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The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major

puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social

interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities

(the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative

social interactions has been conjectured to be of particular importance. Here we use an artificial

neural network model to show that selection for efficient decision-making in cooperative dilemmas can

give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves

select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic

support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour

in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence

across taxa.

Keywords: reciprocity; Machiavellian intelligence; cognition; social brain; prisoner’s dilemma;
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1. INTRODUCTION
Natural selection never favours excess; if a lower-cost sol-

ution is present, it is selected for. Intelligence is a hugely

costly trait. The human brain is responsible for 25 per

cent of total glucose use, 20 per cent of oxygen use and

15 per cent of our total cardiac output, although

making up only 2 per cent of our total body weight [1].

Explaining the evolution of such a costly trait has been

a long-standing goal in evolutionary biology, leading to

a rich array of explanatory hypotheses, ranging from eva-

sion of predators to intelligence acting as an adaptation

for the evolution of culture [2–4]. Among the proposed

explanations, arguably the most influential has been the

‘social intelligence hypothesis’, which posits that it is the

varied demands of social interactions that have led to

advanced intelligence [4–12].

In recent years, the cognitive demands of reciprocity,

one of the mechanisms posited as important in the main-

tenance of cooperation in humans and other intelligent

taxa, have been suggested to be a causal factor in the evol-

ution of advanced intelligence and human language. This

has been particularly apparent in the evolutionary game

theory literature, where conjecture regarding this relation-

ship is frequent [13–16]. Indeed, there is a rich history of

work relating intelligence and reciprocity in the game

theory literature, though most of this work has focused

on the cognitive abilities required for the evolution of

cooperation, rather than the possible role that the nego-

tiation of these interactions has in the evolution of

intelligence [17–24]. As well as the cognitive abilities
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required for the coordination of partners during coopera-

tive acts, both direct (decisions based on what you do

to me) and indirect (decisions based on what you do to

others) reciprocity have additional demands in terms of

the ability to remember previous interactions and to inte-

grate across these interactions to make decisions in

cooperative dilemmas [25–31]. These cognitive demands,

combined with the occurrence of cooperative behaviour

between unrelated individuals in intelligent taxa, suggest

that selection for these mechanisms of cooperation could,

at least in part, be responsible for advanced cognitive

abilities [26].

The many subfields within the social intelligence

hypothesis have shown a rich elaboration of verbal argu-

ments, and data from comparative studies support many

of their predictions [32–34]. However, verbal reasoning

and comparative analysis alone are not sufficient to

assess the relative merit of competing hypotheses [35];

mechanistic models are needed to assess the plausibility

of these different explanations for advanced cognition.

Here, we use an artificial neural network model to focus

on the potential for direct reciprocity, a behaviour that is

widespread in humans, to select for advanced cognitive

abilities. Rather than manufacturing some form of func-

tional relationship between intelligence and fitness, we

allow this relationship to emerge based on the demands

of decision-making in two social dilemmas, and analyse

the consequences for the evolution of intelligence.
2. MATERIAL AND METHODS
(a) The social dilemmas

In order to consider the dynamics of cooperative social inter-

actions, we use the framework of two classic social dilemmas:

the iterated prisoner’s dilemma (IPD) and the iterated
This journal is q 2012 The Royal Society
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Figure 1. The artificial neural network model. (a) A schematic to aid in the understanding of our network structures is shown.
Input nodes, which receive the payoffs of both players in the previous round, are labelled A. Cognitive nodes, which can receive
input from both input and context nodes, are labelled B. Context nodes, which store the previous state of their cognitive node

and return this state (times a weight) as input in the next round, are labelled C. The output node that receives inputs from the
cognitive nodes and gives the individual’s decision to cooperate or defect is labelled D. The most complex artificial neural net-
work allowed in our simulations is shown in (b), possessing 10 cognitive nodes and 10 context nodes. A sample of a possible
sequence of mutations to network structure is shown in (c). Individuals gain and lose cognitive and context nodes by random
mutation. If a cognitive node with a connection to a context node is lost by mutation, the context node is also lost.
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snowdrift game (ISD). In both games, two players must

choose between cooperation and defection during repeated

rounds. In the event of mutual cooperation or mutual defec-

tion, both players receive payoffs R or P, respectively, while a

defector exploiting a cooperator gets T and the cooperator

gets S. In the prisoner’s dilemma, the benefit of an individ-

ual’s cooperative behaviour goes to their opponent, while

they pay all of the costs (e.g. food sharing, reciprocal coali-

tionary behaviour). This results in a payoff order of T .

R . P . S. Here, the worst possible outcome for an individ-

ual is to cooperate while their opponent defects, while the

best outcome is to defect while the opponent cooperates.

In the snowdrift game, the benefits of cooperative behaviours

are shared between opponents, and the costs are shared

if both individuals cooperate (e.g. cooperative hunting,

coalitionary behaviour with shared benefits). This results in

a payoff order of T . R . S . P. Again, the best outcome

for an individual is to defect while their opponent coopera-

tes, though the worst possible outcome for an individual is

for neither them nor their opponent to cooperate. In

both games, the overall payoff (sum of both individual’s

payoffs) is greatest for mutual cooperation and lowest for

mutual defection.

All of this means that the equilibrium frequency of

cooperation for a single interaction (single-interaction Nash

equilibrium) will be zero in the prisoner’s dilemma but will

be non-zero for a single-interaction snowdrift game [36].

These single-interaction Nash equilibria provide a useful

benchmark against which to assess the effects of contingent

behaviours (i.e. those that depend on the behaviour of

others) in repeated interactions.

(b) The neural network model

Any attempt to define a metric of intelligence will always be a

contentious matter. However, comparative studies across

taxa have usually focused on two main classes of brain
Proc. R. Soc. B (2012)
properties as proxies of intelligence: metrics based on relative

or absolute size of the brain or certain brain regions, and

metrics based on more specific properties such as numbers

of cortical neurons [37]. It is with this tradition in mind

that we develop our artificial neural network model, with

evolving network structure, using the number of neurons, i,

as our proxy for intelligence. Each individual can display

varying levels of intelligence, from simply being characterized

by a binary response of always cooperate or always defect to

large neural networks that possess complex neuronal struc-

ture, allowing for computations to inform decisions based

on payoffs and the integration of longer-term memory into

their current decision-making processes.

Each individual in our simulated populations possesses

a neural network that determines their behaviour in social

dilemmas (illustrated in figure 1). The networks each have

two input nodes (which receive the payoffs of the individual

and their opponent in the previous round as inputs) and one

output node (giving the probability that they cooperate

during their next interaction). The hidden layer of each indi-

vidual’s network has an evolving structure, possessing

different numbers of cognitive and context nodes [38]

(figure 1). Cognitive nodes allow for computation based on

the values of network inputs and context nodes, which in

turn allow for the build-up of memory based on previous

states of their associated cognitive nodes.

Computation in the network is implemented via synchro-

nous updating of nodes. The value of each input node is

passed to each of the network’s cognitive nodes, multiplied

by the weight linking the two nodes. Each cognitive node is

also passed the current value of their associated context

node (if they possess one) multiplied by the weight linking

the two nodes. The cognitive nodes sum across all of the

weighted values that they receive and pass this value through

a sigmoidal squashing function, resulting in a value between

0 and 1, analogous to a probability of activation. All context
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nodes are then passed the value of their associated cognitive

nodes. This allows the context nodes to build up memory of

previous interactions without having to store the actual

sequence of events that have occurred. The internal states

of these context nodes could be considered analogous to

emotional states. Finally, the values at all cognitive nodes

are then passed to the output node (multiplied by their

weights), summed and again passed through a sigmoidal

squashing function. This output gives the probability that

the individual will cooperate in the current round. As the sig-

moidal function asymptotes to 0 at –1 and 1 at 1, there will

always be inherent noise in the network’s probabilistic

decision. This property of the function also means that it is

easy to minimize noise in the network’s behaviour if that be-

haviour shows a lack of contingency (as the node can always

be near one of the asymptotes), while contingent behaviour

will show greater noise (as switching is more difficult to

achieve near the asymptotes). This formulation has intuitive

appeal over simply adding extraneous noise to individual

decisions, as in nature we would expect individuals to make

few mistakes when their behaviour is non-contingent, while

more complex decisions would be expected to be more

error-prone. As the network cannot make decisions without

an input, each individual has an additional trait encoding

whether they cooperate or defect in the first round.

We allowed networks to evolve according to natural selec-

tion using a genetic algorithm where fitness is the mean

payoff per round from the iterated games minus a penalty

for the individual’s intelligence, i. When individuals repro-

duce, mutations allow for the gain and loss of nodes from

the hidden layer of their network with a fixed probability.

Context nodes could only be gained if there was already a

cognitive node present without an associated context node.

The loss of a cognitive node with an associated node resulted

also in the loss of the associated context node.

The addition of extra cognitive nodes gives networks the

potential to perform complex computation based on payoffs

by increasing the dimensions of internal representation of the

network. The addition of context nodes gives the potential

for the integration of longer-term memory of previous inter-

actions in these computations. If an individual possessed no

hidden layer nodes in its network, its behaviour in all rounds

was decided by its first round move (i.e. they either always

cooperated or always defected). The weights of each node

in the network (arrowed lines in figure 1) and the threshold

of each node (see the electronic supplementary material)

were encoded as continuous genetic traits, again subject to

mutation during reproduction. This means that, while the

number of nodes in the network constrains the possible be-

havioural repertoire, it is the way that the constituent parts

of the network interact that actually decides the individual’s

behaviour. In this way, our metric of intelligence assesses

the potential for complex behaviour that the individual pos-

sesses, rather than the appropriateness or ‘wisdom’ of their

behaviour, similarly to the measures of intelligence used in

comparative studies.
(c) Model implementation

In order to elucidate when selection favoured intelligence, we

ran 10 replicates of our model for both the IPD and ISD,

with each replicate lasting 50 000 generations. The payoff

values used for all simulations were R ¼ 6, P ¼ 2, T ¼ 7 and

S ¼ 1 for the IPD, and R ¼ 5, P ¼ 1, T ¼ 8 and S ¼ 2 for
Proc. R. Soc. B (2012)
the ISD. The genetic algorithm was implemented as follows

(see the electronic supplementary material for further details):

— an initial population of random networks was generated;

— each individual played every other individual in the popu-

lation (50 individuals) in an IPD or ISD;

— each individual network’s fitness was calculated as their

mean payoff per round minus a fitness penalty for their

level of intelligence, i;

— individuals were selected to reproduce asexually with

probability proportional to their fitness;

— newly produced offspring underwent mutation of their

network weights, node thresholds and network structure

with constant probabilities;

— the previous generation died; and

— the algorithm returned to step 2 until 50 000 generations

was reached.

During simulations we recorded the frequency of

cooperation in the population, the intelligence of individuals

(i) and assessments of the behaviour of individuals against a

pre-determined test set of moves (see the electronic sup-

plementary material). We then analysed the gradients of

selection for intelligence across these simulations by taking

selection for intelligence as the covariance between fitness

and intelligence in any given generation [39]. As 50 million

individual neural networks were simulated in our study,

and individuals were not constrained to base their behaviour

only on the previous move, our simulations generated a great

diversity of strategies. In order to gain a coarse-grained over-

view of the strategic composition of the population, we

clustered individuals based on their proximity to four canoni-

cal strategy types: always-defect-like, always-cooperate-like,

tit-for-tat-like (do what your opponent did to you) and

Pavlov-like (if your payoff is over a threshold, repeat your

previous move). Assignment to each of these strategy types

was based on which of these four strategies each individual

network clustered closest to based on its behaviour against

the test set. While this clustering is only a coarse-grained

view, it allows assessment of the effects of shifts towards con-

tingent cooperative strategies on selection for intelligence.

Additionally, contingent human cooperation has previously

clustered as either tit-for-tat-like or Pavlov-like [40], though

longer-term memory is often included [41]. For full details

of our data analysis, we direct readers to the electronic

supplementary material.
3. RESULTS
Our model shows the spontaneous evolutionary emer-

gence of behaviours similar to strategies known to

perform well in the IPD and ISD, such as tit-for-tat and

Pavlov, as well as simple always-cooperate or always-

defect strategies (figure 2) [42]. Although our networks’

behaviours are similar to these strategies, they often

show integration over many previous rounds to decide

on their next moves. For example, manual interrogation

of networks revealed that, of the tit-for-tat type strategies

that emerge, many are tit-for-2(or more)-tats, and many

of the Pavlov-like strategies also show a threshold mech-

anism, switching to constant defection against

opponents that show behaviour close to an always-defect

strategy. Behaviour was observed that appeared to be

close to many other strategies—for example, grim variants
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Figure 2. The emergence of intelligent strategies. Shown are the dynamics during 10 000 generation subsets of our simulations

for the (a,c) prisoner’s dilemma and the (b,d) snowdrift game. (a,b) Sample cycles in the frequency of cooperative acts in the
population. (b,d) Frequencies of different strategy types (black, always-defect-like; white, always-cooperate-like; dark grey, tit-
for-tat-like; light grey, Pavlov-like) as determined by clustering individuals with their nearest pure strategy (see §2 and elec-
tronic supplementary material for details). Transitions to cooperation are characterized by high numbers of contingent
strategies, followed by the invasion of the always-cooperate strategy.
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(cooperate until the opponent defects, then defect for-

ever), though often requiring more than one defection

to trigger permanent defection; false cooperator

(cooperate first then switch to defection), though often

giving another cooperative move after many defections;

and many other variants of tit-for-tat such as 2-tits-for-

1-tat and 2-tits-for-2-tats. It is worth noting that strategies

of these types that use longer-term memory are observed

in behavioural experiments of repeated games with noise

[41]. These responsive strategies require greater cognitive

abilities in order to carry out computations based on pay-

offs, memorize past rounds and integrate across them to

make decisions, in comparison with the lower require-

ments of simply always cooperating or defecting. We

hasten to add, however, that the strategies emerging

only resemble these strategies; the strategies vary in a con-

tinuous manner and often incorporate memory over more

rounds. Our goal here is not to describe the strategies that

can emerge in repeated games, as there is already exten-

sive literature on this topic (see table 2.1 in [43]), but

rather to elucidate the potential effects of their evolution

on selection for cognitive capacities.

In order to elucidate the causal factors leading to the

evolution of more complex strategies, we analyse the gradi-

ent of selection for intelligence in response to population

features such as the prevalence of cooperative acts.

We find that the selection for intelligence is maximized

as the level of cooperation in the population moves above

the single-interaction Nash equilibria towards more
Proc. R. Soc. B (2012)
cooperative regimes (figure 3). In the IPD, this maximum

occurs during increases in cooperation from the single-

interaction Nash equilibrium, whereas in the ISD selection

for intelligence is maximized at levels of cooperation just

above the single-interaction Nash equilibrium. This discre-

pancy between the games is explained by the different

natures of their single-interaction Nash equilibria. In the

IPD, this equilibrium is zero, meaning that declining

cooperation near this equilibrium is caused by increases

in the frequency of individuals that always defect, requiring

only little cognitive ability. In the ISD, the equilibrium is

non-zero (0.23 in our simulations), meaning that decreases

in cooperation back towards the equilibrium can be caused

by ‘meaner’ contingent strategies (e.g. 2-tits-for-1-tat and

false-cooperator variants), as well as individuals that

always defect. As a result, transitions back to the single-

interaction Nash equilibrium in the ISD can in

principle select for intelligence, while this is very unlikely

in the IPD.

We also find that increasing intelligence decreases the

mean frequency of cooperative acts in the IPD (Spearman’s

rank correlation test; r ¼ 20.2333, p , 0.001; figure 4a),

while slightly increasing cooperation in the ISD (Spear-

mans’ rank correlation test; r ¼ 0.0089, p , 0.0001, figure

4b). Increasing intelligence increases the variance in the fre-

quency of cooperative acts in the population in both the IPD

(Breusch–Pagan test; intercept¼ 0.0294, slope ¼ 0.0582,

p , 0.0001; figure 4a) and the ISD (Breusch–Pagan test;

intercept ¼ 0.0309, slope ¼ 0.0384, p , 0.001; figure 4b),
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showing that intelligence can facilitate greater extremes

of cooperation. These results can be explained by assort-

ment of individuals’ cooperative acts [44]; the contingent

strategies facilitated by increased intelligence allow an indi-

vidual to increase the probability that they assort their

cooperative acts with other cooperative acts. This leads to

a synergistic process, where this increase in cooperation

due to increased intelligence creates further opportunities

for intelligent individuals to engage in mutual cooperation.

However, as levels of cooperation increase further this feed-

back can break down, as there may be enough cooperation

occurring for unconditional cooperators to increase in the

population, allowing in turn for the invasion of uncondi-

tional defectors or ‘meaner’ intelligent strategies (e.g. grim

variants, false-cooperator variants, etc.). This results in

intelligence-facilitating cycles in the levels of cooperation
Proc. R. Soc. B (2012)
seen in the population (figure 2), which increases both the

variance in, and the maximum level of, cooperation.

In addition to dependency on the prevalence of, and

change in, cooperative actions (figure 3), we find that intel-

ligence can be subject to a Machiavellian runaway process

[11,12]. In the ISD, as the frequency of contingent (intel-

ligent) strategies increases, so too does selection for

intelligence in the population (tit-for-tat-like strategies:

Spearman’s r ¼ 0.2025, p , 0.0001; Pavlov-like strategies:

r ¼ 0.2352, p , 0.0001; see figure 5; electronic sup-

plementary material, table S1 and figure S1). In the IPD,

increasing frequencies of tit-for-tat and Pavlov reduces

selection for intelligence at low levels of cooperation (fre-

quency of cooperation ,0.5; tit-for-tat: r ¼ 20.0945,

p , 0.0001; Pavlov: r ¼ 20.0529, p , 0.0001), but does

increase selection for intelligence when cooperation
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is more frequent (frequency of cooperation � 0.5; tit-

for-tat: r ¼ 0.5491, p , 0.0001; Pavlov: r ¼ 0.3187,

p , 0.0001). The reason for this distinction between the

IPD and the ISD is that there must already be some

cooperation occurring for cooperative contingent strategies

to be favoured via their ability to assort cooperative acts.

In the ISD, the partially cooperative single-interaction

equilibrium provides sufficient baseline cooperation for

tit-for-tat and Pavlov to be favoured, whereas in the IPD

the single-interaction equilibrium of zero cooperation

means that unless contingent strategies (or random drift)

have already increased cooperation, tit-for-tat-like and

Pavlov-like strategies cannot be favoured, and hence

cannot lead to an arms race. Note that it is still the case

that intelligence is selected for in the IPD when coopera-

tive acts are rare yet increasing (figure 3a). However, the

cooperative acts that drive selection for intelligence in

this case are generated by less cooperative contingent strat-

egies, which cluster with always-defect as their closest pure

strategy (r ¼ 0.1095, p , 0.0001; see electronic sup-

plementary material, table S1 and figure S1). This means

that there is a succession in the arms race in the IPD,

with ‘mean’ contingent strategies initially increasing selec-

tion for intelligence at low cooperation, and ‘kind’

contingent strategies increasing selection for intelligence

as cooperation increases.

It is not any particular single strategy that drives these

arms races; rather, as the complexity of the strategies in

the population increases, there is selection for other com-

plex strategies to outwit them. Unlike previous analyses

where fixed strategies or strategies with constrained

memory were used, our open-ended system allows for

near infinite strategic variations to outwit opponents. In
Proc. R. Soc. B (2012)
this way, selection for intelligence occurs owing to a con-

stantly shifting strategic environment, where the ‘best

response’ to the population of strategies can be shifting

from generation to generation. Increases in memory

allow for the potential of the recognition of opponents’

strategies, allowing for the alteration of one’s own strategy

in response (e.g. Pavlov-like strategies that can recognize

individuals that always defect). In turn this can allow

for attempts to deceive opponents regarding one’s own

strategy (e.g. false cooperators).
4. DISCUSSION
It is important here to note the closed nature of our model

system; individuals can only choose within one social task

(whether to cooperate or defect against another individual

based on their behaviour in previous interactions with

them). However, our results may apply in principle to

other social scenarios where individuals use strategies to

decide who to cooperate with or when to cooperate,

such as indirect reciprocity [17,18], policing/punishment

[45,46] and partner choice [47–49]. Along with kin selec-

tion, these are the major mechanisms thought to lead to

transitions to cooperative groups. As the intelligence of an

individual increases, it is likely that more of these behav-

ioural repertoires will become available to them, with

increased intelligence acting as a pre-adaptation. For

example, increased intelligence owing to selection for

direct reciprocity could facilitate the evolution of indirect

reciprocity or partner choice, highlighting the contingent

nature of social evolution in multiple strategic dimen-

sions [50]. The facilitation of new social behaviours due

to emergent intelligence could allow for a perpetuated

Machiavellian arms race leading to ever-greater levels of

intelligence. Additionally, in our simulations populations

evolved to play only a single game (either the IPD or

ISD). The simultaneous play of multiple games could

greatly increase strategic complexity, with the possibility

of the integration of information from previous interac-

tions in games with different payoff structures into the

decision-making process.

It has previously been suggested that the pinnacles of

cooperative behaviour in nature show a bimodal distri-

bution with intelligence, with the most cooperative

species displaying either limited cognition (e.g. microbes,

social hymenoptera) or exceptional intelligence (e.g.

humans and other primates, certain cetaceans and

birds) [26]. It is clear in the former case that cooperation

has evolved primarily owing to combinations of kin selec-

tion and ecological factors [51]. However, in the latter

case, kin selection is not the only mechanism leading to

cooperation, and may not even be the most important.

A recent study has in fact suggested that relatedness was

too low in human hunter–gatherer groups for kin selec-

tion to drive the evolution of human cooperation [52].

In highly intelligent species, contingent behaviours (reci-

procity, partner choice, etc.) appear to have been

important in the evolution of cooperation [26]. Our

results may help us to explain this pattern by showing

that the selection for appropriate behavioural assort-

ment of cooperative acts can lead to selection for greater

cognitive abilities and Machiavellian arms races, and that

intelligence facilitates greater extremes of cooperation.

Additionally, although kin selection is still of importance
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in highly intelligent taxa, high relatedness may hinder

the evolution of intelligence by driving unconditional

cooperation to fixation in the population, without any

need of contingent behaviours.

A trait as complex as advanced intelligence is likely to

have evolved owing to a combination of several factors

rather than a single factor [4]. Along with the social

intelligence hypothesis, many other theories attempt-

ing to explain the evolution of advanced intelligence

have been suggested, among them that intelligence is

an adaptation for tool use [53,54], that intelligence

is an adaptation for social learning and the accumulation

of culture [55–57], and that intelligence is the result of

sexual selection [58]. All of these theories are supported

by evidence from at least some of the most intelligent ani-

mals. However, the difficulty lies in disentangling the

traits that are causal factors in the evolution of intelligence

from those that are by-products of advanced intelligence.

The combination of game theoretic frameworks and arti-

ficial neural network models presented here may provide a

framework for the evaluation of the mechanistic strengths

of these different hypotheses. While previous models have

sought to relate cooperation and intelligence, the focus

has most frequently been on the cognitive requirements

of cooperation, rather than on the selection for intelli-

gence. Many of these models have lacked an explicit

brain structure [17–22], and among those studies that

have used artificial neural networks, we know of no

examples where the network structure was allowed to

freely evolve or implications of selection for decision-

making strategies for the evolution of intelligence were

directly addressed [23,24]. While artificial neural net-

works are not real brains, relying on abstraction of the

activity of millions of real neurons down to a manageable

number of artificial neurons, they can provide insight into

the dynamics of cognitive evolution and allow for the flex-

ible evolution of behaviour [59]. Our results show that, in

a freely evolving system, selection for efficient decision-

making in social interactions can give rise to selection

pressures for advanced cognition, supporting the view

that the transition to the cooperative groups seen in the

most intelligent taxa may be the key to their intellect.
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