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Cooper pairs in atomic nuclei
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We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm
isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an
exact treatment using the Richardson ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it
does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave
function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic
nuclei are collective.
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Describimos los recientes esfuerzos en el estudio de pares de Cooper en el núcleo at́omico. Consideramos un campo promedio autoconsistente
Hartree Fock para los isótopos pares del Sm y comparamos los resultados de tres tratamientos de correlaciones de pairing: un tratamiento
BCS, un tratamiento BCS con proyección de ńumero, y un tratamiento exacto usando el ansatz de Richardson. Se encuentran diferencias
significativas en las energı́as de correlación de pairing. Adeḿas, ya que la solución de Richardson no promedia sobre las propiedades de los
pares de fermiones, permite una definición más significativa de la función de onda de Cooper y de la fracción de pares que son colectivos.
Nuestros resultados confirman que solo unos pocos pares cerca de la superficie de Fermi en núcleos at́omicos reales son colectivos.

Descriptores:Estructura nuclear; gases de Fermi degenerados; sistemas integrables; BCS.

PACS: 21.60.-n, 03.75.Ss, 02.30.Ik; 74.20.Fg

1. Introduction

After the discovery of superconductivity in 1911 [1], there
followed a long history of efforts to try to explain this phe-
nomenon. A major breakthrough occurred in 1956 with
Cooper’s demonstration [2] that bound pairs could be pro-
duced in the vicinity of the Fermi surface for an arbitrarily
weak attractive pairing interaction. He also suggested the
possibility of describing superconductivity in terms of these
correlated pairs.

Soon thereafter, Bardeen, Cooper and Schrieffer [3] pre-
sented the BCS theory, whereby superconductivity was de-
scribed as a number-nonconserving state of coherent pairs,

|ΨBCS〉 = eΓ† |0〉 , (1)

with

Γ† =
∑

k

zkc†kc†
k̄

andzk as variational parameters. The following year, Bohr,
Mottelson and Pines [4] noted that similar physics may un-
derly the large gaps seen in the spectra of even-even atomic
nuclei, emphasizing however that finite-size effects would be

critical for a proper description of such systems. To accom-
modate these effects, number-projected BCS (PBCS) [5] the-
ory was developed in 1963, based on a condensate of pairs of
the form

|ΨPBCS〉 =
(
Γ†

)M |0〉 , (2)

whereM is the number of pairs andΓ† has the same form as
in BCS theory.

At roughly the same time that PBCS theory was devel-
oped, Richardson [6] showed that for a pure pairing hamilto-
nian it is possible toexactlysolve the Schr̈odinger align by
following closely Cooper’s original idea. More specifically,
he showed that for a system withN particles,all solutions
can be expressed as a product of distinct Cooper pairsΓ†α,
viz:

|Φ〉 =
M∏

α=1

Γ†α| ν〉 , Γ†α =
∑

k

1
2εk − eα

c†kc†
k̄

, (3)

where|ν〉 represents a fully unpaired state ofν particles and
N = 2M + ν.

In this paper, we focus on the properties of Cooper pairs
in atomic nuclei. We report detailed microscopic calculations
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of the even Sm isotopes from144Sm through158Sm in which
the pairing correlations derive from a pure pairing force. We
compare the results that emerge when these pairing corre-
lations are treated in BCS approximation, in projected BCS
approximation and through exact solution using the Richard-
son approach. We see that both the BCS approximation and
the PBCS approximation systematically miss an important
piece of the pairing correlation energy when compared with
Richardson’s exact treatment. We also find that by making
use of the exact Richardson solution we are able to get a
clearer description of some important qualitative features of
Cooper pairs in such finite Fermi systems. Most of the work
reported here can be found in Ref. 7.

The outline of the presentation is as follows. In Sec. 2, we
briefly review the Richardson solution of the pairing hamil-
tonian and its numerical treatment for a large number of in-
teracting particles. We then discuss in Sec. 3 how the exact
solution can be used to describe several important features of
Cooper pairing and contrast this with the descriptions com-
monly used in BCS or BCS-like treatments. In Sec. 4, we
describe the calculations we have carried out for the even Sm
isotopes and discuss the results of those calculations. Finally,
in Sec. 5 we briefly summarize the principal conclusions of
our analysis, both for nuclear systems and for more general
quantum systems.

2. Richardson’s Exact solution of the Pairing
Hamiltonian

We focus here on a pure pairing hamiltonian with constant
strengthG acting in a space of doubly-degenerate time-
reversed states(k, k̄). The hamiltonian can be expressed as

H =
∑

k

εkc†kck − G

4

∑

k,k′
c†kc†

k̄
ck̄′ck′ , (4)

where εk are the single-particle energies for the doubly-
degenerate orbitsk, k̄ (which henceforth we refer to as or-
bit k).

As noted earlier, the Richardson ansatz (3) for a system
with 2M paired particles andν unpaired particles can be
written as a product ofM Cooper pair creation operators act-
ing on an unpaired state|ν〉,

|Φ〉 =
M∏

α=1

(∑

k

1
2εk − eα

c†kc†
k̄

)
| ν〉 . (5)

As Richardson showed, these are the exact eigenstates of the
pairing hamiltonian if theeα, a set of complex parameters
called the pair energies, satisfy a set ofM coupled non-linear
equations,

1 + 2G
∑

k

dk

2εk − eα
+ 2G

M∑

β(6=α)=1

1
eβ − eα

= 0 , (6)

wheredk = (νk − 1)/2 andνk is the number of unpaired
particles in orbitk (either0 or 1). These are usually referred

to as the Richardson equations. The energy eigenvalues of
the hamiltonian can be obtained by simply summing the pair
energies that result from their solution.

There are several points worth noting here. The first is
that the pair energies that emerge by solving the Richardson
equations are always either real or arise in complex conju-
gate pairs. A second is that there are as many independent
solutions of these equations as there are states in the Hilbert
space. Finally, all of the solutions to these equations can be
readily classified in the weak-couplingG → 0 limit.

The typical procedure for solving these equations is to
start with the known solutions in the weak-coupling limit and
then to evolve to the physical value of the pairing strength.
Unfortunately, as can be seen from (5) the Richardson equa-
tions have singularities when a pair energy is real and equals
twice a single-particle energy. This makes it difficult to fol-
low the evolution of the solution for all pairs with increas-
ing G.

A practical approach for avoiding these singularities and
obtaining all solutions of the Richardson equations was pre-
sented in Ref. 7. Namely we start the numerical procedure
at very weak (or alternatively very strong) coupling where
the solutions are known and we add a small arbitrary imagi-
nary component to all of the single-particle energies. We then
evolve withG to the physical value, but now avoiding the
singularities. Once we reach the physical value ofG, we set
the imaginary parts of the single-particle energies to zero and
then obtain the final physical solutions. This method seems
to work for any distribution of single-particle energies and
any pairing strengthG, enabling us to obtain all solutions to
the Richardson equations for very large numbers of particles
and levels.

3. Some general features of cooper pairs

Pairing is of course not limited to atomic nuclei but arises
in a wide variety of strongly-correlated quantum systems.
In ultra-low temperature atomic gases, for example, it has
proven possible to tune the strength of the pairing interaction
through the use of the Feshbach resonance [8] and in doing
so to explore pairing correlations through the crossover re-
gion from BCS to BEC behavior [9]. By making use of the
Richardson solution of the pure pairing hamiltonian, Ortiz
and Dukelsky [10] have shown how Cooper pairs evolve in
this crossover, naturally progressing from a system of pair
resonances spread out across the system and free fermions to
a system of spatially correlated quasibound molecules.

An interesting question for any system subject to pairing
correlations is:What fraction of the pairs are indeed strongly
correlated? This is a very difficult question to address in
BCS or BCS-like theories, as there is no natural measure for
this quantity, the so-calledcondensate fraction. Typically, it
is defined through a prescription due to Yang [11], obtained
by analyzing the Off Diagonal Long Range Order that char-
acterizes all superconductors and superfluids. This leads to a
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definition of the condensate fraction appropriate to homoge-
neous systems in the thermodynamic limit.

For finite Fermi systems, atomic nuclei being an example,
it is necessary to modify Yang’s prescription. The appropri-
ate modification appropriate to BCS theory is to define the
condensate fractionλBCS by

λBCS =
1

M(1−M/L)

×
L∑

k,k′=1

[
〈c†kc†

k̄′ck̄′ck〉 −〈c†kck〉〈c†k̄′ck̄′〉
]

=
1

M(1−M/L)

L∑

k=1

u2
kv2

k , (7)

whereL is the total number of doubly-degenerate states,M
is the number of pairs andvk anduk are the usual BCS quasi-
particle amplitudes.

The exact Richardson solution provides a more natural
and more appropriate definition of the condensate fraction.
From the Richardson pair wave function (3), we see that a
pair for which eα is close to a particular2εk is dominated
by that particular configuration and thus is uncorrelated. In
contrast, a pair energy lying sufficiently far away in the com-
plex plane from any uncorrelated pair energy produces a cor-
related Cooper pair. As a practical measure we define the
condensate fraction emerging from the Richardson solution
as the fraction of pair energies that lie more than the mean
level spacing fromanyunperturbed single-pair energy.

Another important question is:What is the structure of
the Cooper pairs in a system?Once again, this is difficult
to address in BCS theories and in fact there are two defini-
tions considered. One is to look directly at the structure of
the operatorΓ† from which the BCS or PBCS state is built.
This leads to a prescription in which the orbitk contributes
vk/uk. However, since the operatorΓ† averages over all the
particles in the system, this does not provide a particularly
meaningful reflection of an actual Cooper pair.

A somewhat betteraveragemeasure is provided by the
pair-correlator, for which thek content is given by

〈BCS|ck̄ck|BCS〉 = ukvk .

Indeed, in several recent studies [12] that explored the spatial
structure of pairing correlations in realistic nuclei, this was
the measure considered.

As noted earlier, the Richardson solution provides infor-
mation directly on all Cooper pairs. A given Cooper pairΓ†α,
corresponding to pair energyeα, can be written as

Γ†α =
∑

k

1
2εk − eα

c†kc†
k̄

,

so that the orbitk contributes1/(2εk − eα) to that pair.

4. Model for the Sm isotopes

The results that we will be reporting are based on a series
of self-consistent deformed Hartree Fock+BCS calculations,
in which a density-dependent Skyrme force, SLy4, is used to
describe the mean field correlations and a pairing force with
constant strengthG is used to treat the pairing correlations.

The calculations are carried out in an axially symmet-
ric harmonic oscillator space of 11 major shells, with 286
doubly-degenerate single-particle states. This basis involves
oscillator parameterb0 and axis ratioq, optimized to mini-
mize the energy in the given space. The strength of the pair-
ing force for protons and neutrons is chosen to reproduce the
experimental pairing gaps in154Sm, and then rescaled for the
other isotopes assuming a1/A dependence. These calcula-
tions provide an excellent overall description of the proper-
ties of the even Sm isotopes.

We then use the results at self-consistency to define the
HF mean field and consider not only the BCS approach but
also the number-conserving PBCS and exact Richardson ap-
proaches to treat the pairing correlations withinthis mean
field. The fact that pairing derives from a pure pairing force
permits the use of the Richardson approach to obtain the ex-
act solutions and thus to carry out the comparison of interest.

We first consider the pairing correlation energy, defined
as

EC = 〈Φcorr|H| Φcorr〉 − 〈Φuncorr|H| Φuncorr〉 , (8)

where |Φcorr〉 is the correlated ground-state wave function
and|Φuncorr〉 is the uncorrelated Hartree Fock Slater deter-
minant obtained by filling all levels up to the Fermi energy.

Table I summarizes our results for all nuclei considered.
Two sets of BCS results, denoted BCS and BCS+H, respec-
tively, are presented. The column denoted BCS does not in-
clude thev4

k Hartree contributions from the pairing force; the
column denoted BCS+H includes this contribution. The cal-
culations include the semi-magic nucleus144Sm, for which
the BCS calculation leads to a normal solution with no pair-
ing correlations. In contrast, the projected BCS calculation
leads to substantial pairing correlations in the ground state,

TABLE I. Pairing correlation energiesEC associated with the BCS,
BCS+H, PBCS and exact Richardson treatments of pairing for the
even Sm isotopes. All energies are given in MeV.

Mass Exact PBCS BCS + H BCS

142 -4.146 -3.096 -1.214 -1.107
144 -2.960 -2.677 0.0 0.0
146 -4.340 -3.140 -1.444 -1.384
148 -4.221 -3.014 -1.165 -1.075
150 -3.761 -2.932 -0.471 -0.386
152 -3.922 -2.957 -0.750 -0.637
154 -3.678 -2.859 -0.479 -0.390
156 -3.716 -2.832 -0.605 -0.515
158 -3.832 -2.824 -0.816 -0.717
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FIGURE 1. Condensate fractions appropriate to154Sm. The
smooth curve gives the modified Yang prescription for the BCS
treatment of pairing and the sawtooth curve gives the alternative
prescription discussed in the text for the exact Richardson reatment.
G0 = 0.106MeV denotes the physical value of the pairing strength
andε1 = µ denotes the strength at hich the whole system binds.

consistent with results from other mean-field treatments of
semi-magic nuclei [13]. The exact treatment of pairing leads
to a further lowering of the energy of the ground state of the
system, by0.3 MeV.

For non-semi-magic nuclei, the effect of an exact treat-
ment on the pairing correlation energy is even greater. While
PBCS gives a significant lowering of the energy due to num-
ber projection, it misses about1 MeV of the exact correlation
energy. Considering the extensive recent efforts to carry out
systematic microscopic calculations of nuclear masses using
mean-field methods [14], we feel that this is an important
conclusion. While renormalization ofG could accommodate
these corrections, it might not be possible to adopt a sim-
ple renormalization recipe when dealing with more general
effective interactions, such as the Gogny force, for which the
particle-hole and particle-particle interactions derive from the
same force.

Next we compare results for the condensate fraction ap-
propriate to154Sm , obtained from the BCS solution using
the modified Yang prescription and from the Richardson so-
lution using the prescription based on the distance of the as-
sociated pair energy from the various unperturbed single-pair
energies. The results are plotted in Fig. 1 as a function of
the pairing strengthG, with the physical value appropriate to
154Sm beingG0 = 0.106 MeV.

To see how the exact results emerge, we show in Fig. 2
the associated pair energies in154Sm for four values ofG,
ranging from the physical value ofG = 0.106 MeV to a
fairly strong pairing strength ofG = 0.4 MeV . In 154Sm the
mean level spacing between the Hartree Fock single-particle
levels is roughly0.5 MeV. ForG = 0.106 MeV, most of the
pair energies lie very near the real axis and quite close to at
least one unperturbed single-pair energy,2εk. Two of them

FIGURE 2. Pair energies (in MeV) for the exact Cooper
pairs that emerge from four calculations of the154Sm isotope.
G=0.106 MeV is the physical value of the pairing strength. In that
panel, we denote the most collective pairs as Ci, for subsequent
notational purposes.

(which form a complex conjugate pair) are about1 MeV
away from the real axis, and thus are clearly collective. An-
other two are marginally collective, lying roughly 0.5 MeV
from the closest2εk. The two most collective pairs, denoted
C1 in the figure, each have a real energy of−15.55 MeV,
which is roughly twice the energy of the single-particle levels
just below the Fermi surface. This suggests that the first pairs
that become collective are those involving the valence orbits.
As G increases, we see a gradual increase in the number of
collective pairs, which form an arc in the complex plane. As
can be seen from Fig. 1, by a pairing strength of roughly
0.5 MeV all of the pairs of the system are correlated giving a
condensate fraction of1, even though the BEC regime has not
yet been reached. The BEC limit is realized when the chem-
ical potentialµ crosses the lowest single-particle energyε1,
which for 154Sm occurs atG = 0.788 MeV. At this point
all pairs are bound. Note, however, that the revised Yang
prescription (7) fails to predict a complete condensate at this
point, as it likewise failed to in the homogeneous case [10].

FIGURE 3. Square of the wave function of the most collective
Cooper pairs in154Sm (denoted C1, C2, C3, C4, and C5) and the
pair correlator (BCS) versus the single-particle levels.
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Next we focus on the structure of the Cooper pairs, which
as noted earlier can be obtained exactly from the Richardson
solutions. In Fig. 3, we compare the square of the wave func-
tion for the most correlated Cooper pairs in154Sm,i.e. those
whose pair energies lie farthest from any unperturbed single-
pair energy, with the square of the pair correlator wave func-
tion obtained from the BCS solution. As noted earlier, this is
the most meaningful measure of pair correlations in BCS ap-
proximation. All wave functions are plotted versus the order
of the single-particle states to make clear the relevant mixing
of configurations in each pair. The pair labels in the figure
(C1 through C5) refer to corresponding labels in the upper
left panel of Fig. 2. C1 refers to the two most collective pairs,
namely those that are farthest from any unperturbed single-
particle pair. Being complex conjugate pairs, both have ex-
actly the same absolute square of their wave function and thus
we only show one in the figure. C2 refers to the next two
most collective pairs, which as noted earlier are marginally
collective according to our prescription. C3 refers to the next
two most collective pairs after C2, which according to the
prescription given above involve perturbative mixing of con-
figurations and are thus not truly collective. C4 and C5, the
following pairs in descending collective order, have real pair
energies and involve almost pure single-particle configura-
tions.

From the figure, we see that the pair correlator wave func-
tion is spread over several single-particle configurations and
peaked at the47th single-particle level, just beyond the Fermi
energy (154Sm has46 neutron pairs). In contrast, the most
highly correlated Cooper pair wave function is somewhat nar-
rower (less collective) and is peaked slightly within the Fermi
sphere. The less-collective Cooper pairs are peaked progres-
sively further inside the Fermi sphere and are progressively
narrower. These results suggest that the size of even the most
collective Cooper pairs in coordinate space will be larger than
the size of the pair correlator. Investigations [12] on the size
of the pair correlator in spherical nuclei concluded that it is
unexpectedly small in the nuclear surface (2 − 3 fm). The

present calculations would suggest that the actual size of the
few highly collective Cooper pairs is larger than the typical
size of the pair correlations in the nuclear medium.

5. Summary

In this paper, we described recent work carried out to address
pairing properties of atomic nuclei. We considered a realis-
tic description of the even Sm isotopes with their mean field
properties described in Skyrme Hartree Fock approximation
and their pairing properties treated at various levels of ap-
proximation. We found that even a projected BCS treatment
of pairing misses a sizable component of the pairing correla-
tion energy, which could have important implications in fully
microscopic efforts to describe nuclear masses. We also con-
firmed that very few of the nucleons in a realistic nucleus
coherently pair, and that they typically involve strong admix-
tures of the outermost valence orbits only. Furthermore, the
associated collective Cooper pairs are slightly larger in spa-
tial extent than the corresponding BCS pair correlator.

We also addressed several general issues on pairing in
strongly-correlated quantum systems, showing that when the
Richardson exact solution can be obtained it provides a more
meaningful definition of both the condensate fraction (the
fraction of pairs that are strongly correlated) and the struc-
ture of the associated Cooper pairs.
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