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Abstract

Background: Recent studies have implicated aberrant Notch signaling in breast cancers. Yet,

relatively little is known about the pattern of expression of various components of the Notch

pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast

cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands,

and downstream targets at different stages of breast cancer progression.

Results: We report here that there is a general increase in the expression levels of Notch 1, 2, 4,

Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of

multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were

undetectable in normal tissues, moderate to high expression was detected in several cancers. We

detected the presence of active, cleaved Notch1, along with downstream targets of the Notch

pathway, Hes1/Hes5, in ~75% of breast cancers, clearly indicating that in a large proportion of

breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1

and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ -

suggesting that aberrant Notch activation may be an early event in breast cancer progression.

Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast

cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is

reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/

2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation

may lead to poor prognosis.

Conclusions: High level expression of Notch receptors and ligands, and its increased activation

in several breast cancers and early precursors, places Notch signaling as a key player in breast

cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers

combined inhibition of the two pathways as a new modality for breast cancer treatment.
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Background
Breast cancer is a leading cause of cancer-related death in
women the world over, particularly in the Western popu-
lation. However, emerging trends indicate an alarming
rise in breast cancer incidences in other parts of the world
too [1]. Investigations into the molecular mechanisms
and signaling pathways leading to breast cancer pathogen-
esis have over the years resulted in the discovery of drugs
to treat subsets of breast cancers. Yet, the significant
number of breast cancer-associated deaths each year war-
rants further investigations into the mechanisms of dis-
ease progression and identification of key players
involved therein, ultimately leading to better treatment
strategies.

A number of signaling pathways, including Her-2, EGFR
and Wnt, have been implicated in the progression of
breast cancer [2,3], with the Notch pathway being associ-
ated with this process more recently [4]. Notch proteins
are cell-surface receptors activated by interaction with cell-
surface ligands of the Jagged/Delta family. The mamma-
lian family of Notch receptors consists of four members:
Notch1 through Notch4, while the ligand family consists
of five members: Jagged 1, 2, Delta like 1 (Dll1), Delta-
like 3 (Dll3) and Delta-like 4 (Dll4) [4,5]. In the absence
of ligand binding, Notch receptors are inactive. However,
binding of the ligand to the Notch receptor induces site-
specific cleavage resulting in the release of the Notch
Intracellular Domain (NICD). This NICD, or cleaved
Notch protein, translocates to the nucleus where it modu-
lates gene expression through interaction with members
of the CSL (CBF-1, Suppressor of Hairless, Lag-1) family
of transcription factors. Notch activation leads to elevated
expression of specific genes including Hes1 and Hes5 [6].
However, CSL-independent, deltex-dependent, cytosolic
functions of Notch have also been reported [7]. Notch sig-
naling is involved in regulating a wide range of cellular
activities involving cell differentiation, proliferation, sur-
vival, and more recently, in the maintenance of stemness
[8-10].

The association of Notch signaling with human carcino-
genesis has been well documented in the literature [11].
First identified in a small subset of human T-cell acute
lymphoblastic leukemias as a chromosomal breakpoint
[12], activating Notch mutations have now been detected
in almost 50% of these cancers [13], suggesting a strong
causal relationship between Notch activation and disease
development. However genetic lesions of the Notch loci
have so far not been detected in solid cancers [14]. Yet,
aberrant expression, and activation of the pathway, have
been reported in several human cancers including multi-
ple myeloma, pancreatic cancer, cancers of prostate, cer-
vix, colon, lung, skin, and brain [15-21].

More recently Notch signaling has been implicated in
human breast cancers. Co-expression of high levels of
Jagged1 and Notch1 was associated with poor survival in
breast cancers [22]. Accumulation of the intracellular
domain of Notch1 has been detected in a variety of breast
cancers [23]. Interestingly, despite the expression of
Numb, a negative modulator of Notch activity, the Notch
pathway was found to be active in several breast cancers
[24]. Functionally, over-expression of constitutively active
Notch led to the in vitro transformation of MCF-10A, an
immortalized breast epithelial cell line [23]. Functional
synergy between Notch and Myc was also shown to lead
to the development of mammary cancers [25], indicating
that Notch signaling may cooperate with other known
oncogenes in promoting mammary carcinogenesis.

Furthermore, inhibition of Notch signaling has been
shown to hinder the survival of breast cancer stem cells
[26,27], as well as reverse the tumorigenic potential of
breast cancer cell lines [23]. Taken together, these data
suggest that Notch signaling may play a key role in breast
cancer pathogenesis. Yet, a clear understanding of the spe-
cific Notch receptors and ligands involved in this process,
and the mechanisms of Notch action, are still lacking.

In order to better understand the role of the Notch path-
way in breast carcinogenesis, we have undertaken a
detailed immunohistochemical analysis to determine the
expression of the Notch family members during different
stages of breast carcinogenesis. Our results indicate that
there is a general increase in the expression of several
Notch pathway members in breast cancers compared to
normal breast tissue. Additionally, our results reveal a
strong correlation between the expression of cleaved
Notch1 and downstream targets in ~75% of cancers ana-
lyzed, indicating an aberrant activation of the Notch path-
way in a vast majority of breast cancers. Moreover, this co-
expression was observed as early as hyperplasia and ductal
carcinoma in situ, suggesting that aberrant activation of
the Notch pathway may be an early event in breast cancer
progression. Furthermore, in vitro transformation assays,
as well as immunohistochemistry in naturally occurring
breast cancers, revealed a co-operation between Notch
and Ras/MAPK pathways.

Results
Elevated expression of Notch receptors and ligands in 

breast cancer

In order to understand the role of Notch signaling in
breast carcinogenesis, we sought to identify which Notch
receptors and ligands were expressed in normal and can-
cerous breast tissues. We first carried out an RT-PCR anal-
ysis for the transcripts of Notch1, Notch2, Notch3,
Notch4, Jagged1, Jagged2, Delta-like1(Dll1), Delta-like3
(Dll3), and Delta-like4 (Dll4) from several immortalized



Molecular Cancer 2009, 8:128 http://www.molecular-cancer.com/content/8/1/128

Page 3 of 12

(page number not for citation purposes)

and transformed breast cell lines (Additional file 1: Table
1) We were able to detect transcripts of all members of the
Notch family, except for Dll3 in diverse immortalized and
cancer cell lines. To better understand the spatial expres-
sion pattern of the proteins encoded by these transcripts
within intact breast tissue, we undertook a detailed immu-
nohistochemical analysis of normal and cancerous tissue
from patient biopsies. All cancers analyzed were grade 3
invasive ductal carcinomas. We graded the expression lev-
els of each of the antigens using an arbitrary scale of 1+ to
4+ (where 1+ is lowest and 4+ is highest staining) as
shown in Additional file 2: Fig. 1.

We detected Notch1 expression in both normal and can-
cerous breast tissue, with cancer samples showing a higher
level of expression. While Notch1 showed a predomi-
nantly low expression (1+ or 2+) in normal tissues, in can-
cers it was expressed at 3+ levels (Fig. 1A and 1C).
Similarly, compared to normal tissue, there was a slight
increase in the expression levels of Notch2 in cancers.
There was no significant change in the expression of
Notch4 between normal and cancer tissues; however, the
levels of Notch4 was the highest amongst all Notch recep-
tors in normal tissue. Interestingly, while we failed to
detect expression of Notch3 proteins in normal tissue,
~88% of breast cancers (14/16) showed Notch3 expres-
sion at varying intensities from 1+ to 3+ (Fig. 1A and 1C).
This result corroborated with our RT-PCR analysis, where
we failed to see transcripts of Notch3 in the immortalized
cell lines MCF-10A, HBL-100, and HMLE, whereas, the
cancer cell lines MDA-MB 453, T47D and HMLER had
detectable levels of Notch3 transcripts (Additional file 1).
Surprisingly, we also detected intense nuclear staining for
Notch3 in some breast cancers using the N-terminal spe-
cific antibody (inset in Fig. 1A), suggesting possible
nuclear translocation of full length Notch3. Similar
nuclear localization has been previously observed for
Notch4 [28] and epidermal growth factor receptor (EGFR)
in cancers [29]; however, their significance remains
unknown currently.

Upon analysis of the expression pattern of Notch ligands,
we found Jagged1 expression varying between intensities
of 1+ and 4+ in both normal and cancer tissues (Fig. 1B).
However, while 46% of normal tissues analyzed showed
high expression levels of Jagged1 (staining intensities of
3+ and 4+), ~70% of cancers showed this level of staining
(Fig. 1C), indicating that a greater number of breast cancer
samples express Jagged1 at high levels. Jagged2 expression
was also found to be higher in cancers with 53% cases
having staining intensities of 3+ and 4+ compared to only
25% of normal cases showing this level of staining (Fig.
1B and 1C). Interestingly, while we failed to detect any
significant expression of Dll1 in normal breast tissue
(with the exception of one tissue which showed low level
expression ) ~81% of breast cancers showed a 1+ or 2+

staining for Dll1 (Fig. 1B and 1C). Since we failed to detect
Dll3 by RT-PCR in any of the breast cell lines analyzed
(Additional file 1: Table 1), immunohistochemistry was
not performed for this antigen. Similar to Jagged1 and 2,
Dll4 expression was also higher in cancer, with ~53% of
cancer cases displaying higher intensities of staining (3+
and 4+) for Dll4, while only 25% of normal cases dis-
played such high intensity staining (Fig. 1B and 1C).
Taken together, these results reveal that there is an overall
increase in the expression of several Notch receptors and
ligands in breast cancers compared to normal breast tis-
sue, and multiple Notch receptors and ligands are upreg-
ulated simultaneously in a given cancer tissue (Additional
file 3: Fig. 2).

Functional activation of the Notch pathway in breast 

cancers

Since mere expression of the receptors and ligands does
not imply activation of the pathway, we undertook exper-
iments to determine the activation status of the Notch
pathway. To do so, we assessed the presence of cleaved,
intracellular Notch1 (NICD), produced only after activa-
tion of the pathway through interaction of Notch recep-
tors with ligands, using an antibody that specifically
detects this form of the protein. Since Notch activation
leads to the transcriptional up-regulation of downstream
targets such as the Hes family of transcriptional repressors
[30], we additionally analyzed the expression of Hes1
and/or Hes5. As many as 75% of breast cancers showed
accumulation of cleaved Notch1 (27/35) and expression
of Hes1/5 (27/36) (Fig. 2A and 2C). However, with the
exception of only one tissue, we failed to detect any of
these proteins in normal tissues (Fig. 2A). Indeed, normal
ducts adjacent to cancerous areas were negative for
cleaved Notch1 and Hes5 (Additional file 4: Fig. 3). For
both cleaved Notch1 and Hes1/5 we found nuclear as well
as cytoplasmic staining, in accordance with previous pub-
lications using the same antibody [31]. Thus, these results
clearly indicate that the Notch pathway is functionally
active in a large proportion of breast cancers.

In order to know at what stage of cancer progression the
Notch pathway gets activated, we analyzed cases of hyper-
plasia and ductal carcinoma in situ (DCIS) which are pre-
cursors to invasive ductal carcinomas. We detected
nuclear staining for cleaved Notch1 and Hes5 in DCIS tis-
sues (Fig. 2A). Interestingly, a specimen of breast epithe-
lial hyperplasia also showed cleaved Notch1 and Hes5
positivity (Fig. 2A), indicating that Notch signaling might
be activated at a very early stage of breast cancer progres-
sion.

Analysis of Numb expression in breast cancers

Despite the presence of high levels of Notch receptors and
ligands, we failed to detect Notch activity in normal breast
tissue. We reasoned that this could be due to the presence
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Overexpression of Notch receptors and ligands in breast cancerFigure 1
Overexpression of Notch receptors and ligands in breast cancer. Photomicrographs represent staining of normal and 
cancerous breast tissue sections with antibodies that recognize (A) Notch1, Notch2, Notch3, Notch4, and (B) Jagged1, 
Jagged2, Delta-like 1 and Delta-like 4. Inset and arrow in (A) shows nuclear localization of Notch3 in breast cancers. Sections 
stained in the absence of primary antibodies served as negative controls (-10). Samples were counterstained with haemotoxylin, 
and images taken at a magnification of 20×. (C) Scatter plot represents expression of Notch receptors and ligands across vari-
ous normal (blue) and cancer (red) breast tissue samples analyzed. The total number of cases analyzed under each category (n) 
is mentioned below each column, and the black bar represents the median score.
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Activation of the Notch pathway during breast cancer progressionFigure 2
Activation of the Notch pathway during breast cancer progression. (A) Photomicrographs represent staining of nor-
mal, hyperplastic, DCIS, and breast cancer tissue sections with antibodies that specifically recognize the cleaved and active form 
of Notch1, and Hes5; magnification 20×. Insets show nuclear staining at higher magnification (40×). (B) Photomicrographs rep-
resent staining of normal and cancerous breast tissue with antibodies against Numb, Hes5 and Cleaved Notch1; magnification 
20×. (C) Scatter plot represents expression of cleaved Notch1, Hes1/5, and Numb across various normal (blue) and cancer 
(red) breast tissues analyzed. The total number of cases analyzed under each category (n) is mentioned below each column, 
and the black bar represents the median score.
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of negative modulators of the pathway such as Numb.
Numb inhibits Notch signaling by targeting Notch for
ubiquitination followed by proteasome mediated degra-
dation in conjunction with another protein, Itch [32].
Immunohistochemical analysis for Numb expression
indeed revealed an abundant expression of Numb protein
in all the normal tissues analyzed (Fig. 2B). Expression of
Numb in breast cancers, however, seemed to be varied.
We found the existence of Numb positive as well as Numb
negative breast cancers (Fig. 2B and 2C). A subset of
Numb positive tumors (21/36) were also positive for
cleaved Notch1 and Hes1/5 (Additional file 3: Fig. 2), sug-
gesting that Numb-resistant activation of Notch pathway
may occur in breast carcinogenesis. This finding is in
keeping with the results published by an earlier study
[24], suggesting that negative regulation of Notch by
Numb may be lost in breast cancers. We additionally
found that DCIS also have heterogeneity with regard to
Numb expression, with presence of both Numb positive
and negative cases (data not shown). Thus, high levels of
Numb in normal breast tissue may keep the Notch path-
way in check, while in a large number of breast cancers,
this negative regulation may be compromised.

Notch signaling cooperates with the Ras/MAPK pathway 

to promote breast carcinogenesis

The expression of cleaved Notch and its downstream tar-
gets in early stages of breast cancer suggests that Notch
functions may be involved in the transformation of initi-
ated breast cells into cancerous cells. To gauge this, we uti-
lized HMLE breast epithelial cells that have been
generated by the introduction of Simian Virus 40 early
region and the catalytic domain of human telomerase into
human mammary epithelial cells [33]. We undertook ret-
roviral-mediated gene delivery to introduce constructs
over-expressing constitutively active Notch1 (AcN1) in
HMLE cells (see methods).

While HMLE cells expressing low levels of AcN1 (Addi-
tional file 5: Fig. 4) failed to form colonies in soft agar
(Fig. 3A-i), or generate tumors when injected sub-cutane-
ously into nude mice (Fig. 3A-ii), cells expressing high lev-
els of Notch1 could not be selected for as they exhibited
massive cell death even prior to drug selection. It is possi-
ble, however, that HMLE cells may be able to tolerate high
levels of AcN1 in the presence of other signaling pathways
that may cooperate with Notch to mediate transforma-
tion. One likely candidate for cooperation with Notch sig-
naling in the context of breast cancers is Ras. Even though
Ras mutations are not prevalent in breast cancers, overex-
pression of its upstream tyrosine kinases, such as EGFR
and Her2 neu, or constitutive activation of its downstream
components leading to the activation of Ras signaling
have been commonly observed in breast tumors [34,35].

Accordingly we assessed for Notch-Ras cooperation in
HMLE cells.

It has been previously demonstrated that HMLE cells
expressing low levels of oncogenic Ras (HMLE-Raslow

cells) failed to be transformed [33]. The HMLE-Raslow

cells, thus, provided a good system to investigate the
Notch-Ras cooperation in breast cell transformation.
Infection of HMLE-Raslow cells with retroviruses express-
ing AcN1 enabled selection for high level expression of
AcN1 (Additional file 5: Fig. 4), indicating that in the
background of oncogenic Ras signaling, constitutively
active Notch1 proteins are better tolerated in HMLE cells.
When gauged for transformation, HMLE cells expressing
both Raslow and AcN1 generated efficient colonies in soft
agar, while the parental HMLE-Raslow cells failed to do so
(Fig. 3A-i). Similarly, when injected subcutaneously into
the flanks of nude mice, palpable tumor was observed
starting at five weeks only when HMLE cells expressing
both Ras and AcN1 were injected, while the control and
parental cells failed to form tumors even after 10 weeks
(Fig 3A-ii.). Thus, these findings clearly indicate that the
Notch and Ras pathways functionally cooperate to trans-
form immortalized breast epithelial cells.

Ras affects a number of cellular processes such as, prolif-
eration, survival, and apoptosis, which are important in
tumorigenesis. Upon activation, the effector loop domain
of Ras interacts with downstream signaling components
termed as Ras effectors. The three main Ras-effectors
implicated in tumorigenesis are the PI3K, Raf, and Ral-
GEFs [36]. In order to find out which of these effector
pathways is involved in cooperating with the Notch path-
way in the context of breast cell transformation, we made
use of the Ras effector loop mutants that bind to, and spe-
cifically activate, only one of the pathway effectors. HMLE
cells carrying the S35, C40 and G37 mutants of oncogenic
Ras, that activate the MAPK, PI3K and Ral-GEFs respec-
tively [35,37], were used for this study. Each of these cell
lines was infected with AcN1-expressing virus simultane-
ously. Drug selection of HMLE-S35 and HMLE-C40 cells
with puromycin resulted in the appearance of several col-
onies that grew rapidly. However, HMLE-G37 cells
yielded very few colonies after drug selection, which grew
slowly, suggesting that in the background of MAPK and
PI3K pathways, Notch activation is better tolerated com-
pared to those having Ral-GEF activation. When the
Notch-expressing cells in all three mutant Ras back-
grounds were subjected to soft agar colony formation
analysis, we found that the HMLE-S35 cells yielded two
and a half times more colonies compared to others (Fig.
3A-iii), indicating that the Notch pathway may collabo-
rate with the Ras/MAPK pathway in mediating breast can-
cer pathogenesis. To further confirm the requirement of
Ras signaling for Notch-mediated transformation of
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Notch-Ras cooperation in breast carcinogenesisFigure 3
Notch-Ras cooperation in breast carcinogenesis: (A) i. Figure represents soft agar colony formation assay of HMLE, 
HMLE-AcN1, HMLE-Raslow and HMLE-Raslow-AcN1 cells. ii. Graph shows tumor growth kinetics in nude mice for HMLE with 
(blue) & without (black) AcN1, and HMLE-Raslow cells with (red) & without AcN1 (green). iii. Graph represents soft agar col-
ony formation of HMLE cells expressing various Ras effector loop mutants alone, or in combination with AcN1. HMLE-Rashigh 

cells were used as positive control. (B) Photomicrographs and bar graphs represent the effect of Notch activation (using DSL 
peptide), Notch inhibition (using GSI and DAPT) and inhibition of MAPK (using MEK1 inhibitor) on mammosphere formation; 
magnification 10×. (C) Photomicrographs represent immunostaining of cancer mammospheres for cleaved Notch1, Hes5 and 
phosphoErk1/2; magnification 40×. (D) Photomicrographs represent staining of normal and cancerous breast tissue for cleaved 
Notch1, Hes5 and phosphoErk1/2; magnification 20×. Insets represent higher magnification (40×) revealing nuclear reactivity.
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HMLE cells, we inhibited the MAPK pathway in HMLE-
Raslow cells expressing AcN1. Indeed, addition of UO126,
a pharmacological inhibitor of the MAPK pathway, com-
pletely abrogated soft agar colony formation (data not
shown). Thus, active signaling by both Ras and Notch is
essential for transformation of breast cells.

We next investigated if the in vitro Notch-Ras cooperation
has significance in the context of naturally arising tumors.
Emerging evidence points to the role of stem cell mainte-
nance in the context of carcinogenesis [38-40]. Notch sig-
naling is involved in the regulation of stem cell self-
renewal in several systems including the breast
[9,39,41,42]. Both normal and cancerous breast stem cells
can be enriched when cultured as mammospheres [43-
45]. Indeed activation of the Notch pathway increased
mammosphere forming potential, while its inactivation
using gamma secretase inhibitor I (GSI I) completely
abrogated sphere formation (Fig. 3B). A recent study,
however, demonstrated that GSI may have cytotoxic
effects on breast cells owing to proteasome inhibition
[46]. In order to demonstrate the specific involvement of
Notch signaling in mammosphere development, the
Notch inhibitor, DAPT, was added. This resulted in reduc-
tion in the number of mammospheres, and not complete
abrogation, as seen with GSI (Fig. 3B), thus, indicating the
importance of Notch signaling in breast stem cell self
renewal. In order to see if the Notch-Ras/MAPK coopera-
tion is involved in stem cell maintenance in breast can-
cers, we analyzed the activation status of the two pathways
using antibodies against cleaved Notch1 and phosphor-
ylated forms of Erk1/2, the downstream targets of the Ras-
MAPK pathway. In primary breast cancer-derived mam-
mospheres, we detected intense nuclear staining for both
cleaved Notch1 as well pErk1/2 (Fig. 3C). Furthermore,
inhibition of the MAPK pathway using a specific MEK
inhibitor (PD 98059) reduced mammosphere formation
even in the presence of the Notch activator, suggesting
that Notch-Ras cooperation may play a critical role in
breast cancer-stem cell maintenance(Fig. 3B).

In order to further assess the in vivo relevance of the
Notch-Ras/MAPK cooperation, we analyzed whether
breast tumors that were positive for Notch activity (Fig.
2A) also showed MAPK activity. We found that a subset of
cases showing high Notch activation, as detected by
cleaved Notch and/or Hes5 staining, were also positive for
nuclear phospho Erk 1 and 2 (13/24) (Fig. 3D). This asso-
ciation between Notch and Ras-MAPK expression was sig-
nificant (p < 0.05) as analyzed by spearman's correlation
test. This subset of breast cancers with both active notch
and ras-mapk signaling were largely aggressive grade III
carcinomas with high node positivity (indicative of
increased risk of metastasis), further suggesting that the
Notch-Ras cooperation in breast cancers may lead to poor
prognosis.

Discussion and Conclusion
The interaction of various signaling pathways in the devel-
opment of breast cancer has been a subject of intense
study for many years. In this study, we demonstrate that
several Notch receptors and ligands are overexpressed in
breast cancers, the Notch pathway is active in a large
number of breast cancers, and it functionally interacts
with the Ras/MAPK signaling pathway for mediating
transformation.

Expression of Notch receptors and ligands

Our results revealed a general increase in the expression of
several Notch proteins (Notch 1,2 and 4) and ligands
(Jagged1, 2, Dll1 and 4) in breast cancers compared to
normal breast tissue, suggesting that the Notch pathway
may contribute to breast cancer pathogenesis. While we
failed to detect Notch3 and Delta-like1 in normal tissues,
they were expressed at high to moderate levels in a subset
of breast cancers. Interestingly, multiple Notch receptors
and ligands were upregulated in a given cancer tissue
(Additional file 3: Fig. 2). For eg., several breast cancers
had high expression levels of both Notch1 and Notch3.
Whether the output of different Notch receptor activation
has different functions in tumorigenesis remains to be
investigated.

Interestingly, studies using murine models of T-cell leuke-
mia have shown that overexpression of the Notch3 intra-
cellular domain antagonizes the tumorigenic effects of
Notch1 [47]. In ErbB-2 negative breast cancers, downreg-
ulation of Notch3, but not Notch1, suppressed cell prolif-
eration leading to apoptosis [48]. Thus, further dissection
of the interplay between various receptors of the Notch
pathway is required to better understand the process of
breast cancer development.

Interestingly, we also detected the N-terminus of Notch3
in the nucleus of cancer cells. While this could represent
either the full-length form of the protein or only the N-ter-
minus, the process by which such nuclear accumulation
occurs is unknown. As the N-terminus lacks a nuclear
localization signal, it is tempting to speculate that it might
be part of a bigger complex that is actively transported
into the nucleus. Further experiments that address both
the mechanism of transport and the significance of such
nuclear accumulation are required to better understand
their role in breast cancers.

Aberrant activation of the Notch pathway is an early event

The timing of activation of the Notch pathway is very spe-
cific to the type of tumor involved. In cancers of the uter-
ine cervix, Notch activation occurs during the transition
from in situ carcinoma (CIN III) to frank invasive cancer
[37,49]. On the other hand, chromosomal translocations
that generate active Notch receptors initiate tumorigenesis
in T-ALLs [13]. In the context of breast cancers, we
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detected evidence for the activation of the Notch pathway,
as seen by the expression of both cleaved Notch and Hes1/
5, starting as early as hyperplasia and DCIS, indicating
that Notch activation may be an initial trigger in the onset
of breast cancers.

We observe strong nuclear positivity of cleaved Notch1 in
several breast cancer tissues. This is frequently accompa-
nied by the expression of downstream transcriptional tar-
gets such as Hes1/5. In addition, we also detect the
presence of large amounts of cytosolic cleaved Notch1.
This is in keeping with the observation in several other tis-
sues using the same antibody [25,50]. This could imply
that cleaved Notch1, in addition to its trans-activation
functions in the nuclei, may have additional functions in
the cytoplasm. Such functions of Notch have indeed been
reported elsewhere. The activation of PKB/Akt by cleaved
Notch1 [51], and the interaction of cytosolic Notch with
PI3K and p56lck in the cytoplasm has been previously
reported [52]. Furthermore, CBF1-independent, deltex-
dependent cytosolic functions of Notch have also been
observed [7]. It will be interesting to dissect the nuclear
and cytosolic functions of Notch1 in the context of breast
tumorigenesis.

Cooperation of Notch and Ras/MAPK pathway

Interactions between the Notch and Ras pathways have
been reported to have both antagonistic and synergistic
effects in different contexts [53]. Previous studies have
demonstrated a correlation between the expression of Ras
and Notch1 in breast cancers [54] suggesting a possible
interaction between these two pathways. We demonstrate
a functional cooperation between constitutively active
Notch1 and Ras in the transformation of immortalized
breast epithelial cells as well as in breast stem cell self-
renewal. We also detect evidence of both Ras and Notch
pathway activation in the context of naturally arising
breast cancers, and such tumors presented with high node
positivity, indicating that co-activation of these two path-
ways may serve as a prognostic marker for breast cancer.
An epistasis analysis of their interaction in the context of
tumorigenesis would provide valuable insight into their
individual and collective functions.

Taken together, our experiments place Notch as a key
player in breast carcinogenesis. Therapeutic interventions
at various levels, such as ligand-receptor interaction,
Notch nuclear translocation, and Notch-Ras cooperation,
stand to be exploited in treating breast cancers.

Methods
Immunohistochemistry and tissue samples

Human breast tissue sections were obtained from tumour
blocks archived in the Department of Pathology at the
Kidwai Memorial Institute of Oncology (KMIO). Briefly,

the paraffin embedded tissue sections were deparaffinized
in xylene and successively rehydrated. Peroxidase activity
was quenched using 5% hydrogen peroxide. The antigen
retrieval was done by exposing the sections to steam at
high pressure in a conventional pressure cooker by plac-
ing the sections in 10 mM freshly prepared sodium citrate
buffer, pH 6.0. Alternatively, sections were boiled in 10
mM sodium citrate buffer for 20 minutes in a water bath.
After blocking the nonspecific binding with 4% non fat
dry milk, the sections were incubated overnight with the
respective primary antibodies at 4°C: Notch1, Notch2,
Notch3, Notch4, Delta-like1, Delta-like4, Jagged1,
Jagged2, Hes5, Hes1, Numb, cleaved Notch1 antibodies
(Santa Cruz Biotechnology, Inc, CA.) and pErk1&2 (Cell
Signaling Technology, Inc, CA). The secondary anti-
mouse and anti goat antibodies and the ABC color devel-
opment kit was procured from Bangalore Genei, India.

Evaluation of immunohistochemistry

Immunoreactivity was considered significant when the
characteristic immunostaining was observed in more than
10% of the cells. The intensity of staining was graded from
1 to 4, with the lowest staining marked as 1+ to the high-
est staining marked as 4+ (Additional file 2: Fig. 1). Batch
to batch variation in staining intensity was compensated
by including each time a positive control slide that stained
intensely for Jagged1. This tissue was assigned an intensity
of 4+, and the rest of the samples were graded with respect
to this control. Sections were evaluated by the pathologist
(RVK) at KMIO.

Plasmid constructs

The Ras retroviral expression constructs [33] and individ-
ual Ras effector loop mutants [37] have been previously
described. The BamH1 and Sal1 fragment of the intracel-
lular domain of Notch 1 from pBABEpuro-hN1C (gift
from A. Capobianco) was ligated into pBABE-puro and
pBabe hygro retroviral expression constructs and over-
expression confirmed by Western blot analysis. As shown
previously for Ras [33], the pBABE puro construct yielded
high level expression of AcN1, while the pBABE-hygro
construct yielded low level expression (Additional file 5:
Fig. 4).

Cell culture and transfection conditions

The HMLE cells were generated by the exogenous intro-
duction of SV40 ER and hTERT into HMECs [33]. HMLE
cells were grown in DME-F12 media supplemented with
insulin, epidermal growth factor (EGF), and hydrocorti-
sone under standard tissue culture conditions. Retroviral
infections of HMLE were performed (as described earlier)
for over expressing constitutively active Notch1 and drug
selection was used to purify polyclonal-infected popula-
tions [37].
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Anchorage-independent growth assay

Soft agar assays were performed as described earlier [37].
Individual cell lines were seeded in triplicates at three dif-
ferent dilutions ranging between 1 × 104 to 5 × 105. Each
experiment was repeated 2-3 times. Colonies were photo-
graphed between 18-24 days at a final magnification of
20× under phase contrast microscope.

Mammosphere assay

Primary breast tissue was obtained from KMIO in keeping
with the ethical guidelines set up by both the institutions,
and with informed patient consent. Mammospheres were
generated as described in Dey et al., [43]. For Notch acti-
vation, 2.5 × 105 organoid-derived single cells were seeded
for mammosphere formation and incubated with 100 nM
water-soluble DSL peptide (CDDYYYGFGCNKFCRPR;
Genscript Corp. USA) [42] for one week after which the
primary mammospheres were counted. Notch inhibition
was carried out for one week in the presence of 10 μM Γ-
Secretase Inhibitor I (GSI I; Calbiochem) or 10 μM DAPT
(Calbiochem). DMSO was used as a vehicle control for
GSI. For inhibition of the MAPK pathway, Mek1 inhibitor
(PD98059; Cell Signaling Technology) was added at 25
μM concentration.

Tumorigenicity assay

Nude mice that were 6 to 8 week old were injected subcu-
taneously with 2 × 106 cells admixed with 50% Matrigel
(Becton Dickinson, Palo Alto, California). Error bars rep-
resent mean tumor volume +/- SEM.
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Appendix 1
Methods

RT-PCR analysis

Total RNA was extracted from cultured cells using Tri-rea-
gent (Sigma) and subjected to DNase I (Sigma) digestion
to eliminate contaminating genomic DNA. RT reaction for
1 μg total RNA was performed using M-MuLV Reverse
Transcriptase and 0.5 ug oligo(dT)18primer. PCR was car-
ried out under standard conditions using following pairs
of gene-specific primers:

Notch1:CAACATCCAGGACAACATGG, TTGTTAGCCCCGT-
TCTTCAG

Notch2:TTATGCAGGACCCGTTGTG, ACACTTTGCCCCAT-
TCAGAC

Notch3:GGGAGTCCCTCAAGGCTATC, GATGGAGAGGAG-
GAGGGAAG

Notch4:GATAAATGGGGGAAAACTGC, GATCCCCAGT-
GGTTACGTTGG

Jagged1:ACAACACCACCAACAACGTG, GGGCACTTTC-
CAAGTCTCTG

Jagged2:AGGTGGAGACGGTTGTTACG, TTGCACTGGTA-
GAGCACGTC

Dll1:GCCTCAAGCCCACTGTCTAC,
ACACACACACACACGCACAC

Dll3:CAATGGAGGCAGCTGTAGTG, TCAAAGGACCTGGGT-
GTCTC

Dll 4:CTATGGCCTGCATTGTGAAC, ACAGTAGGTGCCCGT-
GAATC

Additional material

Additional File 1
Table 1. RT-PCR analysis of Notch receptors and ligands in immortalized 

(MCF-10A, HBL100, and HMLE) and cancerous (MCF7, MDA MB 

435, MDA MB 453, MDA MB 468, SW 613, T47D, HMLER) breast 

cell lines. Pink and blue depict the absence (-) and presence (+) of the 

transcripts, respectively.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1476-

4598-8-128-S1.PPT]

Additional file 2
Fig. 1. Quantification of immunohistochemical analysis. Photomicro-

graphs show immunohistochemical staining of breast tissue sections repre-

senting different intensities graded between 1+ and 4+ based on visual 

observation. This gradation was used to evaluate intensities for all anti-

gens. Negative control (-1°) represents staining in the absence of primary 

antibody; magnification 20×.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1476-

4598-8-128-S2.PPT]

Additional File 3
Fig. 2. The heat map shows cumulative and comparative staining of nor-

mal and cancer tissues for different antibodies and lymph node status. 

ND: Not Determined; Neg: Negative; NA: Not Available. Since case 

number 22 floated away, no staining could be performed on this.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1476-

4598-8-128-S3.PPT]

http://www.biomedcentral.com/content/supplementary/1476-4598-8-128-S1.PPT
http://www.biomedcentral.com/content/supplementary/1476-4598-8-128-S2.PPT
http://www.biomedcentral.com/content/supplementary/1476-4598-8-128-S3.PPT
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Additional file 4
Fig. 3. Photomicrographs represent immunostaining of adjacent areas of 

normal (N) and cancer (C) within the same section using antibodies 

against cleaved Notch1 and Hes5.

Click here for file
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4598-8-128-S4.PPT]

Additional file 5
Fig. 4. Immunoblot analysis reveals expression of constitutively active, 

cleaved Notch1 expressed by pBABE-Hygro-AcN1 construct in HMLE 

cells, and pBABE-puro-AcN1 construct in HMLE-Raslow cells. β actin was 

used as loading control.

Click here for file
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