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Abstract

Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific

types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions

(such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates

that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in

the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of

DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to

this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting

proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious impli-

cations to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an

interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indi-

cating that further investigation may reveal new functions shared by them, and their cooperation in maintaining ge-

nome stability.
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Introduction

It has been suggested that every cell in our body suf-
fers tens of thousands of lesions per day (Lindahl and
Barnes, 2000; Tubbs and Nussenzweig, 2017), which if left
unrepaired, may lead to mutations, genome instability and
cancer. DNA damage can occur from exogenous sources
like ultraviolet (UV) light, ionizing radiation (IR), and
chemical exposure from pollutants in the air and water.
Genomic damage can also be produced from endogenous
processes such as replication errors or reactive oxygen spe-
cies (ROS) from mitochondria or inflammation. Since
DNA damage occurs continuously in all living systems, or-
ganisms have evolved efficient systems to ameliorate the
harmful effects of environmental genotoxicants. De-

pending on the type of lesion formed in the DNA, six major
repair pathways play a key role in maintaining genome sta-
bility, these include: direct reversal, base excision repair
(BER), nucleotide excision repair (NER), mismatch repair
(MMR), recombination with two major sub-pathways: ho-
mologous recombination (HR) and non-homologous end
joining (NHEJ), and interstrand cross-link (ICL) repair
which combines features of several pathways including
NER and recombination, and is controlled by a wide range
of proteins. There are also several dedicated translesion
DNA polymerases that allow the replication machinery to
bypass specific lesions, at the expense of lowered fidelity
(Goodman, 2002). Furthermore, key signaling pathways
are controlled by transcription factors like p53 and DNA
kinases including ATM, ATR and DNA-PK. Although
these pathways have been described to work independ-
ently, there are indications that in fact these may interact, in
a network for maintaining genome protection. This review
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emphasizes on the interplay between some of the proteins
involved in either NER or BER. As for other DNA repair
pathways, proteins that participate in NER and BER are
also subject to injury, mainly by oxidation, an effect that
has been little explored. However, this effect, initially de-
scribed as an effect of UVA on cells, may interfere on the
cells’ ability to process DNA damage, adding a new level of
complexity in the analysis of NER and BER interplay, as
discussed below.

NER consists of a group of proteins that participate in
the repair of lesions that cause significant helical distortion
in the DNA structure, such as those induced by UV light,
environmental mutagens like polycyclic aromatic hydro-
carbons (PAHs) and certain chemotherapeutic agents like
cisplatin (Wood, 1999; Scharer, 2013). UVC (254 nm) pro-
duces mainly cyclobutane pyrimidine dimers (CPD) and
pyrimidine (6-4) pyrimidone photoproducts (6-4PP), while
cisplatin forms intra- or interstrand Pt-adducts. Interest-
ingly, longer wavelengths UVB (280-320 nm) and UVA
(320-400 nm), which penetrate the earth’s atmosphere, can
produce a spectrum of lesions including photoproducts and
oxidized bases, removed by NER and as well as BER. NER
includes two sub-pathways: global genome NER (GG-
NER) and transcription-coupled NER (TC-NER). GG-
NER operates in the entire genome, including untrans-
cribed regions and silent chromatin, while TC-NER recog-
nizes and repairs bulky DNA lesions in the transcribed
DNA strands of active genes only. In GG-NER, XPC-
RAD23B acts as the initial damage recognition factor by
recognizing destabilized DNA (Sugasawa et al., 1998).
UV-DDB is part of a Cul4-RBX1 ubiquitin ligase, which
upon UV radiation ubiquitinates DDB2, histones and XPC.
While ubiquitinated DDB2 is degraded, XPC shows an ele-
vated DNA binding activity. During the damage verifica-
tion step of GG-NER, the transcription factor TFIIH is re-
cruited by XPC-RAD23B protein (Sugasawa et al., 2005;
Kapetanaki et al., 2006; Wang et al., 2006). TFIIH consists
of 10 subunits, including the helicases XPB and XPD that
are responsible for opening up the DNA around the lesion
(Evans et al., 1997). XPD binding to the lesion facilitates
the recruitment of the pre-incision complex (XPA, RPA,
XPG) (Wakasugi and Sancar, 1998; Volker et al., 2001;
Riedl et al., 2003). Once the second endonuclease
ERCC1-XPG is recruited, dual incision by XPG and XPF is
initiated and the excision product is released along with
TFIIH (Kemp et al., 2012). DNA polymerase (�/ �) and
ligase I then repair and ligate the gap (Shivji et al., 1995).
TC-NER, on the other hand, is triggered by stalled RNA
polymerase at a DNA lesion during transcription, causing
the Cockayne syndrome proteins (CSB and CSA), and
other lesion accessory proteins (UVSSA, XAB2, and
HMGN1) to be recruited at the lesion site. With the subse-
quent recruitment of TFIIH, TC-NER converges with the
GG-NER at this step (Fousteri and Mullenders, 2008). Mu-
tations in these NER proteins impair the ability to repair
UV damage, causing autosomal recessive disorders includ-

ing xeroderma pigmentosum (XP) (mutations in XPA-G,
XPV) characterized by extreme sensitivity to sunlight and
increased risk to skin cancer in exposed areas. About 20-
30% of these patients also develop neurodegeneration.
Also mutations in CSA and CSB, affecting only TC-NER,
result in Cockayne syndrome (CS), with patients presenting
developmental impairment and neurodegeneration, related
to premature aging (Marteijn et al., 2014; Menck and Mun-
ford, 2014; Karikkineth et al., 2017).

BER is a dedicated pathway that removes a wide
range of chemically altered bases (Svilar et al., 2011; Wal-
lace, 2014; Bauer et al., 2015; Thapar and Demple, 2017;
Whitaker et al., 2017) (Figure 1). This type of damage typi-
cally results from spontaneous reactions in the cells (dea-
mination, oxidation and methylation), metabolic by-pro-
ducts (ROS) and exogenous sources like alkylating agents
(methyl methane sulfonate), ionization radiation (IR), X-
rays, and pollutants, including cigarette smoke. Due to its
redox potential, guanine is the most susceptible base to oxi-
dation, forming mainly 8-oxoguanine (8-oxoG). This le-
sion is highly mutagenic and if not repaired, can pair with
adenine, causing a G:C to T:A transversion. One of the ear-
liest steps in the repair of base lesions is lesion recognition
and removal by DNA glycosylase. In the case of 8-oxoG,
this is mediated by a dual functional glycosylase, 8-oxoG
glycosylase (OGG1) which first removes the damage
through hydrolysis of the glycosidic bond, creating an
apurinic/apyrimidinic (AP). This abasic site is acted on by a
weak lyase activity of OGG1 causing cleavage 3’ to the
abasic site. OGG1 has higher affinity for the abasic site and
is therefore product inhibited, and needs the action of an AP
endonuclease (APE1), to help turn the enzyme over and
cleave, leaving a 5’ deoxyribose-phosphate moiety gener-
ating a one base pair gap (Hill et al., 2001). Some models of
BER show poly(ADP)-ribose polymerase (PARP1) activa-
tion during this transient nick and gap phase, which,
through the production of poly(ADP)ribose, helps recruit
the remaining DNA repair factors, XRCC1, a scaffold pro-
tein, DNA polymerase beta and DNA ligase I. During re-
pair this gap is filled in by DNA polymerase beta, and li-
gated by DNA ligase I or III.

While both BER and NER pathways have been con-
ventionally associated with specific substrates, growing ev-
idence shows a significant cooperation between these two
repair mechanisms, and has recently been reviewed (Melis
et al., 2013; Limpose et al., 2017; Shafirovich and Gea-
cintov, 2017). The relevance of this potential interaction in-
cludes the fact that NER deficient (XP and CS) patients
may develop developmental and neurological symptoms,
related to premature aging, that can be due to endogenous
lesions, such as DNA damage induced by oxidation, which
are normally considered substrates for BER. Thus, under-
standing BER and NER interplay may help us to better un-
derstand the causes for the symptoms of premature aging
found in these patients and even for the normal aging pro-
cess. In fact, certain types of DNA damaging agents can re-
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sult in a spectrum of DNA lesions that are handled by
different DNA repair pathways, thus it is expected that pro-
teins and enzymes from different pathways may cooperate
to remove specific types of DNA damage. Moreover, these
enzymes may also be injured by oxidation affecting, as
shown by UVA irradiation, a component that also generates
a mixture of DNA lesions that involves both NER and
BER. This review discusses some of the more recent ad-
vances made in understanding the interplay between these
two pathways by discussing specific DNA lesions and the
proteins that recognize and remove them. The additional ef-
fects of oxidation of proteins related to these pathways by

UVA exposure also interfere with the cells’ capacity to
process the different types of DNA lesions, with possible
biological consequences such as carcinogenesis. This is
also reviewed, focusing on the effects on NER and BER,
and proteins that act on both pathways.

Oxidatively generated base damage recognized

by NER pathway

Cooperative interactions in processing 8-oxoG

A number of base modifications are recognized by the
BER pathway (Figure 1), but one of the most common and
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Figure 1 - Mono- and bi-functional DNA glycosylase-initiated short-patch base excision repair (BER) in mammalian cells. The process consists of these
main steps: Excision of the base lesion, incision by an AP endonuclease, end processing, gap filling and ligation. Insert shows the common oxidative le-
sions repaired by BER: 8-oxoguanine (8-oxoG), guanidinohydantoin (Gh), spiroiminodihydantoin (Sp). Grey boxes (red dashed outline) indicate the in-
volvement of NER (XPA, XPC, XPG, CSA, CSB and UVSSA) proteins in BER.



well-studied lesions is 8-oxoguanine (8-oxoG). As de-
scribed above, 8-oxoG is processed by OGG1 through
BER, although recent studies show that other proteins and
sub-pathways may partner in this process. One of the earli-
est experiments suggesting an involvement of NER pro-
teins in the repair of oxidized base damage was an in vitro

study from the Sancar laboratory. They showed that cell
free extracts from human cell lines either lacking or con-
taining mutated NER proteins (XP-A, XP-B, XP-C, XP-D,
XP-F and XP-G) had markedly reduced ability to excise
two major oxidized base damage, 8-oxoG and thymine gly-
col (TG), as part of an excision oligonucleotide consistent
with NER (Reardon et al., 1997). They went on to show
complete NER system reconstituted with purified XPA,
RPA, TFIIH (containing XPB and XPD), XPC-HHR23B,
XPG, and ERCC1-XPF proteins, were necessary and suffi-
cient to excise 8-oxoG or TG. While these studies indicated
that NER proteins are capable of acting on two common ox-
idized bases, whether NER proteins had a direct role in
BER by interacting with BER proteins or intermediates was
uncertain. The authors suggested that perhaps NER is a rel-
atively slow back-up system for BER.

D’Errico et al. (2006) provided the first direct evidence
that XPC plays a role in the protection against oxidative
stress. They demonstrated that keratinocytes and fibroblasts
with mutations in XPC were extremely sensitive to potas-
sium bromate and ionizing radiation. Using LC/MS and
HPLC-ED, they were able to show the accumulation of
8,5’-cyclopurine 2’-deoxynucleosides and slow removal of
8-oxoG and 8-oxoA, respectively, in cells lacking XPC. Bio-
chemical assays with purified proteins showed stimulation
of DNA glycosylase OGG1 by XPC-HR23B and western
blots showed that purified XPC-HR23B interacted directly
with OGG1. Unlike XPC, at the concentrations surveyed,
XPA was not capable of stimulating OGG1. This study indi-
cates that XPC-HR23B facilitated recognition of 8-oxoG in
an OGG1-dependent BER. It is interesting to note that XP-C
patients, in addition to high skin cancer rates, also have a
higher incidence of internal cancer development (Giglia et

al., 1998; Hollander et al., 2005; Sarasin et al., 2019). Thus,
reduced kinetics of oxidatively generated DNA damage
might be a major contributor to these internal cancers. More-
over, oxidatively generated base damage are also associated
with increased risk of neurodegenerative diseases (Chen et

al., 2012; Liu et al., 2017). While XP-A, XP-B, XP-D and
XP-G patients may show neurodegeneration symptoms,
XP-C patients show no signs of neurological defects. Thus, it
is possible that XPC might be acting as a cofactor in the re-
pair process, therefore its loss alone does not display major
effects. In a separate study by Kassam and Rainbow (2007),
methylene blue plus visible light (photoactivated MB, which
generates singlet oxygen) was used to produce 8-oxoG in an
adenovirus-encoded �-galactosidase (�-gal) reporter gene,
and a host cell reactivation (HCR) assay was used to demon-
strate that human cells deficient in XPC showed lower HCR
as compared to WT cells, supporting a role for XPC in the

processing of 8-oxoG (Kassam and Rainbow, 2007). Simi-
larly, XP-A and XP-C NER deficient cells were found to be
more sensitive to photoactivated MB, compared to NER pro-
ficient cells (Berra et al., 2013). Problems dealing with the
oxidized base damage, in XP-A and XP-C cells, were con-
firmed with observations of cell cycle delay (increased
G2/M arrest) and genotoxic stress (H2AX phosphorylation).
These results confirm NER proteins participate in the pro-
cessing of oxidatively generated base damage, although
which type of lesion (including 8-oxoG) is involved was not
clear.

In order to better understand the potential roles of
XPA and XPC in the removal of oxidized bases, Parlanti et

al. (2012) went on to study the rates of 8-oxoG removal, as
measured by HPLC–ED, in mouse embryo fibroblasts
(MEFs) derived from NER (Csbm/m, Csa-/- Xpa-/- Xpc -/- and
combinations of these) and/or Ogg1-/- deficient mouse mu-
tants following treatment with the oxidizing agent, potas-
sium bromate. While Ogg1-/- deficient mutant cells
displayed a dramatic deficiency in the rate of 8-oxoG re-
moval, NER deficient mutants (Csbm/m, Csa-/- Xpa-/- Xpc -/-)
also displayed reduced rates of removal as compared to WT
MEFs. Furthermore, Csb-/- Xpa-/- and Csb-/- Xpc-/- double
mutants were more deficient in repair as compared to the
single mutants, and very similar to the deficiency observed
in Ogg1-/- MEFs. On the other hand, Xpc-/- Xpa-/- double
mutant did not show slower repair kinetics as compared to
the single mutant MEFs, suggesting that XPC and XPA
function through the same pathway, while CSB is OGG1-
dependent, but XPA/XPC independent. These mouse ex-
periments were confirmed in human XP-A primary fibro-
blasts that were more sensitive to potassium bromate as
compared to WT fibroblasts. Furthermore, SV40-transfor-
med XP-A deficient cell line (XP12SV40), in which OGG1
was knocked down with siRNA, showed slower 8-oxoG re-
pair kinetics than either the XP-A cells alone or when XPC
was knocked down. Whether this enhanced repair of 8-
oxoG through the action of XPA, XPC, and CSB is medi-
ated through canonical BER is unclear. Why XPA did not
stimulate OGG1 activity in their previous study, but a defi-
ciency in XPA showed a slower rate of 8-oxoG remains to
be reconciled. Also, the involvement of these proteins
could vary in the context of chromatin accessibility. Final-
ly, it is interesting to note that the Xpa-/-/Xpc-/- and
Csbm/m/Ogg1-/- double mutant mice are viable and do not
show evidence for neurodegeneration (Friedberg and Mei-
ra, 2006; Laposa et al., 2007).

XP-G deficient cells were also found to be sensitive
to the treatment with photoactivated MB, indicating that
XPG protein, and thus NER, participate in the processing of
oxidized base damage (Soltys et al., 2013). This was ob-
served for cells from a severely affected patient, with neu-
rological problems, carrying an XPG mutation that com-
pletely abrogates the protein. The increased sensitivity was
also confirmed by HCR of plasmids treated with photo-
activated MB. Interestingly, two different XPG missense
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alleles, from patients with no neurological symptoms (but
with XP typical increased frequency of skin tumors),
showed sensitivity to UV-light induced DNA damage, but
not to oxidized base damage induced by singlet oxygen.
These results indicate that XPG protein might participate
on the removal of UV-induced lesions by NER, with an in-
dependent function for oxidatively generated base damage,
and defects on this latter function is in fact relevant for the
induction of neurological symptoms in XP-G patients.

Cellular imaging of 8-oxoG processing involving

CSB and XPC

Menoni et al. (2012) used a novel imaging tool to study
the role of XPC and CSB in the repair of oxidized base dam-
age in living cell. By using a photosensitizer Ro 19-8022 and
405 nm laser light, they were able to generate localized oxi-
dized base damage in specific regions of the nucleus. XPC-
GFP and CSB-GFP both were seen to be recruited to the sites
of damage. CSB appeared to be recruited faster than XPC,
possibly due to different intrinsic mobility or chromatin
binding properties. Indeed, they reported that CSB was pro-
minently recruited in the nucleolus (possibly due to high
transcription activity) and XPC accumulated more densely
in the heterochromatic region, consistent with their roles in
TC-NER and GG-NER of UV-induced photoproducts, re-
spectively. Interestingly, they reported, but did not show the
data, that neither XPB nor XPA was recruited to the damage
site even after 5-10 minutes of damage induction. These data
suggesting that CSB and XPC recruitment was independent
of subsequent steps in NER is in contrast to the work by
Parlanti et al. (2012) who showed that both XPA and XPC
might facilitate 8-oxoG removal.

In a more recent study by Vermeulen’s group, the role
of CSB in 8-oxoG repair was further elaborated (Menoni et

al., 2018). Using the live-cell imaging approach described
above, it was shown that OGG1 recruitment to the damage
site was independent of CSB, but the recruitment of the
BER scaffolding protein XRCC1 was stimulated by CSB in
a transcription-dependent manner. It is possible that as a
chromatin remodeler, CSB helps XRCC1 loading under
certain circumstances, perhaps in transcribed genes or at
specific genomic regions that are not accessible to the
downstream BER proteins.

Comet-FISH assay reveals an involvement of XPA,

CSB, and UVSSA in TCR of 8-oxoG

As noted above, the role of XPA in the processing of
8-oxoG adducts has been controversial, and contrasting
studies have been published. In an elegant tour-de-force
study, Guo et al. (2013) combined a single-cell electropho-
resis (Comet assay) with fluorescence in situ hybridization
(FISH) and established the involvement of XPA and CSB
preferentially in transcription-coupled 8-oxoG removal.
For these experiments, 5’- and 3’-ends of the ATM gene
were labelled with different fluorescent probes. The in-

crease in the distance between the probes after damage was
an indication of single strand breaks. The repair rates of
transcribed and non-transcribed strands in CS-B and XP-A
cells were similar, indicating that they played a role in TCR
of 8-oxoG. They also showed that elongating RNAP II and
UVSSA were necessary for this process consistent with
TCR. The authors speculated that after initial recognition
and incision by OGG1 and APE1, the single stranded DNA
formed causes a block to transcription, recruiting the TCR
proteins to continue repair. This model is consistent with
the work by Vermeulen’s group cited above. XPC, since it
is involved in GG-NER, was not investigated in this study.

XPC also stimulates a thymine specific DNA

glycosylase

Spontaneous deamination of C or 5-methylC creates
dU-G and T-G mismatches which are processed by uracil
DNA glycosylase (UDG) family and thymine DNA glyco-
sylase (TDG), respectively. XPC-HR23B was shown to
stimulate TDG activity in an in vitro nicking assay (Shi-
mizu et al., 2003). While XPC, itself, did not have any ef-
fect on nicking the G/T mismatch oligonucleotide, it
stimulated TDG activity in a dose dependent manner, prob-
ably promoting enzymatic turnover of TDG. XPC also
stimulates OGG1 binding to damaged DNA, and a weak in-
teraction between the proteins was obtained from far west-
ern analysis (Parlanti et al., 2012). Finally, Melo et al.

(2016) showed a correlation between XPC deficiency and
OGG1/ APE1 expression levels, and a physical interaction
between XPC and APE1 using co-immunoprecipitation.
These studies are summarized in Tables 1 and 2.

Oxidized guanine lesions are excised more

efficiently by competing BER than NER pathways

The base damage, 8-oxoG is susceptible to further ox-
idation, leading to the formation of spiroiminodihydantoin
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Table 1 - Oxidative lesions recognized by NER factors.

Lesions Protein involved References

8-oxoG and TG* NER proteins Reardon et al. (1997)

8-oxoG XPC-CSB (TC-BER) Menoni et al. (2012)

8-oxoG CSB (TC-BER) Menoni et al. (2018)

8-oxoG XPA, CSB and UVSSA Guo et al. (2013)

8-oxoG XPC/XPA Parlanti et al. (2012)

Guanine lesions NER proteins Shafirovich et al. (2019)

*8-oxoG and thymine glycol

Table 2 - Protein interactions between BER and NER.

Protein-protein interaction References

XPC-HR23B and TDG Shimizu et al. (2003)

XPC and OGG1 D’Errico et al. (2006)

XPC and APE1/OGG1 Melo et al. (2016)



(Sp) and 5-guanidinohydantoin (Gh), which are recognized
by the DNA glycosylase NEIL1 (Luo et al., 2000; Niles et

al., 2001; Hailer et al., 2005; Krishnamurthy et al., 2008;
Zhao et al., 2010).

Very recently, Shafirovich et al. (2019) examined the
excision of these lesions in intact human cells and the rela-
tive contribution of BER and NER in the processing of
these lesions. In this study, an internally labelled hairpin
substrate containing these lesions were transfected into
HeLa cells. DNA was isolated at different time points and
run on a PAGE gel. The BER activity was determined by
the presence of a 65nt incision product, while the presence
of a 24-30nt excision product indicated NER activity. The
hairpins with both Gh and Sp lesions exhibited BER, as
well as NER activity, suggesting a competition between
these two pathways in repair. Addition of unlabeled hairpin
with a known BER substrate 5-OHU caused significant re-
duction in the BER product, but an increase in the NER
product. This suggests that the participation of these two
pathways depends on the local concentration of the recog-
nition factors that recognize and bind to the same lesions in
a competitive manner.

Bulky DNA lesions recognized by BER pathway

BER protects cells against Pt-adducts

Platinum-based drugs are most widely used for the
treatment of cancer (Kelland, 2007). The three approved
drugs for treatment are: cisplatin, oxaliplatin and carbo-
platin. These drugs form platinum adducts by either cova-
lently linking two nucleotide residues on the same DNA
strand (intrastrand crosslink) or from opposite strands
(interstrand crosslink- ICL). Left unrepaired, ICLs cause
cytotoxicity by blocking transcription and replication
(Huang and Li, 2013). Although this damage is largely re-
paired by NER, Kim et al. (2015) showed that APE1 pro-
tective role against damage caused by ICLs. Using a slot-
blot assay and an antibody against 1,2-Pt-(GpG) DNA ad-
ducts, they demonstrated that reducing the expression of
APE1 by siRNA inhibited the repair of cisplatin adducts.
This inhibition was restored by adding back APE1 with re-
pair activity, but not the redox signaling function. Further-
more, altering APE1 expression affected the expression
levels of two NER proteins, RPA and XPA, suggesting an
interaction between these two pathways. However, it
should be pointed out that cisplatin exposure is also known
to induce ROS production (Marullo et al., 2013), therefore
explaining the involvement of BER proteins in the repair
process, and APE1 expression may also help to protect re-
pair proteins from oxidation (see below). Therefore, more
studies are required to unravel the exact role and interplay
between BER and NER proteins in the repair process of
cisplatin induced DNA damage.

Slyskova et al. (2018) recently used a CRISPR/Cas9
screen to determine which proteins and pathways are in-
volved in the repair of oxaliplatin and cisplatin induced ad-

ducts. These drugs covalently bind to DNA and form
crosslinks, mainly Pt-GpG (60–65%) and Pt-ApG
(25–30%), along with monoadducts (2%). They showed
that the proteins involved in TC-NER and/or BER were es-
sential in protecting cells against the cytotoxicity of oxa-
liplatin and cisplatin. Using fluorescence recovery after
photobleaching (FRAP), they showed evidence for the re-
cruitment of CSA, CSB, and XRCC1 at localized ICLs,
generated by 8-methoxypsoralen+UVA, in living cells.
Additionally, the recruitment of these proteins was found to
be transcription dependent, as the recruitment was sup-
pressed by blocking RNAP elongation using flavopiridol.
Finally, by knocking down OGG1 and XPA, they were able
to determine that the recruitment of XRCC1 was BER de-
pendent, but NER independent. Measurement of
H2DCFDA fluorescence was used to validate that platinum
drugs generate oxidatively generated damage, necessitat-
ing the presence of BER proteins. The oxidized base dam-
age could cause an accumulation of BER intermediates like
abasic sites and single-strand breaks that contribute to the
transcription block, along with the ICLs. These data might
help explain the presence of TC-NER proteins, CSA and
CSB, but not GG-NER proteins, XPC or DDB2. Apart from
acting on the adducts directly, it is possible that CSB is re-
cruited to these oxidized base damage in a transcription-
dependent manner, to recruit XRCC1, as described previ-
ously (Menoni et al., 2012, 2018).

DNA glycosylase NEIL1 binds and excises psoralen-

induced monoadducts and interstrand crosslinks

Using a combination of excision assays, cell survival
assays, and in vitro BER assay, Couve-Privat et al. (2007)
showed that NEIL1 and APE1 deficient cells are sensitive
to 8MOP+UVA. There was no further increase in sensitiv-
ity when both these proteins were depleted together, sug-
gesting that they function via the same pathway. Addi-
tionally, these proteins are able to excise psoralen
monoadducts, but not ICLs, in duplex DNA (Couve-Privat
et al., 2007). Specifically, NEIL1 cleaves the monoadduct
generating 3’-phosphate termini, that is removed by APE1.
Finally, by reconstituting BER in vitro, they show that
NEIL1 and APE1 can repair psoralen monoadducts in a
pol-� dependent manner. To further elucidate the role of
NEIL1 in the repair of psoralen ICLs, the group used a
three-stranded DNA structure with an unhooked ICL,
which is a physiological representative of an ICL lesion, af-
ter being acted upon by endonucleases. They show that
NEIL1 could excise this substrate and catalyze an in vitro

BER reaction, indicating multiple modes of action of
NEIL1 in psoralen adduct repair (Couve et al., 2009). An-
other study by the same group looked into the role of
NEIL1 and NEIL3 in the repair of ICL repair intermediates
like the three- and four-stranded DNA structures, generated
via FANCM mediated replication fork bypass and demon-
strated that both glycosylases participate in the repair (Mar-
tin et al., 2017). In a contrasting study by McNeill et al.
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(2013) it was shown that NEIL1 was recruited specifically
to ICLs but not monoadducts. In living cells, when treated
with trioxsalen, NEIL1 recruitment was not affected in the
presence of an antioxidant, N-acetyl-L-cysteine (NAC), in-
dicating different mechanisms of recruitment to oxidative
damage and ICLs respectively. Interestingly, NEIL1 was
recruited and dispersed within 8 minutes post irradiation,
while XPC was seen until 60 minutes after damage induc-
tion, suggesting that the glycosylase was not being re-
cruited as part of the XPC complex. Moreover, NEIL1 defi-
cient cells were resistant to psoralen + UVA damage, and
had a faster rate of psoralen removal, hinting on a negative
role of NEIL1 in the repair of ICLs. The authors theorize
that the contradicting results could be a result of variation in
techniques or using trioxsalen versus 8-methoxypsoralen
for damage induction. While 8-MOP produces about 20%
monoadducts, trioxsalen generates < 2%. Future studies are
required to understand these discrepancies in more detail.
These studies are summarized in Table 3.

Repair proteins as target of UVA light-induced

oxidative stress:

UVA light forms a mixture of photoproducts and

oxidatively generated base damage:

Ultraviolet (UV) light is a well-known DNA damag-
ing agent, and most of the organisms on this planet are ex-
posed to it via sunlight, with important pathophysiological
consequences such as skin carcinogenesis and photoaging.
While the ozone layer shields the surface of the earth from
harmful UVC (100-280 nm) light, more than 90% of UVB
(280-320 nm) and UVA (320-400 nm) reach the earth’s
surface. UVA light plays an important role in sunlight-
induced DNA damage, as it corresponds to 95% of sunlight
UV component, and penetrates deeper in the human skin
because of its longer wavelength.

UVA light induces a mixture of different types of
DNA lesions, including photoproducts and oxidized bases,
which are then repaired by both NER and BER, providing
an interesting model to investigate the DNA repair capacity
of these pathways (Ravanat et al., 2001; Sage et al., 2012;
Schuch et al., 2017). Pyrimidine dimers, such as CPDs and
6-4 PPs, are formed through direct photon absorption by
DNA bases (Schuch et al., 2009; Cortat et al., 2013). Evi-
dence for the role of UVA light in causing direct DNA dam-

age was demonstrated as early as in 1973, by observing the
formation of CPDs in the genome of Escherichia coli (Tyr-
rell, 1973). More recently, the biological relevance of py-
rimidine dimers (CPDs) induced by UVA was observed in
Chinese hamster cells and in human skin (Douki et al.,
2003; Mouret et al., 2006). Although 6-4PPs (t1/2 ~2-4 hrs)
are removed by NER at a significantly faster rate compared
to CPDs (t1/2 ~ 24 hrs) , they were also detected upon UVA
light exposure in DNA repair deficient cell models (Schuch
et al., 2009; Cortat et al., 2013). It is important to mention
that 6-4 PP undergo Dewar isomerization, to form a new
photoproduct, which is repaired by NER. In fact, upon ex-
posure to sunlight, UVA radiation converts the 6-4 PP into
Dewar PP (Clingen et al., 1995; Perdiz et al., 2000; Douki
et al., 2003; Douki and Sage, 2016).

UVA light also induces DNA damage by mechanisms
that involve oxidative stress, generated as a result of irradi-
ation. Intracellular ROS can be generated through photo-
sensitization reactions caused by endogenous chromo-
phores absorbing UVA-light, including DNA, urocanic
acid, pophyrins, flavins, melanin and their precursors and
metabolites (Emri et al., 2018). These photosensitized mol-
ecules, normally in the triplet state, can either react directly
with DNA (type I reaction) or transfer their energy to mo-
lecular oxygen, to form 1O2 and subsequently generate
ROS (type II reaction). In both cases, the result may be
DNA oxidation (Di Mascio et al., 1990; Halliwell and
Aruoma, 1991; Evans et al., 2004). ROS may also be gener-
ated as a delayed response to irradiation, probably due to
the activation of cellular enzymes, such as NADPH oxidas-
es and cyclooxygenases (Valencia and Kochevar, 2008;
Birch-Machin and Swalwell, 2010). UVA-induced ROS
can generate a variety of modifications, including 8-oxoG,
abasic sites, single and double strand breaks and crosslinks
(Cadet et al., 2005; Schuch et al., 2017).

UVA induces both direct and indirect DNA damage,
repaired by NER and BER, respectively. Mutational effects
by UVA are typically due to lesions induced by direct DNA
absorption (pyrimidine dimers). Most of the published
studies have reported C > T changes at dipyrimidine sites
(Robert et al., 1996; Ikehata et al., 2003; Agar et al., 2004;
Kappes et al., 2006), which is similar to UVC and UVB in-
duced mutagenesis (Brash et al., 1987; Douki et al., 2003;
Kappes et al., 2006; Herman et al., 2014). Interestingly,
this type of mutation has been detected in nonmelanoma
(Giglia-Mari and Sarasin, 2003), as well as, melanoma skin
cancers (Greenman et al., 2007; Pleasance et al., 2010).
However, the participation of UVA light-induced oxidative
stress in these mutagenic and damaging processes cannot
be completely ruled out. Cells have a broad array of antioxi-
dant mechanisms, which provide the initial defense to mini-
mize the oxidation of proteins, DNA and other biomole-
cules. Human skin has elaborate enzymatic and
non-enzymatic defenses against ROS, such as the super-
oxide dismutase (SOD), catalase (CAT), and glutathione
(GSH)/glutathione peroxidase systems. The transcription
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Table 3 - Bulky lesions recognized by BER.

Lesions Protein involved References

Pt-adducts APE1 Kim et al. (2015)

Pt-adducts OGG1/XRCC1 Slyskova et al. (2018)

ICLs NEIL1 McNeill et al. (2013)

Couvé-Privat et al. (2007)

Couvé et al. (2009)

Martin et al. (2017)



factor, Nrf2 (NF-E2-related factor 2) coordinates the acti-
vation of several genes whose products participate in the
cellular response to the oxidation of biomolecules. Further,
studies have shown that Nrf2 plays a protective role in
keratinocytes and fibroblasts against the damaging effects
of UVA-induced DNA lesions (Hirota et al., 2005; Tian et

al., 2011).

UVA light interferes with DNA repair as a

consequence of protein oxidation

Apart from the antioxidant systems, DNA repair me-
chanisms act as a protection barrier against UVA-induced
lesions. As commented earlier, NER generally repairs le-
sions that cause significant distortions in the DNA mole-
cule, such as CPDs and 6-4 PPs, whereas BER repairs
ROS-induced small base covalent modifications. There-
fore, interplay between these two processes would be im-
portant to deal with the variety of damage induced after
UVA-irradiation. Work on UVA has revealed that proteins
and lipids are also affected by ROS, and, interestingly, pro-
teins involved in DNA repair are highly sensitive to oxida-
tion. Studies show that UVA-light in the presence of photo-
sensitizers caused extensive protein oxidation, affecting
DNA damage removal by NER (Peacock et al., 2014), as
well as BER (Gueranger et al., 2014). Thus, protein oxida-
tion may be a direct consequence of UVA irradiation in-
creasing the mutation risk by sunlight (McAdam et al.,
2016). Confirming these observations, studies from our lab
showed that protein oxidation by UVA irradiation also af-
fects the ability of human cells to replicate their genetic ma-
terial, probably due to translesion synthesis (TLS) and NER
being affected in irradiated XP-V cells (Moreno et al.,
2019ab). Curiously, previous work reported that UVA-
induced singlet oxygen leads to DNA replication arrest in-
dependently of cell cycle checkpoints activation, probably
due to a transient decrease of dNTP pool, probably not re-
lated to the oxidation of DNA repair proteins (Graindorge
et al., 2015). This suggests that UVA light-induced oxida-
tive stress has a greater contribution in impairing proteins
that participate in DNA repair and replication pathways
than in inducing direct damage to DNA. Interestingly, the
use of antioxidants strongly protected the cells from the
damaging effects of UVA-light, justifying the use of anti-
oxidants in sunscreen creams. The hope is that the antioxi-
dants would not only reduce cell killing effects of sunlight,
but also reduce mutagenesis and skin cancer risk, by im-
proving NER-mediated removal of the mutagenic photo-
products.

Various proteins linked to DNA repair are targets for
oxidation by UVA light (Karran and Brem, 2016), but other
genotoxic agents that induce oxidative stress have also
been reported to promote inhibition of DNA repair. XPA
and XPE proteins (from NER) were shown to be directly af-
fected by the oxidative stress caused by arsenic (Grosskopf
et al., 2010; Zhou et al., 2015). Arsenite also damages
PARP1, causing inhibition of poly(ADP)-ribosylation and

thereby, interfering with BER (Ding et al., 2009). PCNA, a
key replication and repair protein is also damaged by sin-
glet oxygen generated from UVA activated photosensitizer
generating an oxidative crosslink between two subunits, in-
volving a histidine residue in the intersubunit domain
(Montaner et al., 2007). OGG1, a central glycosylase for
8-oxoG repair (BER) in human cells was inhibited by oxi-
dative stress induced by cadmium (Bravard et al., 2006) or
by the inflammatory cytokine TNF-alpha (Morreall et al.,
2015). Moreover, OGG1 was inhibited by 6-thioguanine
(6-TG) activated by UVA light (Gueranger et al., 2014).
Partial inactivation of MUTYH, Ku70 and Ku80 proteins
due to 6-TG and UVA light was shown to also compromise
BER and NHEJ repair activities (Gueranger et al., 2014).
UVA and photosensitizers also oxidized XRCC3 protein,
impairing homologous recombination (Girard et al., 2013).
Most of these cases of protein oxidation have been related
to the oxidation of cysteines, sensitizing the cells to DNA
damage by affecting the DNA repair pathways. Of special
interest is the oxidation of RPA in human cells caused by
photosensitizers and UVA light (Gueranger et al., 2014;
Guven et al., 2015). RPA is the main protein that stabilizes
single strand DNA (ssDNA) and has central roles in DNA
repair processes (such as NER and BER) and replication of
undamaged and damaged templates (Cimprich and Cortez,
2008; Lukas et al., 2011; Jones and Petermann, 2012) . Sur-
prisingly, it has been demonstrated that RPA is the main
limiting factor for NER, after UVA irradiation with photo-
sensitizers. This was shown by measuring NER capacity in

vitro with extracts from cells that were treated with 6-TG
and UVA light, where supplementing or overexpression of
RPA recovered NER activity (Gueranger et al., 2014; Gu-
ven et al., 2015). In fact, oxidation of RPA by UVA and
photosensitizer seems responsible for a decrease in the
cell’s ability to remove CPD, 6-4PP and 8-oxoG, thus af-
fecting badly NER and BER (Guven et al., 2015).

RPA is also an important player in DNA damage re-
sponses (DDR), where it accumulates and stabilizes
ssDNA, recruiting checkpoint and other DNA repair pro-
teins to the damage site. RPA in ssDNA is also a signal to
PCNA ubiquitination which is the main regulator of the
TLS pathway (Ghosal and Chen, 2013). Therefore, oxida-
tive stress not only impairs RPA protein, but it can also
destabilize the signaling of pathways that are necessary for
the removal of and/or tolerance to different types of DNA
damage (Figure 2). Disruption of such important pathways
that control DNA damage may be an aggravating factor for
people with DNA repair deficiencies such as XP. As cells
from these patients are more sensitive to DNA damage,
their use has been proposed to better understand the effects
of UVA-light in human cells (Schuch et al., 2017). In fact,
evidence that protein oxidation due to UVA-light may ag-
gravate XP cells’ phenotype has been obtained from NER
and pol eta deficient cells (Cortat et al., 2013; Moreno et

al., 2019a). Pol eta (XP-V) deficient cells are able to repair
bulky DNA lesions such as CPDs induced by UVC light but
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have impaired NER when these lesions are induced by
UVA light, probably due to protein oxidation. The use of
antioxidants protected UVA-irradiated cells, improved
CPD removal, as well as the ability of these cells to repli-
cate their damaged DNA (Moreno et al., 2019a). Moreover,
the lack of pol eta and other TLS proteins has been reported
to impair NER due to the recruitment of RPA to TLS site
(Auclair et al., 2010; Tsaalbi-Shtylik et al., 2014), and the
limiting effect of this protein may be even stronger in con-
ditions of oxidative stress. Finally, BER proteins have not
been yet evaluated in this context, but as target of oxidation,
this pathway may also be affected by UVA-light. There-
fore, protein oxidation is not only an important cancer risk
factor for XP patients, but also for the normal population.

NER and BER interactome analysis

To further understand the interplay between the NER
and BER pathways, and scrutinize the underlying interac-
tion between their associated proteins, we conducted a sys-
tems biology analysis. We listed the proteins that play ma-
jor roles in both processes, including all their divisions (i.e.,
TC and GG-NER, and monofunctional and bifunctional
DNA N-glycosylases for BER). By employing the meta-
search engine STRING 11 (https://string-db.org/)
(Szklarczyk et al., 2017), we prospected a protein-protein
interaction (PPI) network composed of 32 proteins related
to NER and 23 associated to BER. The initial network cre-
ated in STRING was used as input in the software Cyto-
scape 3.6.1 for manipulation (Shannon et al., 2003). Addi-
tionally, aiming to identify the most topologically relevant
nodes in the PPI network, we employed the Cytoscape
plug-in CentiScaPe 2.2 (Scardoni et al., 2009) for degree

and betweenness centrality analysis. Degree calculates the
number of interactions of each node, and nodes with above
average degree values are called “hubs”. Betweenness cal-
culates the number of shortest paths that go through each
node, and these nodes with above average scores are named
“bottlenecks”. Hence, the hub-bottlenecks (HB) nodes are
the most topologically relevant nodes and retain critical
regulatory roles within the cell, being classified as
“bridges” between biological processes and key molecular
modulators (Yu et al., 2007; Pang et al., 2016). Figure 3
portrays the crosstalk between NER and BER and Table S1,
lists all interactions between the NER and BER processes
from the network.

Clearly, the PPI network reveals a very high number
of interactions (229) among the proteins of the two path-
ways. Nevertheless, the NER pathway appears with more
intragroup connections than the BER process (432 and 73
connections, respectively). This maybe due to the fact that
BER have many DNA damage recognizing proteins that act
more independently one from the other.

Some proteins did not show any inter-pathway con-
nection, been only associated with their own repair mecha-
nisms, these proteins were: (i) NEIL1, NEIL2, MBD4,
SMUG1 and PNKP for BER; but none for NER. These as-
pects should be taken lightly. The lack of intergroup inter-
action does not necessarily mean that they do not partici-
pate in other repair mechanisms, only that they are not the
major inter-pathway integrators. For example, MBD4 is a
multidomain protein with four different protein regions
with a role in the apoptotic pathway, while TDG is related
to epigenetic modulation of embryonic development (Sjo-
lund et al., 2013). The proper interpretation is that those
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Figure 2 - UVA light induces mixture of photoproducts and oxidized base damage in the DNA, as well as, ROS production. As result of UVA-induced
ROS production, protein oxidation has been gaining attention because it can also damage DNA repair proteins, which acts on both NER and BER. Thus,
UVA irradiation causes decreased repair capacity of target lesions of both pathways, which may be the result of RPA oxidation, or the oxidation of other
NER and BER proteins. RPA impairment may further compromise other DNA repair or tolerance pathways, such as homologous recombination (HR)
and translesion synthesis (TLS). Red stars represent proteins known to be target of oxidative stress.



proteins, when it comes to the interplay between NER and
BER, are not the major bridges between the two pathways.

With the exception of the DNA polymerase � sub-
units, PARP1 has one of the highest number of connections
in the NER group, interacting with almost all proteins and
being one of the top nodes in terms of intergroup connectiv-
ity (29 out of 39 connections), besides being an important
HB. The HBs present in the network were DDB1, XPC,
XPF, XPG, RAD23B, RPA1-2, POLE and PCNA for NER,
and POLD1-2, LIG3, XRCC1 and PARP1 for BER. It is
expected that proteins such as POLE, POLD1-2, LIG3 and
PCNA appear as HB, due to their broad and pivotal role in
genome replication and maintenance. Additionally, the ap-
pearance of RPA and DDB1 as HB is also not surprising,
taking into consideration that both proteins are widely asso-
ciated to different DNA repair pathways, cell cycle, repli-
cation, among others (Fanning et al., 2006; Zou et al.,
2006; Iovine et al., 2011). Most of the other HB proteins
that show strong intergroup connections are discussed
above for their participation on both BER and NER, but it is
interesting to mention the high level of connections (on
both pathways) of LIG3 (22 intergroup interactions out of a
total of 33 connections) an XRCC1 (23 intergroup out of 35
connections).

Conclusions

DNA repair pathways have been classified as they
were discovered, and, in general, they are considered to
perform independent and different functions. This is the

case for NER and BER, which are normally related to the
removal of bulky or modified base lesions, respectively. On
the other hand, agents that cause DNA damage, typically
generate different types of lesions, that may require differ-
ent DNA repair pathways to maintain genome stability. Al-
though many efforts have been made to understand the
interplay between NER and BER proteins, we know rela-
tively little of these connections. We presented current data
on the action of NER proteins on oxidatively damaged
DNA, and the role of BER proteins in the protection to
agents that form bulky DNA lesions. There is no consensus
on the participation of specific proteins in this interplay.
The oxidation of repair proteins, mainly RPA, promotes
impairment of both NER and BER, adding a new level of
complexity to this intricate question. By evaluating the
known interactions among NER and BER proteins, the
interactome, presented in Figure 3 tells us that there are
many connections that are still poorly understood and how
they affect these two pathways remains to be elucidated.
Understanding this dynamic interplay at specific types of
lesions, might prove important in unraveling the underlying
mechanisms of carcinogenesis, aging, and neurodege-
neration.
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