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Cooperation between host immunity and
the gut bacteria is essential for helminth-
evoked suppression of colitis
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Abstract

Background: Studies on the inhibition of inflammation by infection with helminth parasites have, until recently,

overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the

composition of their host’s microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain

fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric

microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling

enteric inflammation.

Methods: Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were

infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut

expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition

was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a

bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis.

Results: Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was

not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families

Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces

from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H.

diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and

butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated

H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2−/− mice.

Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial

cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the

il-10-receptor and butyrate transporters.
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Conclusion: Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H.

diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth

therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of

the patient’s immunological and microbiological response to the helminth.

Introduction
Despite significant increases in therapeutics for chronic

inflammatory disease, even the best of these (e.g., anti-

TNFα antibody) is ineffective in a substantial number of

patients. The rapidity of the emergence and increase in

incidence of idiopathic auto-inflammatory disease sup-

ports a role for environmental factors in the pathogen-

esis of these conditions [1, 2]: an awareness that can

direct the search for new therapeutic approaches. The

inverse correlation between the geographical distribution

of inflammatory bowel disease (IBD), diabetes, and mul-

tiple sclerosis with endemic parasitic helminth-infections

has led to the hypothesis that infection with helminths

could confer protection against auto-inflammatory dis-

ease [3]. A position supported by the fact that helminths

have evolved to manipulate their hosts’ immune system

[4, 5]. Indeed, analyses of animal models show that in-

fection with helminth parasites reduces the severity of

inflammatory disease [6–11], in which interleukin (il)-

10, transforming growth factor (tgf)-β, and regulatory T

cells, B cells, and macrophages were critical host factors

in the inhibition of inflammation [12–16].

This immune-centric view of the host-parasite inter-

action overlooks the possible, if not probable, participa-

tion of the microbiome in a tripartite relationship.

Descriptions of increased bacterial species richness or

diversity in helminth-infected rodents and people are

common [17–21], but the functional consequences of

these changes in the microbiome to gut homeostasis are

not well understood. The juxtaposition of helminth and

bacteria in the gut allows for the possibility that the

anti-inflammatory effect that follows infection with the

parasite could, at least in part, be via the microbiota.

This postulate is supported by data showing that re-

duced airways inflammation in mice infected with the

nematode Heligmosomoides polygyrus was abrogated by

antibiotic treatment [22, 23].

The mouse is a non-permissive host for the rat-

tapeworm, Hymenolepis diminuta. Lacking hooks or

teeth, this helminth does minimal damage to the host

and seeks to establish in the small intestine (it does not

migrate through the host): the mouse mounts a Th2-

dominated immune response and expels the worm

within 8–11 days of a primary infection [24]. Infection

with H. diminuta reduces the severity of dinitrobenzene

sulphonic acid (DNBS)-induced colitis in mice, and il-10

is important in this event [6]. H. diminuta-infection

caused subtle, yet distinct, changes in the composition of

the mouse colonic microbiota, but the bacteria were not

required for expulsion of the worm [25]. This presents a

model to address the issue of the intersection of hel-

minths and gut bacteria in the regulation of colitis. The

data herein, show that host immunological and micro-

biota responses (i.e., increased short-chain fatty acids

(SCFAs) synthesis) are essential to the suppression of

colitis initiated by infection with H. diminuta. Thus, in

the development of new approaches to inflammatory

disease, these data suggest that helminth therapy may be

rendered ineffective in an individual with a reduced cap-

acity to make il-10 (which may be a rare occurrence) or

with gut dysbiosis.

Results
Antibiotic (Abx) treatment abrogates H. diminuta-evoked

suppression of colitis

The possibility that the gut bacteria participated in H.

diminuta-evoked suppression of colitis was tested with

broad-spectrum antibiotics (Fig. 1A). As assessed by

body weight, colon length and disease and histopath-

ology scores, the suppression of DNBS-induced colitis

evoked by infection with H. diminuta was absent in mice

co-treated with antibiotics (ABX) (Fig. 1B–E and Suppl.

Fig. 1). ConA-stimulated splenocytes (used as a marker

of systemic immunity and a surrogate to confirm suc-

cessful infection) from H. diminuta+DNBS-treated mice

produced more il-10 than those from non-infected or

DNBS-only treated mice (Fig. 1F). The magnitude of the

splenic il-10 production from ABX+H. diminuta+

DNBS-treated mice was reduced, yet was significantly

greater than that produced by splenocytes for ABX+

DNBS-treated mice (Fig. 1F).

Profiling of the bacterial composition revealed a lower

Shannon index in colon-associated bacteria from DNBS-

treated mice compared to control, with H. diminuta+

DNBS-treated mice having an intermediate phenotype,

statistically different from the other two groups (Fig.

2A). A similar pattern was noted for β-diversity, with the

exception that two mice in the DNBS group clustered

with controls; these mice had the lowest disease scores

in the DNBS group (Fig.2B). Differential abundance ana-

lysis revealed significant increases in ASVs in the family

Lachnospiraceae (p=2.92 × 10-14) and the Clostridium

clusters XIVa (p = 1.24 × 10−4) and XIVb (p=1.94 ×

10−16) in H. diminuta+DNBS treated mice compared to
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DNBS-only treatment (Fig. 2C). DNBS-only treated mice

had increased variants belonging to the families Bacter-

oidaceae (p=3.05 × 10−5), Staphylococcaceae (p=1.60 ×

10−7), Enterococcaceae (p = 3.39 × 10−5), and Erysipelo-

trichaceae (p = 1.15 × 10−16) compared to the H. dimin-

uta+DNBS group (Fig. 2C). As expected, mice treated

with ABX (broad spectrum, vancomycin only, or poly-

myxin B + neomycin ± DNBS ± H. diminuta) displayed

severe disruption of their microbiota (Fig. 2A, D–F),

with a general shift away from Firmicutes and to Bacter-

oidetes (Fig. 2F). Differential abundance analysis

identified significant increases in ASVs belonging to the

genus Akkermansia (p = 1.11 × 10−21), Enterococcus (p =

6.46 × 10−5), and Bacteroides (p = 3.96 × 10−16), as well

as the phylum Proteobacteria (p = 2.16 × 10−15) in H.

diminuta+DNBS+ABX compared to H. diminuta+

DNBS-treated mice (Fig. 2F). Sequence variants belong-

ing to Lachnospiraceae were significantly (p = 4.02 ×

10−23) depleted in ABX+DNBS-treated mice.

Use of different antibiotics (vancomycin to target

Gram-positive bacteria, polymyxin B+neomycin to target

Gram-negative bacteria) to modulate microbiota

Fig. 1 Broad-spectrum antibiotic treatment prevents H. diminuta-evoked inhibition of colitis. Male BALB/c mice were treated as shown in panel A

(H. dim, H. diminuta 5 cysticercoids orally; DNBS, 3 mg ir.; ABX-drinking water ad libitum), and 3 days after DNBS, disease severity was assessed by

B change in body weight, C colon length, D disease activity score, and E histopathology score (representative H&E images in suppl. Fig. 1). Panel

F shows il-10 production by conA-stimulated splenocytes (2 μg/mL, 5 × 106 cell/mL, 48 h) (data are mean ± SEM combined data from 3 to 4

experiments (data in panel F are from 2 experiments); ABX, antibiotic cocktail of kanamycin (40 mg/L), gentamicin (3.5 mg/L), colistin (4.2 mg/L),

and metronidazole (21.5 mg/L); vancomycin (Van), 200 μL of 0.5 mg/mL by intraperitoneal injection; *, #,† p < 0.05 compared to control, DNBS

and DNBS+ABX, respectively; pi, post-infection)
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composition significantly reduced the richness of the

murine gut microbiota (Fig. 2A; Suppl. Fig. 2). Treating

H. diminuta-+DNBS mice with vancomycin resulted in

the reduction of several ASVs, specifically those belong-

ing to the family Lachnospiraceae (p = 2.53 × 10−14) and

the Clostridia cluster XIVb (p = 9.47 × 10−18) compared

to the H. diminuta+DNBS group (some Lachnospiraceae

ASV were increased in the H. diminuta+DNBS+vanco-

mycin group and so additional sequencing will be

needed to identify the species that differ in the two

groups). Similarly, polymyxin B+neomycin-H. diminuta+

DNBS-treated mice lacked variants belonging to the

Lachnospiraceae family (p = 7.34 × 10−20) and the Clos-

tridium cluster XIVa (p = 2.67 × 10−21) compared to the

H. diminuta+DNBS group (Suppl. Fig. 2). The impact of

either vancomycin or polymyxin B+neomycin on the

ability of H. diminuta to suppress DNBS-induced colitis

was variable, such that disease and histopathology scores

Fig. 2 H. diminuta preservation of the gut microbiota in DNBS-treated mice is overcome by broad-spectrum antibiotic treatment (ABX). Male

BALB/c mice were treated as shown in Fig. 1A (5 cysticercoids of H. diminuta (H. dim) 8 days prior to di-nitrobenzene sulphonic acid (DNBS; 3 mg,

ir) with necropsy 3 days later ± ABX) and colon-associated bacteria assessed by 16s rRNA sequence analysis. A Reduced Shannon index (α-

diversity) caused by DNBS-colitis was significantly prevented by H. diminuta-infection, while ABX-treatment, independent of DNBS or H. diminuta

had the greatest impact on α-diversity. B β-diversity (PCoA; Weighted UniFrac distance) reveals separation of the groups with control and H.

dim+DNBS clustering away from DNBS-only treated mice and characterized by increased ASVs for Lachnospiraceae, Clostridales, and Clostridium-

XIVa (C). D–F UniFrac distance and relative abundance analyses show the impact of ABX on colonic microbiota of DNBS ± H. diminuta-treated

mice. (ABX, antibiotic cocktail in drinking water ad libitum, kanamycin (40 mg/L), gentamicin (3.5 mg/L), colistin (4.2 mg/L), metronidazole (21.5

mg/L), and ip. vancomycin (van) at 200 μL of 0.5 mg/mL; panel A: Pmx/Neo, polymyxin B (1 g/L) and neomycin (500mg/L) in drinking water;

horizontal line, median; black diamond, mean; box plots, 25–75% quartiles; vertical line, minimum and maximum value; Mann-Whitney U test; see

suppl. Fig. 3A and D for treatment protocol)
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were not statistically different from the DNBS or H.

diminuta+DNBS groups (Suppl. Fig. 3), and likely re-

flects the composition of the microbiota in individual

mice at the start of the experiment combined with the

variable response to DNBS. Splenocytes from H. dimin-

uta+DNBS+vancomycin or H. diminuta+DNBS+poly-

myxin B+neomycin-treated mice produced levels of il-10

that were not different from control, and in contrast to

significantly increased output of il-10 from conA-

stimulated splenocytes for H. diminuta+DNBS-treated

mice (Suppl. Fig. 4).

Increased splenocyte il-10 production from GF-mice

confirmed a response to infection with H. diminuta

(Suppl. Fig. 5A) [25]. GF-mice infected with H. diminuta

had increased colonic il-10 mRNA compared to control,

while il-10rα mRNA levels were not different from unin-

fected GF-mice (Suppl. Fig. 5B). While the severity of

DNBS-induced colitis was variable in GF-mice, infection

with H. diminuta did not elicit a significant anti-colitic

effect in these mice (Suppl. Fig. 5C, D).

Fecal microbial transplants from H. diminuta-infected

mice inhibits colitis

Fresh feces were collected from control specific

pathogen-free (SPF)-mice and mice infected with H.

diminuta 8 days previously, processed under anaerobic

conditions, and gavaged into separate groups of GF-mice

(Fig. 3A); animals that received feces from H. diminuta-

infected donor mice had less severe colitis when chal-

lenged with DNBS 4 weeks later (Fig. 3B–F).

Analysis revealed bacterial community compositions

in feces from control and H. diminuta-infected mice

consistent with our previous observations (data not

shown) [25], with a small increase in α-diversity in the

infected mice (Suppl. Fig. 6A). Four weeks post-

colonization, α-diversity was not different between the

groups, whereas taxonomic β-diversity as determined by

weighted Unifrac distance showed distinct separation of

the groups (Suppl. Fig. 6B), that was still apparent on

necropsy 72 h after DNBS-treatment (Suppl. Fig. 6A,B).

Differential abundance analysis revealed greater abun-

dance of ASVs belonging to the family Lachnospiraceae

(p = 1.33 × 10−27) and Clostridia cluster XIVa (p = 4.94

× 10−14) in feces from H. diminuta-infected donors com-

pared to that from naïve-donor SPF-mice (Suppl. Fig.

6C). At 4 weeks post-colonization, mice that received

feces from H. diminuta-infected mice had a higher

abundance of Lachnospiraceae (p = 8.97 × 10−13), Rumi-

nococcus (p = 8.46 × 10−25), and Clostridium cluster

XIVa (p = 6.32 × 10−13), while ASVs assigned to the

families Clostridiaceae_1 (p = 3.67 × 10−15) and Rumino-

coccaceae (Flavonifractor; p = 2.83 × 10−14), and Clos-

tridium cluster IV (p = 5.62 × 10−14) were increased in

mice that received control donor feces (Suppl. Fig. 6D).

Finally, differential abundance analysis showed signifi-

cant increases in ASVs belonging to the families Lach-

nospiraceae (p = 2.12 × 10−14) and Ruminococcaceae (p

= 3.11 × 10−17), as well as Clostridium cluster XIVa (p =

1.22 × 10−34) in DNBS-treated mice that received feces

from H. diminuta-donors compared to DNBS-treated

mice that received feces from naïve-donors; the latter

demonstrated substantial increases within the families

Enterobacteriaceae (p = 4.75 × 10−37) and Bacteroida-

ceae (p = 2.89 × 10−41) (Suppl. Fig. 6E).

Feces from H. diminuta-infected mice have increased

SCFA

Initial NMR analyses revealed increased acetate, propion-

ate, and butyrate in feces from 8-day H. diminuta-infected

mice compared to non-infected mice (Fig. 4A). The in-

creases were transitory and were not seen with this tech-

nique when feces from 11-dpi with H. diminuta were

assessed (Fig. 4A). These increases in SCFAs were con-

firmed by paired LC-MS analyses on feces from individual

mice collected prior to and 8 days post-infection with H.

diminuta (Fig. 4B–D). The increased levels of acetate, bu-

tyrate, and propionate in feces from H. diminuta-infected

mice were ablated by antibiotic co-treatment, particularly

the cocktail with broad-spectrum activity (Fig. 4E–G). The

anti-colitic effects of butyrate and acetate were confirmed

by enema delivery or continuously in the drinking water,

respectively (Suppl. Fig. 7).

Bacteria-free filtrate of feces from H. diminuta-infected

mice reduces DNBS-induced colitis

Intra-rectal delivery of a fecal filtrate (FF) from day-8 H.

diminuta-infected mice four times over the course of

DNBS-induced colitis (Fig. 5A) significantly reduced the

severity of disease (Fig. 5B–F), as gaged by disease and

histopathology scores, but not body weight. Mice that

received control FF or FF from H. diminuta-infected do-

nors had longer controls than DNBS-only treated mice,

suggesting a mild benefit of fecal filtrate in this model

system: the benefit was most pronounced with the FF

from infected mice. Colonic tissue from mice that re-

ceived the FF from H. diminuta-infected mice had in-

creased il-10rα mRNA compared to those receiving FF

from naïve donor mice, but il-10 mRNA was not statisti-

cally significantly increased (Fig. 5G). The FF from H.

diminuta-infected mice contained more acetate (4.2±

0.81 mM*) and butyrate (467±90 μM*) compared to FF

from naïve mice (acetate = 2.3±0.53 mM; butyrate =

272±52 μM; n = 3; *, p < 0.05 unpaired t test).

DNBS-induced colitis in ffar2−/− mice is not affected by

infection with H. diminuta

C57/Bl6 free-fatty acid (ffar)-2+/− mice infected with H.

diminuta were protected from DNBS-induced colitis,
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Fig. 3 (See legend on next page.)
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whereas infected ffar2−/− littermates displayed colitis

that was not significantly different from DNBS-only

treated ffar2−/− mice as assessed by disease activity

scores, histopathology scores, and colon length (Fig. 6A–

C). The anti-colitic effect of infection with H. diminuta

observed in ffar-2+/− was accompanied by increased il-10

production by conA-stimulated splenocytes compared to

splenocytes from naïve ffar-2+/− mice and H. diminuta+

DNBS treated ffar2−/− mice (Fig. 6D).

Anti-il10 antibodies eliminate the anti-colitic effect of

infection with H. diminuta

Consistent with previous findings [6], the inhibition of

DNBS-induced colitis by infection with H. diminuta was

abrogated in mice treated with neutralizing anti-il-10

antibodies, as assessed by disease activity and histopath-

ology scores (Suppl. Fig. 8).

Reciprocal regulation of il-10 receptor and butyrate

transporters/receptors

Colonic tissue excised from H. diminuta+DNBS treated

mice displayed increased il-10 and il-10rα mRNA and

decreased IFNγ mRNA compared to DNBS-only treated

mice: these changes were abrogated by antibiotic treat-

ment of H. diminuta+DNBS treated mice (Fig. 7A). Cor-

roborating and extending data with human gut-derived

cell lines [26], we find that butyrate increases il-10rα

mRNA expression in a mouse rectal epithelial cell line

and in primary mouse colonoids in a dose- and time-

dependent manner (Fig. 7B, C). Immunostaining re-

vealed il-10rα-immunoreactivity in the colon of control

mice that was most prominent on the apical epithelium

with minimal positivity on lamina propria cells (as dem-

onstrable by this technique), whereas tissue from DNBS-

treated mice was largely devoid of il-10rα-immunoreac-

tivity (Fig.7D). Colon from H. diminuta+DNBS treated

mice had widespread il-10rα-immunoreactivity in the

epithelium, extending deep into the crypts, and in the

lamina propria (Fig.7D). Sections of colon from mice

that received butyrate enemas displayed il-10rα-immu-

noreactivity that was subtly increased over that observed

in control mice and was predominantly evident on the

apical epithelial cells (Fig. 7D).

Analysis of mRNA for SCFA transporters and recep-

tors revealed consistent induction of MCT1 mRNA in

the HT-29 (Fig. 8A) and CMT-93 (Fig. 8B) epithelial cell

lines and primary mouse organoids (Fig. 8C) by il-10

(HT-29 had a subtle increase in MCT1 protein) (Fig.

8A). ABCG2 mRNA was increased in il-10-treated HT-

29 and CMT-93 epithelia. Il-10 treatment increased

mRNA expression for the SCFA receptor HCAR

(GPR109A) in HT-29 cells (Fig. 8A), while the increase

in ffar2 in CMT-93 cells failed to reach statistical signifi-

cance (Fig. 8B).

Discussion
Enthusiasm for helminth-therapy for inflammatory dis-

ease based on numerous animal model studies [27] and

small clinical trials [28–31] is tempered by a lack of effi-

cacy of Trichuris suis ova in larger trials [32–34]. We hy-

pothesized that the anti-colitic effect of infection with a

helminth parasite could be influenced by the gut micro-

biota and so its effectiveness would be reduced in IBD

patients with dysbiosis [35]. The novel data herein reveal

helminth, host, and gut bacteria interaction in the sup-

pression of disease, and in untangling this tripartite

mechanism of the control of enteric inflammation we

note reciprocity in il-10 and butyrate signaling in the

regulation of short-chain fatty acid transporter and il-10

receptor expression, respectively.

Mechanistic studies to understand how infection with

helminth parasites inhibits inflammatory disease have

implicated suppression of Th1 immunity or production

of immunoregulatory cells and mediators [4, 13, 14, 36].

This focus on host immunological processes, while intui-

tive, has, until recently, overlooked the potential involve-

ment of the host microbiota as a regulator of mucosal

immunity and gut homeostasis [22, 37–39]. Following

identification that infection with H. diminuta signifi-

cantly increased bacterial species richness in mice (e.g.,

increased relative abundance of Lachnospiraceae [25]

and reduced Bacteroidaceae, members of which may

exert a pro-colitigenic effect [40]), treatment with broad-

spectrum antibiotics was found to prevent the inhibition

of colitis evoked by H. diminuta-infection. Moreover,

splenocytes from the antibiotic+H. diminuta+DNBS-

treated mice produced substantial amounts of il-10, sug-

gesting that lack of inhibition of colitis in the antibiotic-

treated mice was linked to the microbiota and not a by-

stander effect on the host immune response to H. dimin-

uta-infection. This supposition is supported by similar

severities of DNBS-induced colitis in GF-mice ± H.

diminuta-infection. In accordance with these data, H.

polygyrus-evoked suppression of airways inflammation

(See figure on previous page.)

Fig. 3 Feces from H. diminuta-infected mice protects mice from DNBS-treated mice. A Experimental paradigm of treatment of male BALB/c

germ-free (GF)-mice with feces from mice infected with 5 H. diminuta 8 days previously. Di-nitrobenzene sulphonic acid (DNBS: 3 mg, ir.)-induced

colitis evoked 4 weeks after fecal microbial transplant was assessed by body weight (B), colon length (C), and disease (D) and histopathology

scores (E). Panel F show representative H&E stained sections of mid-colon (data are mean ± SEM combined from 2 experiments; *, p < 0.05

compared to mice receiving feces from naive control mice; SPF, specific pathogen-free)
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Fig. 4 (See legend on next page.)
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or obesity induced by a high-fat diet was abrogated in

mice co-treated with antibiotics [22, 41].

Dissecting the role of the microbiota in the anti-colitic

evoked by helminth-infection, transfer of feces from

mice infected 8 days previously with H. diminuta into

GF-mice conferred partial, but significant, protection

from DNBS-colitis. While the transfer of feces is a

promising approach for some conditions [42], there are

safety concerns, and microbiota from Schistosoma man-

soni- and H. polygyrus-infected mice exaggerated dextran

sodium sulfate- and Citrobacter rodentium-induced col-

itis, respectively [38]. The latter studies illustrate the

specificity of host-parasite interaction, that infection

with worms that do not inhabit the gut (i.e., S. mansoni)

can affect the composition of the gut microbiota, and

that helminth therapy for a inflammatory disease is un-

likely to be via a single species of helminth [we note that

differential effects of feces from helminth-infected mice

may also be due to differences in the gut bacteria due to

source of the animal, housing or food, and be influenced

by the helminth-specific mucosal immune response].

Subsequently, enemas of filtered feces from H. dimin-

uta-infected mice, but not that from uninfected mice,

were found to inhibit DNBS-colitis in SPF-mice,

prompting analysis of the feces for molecules that could

suppress DNBS-induced colitis.

Feces from H. diminuta-infected mice had increased

levels of the short-chain fatty acids (SCFAs), acetate and

butyrate compared to uninfected mice, compatible with

the increased abundance of actinobacteria and Clostrid-

ium cluster XIVa. Some, not all, individuals with IBD

have benefited from butyrate enemas [43] and acetate

and butyrate can be anti-inflammatory in murine models

of colitis [44–46]; findings we recapitulated with the

DNBS-model of colitis. While many bacteria-derived

products affect the host, the finding that the ffar2−/−

(or G-protein coupled receptor (GPR)-43 found on

colonic epithelium and immune cells [47]) mice were

not protected from DNBS-induced colitis by infection

with H. diminuta supports further a role for SCFA in

the anti-colitic effect. Similarly, fecal transplants from

infected mice recapitulated the reduced hypersensitiv-

ity to house dust mite in H. polygyrus-infected mice;

in this instance acetate and ffar3 (GPR41) mediated

the protective effect [22].

The data support a mechanism whereby infection with

H. diminuta causes increased abundance of SCFA-

producing bacteria, and that increased butyrate and acet-

ate, via ffar2, mediates the suppression of colitis. How

then to reconcile this with immunoneutralization of il-

10 blocking the anti-colitic effect of infection with H.

diminuta (6) (Suppl. Fig. 8)? Positing interaction via il-

10 and butyrate, H. diminuta-infection evoked increased

il-10rα immunoreactivity in the colon was absent in

antibiotic co-treated mice, and infected GF-mice dis-

played increased colonic il-10, but not il-10rα, mRNA.

Moreover, enemas with fecal-filtrate from H. diminuta-

infected mice or butyrate into SPF-mice both resulted in

an increase in colonic il-10-rα mRNA or protein. Butyr-

ate directly increased il-10rα mRNA expression in a

murine rectal epithelial cell line and primary epithelia,

extending similar observations in human colon-derived

epithelial cells lines [26]. Reciprocally, il-10 increased

mRNA expression for one or more butyrate transporter/

receptor in the human colonic HT-29 epithelial cell line,

and murine CMT-93 epithelial cells and colonoids.

Butyrate and il-10 exert a range of anti-inflammatory

effects [48, 49]. Thus, we speculate that infection with H.

diminuta creates a positive feedback loop whereby

bacteria-derived butyrate and host-derived il-10 cooper-

ate to drive the anti-colitic effect: absence of either ne-

gates the beneficial effect of infection with the helminth.

In accordance, the recruitment of il-10+ regulatory T

cells to the lungs of H. polygyrus-infected mice was

dependent on ffar3, and H. polygyrus-evoked changes in

the gut microbiome that reduced obesity in high-fat

diet-fed mice were dependent of signal transducer and

activator of transcription (STAT)-6 (i.e., il-4/il-13 signal-

ing) [50]. These findings combined with the current data

illustrate the intertwined nature of the helminth-host-

bacteria relationship and the interplay between host im-

mune factors and bacteria-derived molecules in the sup-

pression of disease.

Conclusion
The present study advances understanding of helminth-

regulation of inflammatory disease, providing evidence

for a critical role of bacteria-derived SCFAs operating

via ffar2 in H. diminuta-amelioration of colitis, the es-

sential requirement of il-10 that can up-regulate

(See figure on previous page.)

Fig. 4 Feces from H. diminuta-infected mice contain increase amounts of short-chain fatty acids (SCFA). A Heat-map of NMR results shows

increased acetate, propionic acid and butyric acid in feces from mice infected 8 days previously with H. diminuta. B–D Separate analyses

confirmed increased SCFA in feces of infected mice (paired t test, day 0 vs. 8 days post-infection). E–G Broad-spectrum antibiotic treatment (ABX)

(see Fig. 1A) prevented the H. diminuta (H. dim) evoked increase in fecal acetate or butyrate, and a similar pattern was observed in mice treated

with vancomycin (Van) or polymyxin B and neomycin (Pmx/Neo) (see Suppl. Fig. 3A,D) (data are mean ± SEM; *, p < 0.05 compared to control or

between indicated groups; #, p < 0.05 compared to DNBS (di-nitrobenzene sulphonic acid, 3 mg, ir., necropsy 72 post-DNBS; H. dim, 5

cysticercoids 8 days prior to DNBS; pi, post-infection)
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expression of SCFA transporters/receptors, and butyrate

regulation of il-10 receptor expression. Moreover, it pro-

vides one possible explanation for the lack of efficacy of

helminth-therapy in recent IBD trials, such that patients

who lack SCFA-producing bacteria [51], lack butyrate

transporters or receptors [52], or with a diminished cap-

acity to express il-10 or the il-10-receptor [53] would be

contraindicated for this novel treatment. Extrapolating

from this model system, we suggest that for helminth-

therapy to be beneficial it needs to be coupled to a pre-

cise knowledge of the immunological profile of the mal-

ady to be treated and the composition of the patients’

microbiome. Furthermore, we speculate that reduced ef-

ficacy of helminth therapy could be enhanced by

(See figure on previous page.)

Fig. 5 Bacteria-free filtrate of feces from H. diminuta-infected mice reduces the severity of DNBS-induced colitis. Feces was collected from H.

diminuta-infected mice and passed through a 0.2 μm filter (FF) and administered to specific-pathogen-free male BALB/c mice as shown in panel

A. Seventy-two hours after di-nitrobenzene sulphonic acid (DNBS: 3 mg, ir.), disease severity was assessed by B body weight, C colon length, D

disease activity, and E histopathology scores. Representative H&E stained sections of mid-colon are shown in panel F. Panel G shows q-PCR for il-

10 and il-10rα in colonic segments from FF-treated mice (data are mean ± SEM combined data from 2 experiments; * and #, p < 0.05 compared

to control and control fecal filtrate from naive non-infected mice, respectively; H. dim FF, fecal filtrate from H. diminuta-infected (5 cysticercoids)

mice; pi, post-infection)

Fig. 6 Free-fatty acid repector-2 knock-out mice are not protected from DNBS-induced colitis by infection with H. diminuta. Male ffar2−/− mice

and ffar2+/− littermates were infected with 5 cysticercoids of H. diminuta (H. dim) and 8 days later were challenged with di-nitrobenzene

sulphonic acid (DNBS, 3 mg, ir). At necropsy 72 h post-DNBS, disease was assessed by A disease activity and B histopathology scores and colon

length (C). D Isolated splenocytes (5 × 106/mL) were stimulated with concanavalin-A (2 μg/ml) for 48 h and il-10 production measured by ELISA

(data are mean ± SEM combined data from 2 experiments; * and #, p < 0.05 compared to control and DNBS-only in the matched mouse strain)
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combination with a probiotic matched to compensate

for dysbiosis in a particular individual.

Methods
Mice and H. diminuta life-cycle

All experimental procedures were approved by the Univ.

Calgary Animal Care Committee under protocol AC17-

0115 in compliance with the Canadian Council on Ani-

mal Care guidelines.

Male BALB/c and C57BL/6 mice (7–9 weeks old,

Charles River Laboratories, Quebec, Canada) were

housed in HEPA filtered micro-isolator cages with free

access to rodent chow (Pico-Vac Mouse Diet 20: 5062)

and water in a 22 °C-controlled facility on a 12 h:12 h

light:dark cycle. Breeding pairs of C57Bl/6 Ffar2+/− mice

were provided by Dr. B.T. Layden (University of Illinois,

Chicago) [54] and maintained at the Univ. of Calgary.

Germ-free (GF) BALB/c and C57BL/6 mice were bred

and maintained in flexible-film sterile isolators in the

International Microbiome Center at the Univ. Calgary.

Germ-free status was tested by Sytox Green nucleic acid

staining (Invitrogen) of caecal contents [25]. Mice were

humanely euthanized prior to necropsy.

Adult H. diminuta were maintained in Sprague-

Dawley Rats (Charles River) as a reservoir host and

gravid proglottids passaged through flour beetles to ob-

tain the infective cysticercoids. Mice, under mild manual

restrain, were infected with five cysticercoids in 100 μL

of 0.9% NaCl with a round-tipped oral gavage needle [6].

For GF mice, cysticercoids were incubated in antibiotics

(300 μL: kanamycin (400 mg/L), gentamicin (35 mg/L),

colistin (42 mg/L), and metronidazole (215 mg/L)) for 2

h at 37 °C. Cysticercoid viability after antibiotics treat-

ment was confirmed by excystment in vitro and ability

to infect il4ra−/− mice [25]). Each GF-mouse received 8–

10 cysticercoids by oral gavage.

Induction and assessment of DNBS-colitis

Colitis was induced in anesthetized mice with 3 mg di-

nitrobenzene sulphonic acid (DNBS: MP Biomedicals,

Santa Ana, CA) in 100 μL of 50% ethanol in PBS via a

polyethylene catheter inserted 3 cm into the colon [6].

Bodyweight was recorded daily over 72 h and on

necropsy, colon length was measured and a macroscopic

disease activity score (DAS) was calculated (maximum 5

points) [6]. Portions of mid-colon were excised, fixed in

10% neutral-buffered formalin, dehydrated, and embed-

ded in paraffin wax. Seven μm sections were collected

on coded slides, stained with hematoxylin and eosin, and

histopathology scored in a blinded fashion on a validated

12-point scale [6]. Additional histological sections were

immunostained for il-10 receptor-α chain using a detec-

tion rabbit-anti-mouse il-10 antibody (1:100 in PBS;

Abcam ab225820). After 24 h 4oC incubation, sections

were washed, secondary goat-anti-rabbit HRP-

conjugated antibody (1:500 in PBS, 30 min room

temperature) applied, washed, and then DAB (3,3′Di-

aminobenzidine) substrate (Abcam: ab64238) added.

Representative images were captured on an Olympus

BX41 microscope fitted with a U-TMAD T mount

adapter, using cell Sens standard software (Olympus).

Images were processed using ImageJ (version 1.80

https://imagej. nih.gov/ij/).

Approximately 0.5 cm of tissue immediately distal to

that taken for histology was collected and total RNA iso-

lated using the Aurum Total RNA Mini Kit (Bio-Rad La-

boratories, Hercules, CA) as per the manufacturer’s

protocol, quantified with the Nanodrop 1000 Spectro-

photometer (Thermo Fisher Scientific, Wilmington, DE),

and 0.5 μg of RNA was converted to cDNA using an

iScript kit (Bio-Rad Lab). Quantitative real-time poly-

merase chain reaction (qPCR) of murine colonic tissue

was performed as previously described [25, 55] using

primer sequences shown in Suppl. Table 1.

Interleukin-10 production by concanavalin-A (2 μg/

mL, 48 h)-stimulated spleen cells (5 × 106/mL) was de-

termined by sandwich ELISA using paired antibodies

(R&D Systems Inc.) in accordance with the manufac-

turer’s instructions [25].

Antibiotic treatment of mice

Mice were treated with a broad-spectrum cocktail of an-

tibiotics (ABX: drinking water, kanamycin (40 mg/L),

gentamicin (3.5 mg/L), colistin (4.2 mg/L), and metro-

nidazole (21.5 mg/L) and ip. injections of vancomycin

(200 μL of 0.5 mg/mL) [56] vancomycin only, or

(See figure on previous page.)

Fig. 7 Helminth infection and butyrate upregulates IL-10 receptor expression. qPCR reveals increased in il-10 and il-10 receptor-α and reduced

interferon (ifn)-γ in mid-colon of H. diminuta and DNBS treated mice compared to control and DNBS only treated mice. Co-treatment with broad-

spectrum antibiotics (ABX), vancomycin (Van), or a mixture of polymyxin B (Pmx) and neomycin (Neo) prevented the increase in il-10 or il-10

receptor-α (rα) mRNA. Exposure to butyrate (1-10 mM; 16–24 h) significantly increased the expression of il-10rα mRNA in B a murine rectal

epithelial cell line and C primary murine colonoids. Panel D is a qualitative assessment of il-10rα expression on sections of mid-colon as detected

by immunocytochemistry, with representative images depicted (data are mean ± SEM; *, p < 0.05 compared to control; H. dim, mice infected with

5 H. diminuta 8 days before intra-rectal di-nitrobenzene sulphonic acid (DNBS, 3 mg, 72 h); butyrate (500 micro-L of 100 mM enema was delivered

24 and 3 h before DNBS and 24 and 48 h after DNBS) (ABX, antibiotic cocktail in drinking water ad libitum, kanamycin (40 mg/L), gentamicin (3.5

mg/L), colistin (4.2 mg/L), metronidazole (21.5 mg/L); ip. Van. at 200 μL of 0.5 mg/mL; Pmx/Neo, 1 g/L and 500mg/L in drinking water (see Fig. 1A

and suppl. Fig. 3A,D for treatment protocols)
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polymyxin B (PMB; 1 g/L) + neomycin sulfate (Neo; 500

mg/L) in drinking water (see figures for treatment regi-

mens) [45].

16S rRNA analysis of bacterial communities

Feces (100 mg) was homogenized using 0.2 g of 2.8 mm

ceramic beads (Mo Bio Laboratories, #13114-50) in a

Bullet Blender (Next Advance) and DNA isolated follow-

ing the method of Surette et al., [57] and bacterial com-

munity profiling performed via 16S rRNA V3-V4 region

(341F-785F) amplicon sequencing via Illumina MiSeq

(25). Analysis was performed using Rstudio (R version

3.5.0). Prior to processing the raw fastq files, adapter and

primer sequences were removed using the Cutadapt pro-

gram (version 1.17). Once non-biological nucleotides

were removed, the paired-end fastq files were processed

using the dada2 pipeline (version 1.12.1; dada2 workflow

http://benjjneb.github.io/dada2/tutorial.html). Using the

dada2 “filterAndTrim” function, the truncation lengths

were set to 270 and 200 and the maximum number of

expected errors was set at 2. After learning the error

rates (“learnErrors” in dada2) for denoising the amplicon

data of non-biological errors (“dada” in dada2), forward

and reverse reads were merged for full-denoised se-

quences (“mergePairs” in dada2) and an amplicon se-

quence variant (ASV) table generated

(“makeSequenceTable” in dada2). Taxonomic classifica-

tions were assigned to the ASV table (“assignTaxonomy”

in dada2) using the Silva 132 database (arb-silva.de/

documentation/release-132/) as a reference training set.

Community analysis of the data was performed using

Phyloseq version 1.24.2. Alpha diversity was determined

using the “plot_richness” function in Phyloseq and Wil-

coxon rank sum test assessed statistical significance.

Using the “Unifrac” function in Phyloseq, weighted Uni-

frac distances of each sample was determined and plot-

ted using Principal Coordinate Analysis (PCoA). A

permanova test using the “Adonis” function (Vegan ver-

sion 2.5-6.) tested for statistically significant compos-

itional differences between groups (β-diversity).

Following a positive permanova test, a permutation test

for homogeneity of multivariate dispersions was per-

formed, for which a non-significant test would indicate

that the permanova test is a real result and not due to

differences in group dispersion. Differential abundance

(identifying taxa within a sample/group that are

significantly increased or decreased when compared to

another sample) was performed with R program DeSeq2

(v. 3.11). Data are displayed as a log-fold change. The

raw fastq sequencing files used within this study have

been uploaded to the short reads archive (SRA) database

(BioProjectID:PRJNA690571).

Short-chain fatty acid and metabolite measurement

Five hundred milligrams of fresh feces was mixed with

500 μL 100% HPLC grade methanol and 500 μL of HPLC

grade H2O, vortexed and then centrifuged at 13,000×g

for 5 min at 4 °C. Then 700 μL of the supernatant was

mixed with an equal volume of 50% HLPC grade metha-

nol, vortexed (2 min), and spun down (13,000×g, 10 min,

4 °C). The supernatant was collected, divided into two,

filtered (0.2 μm), and dried at 4 °C. One of the duplicate

dried samples was reconstituted in 800 μL of deuterium

oxide, titrated to a pH of 7.400 ± 0.005, and subjected to

nuclear magnetic resonance (NMR) analysis [58]. NMR

data were acquired on a 600MHz Bruker Advance III

instrument. Metabolites were assigned by 1H-13C hetero-

nuclear single quantum coherence (HSQC). Data were

collected using the hsqcetgpsp (Bruker) pulse program.

Spectra were acquired in 8190 points in a 12.01 ppm

sweep width in the direct dimension and 1024 incre-

ments, 110 ppm sweep width in the indirect dimension.

Data were processed in Burker TopSpin and analyzed in

rNMR. Metabolites were assigned using the Madison

Metabolomics Consortium Database reference spectra

available from the BMRB. Once the spectra had been

assigned, metabolites were quantified using 1D 1H NMR

with NOSEY water suppression (Bruker noesygppr1d

pulse program). Data were acquired in 65,536 points

with 32 scans and a sweep width of 12.01 ppm. Metabo-

lites were quantified following established methods [58].

In other experiments, 100 mg of feces was assessed by

liquid chromatography-mass spectrometry (LC-MS) for

SCFA [59]. Samples were dissolved in ice-cold extraction

solvent containing 100 μL of H2O/acetonitrile (50:50) so-

lution containing 5 mM, 200 μM and 500 μM of 13C-la-

beled acetic acid (1,2-13C2, 99 atom%: #CLM-113,

Cambridge Isotope Lab.) propionic acid (99 atom %:

#589586, Sigma-Aldrich) and butyric acid (-1,2-13C2 99

atom % 13C: #491993, Sigma-Aldrich), respectively [for

fecal samples from antibiotic-treated mice the internal

SCFA standards were 2.5 mM, 200 μM and 50 μM,

(See figure on previous page.)

Fig. 8 IL-10 increases short-chain fatty acid (SCFA) transporter expression. The human colon-derived HT-29 epithelial cell line treated with IL-10

(10 or 100 ng/mL, 24 h) displayed significant increases in the SCFA transporters MCT1, ABCG2, and HCAR2 mRNA and a reduction in MCT4 mRNA

(A). The increased MCT1 mRNA was matched by a subtle increase in MCT1 protein (representative blot shown), as shown by densitometry and

statistical comparisons. Panel B shows increased expression of mct1 and Abcg2 mRNA in the murine rectal epithelial CMT-93 cell line treated

with il-10 (10 ng/ml, 24 h). IL-10 treatment evoked increased mct1 mRNA in primary murine colonoids (C) (10 ng/ml, 24 h) (data are mean ± SEM;

data from 1 to 2 experiments; *, p < 0.05 compared to control; kDa, kilodaltons)
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respectively]. Samples were vortexed, then centrifuged

(10,000×g, 10 min, 4 °C), and when clear 50 μL of super-

natant was cooled to 0 °C and derivatized in an extrac-

tion solvent containing 2.5 μL of 2.4M aniline (dissolved

in acetonitrile), followed by 2.5 μL of 1.2M 1-ethyl-3(3-

dimethylaminopropyl) carbodiimide (dissolved in H2O).

The mixture was vortexed for 15 s and placed on ice for

2 h (vortexing every 30 min), diluted 1:20 with 50%

methanol, vortexed for 15 s, and the samples subjected

LC-MS analysis. Data were analyzed as previously de-

scribed [60]. Briefly, metabolites were separated on a re-

verse phase chromatographic gradient (Thermo Fisher

Hypersil GOLD TMC18 column) and metabolites were

quantified by selected reaction monitoring (SRM). Con-

centrations were calculated based on the ratio of

isotope-labeled fragments from standard compounds

relative to the corresponding fragments from microbial

metabolites.

Fecal microbial transplants (FMT) and bacteria-free fecal

filtrates

Feces were collected from control male C57BL/6 mice

or those infected with H. diminuta 8 days previously and

immediately placed in 10mL of pre-reduced sterile PBS

in a Ruskinn anaerobic chamber. Samples were vortexed

(2 min), centrifuged (5 min at 1000×g) and 400 μL of the

fecal supernatant was given to GF-mice by oral gavage.

Four weeks later, fecal samples were collected for 16S

rRNA analysis, and mice were challenged with DNBS (5

mg in 100 μL 50% etoh.). In other experiments, fecal

samples (500 mg) were collected from control mice and

those infected with H. diminuta 8 days previously, solu-

bilized in 10mL of sterile PBS and passed through a

0.45 μm and then 0.2 μm pore-size filter [61]. This sterile

filtrate was then administered as a 200 μL of 50 mg/mL

enema to naïve specific pathogen-free (SPF) mice, that

subsequently received DNBS.

Treatment of mice with short-chain fatty acids (SCFAs)

Adopting published methodologies for treatment with

SCFAs, male BALB/c mice were supplemented with 200

mM of sodium acetate (Sigma-Aldrich #S2889) [62] in

their drinking water 7 days prior to DNBS and main-

tained on sodium acetate-drinking water throughout the

experiment. Another cohort of animals received butyrate

enemas (500 μL of 100 mM 98% sodium butyrate;

Sigma-Aldrich #B5887) [44] or PBS (500 μL) 24 h and 3

h before DNBS and again at 24 h and 48 h post-DNBS

administration.

Anti-IL-10 antibody treatment of mice

Following a protocol we applied previously [6], mice re-

ceived intraperitoneal injections of either a neutralizing

anti-il-10 antibody (clone JES5-2A5; Biolegend #504909)

or an isotype matched irrelevant IgG1 (Biolegend

#400432) at day-3 (50 μg), day-7 (100 μg), and day-9

(50 μg) post-infection with H. diminuta for a total of

200 μg of antibody. DNBS was administered at 8 days

post-infection and mice were necropsied 3 days later.

Data presentation and statistical analysis

Results are expressed as the mean ± standard error of

the mean (SE) and n is the number of mice. Data are an-

alyzed using Graph Pad Prism 8.0 in which statistical

comparisons for parametric data were performed via

one-way ANOVA with Tukey’s post-test and the

Kruskal-Wallis test with Dunn’s post-test was applied to

non-parametric data. P < 0.05 was set as the level of ac-

ceptable statistical difference.
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