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Cooper pairs in atomic nuclei

S. Pittel
Bartol Research Institute and Department of Physics and Astronomy,
University of Delaware, Newark, DE 19716 USA.

G.G. Dussel
Departamento de Fisica J.J. Giambiagi,
Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

J. Dukelsky and P. Sarriguren
Instituto de Estructura de la Materia,
CSIC, Serrano 123, 28006 Madrid, Spain.

Recibido el 7 de febrero de 2008; aceptado el 15 de abril de 2008

We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm
isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an
exact treatment using the Richardson ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it
does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave
function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic
nuclei are collective.

Keywords:Nuclear structure; degenerate Fermi gases; integrable systems; BCS.

Describimos los recientes esfuerzos en el estudio de pares de Coopetiele@babdmico. Consideramos un campo promedio autoconsistente
Hartree Fock para losdsopos pares del Sm y comparamos los resultados de tres tratamientos de correlaciones de pairing: un tratamiento
BCS, un tratamiento BCS con proye@gide rumero, y un tratamiento exacto usando el ansatz de Richardson. Se encuentran diferencias
significativas en las endip de correlaéin de pairing. Aderas, ya que la soluén de Richardson no promedia sobre las propiedades de los
pares de fermiones, permite una defioicimas significativa de la funén de onda de Cooper y de la fra@meide pares que son colectivos.
Nuestros resultados confirman que solo unos pocos pares cerca de la superficie de Factabsrabmicos reales son colectivos.

Descriptores:Estructura nuclear; gases de Fermi degenerados; sistemas integrables; BCS.

PACS: 21.60.-n, 03.75.Ss, 02.30.1k; 74.20.Fg

1. Introduction critical for a proper description of such systems. To accom-
modate these effects, number-projected BCS (PBCS) [5] the-

After the discovery of superconductivity in 1911 [1], there ory was developed in 1963, based on a condensate of pairs of
followed a long history of efforts to try to explain this phe- ihe form

nomenon. A major breakthrough occurred in 1956 with

Cooper’'s demonstration [2] that bound pairs could be pro- U ppes) = (FT [0) , (2)

duced in the vicinity of the Fermi surface for an arbitrarily

weak attractive pairing interaction. He also suggested thevhere)M is the number of pairs arid’ has the same form as

possibility of describing superconductivity in terms of thesein BCS theory.

correlated pairs. At roughly the same time that PBCS theory was devel-
Soon thereafter, Bardeen, Cooper and Schrieffer [3] preeped, Richardson [6] showed that for a pure pairing hamilto-

sented the BCS theory, whereby superconductivity was denian it is possible t@xactlysolve the Schirdinger align by

scribed as a number-nonconserving state of coherent pairs,following closely Cooper’s original idea. More specifically,

he showed that for a system wifki particles,all solutions

)M

[Wpes) =€ [0) (1) can be expressed as a product of distinct Cooper fdjrs
. viz:
with
7 L
_ T T .
]_"Jf — ZZICCLCE |<D> = ]lra| l/> , Fa = zk: m CkCE s (3)
k a= .

andz, as variational parameters. The following year, Bohr,where|v) represents a fully unpaired stateroparticles and
Mottelson and Pines [4] noted that similar physics may un-NV = 2M + v.

derly the large gaps seen in the spectra of even-even atomic In this paper, we focus on the properties of Cooper pairs
nuclei, emphasizing however that finite-size effects would bén atomic nuclei. We report detailed microscopic calculations
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of the even Sm isotopes frof* Sm through'®®Sm in which  to as the Richardson equations. The energy eigenvalues of
the pairing correlations derive from a pure pairing force. Wethe hamiltonian can be obtained by simply summing the pair
compare the results that emerge when these pairing correnergies that result from their solution.
lations are treated in BCS approximation, in projected BCS  There are several points worth noting here. The first is
approximation and through exact solution using the Richardthat the pair energies that emerge by solving the Richardson
son approach. We see that both the BCS approximation arghjuations are always either real or arise in complex conju-
the PBCS approximation systematically miss an importantate pairs. A second is that there are as many independent
piece of the pairing correlation energy when compared withsolutions of these equations as there are states in the Hilbert
Richardson’s exact treatment. We also find that by makingpace. Finally, all of the solutions to these equations can be
use of the exact Richardson solution we are able to get geadily classified in the weak-couplirig — 0 limit.
clearer description of some important qualitative features of The typical procedure for solving these equations is to
Cooper pairs in such finite Fermi systems. Most of the workstart with the known solutions in the weak-coupling limit and
reported here can be found in Ref. 7. then to evolve to the physical value of the pairing strength.
The outline of the presentation is as follows. In Sec. 2, WGJnfortunate|y, as can be seen from (5) the Richardson equa-
briefly review the Richardson solution of the pairing hamil- tions have singularities when a pair energy is real and equals
tonian and its numerical treatment for a large number of intwice a single-particle energy. This makes it difficult to fol-
teracting particles. We then discuss in Sec. 3 how the exagéw the evolution of the solution for all pairs with increas-
solution can be used to describe several important features g G.
Cooper pairing and contrast this with the descriptions com-  a practical approach for avoiding these singularities and
monly used in BCS or BCS-like treatments. In Sec. 4, Wegptaining all solutions of the Richardson equations was pre-
describe the calculations we have carried out for the even SRented in Ref. 7. Namely we start the numerical procedure
isotopes and discuss the results of those calculations. Finallyt very weak (or alternatively very strong) coupling where
in Sec. 5 we briefly summarize the principal conclusions ofine solutions are known and we add a small arbitrary imagi-
our analysis, both for nuclear systems and for more generg{ary component to all of the single-particle energies. We then
quantum systems. evolve with G to the physical value, but now avoiding the
singularities. Once we reach the physical valuéofve set
2. Richardson’s Exact solution of the Pairing theimaginary parts of the single-particle energies to zero and
Hamiltonian then obtain the final physical solutions. This method seems
to work for any distribution of single-particle energies and
We focus here on a pure pairing hamiltonian with constanginy pairing strengtids, enabling us to obtain all solutions to
strengthG acting in a space of doubly-degenerate time-the Richardson equations for very large numbers of particles
reversed stateg, k). The hamiltonian can be expressed as and levels.

G .
H= Z EkC;LCk - Z CLC}—CCE/C]C/ , 4) )
. P, 3. Some general features of cooper pairs

where ¢, are the single-particle energies for the doubly-pyiring s of course not limited to atomic nuclei but arises

degenerate orbits, k (which henceforth we refer to as or- i, 5 wide variety of strongly-correlated quantum systems.
bit £). i , In ultra-low temperature atomic gases, for example, it has
, As noteq earlier, Fhe R|chardson'ansatz (_3) for a systerBroven possible to tune the strength of the pairing interaction
W't_h 2M paired particles and “”Pa'red _partcheS can be through the use of the Feshbach resonance [8] and in doing
written as a product i/ Cooper pair creation Operators act- ¢, o eypiore pairing correlations through the crossover re-
ing on an unpaired state), gion from BCS to BEC behavior [9]. By making use of the
M 1 Richardson solution of the pure pairing hamiltonian, Ortiz
|®) = H <Z e — c,ﬂc% ) |v) . (5)  and Dukelsky [10] have shown how Cooper pairs evolve in
a=1 \ k 26 — €a this crossover, naturally progressing from a system of pair

As Richardson showed, these are the exact eigenstates of tFfgSonances spread out across the system and free fermions to

called the pair energies, satisfy a sefiéfcoupled non-linear An interesting question for any system subject to pairing
equations, correlations isWhat fraction of the pairs are indeed strongly
o correlated? This is a very difficult question to address in
dy 1 BCS or BCS-like theories, as there is no natural measure for
L+26 Xk: 26 — €q * 2Gﬁ(;1 es—ea 0. (6 this quantity, the so-calledondensate fractianTypically, it

is defined through a prescription due to Yang [11], obtained
whered, = (vp —1)/2 and vy is the number of unpaired by analyzing the Off Diagonal Long Range Order that char-
particles in orbitk (either0 or 1). These are usually referred acterizes all superconductors and superfluids. This leads to a
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definition of the condensate fraction appropriate to homoge4. Model for the Sm isotopes

neous systems in the thermodynamic limit. _ _ .
For finite Fermi systems, atomic nuclei being an exampIeThe results that we will be reporting are based on a series

it is necessary to modify Yang’s prescription. The appropri-Of self-consistent deformed Hartree Fock+BCS calculations,

ate modification appropriate to BCS theory is to define thd" Which @ density-dependent Skyrme force, SLy4, is used to
condensate fractiohpcs by describe the mean field correlations and a pairing force with

constant strengtty is used to treat the pairing correlations.
1 The calculations are carried out in an axially symmet-
M(1—M/L) ric harmonic oscillator space of 11 major shells, with 286
doubly-degenerate single-particle states. This basis involves
oscillator parameteb, and axis ratiog, optimized to mini-
x> [<CLC£/C7€’C’C> _<CLC’“><C£’C’9/>} mize the epnergy in the given space. Thep strength of the pair-
hok'=1 ing force for protons and neutrons is chosen to reproduce the
1 L experimental pairing gaps ii*Sm, and then rescaled for the
=1 Z uivi (7)  other isotopes assuminglgA dependence. These calcula-
M1 —-M/L) R : : D
k=1 tions provide an excellent overall description of the proper-
ties of the even Sm isotopes.
. . i We then use the results at self-consistency to define the
|sthg ”“mbef of pairs ang andu. are the usual BCS quasi- HF mean field and consider not only the BCSyapproach but
particle amplltudles. ) ) also the number-conserving PBCS and exact Richardson ap-
The exact Richardson solution provides a more naturalgaches to treat the pairing correlations witlfiis mean
and more appropriate definition of the condensate fractionge|q The fact that pairing derives from a pure pairing force
From the Richardson pair wave function (3), we see that &qmjts the use of the Richardson approach to obtain the ex-
pair for whiche, is close to a particulaze;, is dominated 5t splutions and thus to carry out the comparison of interest.

by that particular configuration and thus is uncorrelated. In  \va first consider the pairing correlation energy, defined
contrast, a pair energy lying sufficiently far away in the com- ¢

plex plane from any uncorrelated pair energy produces a cor-
related Cooper pair. As a practical measure we define the g — (D orr | H| Peorr) — (Puncorr | H| Puncorr) s (8)
condensate fraction emerging from the Richardson solution
as the fraction of pair energies that lie more than the meawhere |®..,,) is the correlated ground-state wave function
level spacing fromanyunperturbed single-pair energy. and|®,,,.orr) is the uncorrelated Hartree Fock Slater deter-
Another important question isWhat is the structure of minant obtained by filling all levels up to the Fermi energy.
the Cooper pairs in a system®nce again, this is difficult Table | summarizes our results for all nuclei considered.
to address in BCS theories and in fact there are two definifwo sets of BCS results, denoted BCS and BCS+H, respec-
tions considered. One is to look directly at the structure oftively, are presented. The column denoted BCS does not in-
the operatol'T from which the BCS or PBCS state is built. clude thev} Hartree contributions from the pairing force; the
This leads to a prescription in which the orbkitcontributes column denoted BCS+H includes this contribution. The cal-
vy, /ui. However, since the operatbi averages over all the culations include the semi-magic nucleti¢Sm, for which
particles in the system, this does not provide a particularlythe BCS calculation leads to a normal solution with no pair-
meaningful reflection of an actual Cooper pair. ing correlations. In contrast, the projected BCS calculation
A somewhat betteaveragemeasure is provided by the leads to substantial pairing correlations in the ground state,
pair-correlator, for which thé content is given by

ABcs =

L

whereL is the total number of doubly-degenerate stalés,

(BCS|czcr| BCS) = ugvy, . TABLE |. Pairing correlation gnergid@c associated with t_hg BCS,
BCS+H, PBCS and exact Richardson treatments of pairing for the

Indeed, in several recent studies [12] that explored the spatiaelven Smisotopes. All energies are given in MeV.

structure of pairing correlations in realistic nuclei, this was __Mass  Ezact PBCS BCS+H BCS

the measure considered. 142 -4.146 -3.096 -1.214 -1.107
As noted earlier, the Richardson solution provides infor- 144 2960 2677 0.0 0.0

mation directly on all Cooper pairs. A given Cooper @&, 146 -4.340  -3.140 -1.444 -1.384
corresponding to pair energy,, can be written as 148 4221 -3.014 -1.165 -1.075
150 -3.761 -2.932 -0.471 -0.386
FL _ Z 1 C]TCCT_ 7 152 -3.922 -2.957 -0.750 -0.637
26 — €q k 154 -3.678 -2.859 -0.479 -0.390
b 156 -3.716 -2.832 -0.605 -0.515

so that the orbit contributesl /(2¢; — e, ) to that pair. 158 -3.832 -2.824 -0.816 -0.717
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G (MaV) FIGURE 2. Pair energies (in MeV) for the exact Cooper

pairs that emerge from four calculations of th&'Sm isotope.
FIGURE 1. Condensate fractions appropriate ¥#Sm. The G'=0.106 MeV is the physical value of the pairing strength. In that
smooth curve gives the modified Yang prescription for the BCS panel, we denote the most collective pairs as fGr subsequent
treatment of pairing and the sawtooth curve gives the alternativenotational purposes.
prescription discussed in the text for the exact Richardson reatmen
Go = 0.106MeV denotes the physical value of the pairing strength
ande; = p denotes the strength at hich the whole system binds.

t(which form a complex conjugate pair) are abduMeV
away from the real axis, and thus are clearly collective. An-
other two are marginally collective, lying roughly 0.5 MeV

om the closes®e;. The two most collective pairs, denoted

. . . r
h results f h fiel L ' :
consistent with results from other mean-field treatments o Lin the flgure, each have a real energy—915.55 MeV,

semi-magic nuclei [13]. The exact treatment of pairing I(_:‘ad‘c(/vhich is roughly twice the energy of the single-particle levels

ts(;;at;]rr]thbe)glgvl\vﬂe;\? g of the energy of the ground state of theJust below the Fermi surface. This suggests that the first pqirs
T . that become collective are those involving the valence orbits.
For non-semi-magic nuclei, the effect of an exact treat-pog ¢ increases, we see a gradual increase in the number of
ment on the pairing correlation energy is even greater. Whilgqjective pairs, which form an arc in the complex plane. As
PBCS gives a significant lowering of the energy due to nUMxan pe seen from Fig. 1, by a pairing strength of roughly
ber projection, it misses abolMeV of the exact correlation () 5 MeV all of the pairs of the system are correlated giving a
energy. Considering the extensive recent efforts to carry oWondensate fraction af even though the BEC regime has not
systematic microscopic calculations of nuclear masses usinfqbt been reached. The BEC limit is realized when the chem-
mean-field methods [14], we feel that this is an importantica| potentialy crosses the lowest single-particle eneegy
conclusion. While renormalization ¢f could accommodate \yhich for 154Sm occurs at? — 0.788 MeV. At this point
these corrections, it might not be possible to adopt a simy| pairs are bound. Note, however, that the revised Yang
ple renormalization recipe when dealing with more generalyrescription (7) fails to predict a complete condensate at this

effective interactions, such as the Gogny force, for which theboint, as it likewise failed to in the homogeneous case [10].
particle-hole and particle-particle interactions derive from the

same force. 1.0 . . . . ™
Next we compare results for the condensate fraction ap- 0.9 —e_BCS ]
propriate to!'5*Sm , obtained from the BCS solution using 0.8 s 1
the modified Yang prescription and from the Richardson so- 0.7 2 ! i
lution using the prescription based on the distance of the as- 0.6 T ]
sociated pair energy from the various unperturbed single-pairn-: 0'5 —a— G i
energies. The results are plotted in Fig. 1 as a function of X, 0'4 —o—C,
the pairing strengtiiz, with the physical value appropriate to 2 = —o—C, ]
154Sm beingGy = 0.106 MeV. 0.3 ]
I 0.2 1
To see how the exact results emerge, we show in Fig. 2 .

. . e 0.1 e ]
the associated pair energies'itt Sm for four values ofz, N 1 NN
ranging from the physical value @ = 0.106 MeV to a 0.0 ot
fairly strong pairing strength af = 0.4 MeV. In 154Sm the 48 50 52

mean level spacing between the Hartree Fock single-particle
levels is roughly0.5 MeV. For G = 0.106 MeV, most of the  Ficure 3. Square of the wave function of the most collective
pair energies lie very near the real axis and quite close to atooper pairs in®*Sm (denoted ¢, C,, Cs, C4, and G) and the
least one unperturbed single-pair enety,. Two of them pair correlator (BCS) versus the single-particle levels.
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Next we focus on the structure of the Cooper pairs, whichpresent calculations would suggest that the actual size of the
as noted earlier can be obtained exactly from the Richardsofew highly collective Cooper pairs is larger than the typical
solutions. In Fig. 3, we compare the square of the wave funcsize of the pair correlations in the nuclear medium.
tion for the most correlated Cooper pairs'tiSm,i.e. those
whose pair energies lie farthest from any unperturbed singles Summar
pair energy, with the square of the pair correlator wave func=" y

:'ﬁn obta;med fr_omftr:e BCS SOqut'On.' AS noltet(_j ear_||elr3,ct:hs|s 'Sin this paper, we described recent work carried out to address
€ most meaningiul measure of pair correlations in ap, airing properties of atomic nuclei. We considered a realis-

proximation. All wave functions are plotted versus the orde tic description of the even Sm isotopes with their mean field

of the single-particle states to make clear the relevant mixm%roperties described in Skyrme Hartree Fock approximation
of configurations in each pair. The pair labels in the figure

. : and their pairing properties treated at various levels of ap-
(Cy through g) refer to corresponding labels in t_he upper proximation. We found that even a projected BCS treatment
left panel of Fig. 2. G refers to the two most collective pairs

v th h tarthest f bed si ’I of pairing misses a sizable component of the pairing correla-
hamely those that are farthest from any unperturbed singlgs, energy, which could have important implications in fully

particle pair. Being complex conjugqte pairs, bOt.h have ex'microscopic efforts to describe nuclear masses. We also con-
actly the same abso.lute square of their wave function and thufﬁmed that very few of the nucleons in a realistic nucleus
we only ShO.W one n the_ figure. [Jefers t_o the next tv_vo coherently pair, and that they typically involve strong admix-
most collective pairs, which as noted earlier are margmall;&ures of the outermost valence orbits only. Furthermore, the

collective accl:lord!ng to our pfrtescrlptlr:).nﬁ @afersép the neﬁd associated collective Cooper pairs are slightly larger in spa-
two most collective pairs after £ which according to the tial extent than the corresponding BCS pair correlator.

prescription given above involve perturbative mixing of con- We also addressed several general issues on pairing in

Ilg”urapons gnd_ar(je thus S.Ot trul)lll CCil_|eCtIV§4 ﬁﬂd G, thle . strongly-correlated quantum systems, showing that when the
oflowing pa|(;s_|n lesceln 'n? cofiective IO ' er,t_ ?Ve re? Pallpichardson exact solution can be obtained it provides a more
energies and involve aimost pure single-particie con IguraFneaningful definition of both the condensate fraction (the

tions. ' . fraction of pairs that are strongly correlated) and the struc-
From the figure, we see that the pair correlator wave func:

tion i . : . . éure of the associated Cooper pairs.

ion is spread over several single-particle configurations an

peaked at the7*" single-particle level, just beyond the Fermi

energy {°*Sm has46 neutron pairs). In contrast, the most Acknowledgements
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