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Direct reciprocity and conditional cooperation are important mecha-

nisms to prevent free riding in social dilemmas. However, in large

groups, these mechanisms may become ineffective because they re-

quire single individuals to have a substantial influence on their peers.

However, the recent discovery of zero-determinant strategies in the

iterated prisoner’s dilemma suggests that we may have underesti-

mated the degree of control that a single player can exert. Here,

we develop a theory for zero-determinant strategies for iterated mul-

tiplayer social dilemmas, with any number of involved players. We

distinguish several particularly interesting subclasses of strategies: fair

strategies ensure that the own payoff matches the average payoff of

the group; extortionate strategies allow a player to perform above

average; and generous strategies let a player perform below average.

We use this theory to describe strategies that sustain cooperation, in-

cluding generalized variants of Tit-for-Tat and Win-Stay Lose-Shift.

Moreover, we explore two models that show how individuals can

further enhance their strategic options by coordinating their play with

others. Our results highlight the importance of individual control and

coordination to succeed in large groups.

evolutionary game theory | alliances | public goods game |
volunteer’s dilemma | cooperation

Cooperation among self-interested individuals is generally
difficult to achieve (1–3), but typically the free rider problem

is aggravated even further when groups become large (4–9). In
small communities, cooperation can often be stabilized by forms
of direct and indirect reciprocity (10–17). For large groups, how-
ever, it has been suggested that these mechanisms may turn out to
be ineffective, as it becomes more difficult to keep track of the
reputation of others and because the individual influence on others
diminishes (4–8). To prevent the tragedy of the commons and to
compensate for the lack of individual control, many successful
communities have thus established central institutions that enforce
mutual cooperation (18–22).
However, a recent discovery suggests that we may have un-

derestimated the amount of control that single players can exert in
repeated games. For the repeated prisoner’s dilemma, Press and
Dyson (23) have shown the existence of zero-determinant strategies
(or ZD strategies), which allow a player to unilaterally enforce
a linear relationship between the own payoff and the coplayer’s
payoff, irrespective of the coplayer’s actual strategy. The class of
zero-determinant strategies is surprisingly rich: for example, a player
who wants to ensure that the own payoff will always match the
coplayer’s payoff can do so by applying a fair ZD strategy, like Tit-
for-Tat. On the other hand, a player who wants to outperform the
respective opponent can do so by slightly tweaking the Tit-for-Tat
strategy to the own advantage, thereby giving rise to extortionate
ZD strategies. The discovery of such strategies has prompted sev-
eral theoretical studies, exploring how different ZD strategies
evolve under various evolutionary conditions (24–30).
ZD strategies are not confined to the repeated prisoner’s di-

lemma. Recently published studies have shown that ZD strate-
gies also exist in other repeated two player games (29) or in
repeated public goods games (31). Herein, we will show that such
strategies exist for all symmetric social dilemmas, with an arbi-
trary number of participants. We use this theory to describe
which ZD strategies can be used to enforce fair outcomes or to
prevent free riders from taking over. Our results, however, are

not restricted to the space of ZD strategies. By extending the
techniques introduced by Press and Dyson (23) and Akin (27), we
also derive exact conditions when generalized versions of Grim, Tit-
for-Tat, and Win-Stay Lose-Shift allow for stable cooperation. In
this way, we find that most of the theoretical solutions for the re-
peated prisoner’s dilemma can be directly transferred to repeated
dilemmas with an arbitrary number of involved players.
In addition, we also propose two models to explore how indi-

viduals can further enhance their strategic options by coordinating
their play with others. To this end, we extend the notion of ZD
strategies for single players to subgroups of players (to which we
refer as ZD alliances). We analyze two models of ZD alliances,
depending on the degree of coordination between the players.
When players form a strategy alliance, they only agree on the set
of alliance members, and on a common strategy that each alliance
member independently applies during the repeated game. When
players form a synchronized alliance, on the other hand, they
agree to act as a single entity, with all alliance members playing the
same action in a given round. We show that the strategic power of
ZD alliances depends on the size of the alliance, the applied
strategy of the allies, and on the properties of the underlying social
dilemma. Surprisingly, the degree of coordination only plays a role
as alliances become large (in which case a synchronized alliance
has more strategic options than a strategy alliance).
To obtain these results, we consider a repeated social dilemma

between n players. In each round of the game, players can decide
whether to cooperate (C) or to defect (D). A player’s payoff
depends on the player’s own decision and on the decisions of all
other group members (Fig. 1A): in a group in which j of the other
group members cooperate, a cooperator receives the payoff aj,
whereas a defector obtains bj. We assume that payoffs satisfy the
following three properties that are characteristic for social
dilemmas (corresponding to the individual-centered interpretation
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of altruism in ref. 32): (i) irrespective of the own strategy, players
prefer the other group members to cooperate (aj+1 ≥ aj and bj+1 ≥ bj
for all j); (ii) within any mixed group, defectors obtain strictly higher
payoffs than cooperators (bj+1 > aj for all j); and (iii) mutual co-
operation is favored over mutual defection ðan−1 > b0Þ. To illustrate
our results, we will discuss two particular examples of multiplayer
games (Fig. 1B). In the first example, the public goods game (33),
cooperators contribute an amount c> 0 to a common pool, knowing
that total contributions aremultiplied by r (with 1< r< n) and evenly
shared among all group members. Thus, a cooperator’s payoff is
aj = rcðj+ 1Þ=n− c, whereas defectors yield bj = rcj=n. In the second
example, the volunteer’s dilemma (34), at least one group member
has to volunteer to bear a cost c> 0 in order for all group members
to derive a benefit b> c. Therefore, cooperators obtain aj = b− c
(irrespective of j), whereas defectors yield bj = b if j≥ 1 and b0 = 0.
Both examples (andmanymore, such as the collective risk dilemma)
(7, 8, 35) are simple instances of multiplayer social dilemmas.
We assume that the social dilemma is repeated, such that in-

dividuals can react to their coplayers’ past actions (for simplicity,
we will focus here on the case of an infinitely repeated game). As
usual, payoffs for the repeated game are defined as the average
payoff that players obtain over all rounds. In general, strategies
for such repeated games can become arbitrarily complex, as
subjects may condition their behavior on past events and on the
round number in nontrivial ways. Nevertheless, as in pairwise
games, ZD strategies turn out to be surprisingly simple.

Results

Memory-One Strategies and Akin’s Lemma. ZD strategies are
memory-one strategies (23, 36); they only condition their behavior
on the outcome of the previous round. Memory-one strategies can
be written as a vector p= ðpC;n−1; . . . ; pC;0; pD;n−1; . . . ; pD;0Þ. The
entries pS;j denote the probability to cooperate in the next round,
given that the player previously played S∈ fC;Dg and that j of the
coplayers cooperated (in the SI Text, we present an extension in
which players additionally take into account who of the coplayers
cooperated). A simple example of a memory-one strategy is the
strategy Repeat, pRep, which simply reiterates the own move of the
previous round, p

Rep
C;j = 1 and p

Rep
D;j = 0. In addition, memory-one

strategies need to specify a cooperation probability p0 for the first
round. However, our results will often be independent of the initial
play, and in that case we will drop p0.
Let us consider a repeated game in which a focal player with

memory-one strategy p interacts with n− 1 arbitrary coplayers
(who are not restricted to any particular strategy). Let vS;jðtÞ
denote the probability that the outcome of round t is ðS; jÞ. Let
vðtÞ= ½vC;n−1ðtÞ; . . . ; vD;0ðtÞ� be the vector of these probabilities. A
limit distribution v is a limit point for t→∞ of the sequence
½vð1Þ+ . . . + vðtÞ�=t. The entries vS;j of such a limit distribution
correspond to the fraction of rounds in which the focal player
finds herself in state ðS; jÞ over the course of the game.
There is a surprisingly powerful relationship between a focal

player’s memory-one strategy and the resulting limit distribution
of the iterated game. To show this relationship, let qCðtÞ be the
probability that the focal player cooperates in round t. By definition
of pRep we can write qCðtÞ=pRep · vðtÞ= ½vC;n−1ðtÞ+ . . . + vC;0ðtÞ�.
Similarly, we can express the probability that the focal player
cooperates in the next round as qCðt+ 1Þ= p · vðtÞ. It follows that
qCðt+ 1Þ− qCðtÞ= ðp− pRepÞ · vðtÞ. Summing up over all rounds
from 1 to t, and dividing by t, yields ðp−pRepÞ · ½vð1Þ+ . . .

vðtÞ�=t= ½qCðt+ 1Þ− qCð1Þ�=t, which has absolute value at most
1=t. By taking the limit t→∞ we can conclude that

�

p−pRep
�

· v= 0: [1]

This relation between a player’s memory-one strategy and the
resulting limit distribution will prove to be extremely useful.
Because the importance of Eq. 1 has been first highlighted by Akin
(27) in the context of the pairwise prisoner’s dilemma, we will refer
to it as Akin’s lemma. We note that Akin’s lemma is remarkably
general, because it neither makes any assumptions on the specific
game being played, nor does it make any restrictions on the strat-
egies applied by the remaining n− 1 group members.

Zero-Determinant Strategies in Multiplayer Social Dilemmas. As an
application of Akin’s lemma, we will show in the following that
single players can gain an unexpected amount of control over
the resulting payoffs in a multiplayer social dilemma. To this
end, we first need to introduce some further notation. For
a focal player i, let us write the possible payoffs in a given round
as a vector gi = ðgiS;jÞ, with giC;j = aj and giD;j = bj. Similarly, let us
write the average payoffs of i’s coplayers as g−i = ðg−iS;jÞ, where
the entries are given by g−iC;j = ½jaj + ðn− j− 1Þbj+1�=ðn− 1Þ and
g−iD;j = ½jaj−1 + ðn− j− 1Þbj�=ðn− 1Þ. Finally, let 1 denote the 2n-
dimensional vector with all entries being one. Using this notation, we
can write player i’s payoff in the repeated game as πi = gi · v, and the
average payoff of i’s coplayers as π−i = g−i · v. Moreover, by defini-
tion of v as a limit distribution, it follows that 1 · v= 1. After these
preparations, let us assume player i applies the memory-one strategy

p = pRep + αgi + βg−i + γ1; [2]

with α, β, and γ being parameters that can be chosen by player i
(with the only restriction that β≠ 0). Due to Akin’s lemma, we
can conclude that such a player enforces the relationship
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Fig. 1. Illustration of the model assumptions for repeated social dilemmas. (A)

We consider symmetric n−player social dilemmas in which each player can either

cooperate or defect. The player’s payoff depends on its own decision and on the

number of other group members who decide to cooperate. (B) We will discuss

two particular examples: the public goods game (in which payoffs are pro-

portional to the number of cooperators) and the volunteer’s dilemma (as the

most simple example of a nonlinear social dilemma). (C) In addition to individual

strategies, we will also explore how subjects can enhance their strategic options

by coordinating their play with other group members. We refer to the members

of such a ZD alliance as allies, and we call group members that are not part of

the ZD alliance outsiders. Outsiders are not restricted to any particular strategy.

Some or all of the outsiders may even form their own alliance.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1407887111 Hilbe et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407887111/-/DCSupplemental/pnas.201407887SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1407887111


0 =

�

p− pRep
�

· v=
�

αgi + βg−i + γ1
�

v= απi + βπ−i + γ: [3]

Player i’s strategy thus guarantees that the resulting payoffs of
the repeated game obey a linear relationship, irrespective of how
the other group members play. Moreover, by appropriately
choosing the parameters α, β, and γ, the player has direct control
on the form of this payoff relation. As in Press and Dyson (23),
who were first to discover such strategies for the prisoner’s di-
lemma, we refer to the memory-one strategies in Eq. 2 as zero-
determinant strategies or ZD strategies.
For our purpose, it will be convenient to proceed with

a slightly different representation of ZD strategies. Using the
parameter transformation l=−γ=ðα+ βÞ, s=−α=β, and ϕ=−β,
ZD strategies take the form

p = pRep +ϕ
�

ð1− sÞ
�

l1− gi
�

+ gi − g−i
�

; [4]

and the enforced payoff relationship according to Eq. 3 becomes

π−i = sπi + ð1− sÞl: [5]

We refer to l as the baseline payoff of the ZD strategy and to s as
the strategy’s slope. Both parameters allow an intuitive interpre-
tation: when all players adopt the same ZD strategy p such that
πi = π−i, it follows from Eq. 5 that each player yields the payoff l.
The value of s determines how the mean payoff of the other
group members π−i varies with πi. The parameter ϕ does not
have a direct effect on Eq. 5; however, the magnitude of ϕ de-
termines how fast payoffs converge to this linear payoff relation-
ship as the repeated game proceeds (37).
The parameters l;  s; and ϕ of a ZD strategy cannot be chosen

arbitrarily, because the entries pS;j are probabilities that need to
satisfy 0≤ pS;j ≤ 1. In general, the admissible parameters depend
on the specific social dilemma being played. In SI Text, we show
that exactly those relations 5 can be enforced for which either
s= 1 (in which case the parameter l in the definition of ZD
strategies becomes irrelevant) or for which l and s< 1 satisfy

max
0≤ j≤n−1

�

bj −
j

n− 1

bj − aj−1

1− s

�

≤ l≤ min
0≤ j≤n−1

�

aj +
n− j− 1

n− 1

bj+1 − aj

1− s

�

:

[6]

It follows that feasible baseline payoffs are bounded by the payoffs
for mutual cooperation and mutual defection, b0 ≤ l≤ an−1, and that
the slope needs to satisfy −1=ðn− 1Þ≤ s≤ 1. With s sufficiently
close to 1, any baseline payoff between b0 and an−1 can be achieved.
Moreover, because the conditions in Eq. 6 become increasingly re-
strictive as the group size n increases, larger groups make it more
difficult for players to enforce specific payoff relationships.

Important Examples of ZD Strategies. In the following, we discuss
some examples of ZD strategies. At first, let us consider a player
who sets the slope to s= 1. By Eq. 5, such a player enforces the
payoff relation πi = π−i, such that i’s payoff matches the average
payoff of the other group members. We call such ZD strategies
fair. As shown in Fig. 2A, fair strategies do not ensure that all
group members get the same payoff; due to our definition of
social dilemmas, unconditional defectors always outperform
unconditional cooperators, no matter whether the group also
contains fair players. Instead, fair players can only ensure that
they do not take any unilateral advantage of their peers. Our
characterization 6 implies that all social dilemmas permit a
player to be fair, irrespective of the group size. As an example,
consider the strategy proportional Tit-for-Tat (pTFT), for which
the probability to cooperate is simply given by the fraction of
cooperators among the coplayers in the previous round

pTFTS;j =
j

n− 1
: [7]

For pairwise games, this definition of pTFT simplifies to Tit-for-
Tat, which is a fair ZD strategy (23). However, also for the public
goods game and for the volunteer’s dilemma, pTFT is a ZD
strategy, because it can be obtained from Eq. 4 by setting s= 1
and ϕ= 1=c, with c being the cost of cooperation.
As another interesting subclass of ZD strategies, let us con-

sider strategies that choose the mutual defection payoff as
baseline payoff, l= b0, and that enforce a positive slope 0< s< 1.
The enforced payoff relation 5 becomes π−i = sπi + ð1− sÞb0, im-
plying that on average the other group members only get
a fraction s of any surplus over the mutual defection payoff.
Moreover, as the slope s is positive, the payoffs πi and π−i are
positively related. As a consequence, the collective best reply for
the remaining group members is to maximize i’s payoffs by
cooperating in every round. In analogy to Press and Dyson (23),
we call such ZD strategies extortionate, and we call the quantity
χ = 1=s the extortion factor. For games in which l= b0 = 0, Eq. 5
shows that the extortion factor can be written as χ = πi=π−i. Large
extortion factors thus signal a substantial inequality in favor of
player i. Extortionate strategies are particularly powerful in so-
cial dilemmas in which mutual defection leads to the lowest
group payoff (as in the public goods game and in the volunteer’s
dilemma). In that case, they enforce the relation πi ≥ π−i; on
average, player i performs at least as well as the other group
members (as also depicted in Fig. 2B). As an example, let us
consider a public goods game and a ZD strategy pEx with l= 0,
ϕ= n=½ðn− rÞsc+ rc�, for which Eq. 4 implies

pExS;j =
j

n− 1

�

1− ð1− sÞ
nðr− 1Þ

r+ ðn− rÞs

	

; [8]

independent of the player’s own move S∈ fC;Dg. In the limit
s→ 1, pEx approaches the fair strategy pTFT. As s decreases from
1, the cooperation probabilities of pEx are increasingly biased to
the own advantage. Extortionate strategies exist for all social
dilemmas (this follows from condition [6] by setting l= b0 and
choosing an s close to 1). However, larger groups make extor-
tion more difficult. For example, in public goods games with
n> r=ðr− 1Þ, players cannot be arbitrarily extortionate any longer
as [6] implies that there is an upper bound on χ (SI Text).
As the benevolent counterpart to extortioners, Stewart and

Plotkin described a set of generous strategies for the iterated
prisoner’s dilemma (24, 28). Generous players set the baseline
payoff to the mutual cooperation payoff l= an−1 while still
enforcing a positive slope 0< s< 1. These parameter choices
result in the payoff relation π−i = sπi + ð1− sÞan−1. In particular,
for games in which mutual cooperation is the optimal outcome
for the group (as in the public goods game and in the prisoner’s
dilemma but not in the volunteer’s dilemma), the payoff of
a generous player satisfies πi ≤ π−i (Fig. 2C). For the example of
a public goods game, we obtain a generous ZD strategy pGe by
setting l= rc− c and ϕ= n=½ðn− rÞsc+ rc�, such that

pGe
S; j =

j

n− 1
+ ð1− sÞ

n− j− 1

n− 1

nðr− 1Þ

r+ ðn− rÞs
: [9]

For s→ 1, pGe approaches the fair strategy pTFT, whereas lower
values of s make pGe more cooperative. Again, such generous
strategies exist for all social dilemmas, but the extent to which
players can be generous depends on the particular social di-
lemma and on the size of the group.
As a last interesting class of ZD strategies, let us consider players

who choose s= 0. By Eq. 5, such players enforce the payoff relation
π−i = l, meaning that they have unilateral control over the mean
payoff of the other group members (for the prisoner’s dilemma,
such equalizer strategies were first discovered in ref. 38). However,
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unlike extortionate and generous strategies, equalizer strategies
typically cease to exist once the group size exceeds a critical
threshold. For the example of a public goods game this thresh-
old is given by n= 2r=ðr− 1Þ. For larger groups, single players
cannot determine the mean payoff of their peers any longer.

Stable Cooperation in Multiplayer Social Dilemmas. Let us next ex-
plore which ZD strategies give rise to a Nash equilibrium with
stable cooperation. In SI Text, we prove that such ZD strategies
need to have two properties: they need to be generous (by setting
l= an−1 and s> 0), but they must not be too generous [the slope
needs to satisfy s≥ ðn− 2Þ=ðn− 1Þ]. In particular, whereas in the
repeated prisoner’s dilemma any generous strategy with s> 0 is
a Nash equilibrium (27, 28), larger group sizes make it increasingly
difficult to uphold cooperation. In the limit of infinitely large
groups, it follows that s needs to approach 1, suggesting that ZD
strategies need to become fair. For the public goods game, this
implies that stable cooperation can always be achieved when
players cooperate in the first round and adopt proportional Tit-
for-Tat thereafter. Interestingly, this strategy has received little
attention in the previous literature. Instead, researchers have fo-
cused on other generalized versions of Tit-for-Tat, which co-
operate if at least k coplayers cooperated in the previous round (4,
39, 40). Such memory-one strategies take the form pS;j = 0 if j< k
and pS;j = 1 if j≥ k. Unlike pTFT, these threshold strategies nei-
ther enforce a linear relation between payoffs, nor do they induce
fair outcomes, suggesting that pTFT may be the more natural
generalization of Tit-for-Tat in large-scale social dilemmas.
In addition to the stable ZD strategies, Akin’s lemma also

allows us to characterize all pure memory-one strategies that
sustain mutual cooperation. In SI Text, we show that any such
strategy p needs to satisfy the following four conditions

pC;n−1 = 1; pC;n−2 = 0; pD;1 ≤
an−1 − a0

bn−1 − an−1
;

and pD;0 ≤
an−1 − b0

bn−1 − an−1
; [10]

with no restrictions being imposed on the other entries pS;j. The
first condition pC;n−1 = 1 ensures that individuals continue to play C
after mutual cooperation; the second condition pC;n−2 = 0 guaran-
tees that any unilateral deviation is punished; and the last two
conditions describe whether players are allowed to revert to co-
operation after rounds with almost uniform defection. Surprisingly,
only these last two conditions depend on the specific payoffs of the
social dilemma. As an application, condition 10 imply that the
threshold variants of Tit-for-Tat discussed above are only a Nash
equilibrium if they use the most stringent threshold: k= n− 1. Such
unforgiving strategies, however, have the disadvantage that they are
often susceptible to errors: already a small probability that players
fail to cooperate may cause a complete breakdown of cooperation
(41). Instead, the stochastic simulations by Hauert and Schuster (5)
showed that successful strategies tend to cooperate after mutual

cooperation and after mutual defection [i.e., pC;n−1 = pD;0 = 1 and
pS;j = 0 for all other states ðS; jÞ]. We refer to such a behavior as
WSLS, because for pairwise dilemmas it corresponds to the Win-
Stay, Lose-Shift strategy described by ref. 36. Because of condition
[10], WSLS is a Nash equilibrium if and only if the social dilemma
satisfies ðbn−1 + b0Þ=2≤ an−1. For the example of a public goods
game, this condition simplifies to r≥ 2n=ðn+ 1Þ, which is always
fulfilled for r≥ 2. For social dilemmas that meet this condition,
WSLS provides a stable route to cooperation that is robust to errors.

Zero-Determinant Alliances. In agreement with most of the theo-
retical literature on repeated social dilemmas, our previous
analysis is based on the assumption that individuals act in-
dependently. As a result, we observed that a player’s strategic
options typically diminish with group size. As a countermeasure,
subjects may try to gain strategic power by coordinating their
strategies with others. In the following, we thus extend our the-
ory of ZD strategies for single individuals to subgroups of play-
ers. We refer to these subgroups as ZD alliances. Because the
strategic power of ZD alliances is likely to depend on the exact
mode of coordination between the allies, we consider two dif-
ferent models: when subjects form a strategy alliance, they only
agree on the set of alliance members and on a common ZD
strategy that each ally independently applies. During the actual
game, there is no further communication between the allies.
Strategy alliances can thus be seen as a boundary case of co-
ordinated play, which requires a minimum amount of coordi-
nation. Alternatively, we also analyze synchronized alliances, in
which all allies synchronize their actions in each round (i.e., the
allies cooperate collectively, or they defect collectively). In ef-
fect, such a synchronized alliance thus behaves like a new entity
that has a higher leverage than each player individually. Syn-
chronized alliances thus may be considered as a boundary case of
coordinated play that requires substantial coordination.
To model strategy alliances, let us consider a group of nA

allies, with 1≤ nA < n. We assume that all allies make a binding
agreement that they will play according to the same ZD strategy
p during the repeated game. Because the ZD strategy needs to
allow allies to differentiate between the actions of the other allies
and the outsiders, we need to consider a more general state space
than before. The state space now takes the form ðS; jA; j−AÞ. The
first entry S corresponds to the focal player’s own play in the pre-
vious round, jA gives the number of cooperators among the other
allies, and j−A is the number of cooperators among the outsiders. A
memory-one strategy p again needs to specify a cooperation prob-
ability pS;jA;j−A for each of the possible states. Using this state space,
we can define ZD strategies for a player i in a strategy alliance as

p=pRep+ϕ
�

ð1− sÞ
�

l1− gi
�

+ gi −
�

nA − 1
�

wAgA −
�

n− nA
�

w−Ag−A
�

:

[11]

The vector gA contains the average payoff of the other allies for
each possible state, and g−A is the corresponding vector for the
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Fig. 2. Characteristic dynamics of payoffs over the

course of the game for three different ZD strategies.

Each panel depicts the payoff of the focal player πi

(blue) and the average payoff of the other group

members π−i (red) by thick lines. Additionally, the

individual payoffs of the other group members are

shown as thin red lines. (A) A fair player ensures

that the own payoff matches the mean payoff of

the other group members. However, fair strategies

cannot ensure that all group members yield the

same payoff. (B) For games in which mutual de-

fection leads to the lowest group payoff, extortionate players ensure that their payoffs are above average. (C) In games in which mutual cooperation is the

social optimum, generous players let their coplayers gain higher payoffs. The three graphs depict the case of a public goods game with r = 4, c= 1, and group

size n= 20. For the strategies of the other group members, we used random memory-one strategies, where the cooperation probabilities were independently

drawn from a uniform distribution. For the strategies of the focal player, we used (A) pTFT, (B) pEx with s= 0:8, and (C) pGe with s= 0:8.
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outsiders. The weights w−A ≥ 0 and wA ≥ 0 are additional para-
meters that determine the relative importance of outsiders
and other allies, being subject to the constraint ðnA − 1ÞwA

+

ðn− nAÞw−A
= 1. In the special case of a single player forming

an alliance, nA = 1, this guarantees that the two definitions of
ZD strategies 4 and 11 are equivalent.
Similarly to the case of single individuals, we can apply Akin’s

lemma to show that strategy alliances enforce a linear relation-
ship between their own mean payoff πA and the mean payoff of
the outsiders π−A (for details, see SI Text)

π−A = sAπA +

�

1− sA
�

l; [12]

where the slope of the alliance is given by sA = ½s− ðnA − 1ÞwA�=
½1− ðnA − 1ÞwA�: A strategy alliance can enforce exactly those
payoff relationships 12 for which either sA = 1 or for which l
and sA < 1 satisfy the conditions

max
0≤ j≤n−nA

�

bj−
j

n− nA
bj − aj−1

1− sA

�

≤ l≤ min
nA−1≤ j≤n−1

�

aj+
n− j− 1

n− nA
bj+1 − aj

1− sA

�

:

[13]

Interestingly, to reach this strategic power, an alliance needs to put
a higher weight on the within-alliance payoffs (i.e., wA needs to
exceed w−A; SI Text), such that the allies are stronger affected by
what the other allies do, as opposed to the actions of the outsiders.
For single player alliances, nA = 1, condition 13 again simplifies to
the previous condition 6. However, as the alliance size nA increases,
condition 13 becomes easier to satisfy. Larger alliances can there-
fore enforce more extreme payoff relationships. For the example
of a public goods game, we noted that single players cannot be
arbitrarily extortionate when n> r=ðr− 1Þ. Alliances, on the other
hand, only need to be sufficiently large, nA=n≥ ðr− 1Þ=r. Once an
alliance has this critical mass, there are no bounds to extortion.
In a similar way, we can also analyze the strategic possibilities

of a synchronized alliance. Because synchronized alliances act as
a single entity, they transform the symmetric social dilemma
between n independent players to an asymmetric game between
n− nA + 1 independent players. From the perspective of the al-
liance, the state space now takes the form ðS; jÞ, where S∈ fC;Dg
is the common action of all allies and where 0≤ j≤ n− nA is the
number of cooperators among the outsiders. ZD strategies for
the synchronized alliance can be defined analogously to ZD
strategies for single players

p = pRep +ϕ
��

1− sA
��

l1− gA
�

+ gA − g−A
�

; [14]

with gA being the payoff vector for the allies and g−A being the
payoff vector of the outsiders. For a single player alliance, nA = 1,
this again reproduces the definition of ZD strategies in 4. By
applying Akin’s lemma to Eq. 14, we conclude that synchronized
alliances enforce π−A = sAπA + ð1− sAÞl, which is the same as re-
lationship 12 for strategy alliances. Surprisingly, we even find that
for reasonable alliance sizes, nA ≤ n=2, strategy alliances and syn-
chronized alliances have the same set of enforceable parameters l
and sA, as given by Eq. 13 (see SI Text for details). Thus, for the
two models of ZD alliances considered here, the exact mode of
coordination is irrelevant for the alliance’s strategic power unless
the alliance has reached a substantial size.
Table 1 gives an overview of our findings on ZD strategies and

ZD alliances in multiplayer social dilemmas. It shows that, although
generally, ZD strategies exist for all group sizes, the power of single
players to enforce particular outcomes typically diminishes or dis-
appears in large groups. Forming ZD alliances then allows players
to increase their strategic scope. The impact of a given ZD alliance,
however, depends on the specific social dilemma: although ZD
alliances can become arbitrarily powerful in public goods games,
their strategic options remain limited in the volunteer’s dilemma.

Discussion

When Press and Dyson (23) discovered the new class of ZD
strategies for the repeated prisoner’s dilemma, this came as a big
surprise (24, 25): after more than five decades of research, it
seemed unlikely that any major property of the prisoner’s di-
lemma has been overlooked. For repeated multiplayer dilemmas
the situation is different. Although various Folk theorems guar-
antee that cooperation is also feasible in large groups (42, 43),
there has been considerably less theoretical research on the evo-
lution of cooperation in repeated multiplayer dilemmas (4, 5, 39,
40). This lack of research may be due to the higher complexity: the
mathematics of repeated n-player dilemmas seems to be more
intricate, and numerical investigations are impeded because the
time to compute payoffs increases exponentially in the number of
players (5). Nevertheless, we showed here that many of the results
for the repeated prisoner’s dilemma can be directly transferred to
general social dilemmas, with an arbitrary number of involved
subjects. The foundation for this progress is a new framework,
provided by Akin’s lemma and the theory of Press and Dyson.
Using this framework, we extended the theory of repeated

multiplayer dilemmas into three directions. The first and most
immediate direction is our finding that ZD strategies exist in all
social dilemmas. These strategies allow players to unilaterally dic-
tate linear payoff relations, irrespective of the specific social di-
lemma being played, irrespective of the group size, and irrespective
of the counter measures taken by the other group members. In
particular, we showed that any social dilemma allows players to be
fair, extortionate, or generous. Each of these strategy classes has its
own particular strengths: extortionate strategies give a player a rel-
ative advantage compared with the other group members; fair
strategies help to avoid further inequality within a group; and
generous strategies allow players to revert to mutual cooperation
when a coplayer defected by accident. At the same time, ZD
strategies are remarkably simple. For example, to be fair in a public
goods game, players only need to apply a rule called proportional
Tit-for-Tat: if j of the n− 1 other group members cooperated in
the previous round, then cooperate with probability j=ðn− 1Þ in
the following round. Extortionate and generous strategies can be
obtained in a similar way, by slightly modifying pTFT to the own
advantage or to the advantage of the others.
As the second direction, we explored which ZD strategies and

which pure memory-one strategies can be used to sustain co-
operation in multiplayer dilemmas. Among ZD strategies, such
strategies need to be generous (such that players never try to
outperform their peers) (27, 28), but at the same time they must
not be too generous. The right degree of generosity depends on the
size of the group but not on the specific social dilemma being
played. As a rule of thumb, we obtain that in larger groups, subjects
are required to show less generosity.
As the last direction, we extended the concept of zero-

determinant strategies from single players to subgroups of players,
to which we refer to as ZD alliances. Depending on the degree of
coordination, we explored two forms of ZD alliances: members
of a strategy alliance only agree on using a common ZD strategy
during the game, but they do not coordinate each of their
decisions; members of a synchronized alliance, on the other
hand, act as a single entity—they either all cooperate or they all
defect in a given round. The effect of such ZD alliances depends
on the size of the alliance, the applied strategy, and the prop-
erties of the underlying social dilemma. In general, we find that
by coordinating their play with others, subjects can increase their
strategic options considerably. The exact mode of coordination,
however, only turns out to play a minor role: As long as the size
of the ZD alliance is below half the group size, strategy alliances
and synchronized alliances have the same strategic power. In ad-
dition to their static properties, ZD strategies for the prisoner’s
dilemma also have a remarkable dynamic component (23, 44):
when a player commits himself to an extortionate ZD strategy,
then adapting coplayers learn to cooperate over time. Numerical
simulations in the SI show an analogous result for multiplayer
dilemmas: when ZD alliances apply strategies with a positive
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slope, they can trigger a positive group dynamics among the out-
siders. The magnitude of this dynamic effect again depends on the
size of the alliance, and on the applied strategy of the allies.
Here, we focused on ZD strategies; but the toolbox that we

apply (in particular Akin’s lemma) is more general. As an ex-
ample, we identified all pure memory-one strategies that allow
for stable cooperation, including the champion of the repeated
prisoner’s dilemma, Win-Stay Lose-Shift (36, 45). We expect that
there will be further applications of Akin’s lemma to come. Such
applications may include, for instance, a characterization of all

Nash equilibria among the stochastic memory-one strategies or
an analysis of how alliances are formed and whether evolutionary
forces favor particular alliances over others (46, 47).
Overall, our results reveal how single players in multiplayer

games can increase their control by choosing the right strategies
and how they can increase their strategic options by joining
forces with others.
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Table 1. Strategic power of different ZD strategies for three different social dilemmas

Strategy

class

Typical

property

Prisoner’s

dilemma Public goods game Volunteer’s dilemma

Fair strategies π−A = πA Always exist Always exist Always exist

Extortionate

strategies

π−A ≤ πA Always exist In large groups, single players cannot be

arbitrarily extortionate, but sufficiently large

ZD alliances can be arbitrarily extortionate

Even large ZD alliances cannot be

arbitrarily extortionate

Generous

strategies

π−A ≥ πA Always exist In large groups, single players cannot be

arbitrarily generous, but sufficiently large ZD

alliances can be arbitrarily generous

Do not ensure that own payoff is

below average

Equalizers π−A = l Always exist May not be feasible for single players, but is

always feasible for sufficiently large ZD alliances

Only feasible if size of ZD alliance is

nA
=n−1, can only enforce l=b− c

Analogously to the case of individual players, ZD alliances are fair when they set sA = 1; they are extortionate when l=b0 and 0< sA < 1; they are generous

for l= an−1 and 0< sA <1; and they are equalizers when sA = 0. For each of the three considered social dilemmas, we explore whether a given ZD strategy is

feasible by examining the respective conditions in Eq. 13. In the repeated prisoner’s dilemma, single players can exert all strategic behaviors (23, 28, 29). Other

social dilemmas either require players to form alliances to gain sufficient control (as in the public goods game), or they only allow for limited forms of control

(as in the volunteer’s dilemma). These results hold both for strategy alliances and for synchronized alliances.
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SI Text

In the following, we show how the mathematical framework introduced by Press and Dyson (1) and Akin (2) can be extended to explore
cooperation and control in multiplayer social dilemmas. We begin by defining the setup of repeated social dilemmas, and then we discuss the
existence and the properties of zero-determinant strategies. In particular, we study ZD strategies that allow a player to differentiate between
the actions of different coplayers. We also identify strategies that give rise to stable cooperation. To this end, we focus on two strategy classes:
ZD strategies and pure memory-one strategies. Then, we investigate how individuals can extend their strategic options by coordinating their
behaviors with others, and we apply our results to two examples of multiplayer dilemmas: the public goods game and the volunteer’s di-
lemma. The appendix contains the proofs for our propositions.

Setup of the Model: Repeated Multiplayer Dilemmas. We consider repeated social dilemmas between n players (as illustrated in Fig. 1). In
each round, players may either cooperate (C) or defect (D), and the players’ payoffs for each round depend on their own action and on the
number of cooperators among the other group members. Specifically, in a group with j other cooperators, a cooperator receives the payoff
aj, whereas a defector obtains bj. To qualify as a social dilemma, we assume that one-shot payoffs satisfy the following three conditions (3):

i) Independent of the own action, players prefer their coplayers to be cooperative

aj+1 ≥ aj and bj+1 ≥ bj for  all j  with 0≤ j< n− 1: [S1]

ii) Within each mixed group, defectors strictly outperform cooperators

bj+1 > aj for all   j  with  0≤ j< n− 1: [S2]

iii) Mutual cooperation is preferred over mutal defection

an−1 > b0: [S3]

As particular examples of such social dilemmas, we discuss the linear public goods game (4) and the volunteer’s dilemma (5) later.
We will assume here that the social dilemma is repeated infinitely often. This assumption is merely made for simplicity of the

argument; similar results can be obtained for finitely many rounds (6). In repeated games, a player’s strategy needs to specify how to act
in given round, depending on the outcomes of the previous rounds. Given the strategies of all group members, let us denote player i’s
expected payoff in round t as πiðtÞ. The payoffs for the repeated game are defined as the average payoff per round

πi = lim
T→∞

1

T

X

T

t=1

πiðtÞ: [S4]

In the following, we will assume that these limits exist. This assumption holds, for example, when players only base their decisions on
a finite (but arbitrarily large) number of past rounds.

Zero-Determinant Strategies for Multiplayer Dilemmas.

Memory-one strategies and Akin’s lemma. Although in general, strategies for repeated games can be arbitrarily complicated, we showed that
players can achieve a remarkable control over the possible payoff relations by referring to the outcome of the last round only. In particular, we
focused on players who only consider their own move in the previous round and the number of cooperators in the previous round (this is
a consequence of our assumption that the game is symmetric, such that payoffs do not depend onwho of the coplayers cooperated, but only on
howmany). Such strategies are particularly relevant when players can only observe the outcome of the game, but not the coplayers’ individual
actions. In the context of alliances, however, it is useful to consider a slightly more general strategy set, which allows players to distinguish
between different coplayers. In this section, we will therefore develop a more general theory of ZD strategies.
To this end, let us denote player i’s action in a given round as Si ∈ fC;Dg, and let σ = ðS1; . . . ; SnÞ∈ fC;Dgn denote the overall

outcome of that round. A memory-one strategy is a rule that tells a player what to do in the next round, given the outcome of the
previous round. Formally, such memory-one strategies correspond to a map that takes the outcome of the previous round σ as input
and that returns the cooperation probability pσ for the next round, p= ðpσÞσ∈fC;Dgn . For example, player i’s strategy Repeat, which
simply reiterates the own move from the previous round, takes the form pRep with

p
Rep
ðS1;...;SnÞ

=

�

1 if Si =C
0 if Si =D

: [S5]

Additionally a memory-one strategy also needs to specify a cooperation probability for the first round of the game. Because the outcome
of infinitely repeated games is often independent of the first round, the initial cooperation probability is typically neglected (1, 2, 7–12).
In the following, we will therefore only specify a player’s initial cooperation probability when necessary.
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If all members of the group use memory strategies, the calculation of payoffs according to Eq. S4 becomes particularly simple. In that
case, the repeated game can be described as a Markov chain, as the outcome in the next round only depends on the outcome of the
previous round (13–15). Although the assumption of memory-one strategies often simplifies calculations, we will show below that the
properties of ZD strategies hold irrespective of the strategies of the other group members (in particular, ZD strategists do not require
their coplayers to apply memory-one strategies).
For a game between n players with arbitrary but fixed strategies, let vσðtÞ be the probability that the outcome of the tth round is σ and

let vðtÞ= ½vσðtÞ�σ∈fC;Dgn be the vector of these probabilities. For example, for pairwise games vðtÞ becomes ½vCCðtÞ; vCDðtÞ; vDCðtÞ; vDDðtÞ�.
A limit distribution v is a limit point for t→∞ of the sequence ½vð1Þ+ . . . vðtÞ�=t. The entries of vσ of such a limit distribution cor-
respond to the fraction of rounds in which the group members find themselves in state σ ∈ fC;Dgn over the course of the game. If one
of the players applies a memory-one strategy p, Akin’s lemma again guarantees that there is a powerful relationship between p and v

(which can be shown with literally the same proof as in the main text).

Lemma (Akin’s Lemma). Suppose the focal player applies an arbitrary memory-one strategy p. Then, for any limiting distribution v (irrespective
of the outcome of the initial round), we have

�

p− pRep
�

· v= 0; [S6]

where the product refers to the usual scalar product, p · v=
P

σ∈fC;Dgnpσvσ .

We note that Akin’s lemma makes no assumptions on the payoff structure of the game (in particular it also applies to games
that do not have the form of a social dilemma). Moreover, there are no restrictions on the strategies applied by the remaining
n− 1 group members.
Zero-determinant strategies.To define zero-determinant strategies, let us first introduce some further notation. For a given round outcome
σ ∈ fC;Dgn, let jσj denote the total number of cooperators (i.e., jσj equals to the number of Cs in σ). Then we can write player i’s
payoff giσ for that round as

giðS1 ;...;SnÞ =

�

ajσj−1 if Si =C

bjσj if Si =D:
[S7]

Let gi = ðgiσÞσ∈fC;Dgn be the corresponding payoff vector. Using this notation, we can write player i’s payoff in round t as πiðtÞ = gi · vðtÞ,
and i’s expected payoff for the repeated social dilemma according to Eq. S4 becomes πi = gi · v: Finally, let 1 = ð1Þσ∈fC;Dgn denote the
vector with all entries being equal to one. By definition of v, it follows that 1 · v= 1. We can now introduce ZD strategies as follows.

Theorem (Press and Dyson). Let α, βj, and γ be parameters such that
P

j≠iβj ≠ 0. If player i applies a memory-one strategy of the form

p = pRep + αgi +
X

n

j≠i

βjg
j
+ γ1; [S8]

then, irrespective of the strategies of the remaining n− 1 group members, payoffs obey the equation

απ i
+

X

j≠i

βjπ
j
+ γ = 0: [S9]

We refer to strategies of the form S8 as zero-determinant strategies or ZD strategies.
Proof: Follows immediately from Akin’s lemma, because

0 =

�

p− pRep
�

· v=

 

αg i
+

X

n

j≠i

βjg
j
+ γ1

!

· v = απi +
X

j≠i

βjπ
j
+ γ: [S10]

By using ZD strategies, a player can thus enforce a linear payoff relation between his own payoff and the payoffs of the coplayers.
Moreover, by appropriately choosing the parameters α, βj, and γ, the player has direct control on the form of this payoff relation.
For our purpose, it will be convenient to use a slightly different representation of ZD strategies. For a player i who applies a ZD

strategy, let us consider the following parameter transformation:

l=
−γ

α+
P

k≠iβk
; s=

−α
P

k≠iβk
; wj≠i =

βj
P

k≠iβk
; wi = 0; ϕ=−

X

k≠i

βk: [S11]

Using these new parameters, ZD strategies take the form

p= pRep +ϕ

"

sgi −
X

j≠i

wjg
j
+ ð1− sÞl1

#

; [S12]
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subject to the constraints ϕ≠ 0, wi = 0, and
Pn

j=1wj = 1, which directly arise from the definitions in Eq. S11. When player i applies such
a ZD strategy, the enforced payoff relation according to Eq. S9 becomes

π−i = sπi + ð1− sÞl; [S13]

where π−i =
Pn

j=1wjπ
j is the weighted average payoff of the coplayers. We refer to l as the baseline payoff of the ZD strategy, to s as the

slope, and to w= ðwjÞ as the strategy’s weights. The parameter ϕ does not have a direct effect on Eq. S13; however, the magnitude of ϕ
determines how fast payoffs converge to the enforced payoff relation as the game proceeds (6).

Examples (the impact of different weights):

i) Equal weight on all coplayers. Suppose player i applies a ZD strategy with weights wj = 1=ðn− 1Þ for all j≠ i. According to Eq. S12,
the entries of such a ZD strategy have the form

pσ =

8

>

>

<

>

>

:

1+ϕ

�

ð1− sÞ
�

l− ajσj−1
�

−
n− jσj

n− 1

�

bjσj − ajσj−1
�

�

if   Si =C

ϕ

�

ð1− sÞ
�

l− bjσj
�

+
jσj

n− 1

�

bjσj − ajσj−1
�

�

if   Si =D:

[S14]

The cooperation probabilities of player i thus only depend on the player’s own action Si in the previous round and on the number of
cooperators jσj. That is, the ZD strategies that we discussed in the main text are exactly those ZD strategies that use the same weight for
each of their coplayers. According to Eq. S13, such strategies enforce π−i = sπi + ð1− sÞl, with π−i being the arithmetic mean of all coplayers’
payoffs π−i =

P

j≠iπ
j=ðn− 1Þ. In Fig. S1, we illustrate this relationship for two different social dilemmas (the public goods game and the

volunteer’s dilemma) and for two different ZD strategies (a generous and an extortionate ZD strategy).

ii) Full weight on one coplayer. Let us now suppose instead that player i chooses w such that all entries are zero except for wj = 1 for
some j≠ i. It follows that

pσ =

8

>

>

<

>

>

:

1+ϕð1− sÞ
�

l− ajσj−1
�

if   Si = Sj =C
1+ϕ

�

sajσj−1 − bjσj + ð1− sÞl
�

if   Si =C; Sj =D

ϕ
�

sbjσj − ajσj−1 + ð1− sÞl
�

if   Si =D; Sj =C

ϕð1− sÞ
�

l− bjσj
�

if   Si = Sj =D:

[S15]

That is, player i’s reaction only depends on the number of cooperators, the own move, and on player j’s move. The enforced payoff
relation S13 becomes πj = sπi + ð1− sÞl.
A player cannot enforce arbitrary payoff relations S13 because the parameters l, s, w, and ϕ need to be set such that the resulting

cooperation probabilities according to Eq. S12 are in the unit interval. We thus say that a payoff relation ðl; s;wÞ is enforceable if there
is a ϕ≠ 0 such that the resulting ZD strategy p satisfies pσ ∈ ½0; 1� for all possible outcomes σ ∈ fC;Dgn. The following gives some
necessary conditions for enforceable payoff relations.

Proposition 1 (Necessary Conditions for Enforceable Payoff Relations). Any enforceable payoff relation ðl; s;wÞ satisfies − 1
n− 1≤ s≤ 1, and if s< 1

then b0 ≤ l≤ an−1. Moreover, the parameter ϕ≠ 0 needs to be chosen such that ϕ> 0.
In addition to these necessary conditions, one can also give a characterization of all possible payoff relations.

Proposition 2 (Enforceable Payoff Relations). Consider a payoff relation ðl; s;wÞ for player i such that wj ≥ 0 for all j. Let ŵj denote the sum of
the j smallest entries of w (excluding the entry wi), and let ŵ0 = 0. Then ðl; s;wÞ is enforceable for a given social dilemma if and only if either
s= 1 or

max
0≤j≤n−1

�

bj −
ŵj

�

bj − aj−1
�

1− s

	

≤ l≤ min
0≤j≤n−1

�

aj +
ŵn−j−1

�

bj+1 − aj
�

1− s

	

: [S16]

Remark (some observations on enforceable payoff relations):

i) A direct consequence of Proposition 2 is that ZD strategies exist for all social dilemmas and for all weights w with wj ≥ 0 (one only
needs to set s= 1). Moreover, if all weights are positive, i.e., wj > 0 for all j≠ i, it also follows that any baseline payoff between
b0 ≤ l≤ an−1 is enforceable for some s< 1 (because bj > aj−1 for all j; one only needs to choose an s that is sufficiently close to one).

ii) For a given slope and given weights, we also note that if the baseline payoffs l1 and l2 are enforceable, then so is any baseline payoff
l between l1 and l2.

iii) In the special case of equal weights on all coplayers, wj = 1=ðn− 1Þ for all j, the sum of the j smallest entries of w is simply given by
ŵj = j=ðn− 1Þ. In that case, a payoff relation is enforceable if and only if either s= 1 or

max
0≤j≤n−1

�

bj −
j

n− 1

bj − aj−1

1− s

	

≤ l≤ min
0≤j≤n−1

�

aj +
n− j− 1

n− 1

bj+1 − aj

1− s

	

: [S17]

Fig. S2 gives an illustration of the enforceable payoff relations, again for the two examples of a public goods game and a volunteer’s
dilemma. In particular, in both examples the space of enforceable payoff relations shrinks with group size. More generally, if the
payoff advantage of a defector bj+1 − aj does not increase with group size, then Proposition 2 implies that larger group sizes n make it
more difficult to enforce specific payoff relations.
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iv) In the special case of full weight on one coplayer, i.e., wk = 1 for some k≠ i and all other entries of w are zero, the sum of the j
smallest entries is either ŵj = 0 (if j< n− 1) or ŵj = 1 (if j= n− 1). Because bj+1 ≥ bj and aj+1 ≥ aj, a payoff relation is enforceable if
either s= 1 or

max

�

bn−2;
an−2 − sbn−1

1− s

	

≤ l≤min

�

b1 − sa0

1− s
; a1

	

: [S18]

For games in which bn−2 > a1, condition S18 cannot be satisfied. In particular, the condition cannot be satisfied for social dilemmas
with group size n> 3 (because for such social dilemmas bn−2 > a1 follows from S1 and S2). Thus, in large groups, the only feasible
ZD strategies are those with s= 1, i.e., the only payoff relationship that player i can enforce between his own payoff and player k’s
payoff is the fair payoff relationship, πk = πi.

v) A comparison of Eqs. S17 and S18 thus shows that the set of enforceable payoff relations is larger if player i uses the same weight
for all coplayers. More generally, if a payoff relation ðl; s;wÞ is enforceable for some weight vector w, then it is also enforceable for
the weight vector that puts equal weight on all coplayers (this follows from Proposition 2 because ŵj becomes largest when all
coplayers have the same weight).

Nash Equilibria of Repeated Multiplayer Dilemmas.Various Folk theorems have shown how repetition can be used to sustain cooperation in
social dilemmas (16, 17). To prove these Folk theorems, one typically constructs specific strategies that give rise to given payoff
combinations ðπ1; . . . ; πnÞ and shows then that these strategies are indeed an equilibrium of the repeated game. Herein, we ask a somewhat
different question: within a certain strategy class, what are all Nash equilibria? We respond to this question for two different strategy classes,
the class of ZD strategies, and the class of pure memory-one strategies. The equilibria among these two strategy classes will prove to be stable
against any mutant strategy (i.e., we do not need to assume that mutants are restricted to ZD strategies or memory-one strategies).
To simplify the analysis, we will focus on symmetric memory-one strategies for which the cooperation probability only depends on the

own move in the previous round and on the number of cooperators in the previous round (but not on who of the coplayers cooperated).
In that case, each possible outcome σ can be identified with a pair ðS; jÞ, where S∈ fC;Dg is the player’s own move and j is the number
of cooperators among the other n− 1 group members. Then we can represent memory-one strategies as vectors of the form p= ðpS;jÞ.
Using an analogous notation as in the previous section, v= ðvS;jÞ corresponds to the frequency of observing each of the states ðS; jÞ over
the course of the game, gi = ðgiS;jÞ corresponds to player i’s payoffs, and g−i = ðg−iS;jÞ corresponds to the average payoffs of i’s coplayers
(using the arithmetic mean g−i = 1

n− 1

P

j≠ig
j). Because symmetric memory-one strategies are a subset of all memory-one strategies, the

previous results (in particular Akin’s lemma and the Press and Dyson theorem) naturally carry over.
Nash equilibria among ZD strategies.Consider a group in which all players apply the ZD strategy p with parameters l, s, ϕ, and wj = 1=ðn− 1Þ
for all j≠ i, and let us suppose the nth player considers deviating. We will refer to the first n− 1 players as the residents and to the nth
player as the mutant, and we denote a resident’s payoff by π and the mutant’s payoff by π̂. Because residents apply a ZD strategy, Eq. S13
implies that each of them enforces the relationship

n− 2

n− 1
π+

1

n− 1
π̂ = sπ + ð1− sÞl; [S19]

which can be rewritten as

π̂ = sRπ +
�

1− sR
�

l; [S20]

with

sR = sðn− 1Þ− ðn− 2Þ: [S21]

That is, the n− 1 residents collectively enforce a linear relationship between their own payoff π and the payoff of the mutant π̂, with the
same baseline payoff l and with slope sR. By using the same strategy as the residents, the mutant yields the payoff π̂ = π. For sR < 1, Eq. S20
then implies that π̂ = π = l. For sR = s= 1, the value of l is a free parameter that does not have an effect on the entries of the ZD strategy; to
be consistent with the case s< 1, we define l to be the payoff that the strategy yields if applied by all group members (this payoff depends on
the strategy’s cooperation probability in the initial round). Thus, by using the residents’ strategy the mutant yields the payoff l.
For p to be a Nash equilibrium, a minimum requirement is that the mutant must not have an incentive to switch to a different ZD

strategy p̂, with parameters l̂ and − 1
n− 1< ŝ< 1. Such a mutant would enforce the payoff relation

π = ŝπ̂ + ð1− ŝÞ̂l: [S22]

Solving the two linear equations S20 and S22 for the mutant’s payoff yields

π̂ =
l
�

1− sR
�

+ l̂sRð1− ŝÞ

1− ŝsR
: [S23]

The mutant has no incentive to deviate when π̂ ≤ l, that is when

π̂ − l =




l̂− l
�

sRð1− ŝÞ

1− ŝsR
≤ 0: [S24]
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Because − 1
n− 1≤ s≤ 1 (by Proposition 1) and because − 1

n− 1< ŝ< 1 (by assumption), the denominator of Eq. S24 is positive. We can
therefore distinguish three cases.

i) sR = 0. In that case π̂ − l= 0, and player n cannot improve his payoff by deviating.
ii) sR > 0. In that case π̂ − l≤ 0 if and only if l̂≤ l. To prevent the mutant from deviating, the residents thus need to apply a strategy

with maximum possible baseline payoff, l= an−1.
iii) sR < 0. Then π̂ − l≤ 0 if and only if l̂− l≥ 0. To prevent the mutant from deviating, the residents’ ZD strategy needs to set l to the

minimum value l= b0.

This result also holds if mutants are not restricted to ZD strategies.

Proposition 3 (Nash Equilibria Among ZD Strategies). Consider a social dilemma in which mutual cooperation is the best outcome for the group,
whereas mutual defection is the worst possible outcome

b0 ≤ min
0≤ j≤ n

jaj−1 + ðn− jÞbj
n

≤ max
0≤ j≤ n

jaj−1 + ðn− jÞbj
n

≤ an−1: [S25]

Let p be a ZD strategy with parameters l, s, and ϕ and let sR = ðn− 1Þ s− ðn− 2Þ. Then p is a Nash equilibrium if and only if one of the
following three cases holds:

sR = 0 and b0 ≤ l≤ an−1; sR > 0 and l= an−1; and sR < 0 and l= b0:

Remark (some observations for stable ZD strategies):

i) The three conditions in Proposition 3 do not depend on ϕ.Whether a ZD strategy is stable only depends on the payoff relation that
it enforces, but not on the exact strategy that gives rise to this payoff relation.

ii) The three conditions do not directly depend on the sign of s, but on the sign of sR = ðn− 1Þs− ðn− 2Þ. Whether a given ZD strategy
is stable thus depends on the group size.

iii) The second condition is of particular interest, because it states that stable mutual cooperation can be achieved by ZD strategies
with l= an−1 and s> ðn− 2Þ=ðn− 1Þ. For pairwise games these are exactly the generous ZD strategies with l= an−1 and s> 0 (2, 10).
As the group size increases, generous strategies need to approach the fair strategies (with s= 1) to allow for stable cooperation.

Corollary 1 (Convexity of the Set of Nash Equilibria). Consider a social dilemma in which mutual cooperation is the best outcome for the group.
Suppose p′ and p″ are two ZD strategies that both give rise to stable cooperation [i.e., l′= l″= an−1 and s′≥ ðn− 2Þ=ðn− 1Þ,
s″≥ ðn− 2Þ=ðn− 1Þ]. Then any linear combination p= λp′+ ð1− λÞp″ with 0≤ λ≤ 1 is also a ZD strategy that gives rise to stable cooperation.

Proof: A direct computation shows that p can be written as a ZD strategy with parameters l= an−1, ϕ= λϕ′+ ð1− λÞϕ″> 0, and
s= ½λs′ϕ′+ ð1− λÞs″ϕ″�=½λϕ′+ ð1− λÞϕ″�≥ ðn− 2Þ=ðn− 1Þ.
A similar result can also be shown for ZD strategies that lead to mutual defection.

Nash equilibria among pure memory-one strategies.As another application of Akin’s lemma, we will show in the following which pure memory-
one strategies allow for stable cooperation in multiplayer social dilemmas. To this end, let us again consider a group in which the first n− 1
players apply some pure memory-one strategy p= ðpS;jÞ and in which the nth player considers deviating. Let v denote a limit distribution
from the perspective of the n− 1 resident players and let v̂ be the corresponding limit distribution from the perspective of the mutant
player. The following observation will be useful:

Lemma 1 (Relationship Between Limit Distributions). If the residents apply a pure memory-one strategy, pS;j ∈ f0; 1g for all ðS; jÞ, the entries of
v satisfy

vC;j = 0 for all j< n− 2
vD;j = 0 for all j> 1:

[S26]

Moreover, the limit distributions v and v̂ are related by

v̂C;n−1 = vC;n−1; v̂C;0 = vD;1
v̂D;n−1 = vC;n−2; v̂D;0 = vD;0;

[S27]

and v̂S;j = 0 for all other states ðS; jÞ.
Proof:As all residents use the same pure strategy, they play the same action in any given round. Thus, if one of the residents cooperates,

then there are at least n− 2 other cooperators, and therefore the probability to end up in a state with less than n− 2 other cooperators
is zero, vC;j = 0 for j< n− 2. The same argument shows that vD;j = 0 for j> 1. Finally, for Eq. S27, we note that the mutant is in the state
ðC; n− 1Þ if and only if each of the residents is in the state ðC; n− 1Þ. Similarly, the mutant is in the states ðC; 0Þ, ðD; n− 1Þ, and ðD; 0Þ if
and only if the residents are in the state ðD; 1Þ, ðC; n− 2Þ, and ðD; 0Þ, respectively.

Proposition 4 (Pure Memory-One Strategies That Give Rise to Stable Cooperation). Consider a social dilemma in which there is an incentive to
deviate from mutual cooperation, bn−1 > an−1. Let p be a pure memory-one strategy that cooperates in the first round and that sticks to
cooperation as long as all other players do so (i.e., pC;n−1 = 1). Then p is a Nash equilibrium if and only if the entries of p satisfy the three
conditions
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pC;n−2 = 0 [S28a]

pD;1 ≤
an−1 − a0

bn−1 − an−1
[S28b]

pD;0 ≤
an−1 − b0

bn−1 − an−1
: [S28c]

Remark (some remarks on Proposition 4):

i) The full proof of Proposition 4 is given in the appendix; the step (⇒) follows from a straightforward computation of payoffs for two
possible mutant strategies. The step (⇐) requires a more sophisticated argument; it is exactly in this second step where Akin’s
lemma comes into play.

ii) According to Proposition 4, the stability of a cooperative and pure memory-one strategy p is solely determined by the four entries
pC;n−1 = 1, pC;n−2 = 0, pD;1, and pD;0. This observation is a consequence of Lemma 1, which allowed us to neglect all other entries of
p. For pairwise games, Lemma 1 is not required, and thus pairwise games allow more general versions of Proposition 4, which are
then also valid for mixed memory-one strategies (2).

Examples (for stable memory-one strategies):

i) The proofs of the various Folk theorems are often based on trigger strategies, which relentlessly play D after any deviation from
the equilibrium path (16). An example of such a strategy is Grim, for which pC;n−1 = 1 and pS;j = 0 for all other states ðS; jÞ. Because
Grim satisfies the three conditions in Eq. S28, Grim is indeed a Nash equilibrium for all multiplayer dilemmas.

ii) In their analysis of multiplayer dilemmas, refs. 18 and 19 consider the performance of generalized versions of Tit-for-Tat. These
TFTk strategies cooperate if at least k other group members have cooperated in the previous round, i.e., pS;j = 1 if and only if j≥ k.
As the conditions S28 are only satisfied for k= n− 1, it follows that TFTn−1 is the only Nash equilibrium among these generalized
versions of Tit-for-Tat.

iii) Unfortunately, neither Grim nor TFTn−1 is robust under the realistic assumption that players sometimes commit errors (15). For
stochastic simulations of variants of the public goods game, ref. 14 found that evolution may promote strategies that only
cooperate after mutual cooperation or after mutual defection, i.e., pC;n−1 = pD;0 = 1, and pS;j = 0 for all other states ðS; jÞ. We refer
to such strategies asWSLS. For the prisoner’s dilemma, this strategy corresponds to the Win-Stay Lose-Shift behavior described by
ref. 13. According to Eq. S28,WSLS is a Nash equilibrium if and only if the social dilemma satisfies ðbn−1 + b0Þ=2≤ an−1. In Fig. S3,
we illustrate the stability of these strategies when the social dilemma is a public goods game.

With a similar approach, we can also characterize the pure memory-one strategies that result in defection.

Proposition 5 (Pure Memory-One Strategies That Give Rise to Stable Defection). Consider a social dilemma with b0 ≥ a0 and bn−1 ≥ an−1. Let p
be a pure memory-one strategy that defects in the first round and that sticks to defection as long as all other players do so (i.e., pD;0 = 0). Then
p is a Nash equilibrium if and only if at least one of the following two conditions is satisfied

pD;1 = 0; and pC;n−1 = pC;n−2 = 0 and 
bn−1 + a0

2
≤ b0: [S29]

Remark (some remarks on Proposition 5):

i) As a special case of the above proposition, we conclude that AllD is an equilibrium for any social dilemma with bn−1 ≥ an−1 and
b0 ≥ a0.

ii) Conversely, mutual defection is never stable in social dilemmas with b0 < a0 (such as the volunteer’s dilemma). If b0 < a0, it follows
from condition S1 that b0 < aj for all j. As a consequence, an equilibrium in which everyone defects can always be invaded by
a player who switches to AllC.

Coordinated Play and Zero-Determinant Alliances. In the previous sections, we analyzed the amount of control that single individuals can
exert over their coplayers in repeated multiplayer dilemmas. Now we are interested in the question whether individuals can gain a higher
amount of control by coordinating their play with other group members. To this end, let us consider a set of nA < n players, who agree on
a joint strategy. We will refer to these players as the allies and to the remaining group members as the outsiders (as depicted in Fig. 1).
Depending on the degree of coordination, one can think of various forms of coordinated play. In the following we are going to
explore two modes of coordination:

i) Strategy alliances. Here, players only agree on the set of alliance members and on a common memory-one strategy that each ally
applies. During the actual game, there is no further communication taking place. Strategy alliances thus require a minimum amount
of coordination. This alliance type seems particularly relevant when allies do not have the possibility to communicate during the
game or when it is too costly to coordinate the allies’ actions in each round.

ii) Synchronized alliances. Alternatively, players may synchronize their decisions in each round such that all allies play the same action. In
effect, a synchronized alliance thus behaves like a new entity that has a higher leverage than each single player.

We will use the symbols πA to refer to the payoff of an ally and π−A to refer to the average payoff of the outsiders. In the following,
we investigate which linear payoff relationships ZD alliances can enforce and how their strategic strength depends on the mode of
coordination.
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Strategy alliances. To model strategy alliances, let us consider a group of nA allies, with 1≤ nA < n. We assume that the allies agree on
using the same ZD strategy p during the game. The parameters of this ZD strategy are given by l, s, and ϕ> 0. To allow allies to
differentiate between the actions of other allies and outsiders, the weights w= ðwjÞ of the ZD strategy may depend on a player’s
membership in the alliance. That is, if player i is a member of the alliance, then

wj≠i =

�

wA if   j  is  a member  of   the  alliance
w−A if   j  is  an  outsider;

[S30]

with wA ≥ 0 and w−A ≥ 0 such that the weights sum up to one, ðnA − 1ÞwA
+ ðn− nAÞw−A

= 1. Because all allies use the same strategy, it
follows that they all get the same payoff. Moreover, by Eq. S13, each of the allies enforces the payoff relationship

�

nA − 1
�

wAπA +

�

n− nA
�

w−Aπ−A = sπA + ð1− sÞl: [S31]

This payoff relationship can be rewritten as

π−A = sAπA +

�

1− sA
�

l; [S32]

such that

sA =
s−
�

nA − 1
�

wA

1− ðnA − 1ÞwA
; [S33]

is the effective slope of the strategy alliance. For wA
= 1=ðn− 1Þ, we recover the case of equal weights on all group members. For general

weights wA, we say that the payoff relationship S32 with parameters ðl; sAÞ is enforceable if we can find ϕ> 0 and 0≤wA
< 1=ðnA − 1Þ

such that all entries of the resulting ZD strategy according to Eq. S12 are in the unit interval. The following gives the corresponding
characterization.

Proposition 6 (Enforceable Payoff Relations for Strategy Alliances). A strategy alliance can enforce the payoff relation ðl; sAÞ if and only if either
sA = 1 or

sA < 1 and  max
0≤ j≤n−nA

�

bj −
j

n− nA
bj − aj−1

1− sA

	

≤ l≤ min
nA−1≤ j≤n−1

�

aj +
n− j− 1

n− nA
bj+1 − aj

1− sA

	

: [S34]

Moreover, if nA ≤ n=2, then −1≤−nA=ðn− nAÞ≤ sA ≤ 1.
Remark (on strategy alliances):

i) Earlier we saw that individuals typically lose their strategic power when groups become large. The above proposition shows
that players can regain control by forming alliances. In particular, the space of enforceable payoff relations ðl; sAÞ increases
with the size of the alliance nA. Larger alliances can therefore enforce more extreme payoff relationships, as illustrated in
Fig. S4.

ii) Somewhat surprisingly, it follows from the proof of Proposition 6 that the set of enforceable payoff relationships becomes maximal
when wA approaches 1=ðnA − 1Þ (and therefore w−A

→ 0). The most powerful alliances are those in which the outsiders’ actions
only have an infinitesimal influence.

iii) In contrast to the case of ZD strategies for individual players, we note that the effective slope sA for alliances does not need to be
bounded from below. As an example, let us assume the alliance has reached a size nA such that bn−nA ≤ anA−1 (which can only
happen when nA > n=2). Because bn−nA is an upper bound for the left side of Eq. S34 and anA−1 is a lower bound for the right side
of Eq. S34, it follows that any l with bn−nA ≤ l≤ anA−1 can be enforced, irrespective of the value of sA < 1.

iv) However, for alliances that have reached a size nA such that bn−nA < anA−1, the theory of ZD strategies becomes somewhat less
relevant: such alliances are better off by cooperating in each round (if all allies cooperate, their payoff is at least anA−1, whereas if
they all defect, their payoff is at most bn−nA). In other words, if nA individuals are able to make a binding agreement that they will
all play the same strategy, in a social dilemma with bn−nA < anA−1, then unconditional cooperation is a dominant strategy for the
alliance.

Synchronized alliances. In the previous scenario, we assumed that each of the allies decides independently whether to cooperate in a given
round. Let us now turn to a scenario in which allies meet after each round to decide which action they collectively play in the next
round. As a result, the alliance members act as a single entity, in a game with n− nA coplayers. To investigate such a scenario, let us
first adapt our notation correspondingly. For a given set of allies, let ðS; jÞ refer to the outcome in which all allies choose S∈ fC;Dg,
and in which j of the outsiders cooperate. As in previous sections, the limit distribution v= ðvS; jÞ corresponds to the fraction of
rounds the alliance finds herself in state ðS; jÞ over the course of the game. A memory-one strategy for a synchronized alliance is
a vector p= ðpS; jÞ—given the outcome ðS; jÞ of the previous round, the cooperation probability pS; j is used to determine whether all
allies cooperate or all allies defect in the next round. The synchronized alliance uses the strategy Repeat if cooperation probabilities
are given by

p
Rep
S; j =

�

1 if S=C

0 if S=D:
[S35]
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With literally the same proof as in the main text, one can verify Akin’s lemma for synchronized alliances: if the alliance applies
a memory-one strategy p then any corresponding limit distribution v satisfies ðp−pRepÞ · v= 0. Let us next write down the possible
payoffs in a given round. The payoff vector gA for the synchronized alliance has the entries

gAS;j =

�

anA+j−1 if S=C

bj if S=D;
[S36]

and the corresponding vector g−A that contains the average payoffs of the outsiders (using the arithmetic mean) takes the form

g−AS;j =

8

>

>

>

<

>

>

>

:

janA+j−1 +
�

n− nA − j
�

bnA+j

n− nA
if S=C

jaj−1 +
�

n− nA − j
�

bj

n− nA
if S=D:

[S37]

Using these payoff vectors, the payoff of each ally is given by πA = gA · v, and the mean payoff of the outsiders is π−A = g−A · v.
Analogously to the case of individual players, we can define ZD strategies for synchronized alliances as strategies of the form

p=pRep + αgA + βg−A + γ1; [S38]

with 1 being the memory-one strategy with all entries being one and with α, β, and γ being parameters of the ZD strategy (with β≠ 0).
Akin’s lemma then implies that such alliances enforce the relationship

απA + βπ−A + γ = 0: [S39]

Again, we stress the fact that this relationship holds irrespective of the strategies of the outsiders: even if outsiders notice that they are
facing a synchronized alliance, there is nothing they can do to prevent the above payoff relationship. As above, we use the parameter
transformation l=−γ=ðα+ βÞ, sA =−α=β, and ϕ=−β to write ZD strategies as follows:

p=pRep +ϕ
�

sAgA − g−A +

�

1− sA
�

l1
�

: [S40]

With these new parameters, the enforced payoff relationship according to Eq. S39 takes the usual form

π−A = sAπA +

�

1− sA
�

l: [S41]

Proposition 7 (Enforceable Payoff Relations for Synchronized Alliances). A synchronized alliance can enforce the payoff relation ðl; sAÞ if and
only if either sA = 1 or

sA ≠ 1 and  max
0≤ j≤n−nA

�

bj −
j

n− nA
bj − aj−1

1− sA

	

≤ l≤ min
nA−1≤ j≤n−1

�

aj +
n− j− 1

n− nA
bj+1 − aj

1− sA

	

: [S42]

Moreover, if nA ≤ n=2, then −1≤−nA=ðn− nAÞ≤ sA ≤ 1.
Remark (on synchronized alliances):

i) For not too large alliances with nA ≤ n=2, Propositions 6 and 7 imply exactly the same conditions on enforceable payoff relation-
ships. Thus, although strategy alliances require considerably less coordination between the allies, they have the same strategic
power as synchronized alliances.

ii) When nA > n=2, synchronized alliances may be able to enforce a strictly larger set of payoff relationships, because they are not
restricted to payoff relationships with sA ≤ 1. Whether relationships with sA > 1 are enforceable depends on the social dilemma.
When the social dilemma satisfies bn−nA < anA−1 then condition S42 can be satisfied for any bn−nA < l< anA−1 by choosing sA > 1
sufficiently large. Conversely, when bn−nA ≥ anA−1 then only slopes sA ≤ 1 are feasible (because for sA > 1 the left side of Eq. S42 is
strictly larger than bn−nA , whereas the right side is strictly lower than anA−1).

iii) Overall, we conclude that synchronized alliances are more powerful than strategy alliances if and only if the alliance has reached
a size nA such that bn−nA < anA−1. However, as noted for strategy alliances, the condition bn−nA < anA−1 transforms the social
dilemma into a game in which mutual cooperation is the best strategy for the alliance, such that the notion of ZD alliances
becomes less important.

Here we explored the strategic power of alliances, assuming that the allies agree on a joint ZD strategy. Given these results, one may ask
which ZD strategy the allies should agree on and which combinations of alliance strategies and outsider strategies form an equilibrium of the
game between allies and outsiders. This question is different from the questions explored in Nash Equilibria of Repeated Multiplayer

Dilemmas. There, we considered a homogeneous group of players, and we explored which strategies are stable if applied by all group
members. To explore equilibria for games with ZD alliances, one needs to distinguish between the strategies of the allies and the strategies
of the outsiders. This inherent asymmetry makes the equilibrium analysis more intricate, and we thus leave this question for future work.

Applications. In this section, we apply our theory to two particular examples of multiplayer social dilemmas: the public goods game and the
volunteer’s dilemma. For simplicity, we will focus here on symmetric strategies that only depend on the number of cooperators but not
on the cooperators’ identities (for ZD strategies this implies that we consider the case of equal weights on all coplayers).
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Public goods games. In a public goods game, each player of a group can cooperate by contributing an amount c> 0 to a public pool. Total
contributions are multiplied by a factor r with 1< r< n and evenly shared among all group members. Thus, payoffs are given by

aj =
ðj+ 1Þrc

n
− c; and bj =

jrc

n
: [S43]

Some of the properties of ZD strategies for public goods games have been recently described by (12), using an independent approach.
Here we complement and extend these results.

ZD strategies for public goods games. Plugging the payoff values S43 into representation S14 shows that ZD strategies have the form

pS;j =

8

>

>

>

<

>

>

>

:

1+ϕ

�

ð1− sÞ

�

l−
ðj+ 1Þrc

n
+ c



−
n− j− 1

n− 1
c

�

if   Si =C

ϕ

�

ð1− sÞ

�

l−
jrc

n



+
j

n− 1
c

�

if   Si =D:

[S44]

To explore which payoff relationships ðl; sÞ a single player can enforce, we use the characterization given in Eq. S17. Because the
payoffs of the public goods game are linear in the number of coplayers j, the corresponding conditions become particularly simple (as
only the boundary cases j= 0 and j= n− 1 need to be considered). We conclude that a single player can enforce a linear payoff relation
with parameters (l,s) if either s= 1 or

0≤ l≤ rc− c

ðn− 1Þrc

n
−

c

1− s
≤ l≤

ðr− nÞc

n
+

c

1− s
:

[S45]

Fig. S2 shows the set of all pairs ðl; sÞ that satisfy the above constraints for various group sizes n. We get the following conclusions for the
existence of extortionate strategies, generous strategies, and equalizers, depending on the size n of the group:

i) Extortionate strategies ðl= b0 = 0Þ. Let us ask which slopes s an extortionate player can enforce. The inequalities S45 then imply that
slopes s≥ ðr− 1Þ=r can always be enforced, irrespective of the group size n. However, slopes s< ðr− 1Þ=r are only enforceable if the
group size is sufficiently small

n≤
rð1− sÞ

rð1− sÞ− 1
: [S46]

We conclude that in large groups, n→∞, only extortionate strategies with s< ðr− 1Þ=r are feasible.

i) Generous strategies ðl= an−1 = rc− cÞ. Using the inequalities S45, one can show that generous players can enforce exactly the same
slopes as extortionate players.

ii) Equalizers ðs= 0Þ. For equalizers, the inequalities S45 imply there are three regimes: (a) if n≤ r=ðr− 1Þ, all baseline payoffs
0≤ l≤ rc− c can be enforced; (b) if r=ðr− 1Þ< n≤ 2r=ðr− 1Þ, only a limited subset of baseline payoffs 0< l< rc− c can be enforced;
and (c) if n> 2r=ðr− 1Þ, there are no equalizers.

In particular, we conclude that for a given multiplication factor r> 1 the set of equalizer strategies disappears as groups become large.
Strategy alliances in the public goods game. By Proposition 6, strategy alliances with nA members can enforce a linear relation with

parameters ðl; sAÞ if and only if either sA = 1 or if the two following inequalities hold:

0≤ l≤ rc− c
�

n− nA
�

rc

n
−

c

1− sA
≤ l≤

�

rnA − n
�

c

n
+

c

1− sA
:

[S47]

For the special cases of extortionate strategies, generous strategies, and equalizers, these inequalities allow us to derive the following
conclusions:

i) Extortionate strategies ðl= b0 = 0Þ. We can rewrite the inequalities S47 to obtain a critical threshold on the fraction of alliance
members that is needed to enforce a certain slope sA

nA

n
≥
r
�

1− sA
�

− 1

rð1− sAÞ
: [S48]

In particular, if an alliance wants to enforce arbitrarily high extortion factors χ→∞, then sA = 1=χ→ 0 and the critical threshold
becomes nA=n≥ ðr− 1Þ=r. This condition is always satisfied if nA = n− 1, implying that an alliance with n− 1 members can always
be arbitrarily extortionate toward the remaining group member.

ii) Generous strategies ðl= an−1 = rc− cÞ. The inequalities S47 lead to the same threshold for nA=n as in the case of extortionate
strategies, as given in Eq. S48.

iii) Equalizers ðs= 0Þ. For equalizers, the inequalities S47 lead to two critical thresholds; to be able to set the payoffs of the outsiders
to any value between 0≤ l≤ rc− c, the fraction of the allies needs to satisfy
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nA

n
≥
r− 1

r
: [S49]

However, to be able to set the payoffs of the outsiders to some value between 0≤ l≤ rc− c, the number of allies only needs to exceed

nA

n
≥
ðn− 2Þðr− 1Þ

n+ ðn− 2Þr
: [S50]

Nash equilibria for the public goods game. In the following, let us describe a few strategies that allow for stable cooperation in the public
goods game. According to Proposition 3, this can be achieved by using a ZD strategy with parameters l= an−1, ϕ> 0, and
ðn− 2Þ=ðn− 1Þ≤ s≤ 1. When we choose the boundary case s= 1 and ϕ= 1=c (which is the maximum value of ϕ, given the constraint
0≤ pS;j ≤ 1), the resulting ZD strategy according to Eq. S44 is proportional Tit-for-Tat with entries

pTFTS;j =
j

n− 1
; [S51]

which is independent of the player’s own move. This rule says that the player’s cooperation probability is given by the fraction of
cooperators among the coplayers in the previous round (additionally, we need to specify the cooperation probability for the first round,
which needs to be set to one).
Another boundary case is given by the choice s= ðn− 2Þ=ðn− 1Þ and ϕ= ½nðn− 1Þ�=fc½nðn− 2Þ+ r�g (which is again the maximum

value of ϕ). We refer to the resulting ZD strategy as generous Tit-for-Tat, which has entries

gTFTS;j =
j

n− 1
+
n− j− 1

n− 1

nðr− 1Þ

ðn− 2Þn+ r
: [S52]

Also gTFT is independent of the player’s own move, and it is generally more cooperative than pTFT, because gTFTS;j > pTFTS;j for all
j< n− 1.
A last boundary case is given by ϕ→ 0, in which case the resulting ZD strategy approaches the strategy Repeat, independent of the

choice of ðn− 2Þ=ðn− 1Þ≤ s≤ 1. Due to Corollary 1, we can conclude that any linear combination of these three strategies of the form

p = λ1 · pTFT + λ2 · gTFT + λ3 ·Repeat; [S53]

(with 0≤ λk ≤ 1, λ3 < 1, and λ1 + λ2 + λ3 = 1) is also a stable ZD strategy.
Among the pure memory-one strategies, Proposition 4 allows us to conclude that Grim and TFTn−1 are always Nash equilibria.

Moreover, the strategy WSLS is a Nash equilibrium if r≥ 2n=ðn+ 1Þ, as illustrated in Fig. S3.
Volunteer’s dilemma. In the volunteer’s dilemma, at least one of the players needs to cooperate and pay a cost c> 0 in order for all group
members to derive a benefit b> c> 0. Thus, the payoffs are given by

aj = b− c for  all  j; and bj = b if j≥ 1 and b0 = 0: [S54]

ZD strategies for the volunteer’s dilemma. According to Eq. S14, the ZD strategies with equal weight on all coplayers have the form

pS;j =

1+ϕ

�

ð1− sÞðl− b+ cÞ−
n− j− 1

n− 1
c

�

if   Si =C

ϕ

�

ð1− sÞðl− bÞ+
j

n− 1
c

�

if   Si =D; j≥ 1

ϕ ð1− sÞl if   Si =D; j= 0:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

[S55]

By condition S17, exactly those parameters l and s can be enforced for which either s= 1 or

max

�

0; b−
1

n− 1

c

1− s

	

≤ l≤ b− c: [S56]

This set of enforceable payoff relations is illustrated in Fig. S2B. In the special case of extortionate strategies ðl= 0Þ, condition S56
implies that a given slope s can only be enforced for sufficiently small groups

n≤ 1 +
c

bð1− sÞ
: [S57]

For equalizers ðs= 0Þ, the inequalities in Eq. S56 imply that a player can only determine the average payoff of the coplayers if n= 2,
and then the only enforceable baseline-payoff is l= b− c.
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Strategy alliances in the volunteer’s dilemma. For strategy alliances, the enforceable payoff relationships according to Eq. S34 become

max

�

0; b−
1

n− nA
c

1− sA

	

≤ l≤ b− c: [S58]

In particular, alliances that aim to enforce an extortionate relationship (with l= 0 and some sA ≥ 0) need to have a critical size

nA

n
≥ 1−

c

nbð1− sAÞ
: [S59]

It follows that alliances cannot be arbitrarily extortionate (setting sA = 0 on the right side implies that such alliances would need to
satisfy nA > n− 1). Instead, even a large alliance of size nA = n− 1 can only enforce slopes with sA ≥ ðb− cÞ=b:
The performance of ZD alliances against adapting outsiders. In addition to the static properties of ZD strategies, Press and Dyson (1) also
highlighted a remarkable dynamic property of ZD strategies: when a player with a fixed extortionate ZD strategy is matched with an
adapting opponent who is free to change his strategy over time, then the adapting opponent will move toward more cooperation. In the
following we present simulations suggesting that ZD alliances can have a similar effect.
To explore the performance of ZD alliances against adapting outsiders, we consider a group of n subjects. Let us assume that the

players f1; . . . ; nAg form a synchronized alliance with nA < n and that the allies commit themselves to act according to a ZD strategy
with parameters l, sA, and ϕ (similar results could also be obtained under the assumption that the allies form a strategy alliance instead
of a synchronized alliance). Moreover, let us assume that each of the outsiders applies some arbitrary memory-one strategy. To pa-
rametrize memory-one strategies, we note that the possible outcomes of a single round of the game can be written as
σ = ðSA; SnA+1; . . . ; SnÞ, where S

A ∈ fC;Dg is the joint action of the allies and where Sj ∈ fC;Dg is the action of each of the outsiders. As
a result, there are 2n−n

A
+1 possible outcomes σ. The memory-one strategies for the outsiders are thus modeled as vectors p= ðpσÞ with

2n−n
A
+1 entries pσ ∈ ½0; 1�.

We assume that the ZD alliance and the outsiders interact in a series of repeated games. The strategy of the ZD alliance is assumed to
be fixed, but outsiders are allowed to adapt their strategy from one repeated game to the next. Specifically, we assume that in each time
step, the group interacts in a repeated public goods game, resulting in the payoff πA for each of the allies and the payoffs πj for each
outsider j. Because all players use memory-one strategies, these payoffs can be calculated using a Markov-chain approach (14). In the
next time step, one of the outsiders is randomly picked to change his strategy from p to p′. The entries of the new strategy p′ are
independently drawn from a normal distribution around the old strategy (using an SD of 0.01). If the outsider’s payoff using the new
strategy is πj′, then we assume that the outsider keeps the new strategy with probability

ρ =
1

1+ exp
�

−ω
�

πj′− πj
��: [S60]

Otherwise, the outsider rejects the new strategy and continues to use the old strategy. The parameter ω> 0 corresponds to the strength
of selection. In the limit of weak selection ω→ 0, this yields ρ= 1=2, such that the choice between the new and the old strategy is fully
random. For the simulations, we consider the case of strong selection (we used ω= 100); in that case, the new strategy is likely to be
adopted if π′> π, and it is likely to be rejected when π′< π. This elementary process, in which outsiders are allowed to experiment with
new strategies, is repeated for τ time steps. For the initial population of outsiders, we assume that all outsiders start with unconditional
defection.
Fig. S5 reports the outcome of this evolutionary scenario for three different ZD strategies: a fair strategy, an extortionate strategy, and

a generous strategy. In all three scenarios, the outsiders become more cooperative over time; as a consequence, also the allies cooperate
more often, because all three ZD strategies are conditionally cooperative (Fig. S5, Upper). However, there are clear differences in the
final cooperation rates between the three scenarios. Extortionate alliances seem to be least successful to incentivize cooperation,
whereas fair alliances tend to achieve full cooperation in the long run. This success of fair strategies can be attributed to their higher
slope values: because fair strategies use s= 1, they perfectly recoup outsiders for increasing their cooperation rates. Both other strategy
classes use slopes with s< 1, which makes it less attractive for the outsiders to become more cooperative. As depicted in the lower
panels of Fig. S5, fair ZD alliances therefore also yield the highest payoffs by the end of the simulation.
Of course, the numerical simulations presented here only provide a snapshot of the full dynamical properties of ZD strategies (which

deserve a careful analysis on their own). The simulations serve as a proof of principle: as previously shown for the iterated prisoner’s
dilemma (1, 20), ZD strategies can be used to generate a positive group dynamics in multiplayer dilemmas.

Appendix: Proofs.

Proof of Proposition 1:By the definition of ZD strategies, the cooperation probabilities after mutual cooperation and mutual defection are
given by

pðC;...;CÞ = 1+ϕð1− sÞðl− an−1Þ
pðD;...;DÞ = ϕð1− sÞðl− b0Þ:

[S61]

As these two entries need to be in the unit interval, it follows that

ϕð1− sÞðl− an−1Þ≤ 0
0≤ϕð1− sÞðl− b0Þ:

[S62]
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Adding up these two inequalities implies ϕð1− sÞðb0 − an−1Þ≤ 0, and because of Eq. S3

ϕð1− sÞ≥ 0: [S63]

Analogously, let us consider outcomes σ in which all players but one cooperate (i.e., σ is a permutation of (C,. . .,C, D), in which case

pσ =

�

1+ϕ
�

san−2 −
�

1−wj

�

an−2 −wjbn−1 + ð1− sÞl
�

if   the  defector  is  a  coplayer  j≠ i

ϕ½sbn−1 − an−2 + ð1− sÞl� if   the  defector  is  player  i
[S64]

Because all these entries pσ need to be in the unit interval

ϕ
�

san−2 −
�

1−wj

�

an−2 −wjbn−1 + ð1− sÞl
�

≤ 0
0≤ϕ½sbn−1 − an−2 + ð1− sÞl�:

[S65]

Adding up these inequalities yields ϕðs+wjÞðbn−1 − an−2Þ≥ 0 for all j≠ i, and because of Eq. S2

ϕ
�

s+wj

�

≥ 0 for  all  j≠ i: [S66]

Combining the inequalities S63 and S66 then yields

ϕ
�

1+wj

�

≥ 0 for  all  j≠ i; [S67]

and because at least one of the wj is larger than zero (because all wj sum up to one), it follows that ϕ≥ 0. The restriction ϕ≠ 0 then
implies ϕ> 0. Due to the inequalities S63 and S66, we may also conclude that −minj≠iwj ≤ s≤ 1. Because minj≠iwi ≤ 1=ðn− 1Þ (again
because the wj sum up to one), it follows that −1=ðn− 1Þ≤ s≤ 1.
For s≠ 1, the inequalities S62 and S63 imply b0 ≤ l≤ an−1.
Proof of Proposition 2: For a given σ = ðS1; . . . ; SnÞ, the entries pσ of a ZD strategy according to Eq. S12 can be written as

pσ = pRepσ +ϕ

"

ð1− sÞ
�

l− giσ
�

+

X

j≠i

wj

�

giσ − g jσ
�

#

; [S68]

with pRepσ given by Eq. S5 and with giσ and gjσ given by Eq. S7. Let σC denote the set of i’s coplayers who cooperate in state σ, nd let σD

denote the corresponding set of coplayers who defect. Using this notation, the entry pσ is given by

pσ =

1+ϕ

"

ð1− sÞ
�

l− ajσj−1
�

−
X

j∈σD

wj

�

bjσj − ajσj−1
�

3

5 if   Si =C

ϕ

"

ð1− sÞ
�

l− bjσj
�

+

X

j∈σC

wj

�

bjσj − ajσj−1
�

3

5 if   Si =D:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

[S69]

Because ϕ> 0 can be chosen arbitrarily small, the condition pσ ∈ ½0; 1� is thus satisfied for all σ if and only if the following inequalities hold

ð1− sÞ
�

l− ajσj−1
�

−
X

j∈σD

wj

�

bjσj − ajσj−1
�

≤ 0 for  all  σ   with  Si =C

ð1− sÞ
�

l− bjσj
�

+

X

j∈σC

wj

�

bjσj − ajσj−1
�

≥ 0 for  all  σ   with  Si =D:
[S70]

If s= 1, these inequalities are independent of the parameter l, and they are satisfied for any social dilemma (because wj ≥ 0 for all j by
assumption and because bjσj > ajσj−1 by Eq. S2). For s< 1, we may divide the above inequalities by ð1− sÞ> 0, implying that Eq. S70 is
equivalent to

ajσj−1 +

P

j∈σDwj

�

bjσj − ajσj−1
�

1− s
≥ l for  all  σ   with  Si =C

bjσj −

P

j∈σCwj

�

bjσj − ajσj−1
�

1− s
≤ l for  all  σ   with  Si =D:

[S71]

The inequalities S71 in turn are satisfied if and only if

max
σjSi=D

(

bjσj −

P

j∈σCwj

�

bjσj − ajσj−1
�

1− s

)

≤ l≤ min
σjSi=C

(

ajσj−1 +

P

j∈σDwj

�

bjσj − ajσj−1
�

1− s

)

: [S72]

Because the terms ðbjσj − ajσj−1Þ=ð1− sÞ are positive, the respective maxima and minima are attained by choosing the weights wj as small
as possible. That is, for a given number of total cooperators jσj, the extrema are attained for those states σ for which

P

j∈σCwj and
P

j∈σDwj are minimal. This observation implies that condition S72 is equivalent to
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max
0≤ j≤ n−1

�

bj −
ŵj

�

bj − aj−1
�

1− s

	

≤ l≤ min
0≤ j≤ n−1

�

aj +
ŵn−j−1

�

bj+1 − aj
�

1− s

	

; [S73]

with ŵj being the sum of the j smallest entries in ðwjÞj≠i.
Proof of Proposition 3:We already know that for a ZD strategy to be a Nash equilibrium, one of the three conditions need to be fulfilled

(otherwise there would be a different ZD strategy that yields a higher payoff). Conversely, let us assume that one of the three conditions
of the proposition is fulfilled.

i) If sR = 0, then by Eq. S20, the mutant’s payoff is π̂ = l, irrespective of the mutant’s strategy. In particular, there is no incentive to deviate.
ii) Suppose sR > 0, l= an−1, and let us assume to the contrary that the zero-determinant strategy is not a Nash equilibrium. Then there

is a mutant strategy such that π̂ > an−1. Because the residents collectively enforce the relation π̂ = sRπ + ð1− sRÞan−1 and because
sR > 0, we can conclude π > an−1. However, then the average payoff of all group members exceeds an−1, contradicting the
assumption that an−1 is the maximum average payoff per round.

iii) Under the assumption that b0 is the minimum average payoff per round, the case sR < 0 and l= b0 can be treated analogously to
the previous case.

ProofofProposition4: (⇒) Because p is a Nash equilibrium, the payoff of any mutant strategy p̂ satisfies π̂ ≤ an−1. Let us first consider a mutant
who applies the strategy p̂=AllD, i.e., p̂S;j = 0 for all ðS; jÞ. Because the mutant never cooperates, v̂C;j = 0 for all j, and by Lemma 1 also v̂D;j = 0
for all j except j∈ f0; n− 1g. The values of v̂D;n−1 and v̂D;0 can be obtained by calculating the left eigenvectors of the transition matrix

ðD; n− 1Þ ðD; 0Þ

ðD; n− 1Þ pC;n−2 1− pC;n−2
ðD; 0Þ pD;0 1− pD;0

: [S74]

If we had pC;n−2 = 1, then the assumption that p players start with cooperation would imply v̂D;n−1 = 1, such that the payoff of AllD was
π̂= bn−1 > an−1. Because this contradicts the assumption that p is a Nash equilibrium, we conclude that pC;n−2 = 0.
A calculation of the left eigenvector of Eq. S74 with respect to the eigenvalue 1 then yields

�

v̂D;n−1
v̂D;0



=

2

4

pD;0

.


1+ pD;0

�

1
.


1+ pD;0

�

3

5: [S75]

As a result, the payoff of AllD is

π̂ = bn−1v̂D;n−1 + b0v̂D;0 =
bn−1 · pD;0 + b0

1+ pD;0
: [S76]

The requirement π̂ ≤ an−1 then implies the condition S28c.
As another special case of a possible mutant strategy, let us consider a mutant p̂ such that p̂C;n−1 = 0, and p̂S;j = 1 for all other states
ðS; jÞ. With a similar calculation as in the previous case, one can determine this mutant’s payoff as

π̂ = an−1v̂C;n−1 + bn−1v̂D;n−1 + a0v̂C;0 =
ðan−1 + bn−1Þ · pD;1 + a0

1+ 2pD;1
: [S77]

The requirement π̂ ≤ an−1 implies condition S28b.
(⇐) Suppose the n− 1 residents apply the pure memory-one strategy p. Due to Akin’s lemma

X

n−1

j=0




pC;j − 1
�

vC;j +
X

n−1

j=0

pD;jvD;j = 0; [S78]

which because of Lemma 1 and pC;n−1 = 1, pC;n−2 = 0 simplifies to

vC;n−2 = pD;1vD;1 + pD;0vD;0: [S79]

Then, irrespective of the mutant’s strategy, the payoff π̂ satisfies

π̂ − an−1 =
Xn−1

j=0

�

aj − an−1
�

v̂C;j +
�

bj − an−1
�

v̂D;j =
Lemma 1

ða0 − an−1Þv̂C;0 + ðbn−1 − an−1Þv̂D;n−1 + ðb0 − an−1Þv̂D;0

=
Lemma 1

ða0 − an−1ÞvD;1 + ðbn−1 − an−1ÞvC;n−2 + ðb0 − an−1ÞvD;0

=
Eq:½S79�

ða0 − an−1ÞvD;1 + ðbn−1 − an−1Þ



pD;1vD;1 + pD;0vD;0

�

+ ðb0 − an−1ÞvD;0

=

h

ðbn−1 − an−1ÞpD;1 − ðan−1 − a0Þ
i

· vD;1 +
h

ðbn−1 − an−1ÞpD;0 − ðan−1 − b0Þ
i

· vD;0 ≤
½S28b;c�

0;

that is, p is a Nash equilibrium.
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Proof of Proposition 5: The proof follows along the same lines as the proof of Proposition 4.
(⇒) Suppose p is a Nash equilibrium and assume that pD;1 ≠ 0 (because p is a pure strategy it follows that pD;1 = 1). We have to show

that these assumptions imply pC;n−1 = pC;n−2 = 0 and ðbn−1 + a0Þ=2≤ b0. To this end, let us first consider a mutant with strategy AllC,
such that p̂S;j = 1 for all ðS; jÞ. Because of Lemma 1, and because the mutant always cooperates, the only possible outcomes in a given
round (from the perspective of the mutant) are ðC; n− 1Þ and ðC; 0Þ. The transition matrix is given by

ðC; n− 1Þ ðC; 0Þ

ðC; n− 1Þ pC;n−1 1− pC;n−1
ðC; 0Þ 1 0

: [S80]

The limit distribution of this transition matrix is

�

v̂C;n−1
v̂C;0



=

0

B

B

B

@

1

2− pC;n−1

1− pC;n−1

2− pC;n−1

1

C

C

C

A

; [S81]

such that the payoff of AllC becomes

π̂ = an−1v̂C;n−1 + a0v̂C;0 =

an−1 +



1− pC;n−1

�

a0

2− pC;n−1
: [S82]

If we had pC;n−1 = 1, this payoff would equal to π̂ = an−1 > b0 = π, contradicting our assumption that p is a Nash equilibrium. Thus,
pC;n−1 = 0.
Let us now consider another mutant strategy p̂ with p̂D;0 = 1 and p̂S;j = 0 for all other states. Again by constructing the transition

matrix [with possible states ðC; n− 1Þ, ðC; 0Þ, ðD; n− 1Þ, and ðD; 0Þ], one can compute the payoff of this mutant as

π̂ =

bn−1 +
�

1− pC;n−2
�

ðb0 + a0Þ

3− 2pC;n−2
: [S83]

If p̂C;n−2 = 1, then π̂ = bn−1 > b0 = π, again contradicting the assumption that p is a Nash equilibrium. Therefore, p̂C;n−2 = 0, and the
mutant’s payoff becomes π̂= ðbn−1 + b0 + a0Þ=3. For p to be an equilibrium, this payoff needs to satisfy π̂≤ b0, which yields
ðbn−1 + a0Þ=2≤ b0.
(⇐) Let us first consider the case pD;1 = 0. Because the memory-one strategy also prescribes to defect in the first round and because

pD;0 = 0, it follows that all residents play defect throughout the game, irrespective of the strategy of the mutant. Thus, any mutant’s
payoff can be written as π̂= v̂D;0b0 + v̂C;0a0 ≤ b0 = π, showing that p is a Nash equilibrium.
Let us now consider the second case, pC;n−1 = pC;n−2 = 0. Without loss of generality, we can also set pD;1 = 1, and by assumption,

pD;0 = 0. Under these conditions, Akin’s lemma becomes

vD;1 = vC;n−1 + vC;n−2: [S84]

Then, irrespective of the strategy of the mutant, the mutant’s payoff satisfies

π̂ − b0 =
X

n−1

j=0

�

aj − b0
�

v̂C;j +
�

bj − b0
�

v̂D;j

=
Lemma 1

ðan−1 − b0Þv̂C;n−1 + ða0 − b0Þv̂C;0 + ðbn−1 − b0Þv̂D;n−1

=
Lemma  1

ðan−1 − b0ÞvC;n−1 + ða0 − b0ÞvD;1 + ðbn−1 − b0ÞvC;n−2

=
Eq: ½S84�

ðan−1 − b0ÞvC;n−1 + ða0 − b0Þ
�

vC;n−1 + vC;n−2
�

+ ðbn−1 − b0ÞvC;n−2

= ðan−1 + a0 − 2b0Þ · vC;n−1 + ðbn−1 + a0 − 2b0Þ · vC;n−2 ≤ 0;

with the last inequality being due to the fact that ðbn−1 + a0Þ=2≤ b0 and an−1 ≤ bn−1. Again, we conclude that p is a Nash equilibrium.
Proof of Proposition 6:Due to our construction, strategy alliances require each ally to apply a ZD strategy p with parameter l, s, and ϕ

and weights w. To enforce an effective slope sA, Eq. S33 implies that the parameter s needs to be chosen such that

s = sA +

�

nA − 1
�

wA
�

1− sA
�

: [S85]

For sA = 1, we get s= 1, and Proposition 2 guarantees that the payoff relationship is enforceable (independent of l and the weights wA).
Let us now assume that s< 1 (and therefore sA < 1). Because of Proposition 2, the alliance can enforce the payoff relationship ðl; sAÞ if

and only if we can find an appropriate weight vector w= ðwjÞ such that
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max
0≤ j≤n−1

�

bj −
ŵj

1− ðnA − 1ÞwA

bj − aj−1

1− sA

	

≤ l≤ min
0≤ j≤ n−1

�

aj +
ŵn−j−1

1− ðnA − 1ÞwA

bj+1 − aj

1− sA

	

: [S86]

As in Proposition 2, ŵj refers to the sum of the j smallest entries in w (excluding the entry corresponding to the focal player). Because w
only has the two possible entries wA and w−A, we can write ŵj as

ŵj =

8

>

>

<

>

>

:

jwA if wA ≤w−A;  j≤ nA − 1
�

nA − 1
�

wA
+

�

j− nA + 1
�

w−A if wA ≤w−A;  j> nA − 1

jw−A if wA
>w−A;  j≤ n− nA

�

j+ nA − n
�

wA
+

�

n− nA
�

w−A if wA
>w−A;  j> n− nA

[S87]

The constraint ðnA − 1ÞwA
+ ðn− nAÞw−A

= 1 implies w−A
= ½1− ðnA − 1ÞwA�=ðn− nAÞ. By plugging this into Eq. S87, we can calculate

the expression

ŵj

1− ðnA − 1ÞwA
=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

jwA

1− ðnA − 1ÞwA
if wA ≤

1

n− 1
;  j≤ nA − 1

1

1− ðnA − 1ÞwA
−
n− j− 1

n− nA
if wA ≤

1

n− 1
;  j> nA − 1

j

n− nA
if wA

>
1

n− 1
;  j≤ n− nA

1− ðn− j− 1ÞwA

1− ðnA − 1ÞwA
if wA

>
1

n− 1
;  j> n− nA:

[S88]

Due to condition S86, the space of enforceable payoff relations becomes maximal when we choose the weight wA such that
ŵj=½1− ðnA − 1ÞwA� becomes maximal. Eq. S88 suggests that ŵj=½1− ðnA − 1ÞwA� is monotonically increasing in wA. Thus, considering
the restriction 0≤wA

< 1=ðnA − 1Þ, the maximum is attained for wA
→ 1=ðnA − 1Þ, which also implies wA

> 1=ðn− 1Þ. From Eq. S88
we obtain

lim
wA→ 1=ðnA−1Þ

ŵj

1− ðnA − 1ÞwA
=

8

<

:

j

n− nA
if j≤ n− nA

∞ if j> n− nA:

[S89]

Thus, for wA sufficiently close to 1=ðnA − 1Þ, condition S86 is satisfied if and only if

max
0≤ j≤ n−nA

�

bj −
j

n− nA
bj − aj−1

1− sA

	

≤ l≤ min
nA−1≤ j≤ n−1

�

aj +
n− j− 1

n− nA
bj+1 − aj

1− sA

	

: [S90]

S90 coincides with condition S34. Moreover, if nA ≤ n=2, we can choose a j with nA − 1< j≤ n − nA such that Eq. S90 suggests

bj −
j

n− nA
bj − aj−1

1− sA
≤ l: [S91]

Similarly, using j − 1 in the right side of Eq. S90 leads to

l≤ aj−1 +
n− j

n− nA
bj − aj−1

1− sA
: [S92]

Summing up these two inequalities shows that sA ≥ − ½nA=ðn− nAÞ�.
Proof of Proposition 7: The proof follows the lines of Propositions 1 and 2. By its definition (Eq. S40), a ZD strategy for a synchronized

alliance has the form

pS;j =

8

>

>

<

>

>

:

1+ϕ

�

�

1− sA
��

l− anA+j−1
�

−
n− nA − j

n− nA

�

bnA+j − anA+j−1
�

�

if   S=C

ϕ

�

�

1− sA
��

l− bj
�

+
j

n− nA

�

bj − aj−1
�

�

if   S=D;

[S93]

for 0 ≤ j ≤ n− nA. The conditions pC;j ≤ 1 and pD;j ≥ 0 imply the following sign constraints

0≥ϕ

�

�

1− sA
��

l− anA+j−1
�

−
n− nA − j

n− nA

�

bnA+j − anA+j−1
�

�

[S94a]

Hilbe et al. www.pnas.org/cgi/content/short/1407887111 15 of 19

www.pnas.org/cgi/content/short/1407887111


0≤ϕ

�

�

1− sA
��

l− bj
�

+
j

n− nA

�

bj − aj−1
�

�

; [S94b]

for all 0 ≤ j ≤ n− nA. Setting j= n− nA in Eq. S94a yields

ϕ
�

1− sA
�

ðl− an−1Þ≤ 0; [S95]

and setting j= 0 in Eq. S94b yields

0≤ϕ
�

1− sA
�

ðl− b0Þ: [S96]

Adding up Eqs. S95 and S96 shows that

ϕ
�

1− sA
�

≥ 0: [S97]

For sA = 1, we can ensure that 0≤ pS;j ≤ 1 for all entries in Eq. S93 by choosing a ϕ> 0 that is sufficiently small. Let us therefore
assume sA ≠ 1. Because we also have ϕ≠ 0 by definition, condition S97 becomes ϕð1− sAÞ> 0. Dividing the sign constraints in Eq. S94
by ϕð1− sAÞ then implies

max
0≤ j≤ n−nA

�

bj −
j

n− nA
bj − aj−1

1− sA

	

≤ l≤ min
0≤ j≤ n−nA

�

anA+j−1 +
n− nA − j

n− nA
·

bnA+j − anA+j−1

1− sA

	

: [S98]

This condition in turn is equivalent to condition S42.
Conversely, suppose Eq. S42 is satisfied for some ðl; sAÞ with sA ≠ 1. It follows that the sign constraints S94 are satisfied for every

choice of ϕ subject to the condition ϕð1− sAÞ> 0, which implies that the entries pS;j in Eq. S93 satisfy pC;j ≤ 1 and pD;j ≥ 0 for all j.
By choosing ϕ sufficiently close to zero, we can also ensure that pC;j ≥ 0 and pD;j ≤ 1. Therefore, the payoff relationship ðl; sAÞ is
enforceable.
Finally, suppose nA ≤ n=2. Setting j= 0 in Eq. S94a yields

ϕ
��

1− sA
�

ðl− anA−1Þ− ðbnA − anA−1Þ
�

≤ 0; [S99]

and setting j= nA in Eq. S94b results in

0≤ϕ

�

�

1− sA
�

ðl− bnA Þ+
nA

n− nA
ðbnA − anA−1Þ

�

: [S100]

Adding up these two inequalities shows that

ϕ

�

sA +
nA

n− nA



≥ 0: [S101]

Combining Eqs. S97 and S101 gives ϕ> 0, which in turn implies −½nA=ðn− nAÞ�≤ sA ≤ 1.
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A Public Goods Game

Payoff of
focal player

Average payoff
of co−players

πi
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s
A

[0,0]
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Fig. S1. Illustration of ZD strategies in the case of equal weights, wj =1=ðn− 1Þ, for all j≠ i, and for (A) the linear public goods game and (B) the volunteer’s

dilemma. The blue-shaded area represents all feasible payoffs, with the x axis representing the payoff of player i and the y axis representing the mean payoff

of i’s coplayers. The dashed diagonal gives the payoff combinations for which πi = π−i . In both graphs, the strategy of player i is fixed to some ZD strategy,

whereas for the coplayers we sampled 104 random memory-one strategies. Red dots represent the resulting payoff combinations, and the gray line gives the

prediction according to Eq. S13. For both graphs, we considered an infinitely repeated game in a group of size n= 4. Parameters: (A) public goods game

[aj = ðj+ 1Þrc=n− c and bj = jrc=n] with r = 2:4 and c= 1. For the strategy of player i, we used a generous ZD strategy with parameters l= rc− c, s= 2=3, ϕ= 1=2.

(B) Volunteer’s dilemma (aj =b− c, bj>0 =b, and b0 = 0) with b= 1:5, c=1; player i applies an extortionate strategy with parameters l= 0, s= 9=10, ϕ= 1=2.

n = 3
n = 4
n = 5

n = 10

A Public Goods Game
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payoff

Slope

l

s
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0

1

n = 3

n = 4

n = 5

n = 10

B Volunteers Dilemma

Baseline
payoff

Slope

l

s

0 b−c
0

1

Fig. S2. Enforceable payoff relations in the case of equal weights on all coplayers for (A) the linear public goods game and (B) the volunteer’s dilemma. A pair

ðl,sÞ is enforceable for a given group size n if the point is within the respectively shaded area. The set of enforceable pairs for large n is a subset of the re-

spective set for smaller n, i.e., the set of enforceable pairs shrinks with increasing group size. Parameters: (A) linear public goods game with r = 2:4, c=1; (B)

volunteer’s dilemma with b= 1:5, c= 1.
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Fig. S3. Stable memory-one strategies for the linear public goods game. The figure illustrates for which parameter regions the strategies Grim, TFTk , and

WSLS are Nash equilibria, provided that the public goods game constitutes a social dilemma (i.e., 1< r <n). Grim and TFTn−1 are always Nash equilibria. TFTk for

k<n− 1 is never a Nash equilibrium. WSLS is a Nash equilibrium when ðbn−1 +b0Þ=2≤ an−1, which yields r ≥ 2n=ðn+ 1Þ. In particular, WSLS is always a Nash

equilibrium when r ≥ 2, irrespective of group size.
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Fig. S4. Strategic power of strategy alliances in the public goods game. Each colored area illustrates the set of enforceable payoff relations according to

Proposition 6 for different alliance sizes nA. The set of enforceable payoff relations for small nA is a subset of the respective set with larger nA. Consequently,

the larger the alliance, the more extreme payoff relations it can enforce. Parameters: linear public goods game with r = 2:4, c= 1, and group size n=10.
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Fig. S5. Performance of three different ZD alliances against adaptive outsiders. For each simulation, the strategy of the ZD alliance was fixed, whereas

outsiders were allowed to adapt their strategy as described in the text. (Upper) Average cooperation rate during each repeated game. (Lower) Resulting

payoffs for allies and outsiders. Each panel depicts the average of 20 simulations. All simulations were run for a public goods game with r = 3 and c= 1, in

a group of size n= 5 with nA
= 2 allies. For the strategies of the ZD alliances we used (A) an extortionate strategy with l= 0, s= 0:8, and ϕ= 1=2; (B) proportional

Tit-for-Tat with s=1 and ϕ= 1; and (C) a generous strategy with l= rc− c=2, s= 0:8, and ϕ= 1=2.
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