepped vasculature with radiation

heat transfer included under forward flow (left) and reverse flow (right). The mean

surface temperature for the forward and reverse flow cases is 329.62 K and 328.58 K,

respectively. When radiation heat transfer is present, the mean surface temperature

is not same between forward/reverse flow cases. This is because heat transferred

due to radiation between the two cases would be different due to differences in the

temperature profiles.

is approximately less than 5–10% of the domain area from visual observation indicating excellent

accuracy over majority of the domain area.

In Fig. 10, the vasculature divided the domain in a symmetric manner, whereas the next test

case in Fig. 11 shows the results for a straight vasculature passing through the quarter height of the

square domain dividing the domain in a non-symmetric manner. The PINNs prediction comparison

with Comsol FEM solutions for this problem for volumetric flow rates of 1 mL/min, 10 mL/min

and 100 mL/min are shown in the top, center and bottom plots. The PINNs prediction to Comsol

solution ratio is greater than 0.95 for volumetric flow rates of 1 mL/min and greater than 0.98 for

volumetric flow rates of 10 mL/min and 100 mL/min, respectively. The PINNs prediction to Comsol

solution ratio is lower than 1.0 for all the cases, which indicates that the PINNs is under-predicting

the temperatures. The region of relatively lower PINNs-to-Comsol ratio (or larger error) in each

plot are indicated by red and yellow colors. The larger error generally appears near the vasculature

location and the area of these lower ratio regions for each case is approximately less than 5-10%
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A) Straight channel at center

D) Stepped channel

B) Straight channel at off-center

C) Sine wave channel

Figure 9. Finite element meshes used in the numerical simulations.

of the domain area from visual observation, indicating excellent accuracy over the majority of the

domain area.

The vasculatures analyzed in Figs. 10 and 11 are straight; however, in real-life for efficient heat

transfer the vasculature shapes are often complex. Figures 12 and 13 demonstrate the efficacy of

the framework to solve moderately complex vasculature shapes of sine wave and a single step. Fig.

12 shows the results for a sine-wave vasculature originating at the center of the left side of the

square domain. The PINNs prediction comparison with Comsol FEM solutions for this problem for

volumetric flow rates of 1 mL/min, 10 mL/min and 100 mL/min are shown in the top, center and

bottom plots. Compared with the Comsol FEM solutions, the PINNs prediction to Comsol solution

ratio is greater than 0.98, 0.97 and 0.89 for the volumetric flow rates of 1, 10 and 100 mL/min,

respectively. The ratio the PINNs prediction to Comsol solution ranges between 0.87 to 1.01 for the

three cases, which indicates that the PINNs is generally under-predicting the temperatures. The

region of relatively lower PINNs-to-Comsol ratio (or larger error) in each plot are indicated by red

and yellow colors. For the volumetric flow rates of 1 and 10 mL/min, the larger error appears near

the coolant entry and exit locations on the vasculature and the majority of the remaining domain is

covered by blue, purple and magenta colors indicating extremely high accuracy of PINNs prediction.
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Figure 10. Results for test problem #1 for volumetric flow rates (V) of 1 mL/min,

10 mL/min and 100 mL/min are shown in the top, center and bottom plots. The

ratio of CoolPINN prediction to Comsol FEM solution is greater than 0.96, 0.98 and

0.98 for V = 1, 10 and 100 mL/min. The region of relatively high error, indicated

by red and yellow colors, for the individual cases is limited to less than 10% of the

domain area from visual observation.
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Figure 11. Results for test problem #2 for volumetric flow rates (V) of 1 mL/min,

10 mL/min and 100 mL/min are shown in the top, center and bottom plots. The

ratio of PINN prediction to Comsol solution is greater than 0.95, 0.98 and 0.98 for

V = 1, 10 and 100 mL/min. The region of relatively high error, indicated by red

and yellow colors, for the individual cases is limited to less than 10% of the domain

area from visual observation.

19



 PINN 
 Prediction

 Comsol 
 Solution

Ratio of PINN Prediction 
 to Comsol Solution

297 308 318 329 340 351 362

deg. K

0.98 0.99 0.99 1.00 1.01 1.01

ratio (dimensionless) PINN 
 Prediction

 Comsol 
 Solution

Ratio of PINN Prediction 
 to Comsol Solution

296 306 315 325 335 345 355

deg. K

0.97 0.98 0.98 0.99 1.00 1.00

ratio (dimensionless) PINN 
 Prediction

 Comsol 
 Solution

Ratio of PINN Prediction 
 to Comsol Solution

296 305 315 325 334 344 354

deg. K
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Figure 12. Results for test problem #3 for volumetric flow rates (V) of 1 mL/min,

10 mL/min and 100 mL/min are shown in the top, center and bottom plots. The

ratio of PINN prediction to Comsol solution is greater than 0.98, 0.97 and 0.89 for

V = 1, 10 and 100 mL/min. The region of relatively high error, indicated by red

and yellow colors, for the individual cases is limited to less than 10% of the domain

area from visual observation.
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Figure 13. Results for test problem #4 for volumetric flow rates (V) of 1 mL/min,

10 mL/min and 100 mL/min are shown in the top, center and bottom plots. The

ratio of PINN prediction to Comsol solution is greater than 0.92, 0.93 and 0.90 for V

= 1, 10 and 100 mL/min. The region of relatively high error, indicated by red and

yellow colors, is limited to less than 10% of the domain area from visual observation.
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For the coolant flow rate of 100 mL/min, the Neumann boundary condition near the lower left side

is not accurately enforced. Note that, DeepXDE package applies Dirichlet and Neumann boundary

conditions as a soft constraint, and the Neumann boundary conditions cannot be enforced as a

hard constraint without custom programming.

Figure 13 shows the results for a single step vasculature. The PINNs prediction comparison

with Comsol FEM solutions for this problem for volumetric flow rates of 1 mL/min, 10 mL/min

and 100 mL/min are shown in the top, center and bottom plots. The ratio the PINNs prediction

to Comsol solution is greater than 0.92, 0.93 and 0.90 for volumetric flow rates of 1, 10 and 100

mL/min, respectively. The ratio the PINNs prediction to Comsol solution ranges between 0.90 to

1.01 for the three cases, and therefore the PINNs is generally under-predicting the temperatures.

The region of relatively lower PINNs-to-Comsol ratio (or larger error) in each plot are indicated by

red and yellow colors. For all the three volumetric flow rates, the larger error appears near the edges

of the domain indicating that the Neumann boundary condition in these regions is not accurately

enforced accurately. In the DeepXDE package, the Dirichlet and Neumann boundary conditions

are enforced as soft constraints, and the Neumann boundary condition cannot be enforced as a

hard constraint unlike the Dirichlet boundary condition. The majority of the remainder domain is

covered by blue, purple and magenta colors indicating extremely high accuracy of PINNs prediction.

5. REPRESENTATIVE NUMERICAL RESULTS — INVERSE PROBLEM

The same test cases used for forward problems, shown in Fig. 6, were used to solve the inverse

problems. The parameters used for the inverse problems were the same as forward problem (from

Table 1) with the exception of the thermal conductivity, which was the parameter predicted using

the inverse solution. We took the coolant’s volumetric flow rate of 10 mL/min. The number

of random collocations points used for the geometries shown in Figs. 6(A), 6(B), 6(C) and 6(D)

were 1804, 1754, 2541, and 2102, respectively. Similar to forward problems, a hyperparameter

sweep for training the model was performed to determine the model providing the most accurate

prediction. The hyperparameter sweep study is summarized in Table 3. To demonstrate the

effectiveness of the framework to solve the inverse problems, two different initial values for thermal

conductivity, 1.0 W/m/K and 6.25 W/m/K, were used compared to the ground truth of 2.5247

W/m/K. The temperature solutions obtained from the forward problem were used for solving the

inverse problems. Since the temperature solution from the forward problem has some amount of

error compared to the actual solution, temperatures used as input to the inverse problems can be

considered as noisy data; e.g., temperatures obtained from a real-life scenario like thermal imagery.

Figures 14 and 15 show the thermal conductivity predictions using CoolPINNs framework for

initial values for thermal conductivity values of 1.0 W/m/K and 6.25 W/m/K. The dotted black

line in all plots represents the ground truth of 2.5247 W/m/K. The predictions converge to the

ground truth for both initial values of thermal conductivity that are higher and lower than the

ground truth. Therefore, the predictions are insensitive to the initial value of the variable to be

predicted, which is a major advantage of the CoolPINNs framework. The percent error with respect

to the ground truth is between 1.8% to 5.8% for all the cases solved, showing very good accuracy.

As the plots indicate, the accuracy can further be improved by training the model for larger number

of epochs.
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Figure 14. Variation of predicted thermal conductivity with respect to the number

of epochs used to train the model for the initial thermal conductivity of 1 W/m/K.

The dotted black line in all plots represents the ground truth of 2.5247 W/m/K.

The final predictions for the four test cases are 2.59, 2.64, 2.60, and 2.67 W/m/K.

6. CLOSURE

We presented CoolPINNs framework based on physics-informed neural networks (PINNs) to

model thermal regulation in thin domains with vasculatures. The framework solves forward and

inverse problems for a reduced-order, non-linear heat transfer PDE with a jump term in thermal

flux in a robust manner. The framework is a meshless method and provides fast forecast.

The CoolPINNs framework for forward problems was verified by solving four problems with

different vasculature geometries, each with three widely varying coolant velocities. The solutions ob-

tained using the PINNs methodology were compared with FEM solutions to demonstrate excellent

accuracy. The robustness of the framework for inverse problems was demonstrated by predicting

thermal conductivity of the panel material using noisy temperature data for all four problems. The

framework provided accurate predictions using two different initial values of thermal conductivity;

higher and lower than the ground truth, indicating that the framework is insensitive to initial value
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Figure 15. Variation of predicted thermal conductivity with respect to the number

of epochs used to train the model for the initial thermal conductivity of 6.25 W/m/K.

The dotted black line in all plots represents the ground truth of 2.5247 W/m/K.

The final predictions for the four test cases are 2.57, 2.67, 2.60, and 2.66 W/m/K.

of the variable to be predicted. A broad sweep of hyperparameters was performed for both forward

and inverse problems.

Although the PINNs framework is developed for a reduced-order mathematical model—pertinent

to thermal regulation in several emerging technologies (e.g., high-powered antennas), the approach

equally applies to three-dimensional problems and to other thermal regulation models. Addition-

ally, the framework for inverse problems can be easily extended to predict magnitude of the heat

source, boundary flux and bulk radiation properties by making only a few changes in the code.

Solution of these problems are very critical for applications like predicting material degradation of

heat shield panels and monitoring radiation properties of the reflecting surfaces of cryogenic panels.

We envision that the CoolPINNs framework can greatly benefit the scientific community to solve

inverse problems that are difficult and extremely time-consuming to handle using the traditional

methods. Compared to grid-based methods (e.g., finite element method and finite volume method),

PINN-based methods do not need computational grids and thus can handle complex geometries
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Table 3. Hyperparameter sweep performed for the four test cases for inverse prob-

lems.

Test

case

Initial K

(W/m/K)

Hidden

layers*

Neurons

per layer

Learning

rate*
Epochs (Adam)

Straight

vasculature

at center

1 2 to 3 (2) 30 10−4 to 10−3 (9× 10−4) 150k

6.25 2 to 3 (3) 30 10−4 to 10−3 (6× 10−4) 150k

Straight

vasculature

at quarter

1 3 to 4 (2) 30 to 40 10−4 to 10−3 (7× 10−4) 200k

6.25 3 to 4 (3) 30 10−4 to 10−3 (5× 10−4) 150k

Sine wave

vasculature

1 4 to 5 (4) 40 10−4 to 10−3 (10−3) 250k

6.25 4 to 5 40 10−4 to 10−3 (3× 10−4) 300k

Stepped

vasculature

1 3 to 5 (3) 30 10−4 to 10−3 (3× 10−4) 300k

6.25 3 to 5 (3) 30 10−4 to 10−3 (7× 10−4) 300k

*The numbers in the parenthesis are the hyperparameter values used to obtain the results shown

in Figs. 14 and 15.

more easily. Solution of the specific inverse problem, e.g., parameter identification, can be used

to automate the process of informed decision making. For extreme environment applications like

Lunar and Martian missions, vasculature panel’s surface temperature profile can be periodically

captured to inversely calculate the thermal conductivity. The changes in the thermal conductivity

can be monitored to identify the onset of material degradation. The rate of degradation can be

decelerated by taking appropriate actions like increasing coolant circulation. The entire sequence

of capturing temperature profile to increase the coolant circulation can be used to develop an

autonomous system for informed decision making.

Appendix A. Mesh refinement studies for finite element solutions

All the finite element simulations were conducted using the “weak form” capability in COMSOL

[63]. The Galerkin finite element formulation was used; for details of this formulation, see [28]. To

decide on the selection of elements and order of interpolation, we performed a numerical convergence

study—varying the mesh size and the order of interpolation. The parameters were the same as in

Table 1. Figures 16 and 17 show the convergence results. Quadrilateral elements with quadratic

interpolation gave accurate results even on modestly refined meshes. Hence, we adopted the same

element type and order of interpolation in generating all the finite element results presented in the

main article.
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Figure 16. Stepped vasculature: h-refinement study. The figure shows a hierarchy

of meshes on the left panel with corresponding temperature profiles on the right.
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Mesh Linear interpolation Quadratic interpolation

Figure 17. Sine-wave vasculature: h- and p-refinement study. The left panel shows

two hierarchy meshes. The middle and right panels, respectively, show the corre-

sponding temperature profiles under linear and quadratic interpolations.
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