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Abstract— This work presents a cooperative approach for
detecting and tracking pedestrians in an urban environment.
Its originality lies in the cooperation of two vision systems.
A monocular vision system retrieves feature elements and
these elements are visualized. However, false detection can
occur due to objects whose outline is similar to that of a
pedestrian. This problem is solved by the introduction of
an auto-adaptive stereovision algorithm that recovers all the
vertical 3D segments of the scene. This cooperation supplies
a fast and robust method for detecting pedestrian presence.
Then, it allows pedestrian tracking through multiple images.

I. INTRODUCTION

Several vision-based approaches are used for the detec-
tion of obstacles in urban environments. When only pedes-
trians are to be detected, a widely used approach is to look
for specific patterns, such as movement features [1], shapes
[2], or colours [3]. In these cases, the processing can be en-
tirely based on monocular vision. Although the pedestrians
can be detected in this configuration, the distance at which
they are detected cannot be accurately computed without the
help of other sensors, or without knowledge of the camera
calibration or other outside information. Information about
the depth is essential, both to eliminate the background
scene, and to warn the driver about an imminent object
located on the road. A system such as [4] shows that
stereoscopic vision is reliable and useful for extracting and
interpreting feature elements in general situations. Feature
element extraction has been applied with success in intel-
ligent real-time vehicles [5] [6]. The system presented in
this work integrates the research work developed by the
Dipartimento di Ingegneria dell’Informazione, Universitá
di Parma (Italy) and the PSI laboratory, INSA of Rouen
(France). The former uses a specific model for pedestrians.
The results of the computation are fed to the second system
which does not use a specific model. The two systems have
been integrated into the GOLD (Generic Obstacle and Lane
Detection) system.

This paper is organized as follows: section 2 introduces
the monocular vision system, and section 3 describes the
steps involved in building the 3D curves. Section 4 shows
how the two systems cooperate. Some results are given in
section 5. Section 6 ends the paper with some final remarks.
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II. DETECTION BASED ON MONOCULAR VISION

The University of Parma has developed a monocular
vision system for obstacle detection. Monocular images of
the scene are acquired, then analysed by the GOLD system
which is implemented on ARGO. ARGO is an experimental
autonomous vehicle with automated driving capacity

A. Pedestrian detection

The goal of pedestrian detection is to locate those objects
with components similar to a human shape. Due to camera
movement, and changes in lighting, pedestrian detection
is a non-trivial task. The detection algorithm is based on
the following considerations [7]: localisation in a partic-
ular region of the scene, vertical edges, vertical symmetry
axis, size and aspect specific to pedestrians. Given these
assumptions, the localisation of pedestrians proceeds as
follows: first an area of interest is identified on the basis
of practical considerations. Inside this area, a Sobel mask
is used to extract the outlines of objects. From the phases
of the outlines, two graphs are obtained: the first contains
vertical edges while the second has horizontal edges. Then,
the background is eliminated. Since a second view of the
scene is supplied by the stereoscopic vision system (section
3), it is used to compare the background of the two images.
Then, one symmetry map is built from the grey level image,
one from the vertical edges and another from the horizontal
edge images [7]. A pedestrian has only vertical edges, so
the horizontal edges are negligible. In order to reflect this,
the horizontal edge map is combined with the others using
a negative coefficient, to form a single map.

B. Construction of the bounding box

The monocular vision system is based on the following
configuration:

Fig. 1. Configuration of the monocular vision system



Where α is the angle camera of tilt in relation to the road,
and hc is the height of the camera. Due to the configuration
adopted, the distance d is determined by:

with f is the focal length of the lens, and py is the
distance between two consecutive pixels in a column. N
is the number of lines in an image, and n is the line image.

The objects with symmetrical and structural constraints
are then located on the image; the size needs to be computed
to detemine whether the object could represent a pedestrian.
A bounding box is determined by finding the boundary of
the object’s side and base.

Fig. 2. Parameters of the bounding box

The left and right side of the bounding box are sought
separately from the vertical edge map. In order to limit the
size of the search, a proportional inverse weighting is given
to each column, according to the position of the symmetry
axis. Following the defined model of a pedestrian, the sides
are represented by the arms. The system is calibrated, so
the base is also sought from the vertical edge card [7].
The position of the bounding box boundary corresponds to
the distance of the objects, and is given by the equation
(1) . The summit of the bounding box is determined by the
general shape of the bounding box.

Finally, amongst candidate pedestrians, only those with
a shape corresponding to a human shape are kept.

III. THE STEREOSCOPIC VISION SYSTEM

The PSI laboratory, INSA of Rouen, has designed a
passive stereovision sensor in order to build the 3D curves
of the environment, and compute motion according to the
optical axes of the cameras.

A. Configuration

The sensor is made up of a rigid body, two identical
lenses and two Philip VMC 3405 camera modules whose
optical centres are 127 mm apart. A Pict-Port Stereo H4S
Letron Vision frame grabber controls these two cameras,
and acquires both images (728 x 568) simultaneously. The
clock on the frame grabber AD-converter is the pixel clock

of one of the two cameras. It is a timing signal used to
divide the incoming lines of the video signals into pixels.
With such a clock, maximum resolution can be reached and
alias effects are avoided. Futhermore, the two camera lens
units are set up so that their optical axes are parallel and,
in order to respect an epipolar constraint, the straight line
joining the two optical centres is parallel to each horizontal
line in the images.

Fig. 3. Stereoscopic vision system modeling

Let PL and PR be two stereo-corresponding points of a
3D point P of an object (Fig.3). Let (XLYL), (XRYR) and
(XYZ) be their coordinates. (XLYL) and (XRYR) are given in
pixels, (XYZ) is given in meters. Then, due to the epipolar
configuration,YL = YR and disp = (XR - XL). Based on this
configuration, depth information is given in meters by:

Z = f e
pxdisp

where e is the distance between the two optical centers,
px is the distance between two consecutive pixels in a line,
and its value is 0.065 mm. The focal length of the two
lenses, f , equals 16 mm. The horizontal disparity of two
stereo-corresponding points is given by disp in pixels.

B. Processing of 3D curves

Stereovision needs three-step processing: right and left
image feature extraction, a feature matching step, then
reconstruction of the depth. From the depth map processing,
a fast and robust algorithm is introduced to compute the
vertical 3D curves of a real scene [8]. 3D curves are defined
as a sequence of connected 3D points. Like the 3D points, a
3D curve is defined by its two stereo curves, and constructed
from coordinates XRi of declivities in the right image.
The uncertainties about the building allow us to define a
3D curve as an element of a volume with the following
dimensions: 3 pixels in width and 2 pixels in depth. Then,
from the a priori knowledge of the environment, the small
curves are eliminated and the others are treated as a 3D
segment.

Here on Fig. 4 is, an evaluation of 3D curve processing.



Fig. 4. Evaluation of 3D curve construction

On it, there is the number of stereoscopic image pairs
which have been analysed, the number of relevant 3D curves
for each pair of images, the mean processing time for each
pair of images and the maximal depth of extraction of 3D
pedestrian curves.

This algorithm has been designed to detect all the obsta-
cles of the scene [9], and has been succesfully tested for
pedestrian detection.

IV. COOPERATION BETWEEN THE VISION SYSTEMS

In this section, an extension of the pedestrian detection
module, using the two previous vision systems, is presented.
On the one hand, the cooperation between these processes
eliminates a lot of false detection by adding a new primitive:
vertical 3D curves [8]. On the other hand, it allows the
tracking of pedestrians through sequences of images. We
use the GOLD system pedestrian data, as well as the 3D
data representing obstacles and supplied by the stereoscopic
vision system.

A. Pedestrian detection

A priori knowledge found by the GOLD system such
as the size, the vertical edges and the vertical symmetry
axis, are computed from the right image of the stereo-
scopic vision system. As a result, a bounding box which
characterizes a pedestrian is constructed. Its parameters are
the height h, the width w, the upper left coordinates xsup
and ysup and the depth d (Fig.2). However, these primitives
are not exclusively pedestrian features. So, the algorithms
supply a lot of false detections. But, as these primitives
are necessary but not sufficient, it is indispensable to add
another primitive to limit the detections: the 3D curves. The
3D curves have been designed from a structured environ-
ment, but they are also used for pedestrian detection. On the
whole, a pedestrian has only vertical edges; the horizontal
edges are negligible. And, due to the uncertainties of the
depth measurements, the generally vertical 3D curves of
the pedestrian can be modelled solely by vertical curves.
Without the uncertainties, this would not be possible.

The bounding box positions are compared with the 3D
curve positions on the reference image. The process consists
in the validation of the bounding box, by checking the
3D curves inside it [10]. If one of these criteria is not
met, the bounding box is eliminated. So, optimal detection
is achieved both by the pedestrian detection and by the
presence of 3D curves.

A lot of false detection is thus eliminated; on a test
sequence of 80 images, the detection for object existing

in the scene filmed was 77%. 8% of these detected objects
were non-pedestrians.

B. Estimation of the pedestrian position

In almost all cases, the bottom of the bounding box is
not correctly positioned on the human shape: there is false
computation of the depth of the object by the GOLD system.
So, the stereoscopic vision system is used to retrieve the
depth value [11]. Since the layout shape is Gaussian, the
extreme values are rejected if they are not in a virtual 3D
bounding box, defined by:

where Rn is the set of 3D outline points, defined from
the projection of the bounding box number n. disp is the
mean of the points included in Rn, and σ is their standard
deviation. α is a discrimination parameter.

The 3D points that are not eliminated are elements of the
3D bounding box. Then, the minimum depth is obtained by:

The minimum depth of 3D curves is the most accurate
value and it represents the reference distance.

Then, equation 1 and equation 2 supply the line position
n as a function of the refence distance, and give :

with dispre f the reference distance. This relation retrieves
the pedestrian’s position in the scene.

The depth information allows pedestrian position to be
located in a two-dimensional graph (see Fig.5)

Fig. 5. Bird’s eye view

in which the vertical axis represents the depth, and the
horizontal axis represents the transversal position of pedes-
trians, in relation to the two cameras. Then, a pedestrian is
characterized by a circle, with the coordinates:

Oc = (x, dispre f + w
2 )



with x, the medium position and w the size of the
bounding box; they are supplied by the monocular vision
system. dispre f is the disparity reference and given by the
stereoscopic vision system.

This two-dimensional graph follows the pedestrians as
they move.

C. Temporal matching of circles
One image supplies a lot of information about the pres-

ence of pedestrians. However, some problems remain:
- multi-answers for a single pedestrian
- false detection
- non-detection
The robust solution proposed, links two temporally

shifted images of the scene. The circles which have been
located in the two images are matched via some circle
attributes.

1) Selection of circle attributes: With the attributes a
distance between the circles, which is not the single physical
distance between them, can be computed.

In order to match the circles temporally, some a priori
attributes have been defined. The most constant attributes of
the acquired image at two different moments are selected.
The attributes kept are:

- the position x and the size of the bounding box. They
are supplied from the monocular vision system

- the mean of the disparities and the mean of the grey
levels. They are supplied by the stereoscopic vision system.

On a test sequence of 50 images, the shape of the
attributes is represented on Fig-6.

Fig. 6. Attributes shape

The first graph follows the pedestrians as they move (x
and z). The second graph represents geometric features.

The next step concerns the computation of the distance.
The local information is defined:

with ∆i, the normalized attributes and defined by ∆i =
∆i

max∆i
, in which max(∆i) is the maximum value of ∆i. na is

the whole of attributes.
The distances are compared for each pair of circles. Thus,

they represent the similarity levels of the attributes.
2) Nearest neighbour: To improve the general matching,

a global information criterion is applied [12]; a quality
value is introduced to measure the similarity between the
attributes of the t -1 and the t images. The quality value
is computed to minimize the global distance of the circle
attributes: the more the global distance tends to zero, the
better the matching.

Fig. 7. Global matching

The number of circles at the time t is represented on the
horizontal axis, and the number of circles at the time t -1 is
represented on the vertical axis. di j is the distance between
each pair of circles. The matching proceeds as follows:

- the minimum distance is sought for each column
- it is compared to a threshold:
- below the threshold, there is matching between the i

line circle and the j column circle
- and above this threshold, there is no matching and the

circle label is tagged; a penalty is introduced for the non-
matching circles

- the similarity relations between the two circle images
are examined. Thus, due to the unicity constraint we have
imposed, the corresponding column and line are deleted

- the matching is carried out for all the lines of the chart
- the non matching circles are also tagged
Finally, a chart with only the minimum distance is

obtained. This algorithm retrieves the best matching of the
circles, and the non-matching circles are kept.

V. EXPERIMENTAL RESULTS

We have tested our algorithms on a large set of real
images. Here on Fig.8 are some results concerning the
localisation and the tracking of pedestrians.



The images represent the right images of a complex
outside scene. A lot of elements, such as cars, pedestrians,
road signs and road markings, appeared both in the back-
ground, and in the foreground of the images. Moreover,
these elements are located in shadowy areas. The images
have been acquired at 256 x 288 x 8 bits.

The (a1) image has been acquired at time t -2, and
represents the reference image, (a2) at time t -1, and (a3) at
time t. The results of the pedestrian localisation are shown
on (b1). The results of the pedestrian tracking are shown
on (b2) at time t -1 and, and (b3) at time t.

Fig. 8. Global matching

The pedestrians detected by the monocular vision system
are represented by a black bounding box on (a1) and (a2).
On (a2), a non-pedestrian is detected and (a3), no objects
are detected.

The final result of the cooperation locates pedestrians and
represents them by circles. A black circle corresponds to
a correct matching between the (b2),(b3) images and the
reference image. In this case, there is a strong confirmation
of the pedestrian presence. When no match is found, the
circle is tagged. The pedestrian is located with a white
circle. Then, a label has been applied on each circle.

In this way, the pedestrians that have been partially
detected in the image sequences are vizualised thanks to
a ”memory effect” between the images.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This work presents a vision-based system for detecting
and tracking pedestrians in urban environments. The pro-
cedure is carried out through the cooperation between two
systems using the GOLD data and the sterescopic system.
This cooperation eliminates false detection by adding 3D
information about pedestrians.

The pedestrian depth is computed in order to locate the
pedestrian’s position accurately, and is used to follow the

pedestrian as he moves. The efficiency of this cooperation
is shown in the results we have obtained on real scenes;
the tests showed the system to be reliable and robust with
respect to noise caused by shadows, or varying lighting
conditions.

However, some problems remain. The final selection of
pedestrians is too strict, so a few pedestrians are eliminated.
Due to stochastic processes such as noise, or objects with
vertical 3D curves, some false detections cannot be elimi-
nated.

B. Future Work

To complete our methods, we want to improve the
algorithms.

We have now choosen to use the Kalman Filter to
estimate position. In fact, this filter can model moving
objects. It could also be interesting to give us more accurate
measurements, and from one estimated position at time t -1,
to estimate the new position.
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en temps réel,” IX Journes francophones des jeunes chercheurs en
vision par ordinateur, 2003, pp 251-260.

[11] D. Lefée, S. Mousset, A. Bensrhair and A. Fascioli, “Détection et
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