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Cooperative behavior among a group of agents is studied assuming adaptive interactions. Each agent plays
a Prisoner’s Dilemma game with its local neighbors, collects an aggregate payoff, and imitates the strategy of
its best neighbor. Agents may punish or reward their neighbors by removing or sustaining the interactions,
according to their satisfaction level and strategy played. An agent may dismiss an interaction, and the corre-
sponding neighbor is replaced by another randomly chosen agent, introducing diversity and evolution to the
network structure. We perform an extensive numerical and analytical study, extending results in M. G. Zim-
mermann, V. M. Eguiluz, and M. San Miguel, Phys. Rev. E 69, 065102(R) (2004). We show that the system
typically reaches either a full-defective state or a highly cooperative steady state. The latter equilibrium
solution is composed mostly by cooperative agents, with a minor population of defectors that exploit the
cooperators. It is shown how the network adaptation dynamics favors the emergence of cooperators with the
highest payoff. These “leaders” are shown to sustain the global cooperative steady state. Also we find that the
average payoff of defectors is larger than the average payoff of cooperators. Whenever “leaders” are perturbed
(e.g., by addition of noise), an unstable situation arises and global cascades with oscillations between the nearly

full defection network and the fully cooperative outcome are observed.
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I. INTRODUCTION

The emergence of cooperation in a group of agents has
been traditionally discussed in the past using the Prisoner’s
Dilemma (PD) game [2]. In Ref. [3] it is shown how coop-
eration may be sustained by reciprocity in a population of
agents meeting repeatedly with a certain degree of rational-
ity. In evolutionary game theory, one general assumption is
that players do not have any preference with whom to play,
thus they are randomly selected and matched. However, in
many social and economic environments this assumption
does not hold and agents in fact display repeated encounters
with only a subset of a large population [4]. This specific
feature is naturally modeled with the aid of a network, where
economic agents sit and interact only with their neighbors.
This work will focus on the dynamics of the PD played on a
network, with the attractive feature that the network itself is
allowed to adapt according to the strategy and satisfaction
level of the individual agents. Examples of other work using
a network of interaction as a fundamental constituent range
from herd behavior and information dispersal in financial
markets [5-7], market-structure modeling [8], and firm com-
petition in an oligopoly [9,10].

Studies using PD games with fixed local interactions have
shown that cooperation could be established for a range of
parameters, before defection invades the whole population
[11-17]. However, it is well known that in many social sys-
tems individuals are continuously creating or suppressing in-
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teractions according to the benefits of the relationship. Al-
though in some situations this phenomenon may occur in a
slower time scale than the strategic dynamics and on a first
approximation one is tempted to ignore such “degree of free-
dom,” when repeated encounters turn out to be long term,
then the network adaptation process must be included in the
model and analyzed. One example where this problem might
have relevance occurs in scientific collaboration networks
[18], where scientists usually work in small groups of col-
laborations, and the relationships evolve under performance
and self-interest of the individual members [19,20].

This paper addresses the problem of how cooperation may
be sustained when local interactions evolve. Our results in-
dicate that cooperation may be sustained as a result of het-
erogenous neighborhoods which arise in the dynamical evo-
lution [1,21]. In particular, a PD game on an adaptive
network is studied, where cooperation can be promoted and
sustained by local interactions and a network adaptation pro-
cess. Our contribution follows the bounded rationality para-
digm. This includes a limited capacity to anticipate future
opponents strategies, and in particular the network adapta-
tion deals with the following assumptions: (i) depending on
the strategy played and a satisfaction criteria, every link is
evaluated for continuing or suppressing the interaction, (ii)
individuals are not capable of computing a priori the best
response as to whom connect, and they instead rely on a
random selection of new partners, (iii) in the expectation of
obtaining a benefit, individuals a priori always accept the
proposed new interactions with new neighbors, (iv) the total
number of links in the network is conserved. The latter point
assumes a constrained resource environment, and introduces
a limitation into the possible network configurations.
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The proposed game considers that each agent either plays
cooperation (C) or defection (D) with all its local neighbors,
as prescribed by the interaction network. In other words, we
do not take into account memory and we label each agent as
being either a C or D agent. The strategy is revisited each
time step by imitating the neighbor’s strategy with highest
aggregate payoff. This very simple strategy update algorithm
has been already shown to promote cooperation in some re-
gion of the PD parameter space [12—17]. The network dy-
namics considered here will only affect links between D
agents. We argue that these links are “disliked” by both
agents, so given a certain probability, one of the agents may
exchange the neighbor with a randomly chosen agent from
the whole network. In other words, the network adaptation
drives unsatisfied D agents to “search” for other C agents to
exploit.

We have established results on the existence and stability
of steady states. By steady state we refer to a state of the
system where the network and strategies remain stationary.
These states are composed of chains of cooperators, with
defectors only linked to C agents. In order to understand the
robustness of the steady states, and the evolution of the net-
work, we have also studied how perturbations affect these
equilibria. We show how perturbations may actually grow,
maintain, or destroy the chains of cooperators. These pertur-
bations can lead to global oscillations between states with a
large fraction of cooperators and another state with a large
fraction of defectors, or even a complete all-defector state.

The emergence of global cooperative steady states is
found to depend exclusively on the survival of certain C
agents with maximum payoff in the network, which we label
C leaders. More precisely, role differentiation has been
shown to be an important outcome of the network adaptation
[22]. We establish conditions for the evolution of the payoff
of C leaders and wealthy C agents which is directly con-
nected to the same network adaptation performed by D
agents. A rich dynamics arises in a certain region of param-
eters, where a competition between C and D leaders is ob-
served. A close study of this competition shows that there are
certain perturbations which induce global cascades in the
system, where C leaders may be destroyed. The asymptotic
outcome of whole population depends crucially on the sur-
vival of C leaders, and a full-defective network is reached
when all C leaders disappear.

With the aid of extensive numerical simulations we study
how cooperation performs for a wide range of networks and
PD parameters. Previous results with fixed networks
[12-17], have shown that cooperation dominates up to a
critical value of the PD parameters, where defection invaded
the whole system. In our case, depending on the initial con-
ditions, either the cooperative steady state or the all-D net-
work is reached. We find that in general the average payoff
of D agents is larger than that of C agents, which also points
in the direction that cooperation is sustained mainly due to
the C leaders. Finally, we study the robustness of steady
states by introducing exogenous perturbations, such as errors
in the imitation of a strategy. We find that these exogenous
perturbations affect the survival probability of C leaders. The
network is robust up to a certain noise threshold, after which
a full-defective outcome is reached.
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The paper is organized as follows. In Sec. II we define the
evolutionary network model. Section III describes the formal
analysis, including steady state solutions and stability, as
well as a result on the payoff evolution of C leaders. In Sec.
IV we show numerical experiments describing how a highly
cooperative state is reached, topological properties of the
asymptotic networks, a detailed explanation for the large cas-
cades observed for certain parameters, and a robustness
study when exogenous perturbations are allowed. Finally in
Sec. V we discuss our results and open problems.

II. THE MODEL

We consider a game where N agents play the Prisoner’s
Dilemma on a network A. Each agent i plays with a subset
known as the neighbors, which will be allowed to evolve as
specified below. Each interaction among two agents is repre-
sented in A/ by an undirected link, and the neighbors of agent
i will be denoted by V(i) € . An important parameter of the
network is the average degree K, which corresponds to the
average number of incidents links to an agent. We consider
in general networks where the total number of agents N is
much larger than the typical degree K.

Let us denote by s; the strategy of agent i, where s;=1
corresponds to play cooperation (C), and s,=0 corresponds
to play defection (D). These will be referred generically as C
agents or D agents, respectively. The payoff matrix for a
two-agent PD interaction is

C | D
Clo,0]0,b,
D |b,0 |66

where b> o> 6>0, and b/2<o. For the remainder of the
paper we take o=1, 6=0.1, and the incentive to defect, b, is
restricted to 1 <b<<2.

As discussed in the Introduction, we follow the bounded
rationality paradigm. Agents are assumed not to have the
computational power to anticipate strategic moves of oppo-
nents (agents have no memory), nor compute a priori the
best agent to whom connect. Their rationality only allows
them to play the same strategy with all its neighbors, observe
the aggregate payoff of its neighbors and its strategy (from
the payoff obtained), and whenever the agents changes op-
ponents they rely on a random selection of new partners. In
this context we let the agents update both their strategy and
their local neighborhoods V(i) by a very simple prescription.
The game occurs in discrete time ¢ and each step is divided
into three stages. Step (i): Every agent plays the PD game
with its neighbors. Step (ii): Every agent imitates the strategy
of the best neighbor. Step (iii): Every agent applies a network
dynamics which adapts its local neighborhood.

We use a synchronous update, where all the agents decide
at the same time their strategy and their respective new
neighborhood for the next time step. Alternatively, asynchro-
nous update [23] corresponds to select in each time step a
single random agent, and perform the above steps with data
corresponding at that time of update.

The first two stages are straightforward and follow Ref.

[15]:
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Step (i): Each agent i plays a PD game with each neighbor
using the same strategy s;, and collects an individual payoff
II; for time ¢,

IL(t) = sjpio + (1 = s)[ b + (K; — ;) 6] (1)

where K; is the degree of agent i and w; is the number of C
neighbors of agent i:

M= 2 Sj- (2)

jewi

Step (ii): Each agent i revisits its current strategy by imi-
tating the neighbor’s strategy with the highest aggregate pay-
off. We introduce the imitation map 1(i): N — N,

(i) ={m € V(i) U{i}, such that IL,, = max (IL,II,)}
jeV(i)

A3)

which points to the agent’s i neighbor with the highest pay-
off. If there is more than one neighbor with the same maxi-
mum payoff other than agent i itself, then one is picked
randomly. If agent i has the maximum payoff then /(i)=i. In
the remainder of the paper we will say that agent i imitates
agent j if j=1I(i). The discrete time ¢ evolution for the imita-
tion rule becomes

si(t+1) = s5y(1). (4)

Agent i is said to be satisfied when I(i)=i; otherwise it will
be unsatisfied and a neighbor’s strategy will be imitated.

A very simple strategy update was chosen in order to
compare with previous results obtained by several authors on
nonadaptive networks [12-17]. In the literature other learn-
ing rules were explored. In Ref. [24] the authors study a
coordination game with local interactions, where a majority
local rule seems better motivated (a sort of local best reply
model [25]), in order to study the selection of an equilibrium.
Also Ref. [26] discusses an evolutionary process where the
learning rule itself reproduces and mutates, in order to find
the best learning rule for local interacting agents.

The specification of how each agent adapts its neighbors
is based on a discussion in Ref. [4]. The first step in the
evolution procedure takes into account a local satisfaction
measure. We only allow unsatisfied agents [i#1(i)] to
change their neighborhoods. The second step involves a clas-
sification of neighbors depending on the expected payoff. An
agent will have an incentive to maintain an interaction with a
neighbor if the payoff received matches the possible maxi-
mum (given the strategy played); otherwise the agent will
consider to dismiss the interaction. An application of this
argument to the three possible pairwise interactions is
straightforward. Two C agents connected by a link will on
each side try to maintain the interaction, because the payoff
obtained is the highest allowed by its strategy. On the con-
trary, two D agents connected by a link receive the minimum
payoff allowed by its strategy, so each agent will try to dis-
miss this interaction. A C agent and a D agent connected by
a link will have opposite reactions. On one hand, the C agent
will try to dismiss the interaction, while on the other the D
agent will try to maintain it. For the sake of simplicity, we
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assume that this opposite reaction balances. Thus the dissat-
isfaction experienced by a C agent of being exploited by a
defector offsets the satisfaction of a D agent for exploiting a
C neighbor. In conclusion, given this assumption only unsat-
isfied D agents change their interactions with D neighbors.

To complete the network adaptation, we assume that
whenever an unsatisfied D agent dismisses a D neighbor, it
randomly selects a new agent from the whole network A/ and
engages in a new interaction. The selected agent always ac-
cepts the new neighbor, because a priori the unknown new
neighbor can improve its aggregate utility. Notice that D
neighbors do not contribute to the aggregate payoff of C
agents. Therefore cooperators are insensitive to the number
of D agents they have or receive.

It is worth noting that the network adaption follows the
spirit of the PD game, which highlights the conflict between
the individual interest and the interest of the group. While
the individual interest (of the defectors) is “enhanced” by
allowing D agents to improve their payoff by escaping from
their D neighbors, the “interest of the group” is affected be-
cause they can survive attached to the cooperators.

The network adaptation is defined as a stochastic process
by introducing a new parameter p € [0, 1] which corresponds
to the probability for an unsatisfied D agent to dismiss and
find a new neighbor and introduces a time scale for the net-
work evolution. In summary, the network adaptation stage
considered in this paper is as follows.

Step (iii): Each agent i revisits its current neighborhood if
unsatisfied [i#1(i)], by the following network dynamics
(ND): if i is a D agent then breaks the link with each D
neighbor k; € V(i) with probability p, and replace it by ran-
domly choosing agent k, uniformly from the network A. We
do not allow for self-links nor for multiple links to one agent.

This rule will adapt the degree for each agent. We have
that

K+ 1) =K, (01, (5)

Kkz(t + 1) = Kkz(t) + 1 (6)
while the degree of i remains invariant,
Ki(t+1)=K(1), (7)

and only the set V(i) changes by replacing k; — k,. It is clear
that this rule conserves the total number of links, and thus
the average degree K.

On the one hand, the above definition of ND allows un-
satisfied D agents to adapt their local neighborhoods (p
>0) as long as they have D neighbors. The adaptation al-
lows the agents to search other C agents from whom to ex-
ploit and increase their payoff. On the other hand, C agents
are conservative in nature, and as discussed above, they do
not have an incentive a priori to endogenously adapt their
neighbors: they may only accept new neighbors. Thus the
network update considered establishes an asymmetric behav-
ior as long as p>0.

The network adaptation depends on the parameter relation
of the PD payoff. An extension of this adaptive network rule
to other two-player games is straightforward. For example, a

056118-3



M. G. ZIMMERMANN AND V. M. EGUILUZ

coordination game with strategies {e;,e,} has strict Nash
equilibria (e;,e,) or (e,,e,). Unsatisfied agents imitating op-
ponents with opposite strategy [either (e;,e,) or (e;,e)]
would prefer to change partners.

Finally, we remark that unlike other studies in adaptive
networks, we do not allow an indirect payoff due to the
neighbors’ neighbors, as for example in Refs. [10,27]. There-
fore we analyze the evolution based on strict nearest neigh-
bors’ interactions.

III. ANALYSIS

In this section we provide results on the organization and
stability of the network, by having a close look to the steady
state solutions. These states arise in a dynamical evolution of
the game whenever p >0, and correspond to network con-
figurations and individual strategies which remain stationary
in time. The multiplicity of these solutions is huge, for a fair
number of agents. However, they have certain common fea-
tures that we now reveal. Also, and very interesting, pertur-
bations acting on them may produce significant changes to
the whole network. The more complicated dynamical aspects
of evolution will be dealt with in Sec. IV, where numerical
simulations will be helpful. Also in this section, we introduce
the notion of leaders, which is important in order to under-
stand how the asymptotic steady state may be reached: either
a nearly full cooperative state, or a full defective one. These
results will be exemplified in Sec. IV.

A. Existence of steady states

As defined above, steady states will refer to equilibrium
states where the network configurations and individual strat-
egies remain stationary in time. For the sake of clarity, let us
first consider some simple examples. Consider the steady
state in the nonempty (K # 0) adaptive (p >0) network com-
posed by only C agents. In this case, agents are either satis-
fied if they have the maximum payoff of their neighborhood,
i.e., I(i)=i, or otherwise conformists (if they are unsatisfied)
because they imitate their same strategy from a better agent.
In both cases, they will not change their individual payoff,
nor their local neighborhoods, for there are no D agents in
network M. In the other extreme, for a network composed of
only D agents, the average payoff remains stationary in time,
but the network configuration and the individual payoff will
be perpetually evolving—unless they all have the same num-
ber of neighbors so that everyone is satisfied, and ND does
not apply; a very unlikely situation we do not consider. From
the above definition, we will not consider the latter example
a steady state, and we refer to these dynamic configurations
without cooperators as the all-D network. It is worth noting
that this set of configurations is absorbing because once the
system reaches this state, the dynamics itself cannot escape
from it. This state is of interest for it is one of the possible
asymptotic states the dynamics of the system may reach.

Let us introduce the definition of chain of agents. Due to
the strategy update we implemented, forward iteration of the
imitation map I(i) starting from any agent i traces a con-
nected component in the network configuration with nonde-
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FIG. 1. (Color online) Schematic diagram of several chains of
cooperators. The vertical axis corresponds to the total individual
payoff I1;. The thick arrows represent the imitation map [Eq. (3)].
Agent [3(i) is a local maximum, D agents j and k are passive local
maxima, while several local minima are also shown.

creasing payoff. Thus a chain of agents starting at agent k
and length m is defined as the  subset
{k,I(k),...,I"2(k),I" " (k)} € N, where I1,,>1II, with m—1
=r>s=0, and ends whenever agent " 1(k) is satisfied
[I"(k)=1"""(k)]. In particular we will discuss the behavior of
chains of cooperators and defectors.

Let us define a local maximum in payoff as the agent i
with all its neighbors j e V(i) satisfying I1,>1I; and at least
a neighbor j imitates the local maximum, i=I(j). However,
we distinguish as a passive local maximum the extreme situ-
ation where none of the neighbors j imitate agent i: V j
e Vi), i#1(j) and II,;)>11,>11;. Finally a local minimum
in payoff corresponds to an agent i such that all neighbors j
satisfy I1;<<II;(;. Figure 1 illustrates several chains of coop-
erators, ordered vertically by their corresponding individual
payoff of the agent. For example, the chain {i,(i),*(i), (i)}
has attached also two passive local maxima (agent j and k).

In general in an adaptive network where p >0, nontrivial
steady states may arise. Chains of cooperators are a possible
stable situation, for ND does not apply. On the other hand, a
chain of defectors is unstable, for ND applies on all its mem-
bers except the local maxima. Thus in steady states configu-
rations defectors cannot form chains, and may only have C
neighbors. More specifically D agents must be passive local
maxima in order for their strategy not to be replicated by its
neighbor chains of cooperators, i.e., no agent imitates D
agents. In conclusion, the only stationary situation in terms
of strategy and network configurations leading to steady
states involves C agents forming chains, where replication of
C strategy takes place, while D neighbors do not form chains
and are passive local maxima. In particular D agents may
become isolated or ostracized (without links) [28].

It is clear that for a fair number of agents, the multiplicity
of chains is huge. However, only those chains of cooperators
which satisfy a stability criterion will survive. Denote K$© as
the number of C neighbors the C agent j has, while KJJbC is
the number of C neighbors the D agent j has. A chain of m
>0 cooperators {k=1°(k),I'(k),...,I""'(k)} must satisfy the
following ordering:

S > b KR+ SKPP = K )

V s € [0,m—1], and r € V(I(k))
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FIG. 2. (Color online) Schematic diagram showing different types of perturbations to a chain of cooperators & (see text). By the ND, the
D agent j chooses as a new neighbor agent i establishing a new link (dashed line) at time ¢. The diagram illustrates the payoffs computed at
t+1 after performing the stage [step (i)] and before [step (ii)]: (a) II;(r+1)>1IL,(z+1), constructive perturbation, (b) IL;;(r+1)>11,(t+1)
> I1,(t+1), neutral perturbation, and (c) I1;(z+1) > II;;(z+ 1) >11,(z+1) destructive perturbation. The arrows represent the imitation map.

in order to be a stationary configuration.

In conclusion we have the following:

Proposition 1. In the adaptive game (p>0), a steady state
exists only when all D agents are either passive local
maxima which interact exclusively to C agents in a chain
satisfying Eq. (8), or are isolated (have no links).

In other words, a steady state is composed exclusively by
a subnetwork composed of the chains of cooperators, to-
gether with the subnetwork of defectors only exploiting C
neighbors. In a dynamical evolution for 0 <p <1, the imita-
tion dynamics is much faster than the network evolution, and
strategies equilibrate faster than the neighborhoods. There-
fore a useful indicator to control whether the system reached
a steady state for the numeric simulations in Sec. IV is to
monitor when the number of links between D agents van-
ishes.

Also notice that the result of the previous proposition
holds even for extremely small p >0, which shows a clear
distinction to the steady states which might occur for p=0. In
general, fixed neighborhoods of D agents with more than one
D agent are possible, in clear contrast to our results for p
>0, where D agents only interact with C agents.

B. Stability of steady states

Once we have established the properties of the steady
states, we investigate their stability. We will show that par-
ticular perturbations will grow cooperative networks, while
some others may trigger large scale dynamics in the whole
network.

Consider a steady state decomposed in a collection of
chains of cooperators {éj}. Stability can now be studied on
each component ;. Let us assume the network is “close” to
a steady state, where the total number of links between D
agents is close to zero, and most chains &; are in equilibrium
satisfying Eq. (8). By the ND, the remaining clusters of D
agents will change their D neighbors repeatedly “searching”
for C neighbors. These perturbations will affect not only the
D agents’ own payoff, but may produce changes in the local
neighborhood of the new chosen agent. Different situations
may arise depending on the actual payoff of the perturbing D
agent, and in which C agent the perturbation falls.

In Fig. 2 we show a schematic diagram showing three
different cases which may arise. Consider a chain of coop-
erators & receives the new D neighbor j at time step ¢ after
performing the stage [step (iii)]. On time step 7+ 1 the pay-
offs II;,I;, and II;; are again computed at stage [step (i)]

and their relative value may fall in any of the possibilities
shown in Fig. 2 [29]:

(a) The first situation corresponds to the payoff rela-
tion I1;<II; [see Fig. 2(a)]. If /(j)=i, then at the end of this
time step the perturbation D agent will become a C agent by
imitation. However, if /(j) points to another D agent, then we
may guarantee only that there is a finite probability that the
D perturbation becomes a C agent. This occurs when in a
number of time steps (depending on p) ND applies, and D
agent j changes I(j) by a new neighbor which may either
have a lower payoff than j [so that i=[(j) in the next time
step], or the new neighbor is a C agent with a larger payoff
than j. In both cases, agent j imitates C strategy in the fol-
lowing time step. Of course, during these intermediate time
steps the network also evolves, and again we can only con-
clude a finite probability for the switch of strategy. In con-
clusion depending on the neighborhood structure of the D
perturbation j, there is a finite probability that j becomes a C
agent. We will refer to this type of perturbations as construc-
tive, and is a primary mechanism to enlarge the cooperator’s
population.

(b) The second situation corresponds to the payoff re-
lation II;;>1I1;>1II, [see Fig. 2(b)]. By a similar argument
as in the previous case, depending on the composition of
V(j) there is a finite probability that D agent j becomes a
passive local maximum in a number of steps, so we will refer
to these perturbations as a neutral perturbation. If at time
step 7+ 1, I(j)=/, then with probability one the perturbation j
becomes a passive local maximum to j. This is a primary
mechanism where D agents may survive, with a continual
exploitation to C agents.

(c) The third situation corresponds to the payoff rela-
tion IL;>11,;>1I, [see Fig. 2(c)]. This corresponds to a de-
structive perturbation, for D strategy is replicated “downhill”
(in payoff) through the chains composed of & ={i,u,v,...},

where u,v, ... are such that I(u)=i, l(v)=u, .... By this
mechanism one expects an increase in the defector’s
population.

We have established the following:

Proposition 2. Given an adaptive game (p>0), a pertur-
bation at time ¢ of a D agent j to a C agent i belonging to a
chain £€={...,i,0(i),I?(i),...} containing at least two coop-
erators can generate different outcomes depending on the
payoff relation between IL;(z+1),1I;;(z+1), and IT,(z+1).

(a) Constructive perturbation: If II(z+1)>1I1;(z+1)
there is a finite probability that in the subsequent time steps
the chain of cooperators enlarges by incorporating j. The
probability is one if /(j)=i at time step 7+]1.
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(b) Neutral perturbation: If I (t+1)>IL(¢+1)
>1I,(z+1) there is a finite probability that in the subsequent
time steps D agent j becomes a passive local maximum to i.
The probability is one if I(j)=/ at time step t+1.

(c) Destructive perturbation: If TL,(z+1)> 11 (¢+1)
>1I,(z+ 1) then with probability one replication of D strategy
starts over a subset of the original chain {i,u,v...}e ¢
(where u,v, ... are such that I(u)=i, l(v)=u, ...), enlarging
the defector’s population.

A very interesting recursive property may appear in the
destructive perturbations above. Let us denote agent k=1(i)
at time step ¢. At time step #+2, agent i displays a consider-
able payoff jump, I1;(z+2)=bI1,(r+1)>11,(s+1), and must
be considered a new perturbation to agent k. From Proposi-
tion 2 it depends on the payoff of I (r+2),I1(r+2),I1(z
+2), a constructive, neutral, or destructive perturbation may
occur. If a constructive perturbation results for time step 7
+3, then part of the “downhill” destructive perturbations
may be recovered into C agents from ¢&’. If a neutral pertur-
bation results, then agent i becomes a passive local maxi-
mum, and the original chain & ends at the new local mini-
mum at agent k. Finally if agent i becomes a new destructive
perturbation to /(k), then this would have accomplished the
interesting feature that destructive perturbations may also
travel “uphill” in payoff function. The above dynamical pro-
cess is illustrated in Fig. 3, where a schematic simulation is
shown (together with the downhill replication process) and a
sequence of uphill perturbations reach the local maximum
and completely destroy the original chain of cooperators. Be-
low we study conditions under which these perturbations
may occur and are found to be very important in the devel-
opment of cooperative steady states.

C. Leaders’ evolution

The network adaptation shapes the steady state network in
a very heterogenous manner. We define a C leader (D
leader), as the C agent (D agent) with the largest payoff
among the C agents (D agents). Out of all the C agents, the
chains local maxima are candidates to be the C leader. Like-

wise for D agents, among all the passive local maxima, there
will be one with the maximum payoff and it will be the D
leader. We now describe an important property leaders share,
responsible for the asymptotic network evolution.

Let us denote by a(B) the C(D) agent with the maximum
payoff in the whole system. Due to the “searching” done by
unsatisfied D agents, it is clear that if the leaders’ payoff
satisfies [1,> 114+, then any link received by leader « from
any D agent will be necessarily of constructive type, follow-
ing Proposition 2(a). Then, for each perturbation received by
the leader on time step ¢, the leaders’ payoff evolves on the
next time step as

M+ 1)=1,(t)+1, II,>Ig+b. 9)

In fact, this result also holds for all C agents i whose payoffs
satisfy I1,>I15+b. We will refer to this subset of C agents as
“wealthy agents,” and provided the condition is satisfied, its
payoff (and degree) is always nondecreasing in time.

However, an unstable situation occurs whenever the C
leader does not have the largest payoff in the whole network.
In this case the leader « has a finite probability of receiving
a D neighbor with a larger payoff, which will produce a
drastic event in the subsequent time steps: « and its associ-
ated chains will replicate the D strategy. As an extreme situ-
ation consider C leader « leading a number of chains of
cooperators, and the rest of the population consists of D
agents. We can easily find a lower bound on II, such that the
other C agents have a chance of survival:

,>1I1,+b, (10)

where vy is the D agent with minimum payoff among defec-
tors. Otherwise all perturbations the C agents receive from
the D agents will be destructive. In this case, depending on
the actual configuration of the chain and the perturbations
received, the evolution of the network has a large probability
of reaching the all-D network.

The above discussion establishes two bounds on the pay-
off of C leaders for their development and survival,

Proposition 3. Let us consider a(B) as the cooperator (de-
fector) with the largest payoff among all cooperators (defec-
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tors) and y as the defector with the lowest payoff among
defectors. If p>0 and the network is not in a steady state
then:

(a) Tf I1,(r) >IL4(¢) +b, each perturbation received by
a at time step ¢ will be of constructive type and increases the
leader’s payoff: I1,(t+1)=I1,(r)+1. The same result holds
for all C agents i, labeled “wealthy agents,” such that II;
>1lg+b.

(b) If I1(r) >1I,(s), perturbations received by all C
agents at time ¢ will be destructive, and drive the system
towards the absorbing all-D network.

One important consequence of Proposition 3(a) is that it
provides conditions such that cooperative leaders emerge in
the dynamical evolution of the proposed game. In other
words the payoff of wealthy agents does not follow a random
stochastic process; on the contrary, they have a nondecreas-
ing payoff in time provided the condition on leaders’ payoff
is satisfied. Another consequence of this result is that the
wealthy agents are constantly absorbing perturbations of un-
satisfied D agents and thus helping the network approach a
steady state.

D. Example: Full capacity cooperators chain

In the previous section we studied the dynamics of lead-
ers; we now turn to a tractable example for the dynamics of
a chain. Consider a chain &={1,...,i,i+1,...m} [where for
simplicity we have renamed the agents such that /(i)=i+1,
V i# m] which is said to be with “full capacity,” i.e., each C
agent i#m (except the leader) in the chain satisfies Kﬁg

=KSC+1. Let us assume that all chain members (except the
absolute maximum m) have exactly s passive local maxima
D agents (exploiters), and denote by r:KiCC the number of C
neighbors the C agent i has. We can now study in some detail
how after a destructive perturbation acts on agent i, a new
constructive, passive, or destructive perturbation may be pro-
duced as a function of the parameters (b, d), and the integer
pair (r,s).

Consider that at time ¢ any of the s exploiters of i receives
a perturbation such that Proposition 2(c) holds. At time ¢
+1, agent i becomes a D agent with a payoff II,(r+1)=b r
+ 6 s. Now the condition that i becomes a new passive local
maximum to agent i+ 1=10(i) is r+2>I1,(t+1)>r+1. This is
true for the interval of b defined by

2-0s 1-6s

>bhb>1+
r r

br=1+ =p"’, (11)
In Fig. 4(a) we show the locus of b7* as a function of & for
different pairs of integers (r,s). The region in between the
parallel lines corresponds to where Eq. (11) is satisfied, and
therefore the perturbation generates a new passive local
maximum (P in Fig. 4). Below this region, we have construc-
tive perturbations (denoted by C), where after Proposition
2(a) agent i becomes again a C agent after some finite steps.
Above the region P, we have destructive perturbations (D in
Fig. 4), where the D agent i becomes the best neighbor of
i+1, thus becomes a perturbation satisfying again Proposi-
tion 2(c). Then on the next time step (and for the special
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FIG. 4. (Color online) Stability diagram for local perturbations:
constructive (C), passive (P), and destructive (D) perturbations. (a)
Locus of b}% in the PD parameter space (b,d). (b) Locus of
r12(b, 8,5) in terms of incentive to defect b. The curve correspond-
ing to s=0 falls very close to s=1 (5=0.1).

assumption of a chain in full capacity), agent i+1 satisfies
the condition of a destructive perturbation on agent i+2, and
so on until the chain is completely destroyed.

Another alternative scenario occurs if the original pertur-
bation on i is passive, for if s>0 the new chain is not in a
steady state. The “search” done by i and its s D neighbors
will gradually improve the payoff of i, until it becomes a
destructive perturbation to i+ 1. This is true when (r+2)/(r
+5)>b>(r+1)/(r+s); for s>1 this cannot happen in a PD
game as defined above, with 1 <b<2.

Another way to illustrate how vulnerable are full capacity
chains is to fix & and s, and study from Eq. (11) the possible
r’s which give passive perturbations,

2-6s 1-6s
b-1 b-1

i
<

r.(b,8,s) =r_(b,5s). (12)
Figure 4(b) shows the dependence of r.(b,8,s) as b is in-
creased, and shows how vulnerable to destructive perturba-
tions “full capacity” chains are.

E. Payoff gaps and protection to leaders

The previous example shows that chains with a small pay-
off difference between consecutive agents in the chain [e.g.,
i and [(i)], are easily wiped out by uphill perturbations. In
order for steady states to become more robust to these per-
turbations, the chain must develop “payoff gaps,” where
[Ip;)>11;. More precisely, consider that a perturbation
reaches agent i. In order for an uphill perturbation not to
develop the payoffs must satisfy

M) > bIT; + 5K (13)

before receiving the perturbation. For the purpose of illustra-
tion we show in Table I examples of “minimal” chains which
satisfy Eq. (13) and uphill perturbations are inhibited, where
we have assumed a fixed number of passive local maxima
s=KP=3, and different values of b. The values were ob-
tained by iterating the function f(i+1)=[b/;i+ 5s] (where [x]
is the largest integer greater than x). Clearly these minimal
chains which do not allow uphill perturbations have payoff
gaps which increase for larger b. Thus an important conclu-
sion is that in a dynamic evolution one expects uphill pertur-
bations to occur more frequently for larger b.

The above characterization is important because we may
now distinguish those ‘“dangerous chains” such that their
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TABLE 1. Chains of cooperators with gaps that inhibit uphill
perturbations. For this example we took 6=0.1, and a fixed value of
s=KP=3 passive local maximum.

b K© KGO KS K K
1.55 4 7 11 17 26
1.55 5 9 13 21 32
1.55 6 10 16 24 38
1.75 5 10 17 29 51
1.95 5 11 20 40 77

payoff gaps do not inhibit uphill cascades and reach the local
maximum or C leader. A C leader is “protected” when all its
associated chains are not dangerous. Notice that whenever
the C leader replicates the D strategy, a large multiplicative
effect occurs, for all the chains connected to the C leader will
replicate by downbhill perturbations the D strategy. It is clear
that this will give origin to a large cascade affecting large
portions of the whole network (see Sec. IV E).

A closer analysis of the network dynamics reveals a
mechanism which reduces the number of dangerous chains
and provides protection to the C leader (and possibly C local
maxima). Given the payoff of D leader B3, on each chain in
the C cluster let us focus on the particular agent i* such that
the payoffs of agents I(i") and I*(i") satisfy

le(i*) > Hﬁ > Hl(i*)' (14)

Consider only perturbations which arise from unsatisfied D
agents which do not belong to the C cluster, i.e., these per-
turbations which do not arise from an uphill process. It is
straightforward to show using Proposition 2 that agent [(i")
may only receive neutral perturbations, while for /?(i") the
perturbations are only of the constructive type. Thus the pay-
off gap Q(l(i*))zl_llz(,-*)—l_[l(,-*) will be nondecreasing in time
for this payoff of agent B. Note that the payoff of 8 fluctuates
in time, thus this effect will increase payoff gaps of different
pairs of agents. The precise condition for a chain to become
imr?une to an uphill cascade corresponds to Eq. (13) with
i=i.

On the other hand, if the chain is not protected and an
uphill cascade develops, then on the next time step there is a
finite probability that a new uphill perturbation occurs. In
particular agent i* becomes the new D leader and a new i
agent must be selected on each chain of cooperators. In the
numerical examples in Sec. IV E we will show this process
in action. We summarize these results in the following:

Proposition 4. Suppose there exists a C local maximum «
with a cluster of agents forming chains of cooperators. Sup-
pose that the D leader S satisfies I1,>114+b, then for each
chain in the cluster there exist two agents i* and I(i") which
satisfy Eq. (14). Then the payoff gap of the chain Q(I(i"))
=IIp;#—I1,;+ is a nondecreasing function in time, whenever
the payoffs of agents i and /*(i") satisfies Eq. (13). Under
these conditions the mechanism effectively reduces the num-
ber of dangerous chains in the cluster by 1.
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The application of the above result to each dangerous
chain connected to the C leader may effectively protect the C
leader from uphill perturbations. A consequence of this result
is that only when all C local maxima in the network are
protected the network will reach surely a cooperative steady
state, for there will be an invariant number of wealthy C
agents I1;>1IIz+b which will absorb continuously construc-
tive perturbations and drain the total number of perturba-
tions. Clearly, the above statement provides sufficient condi-
tions such that a steady state may be reached; in computer
simulations a steady state may still have dangerous chains
which have not been exploited by uphill perturbations.

IV. NUMERICAL SIMULATIONS

We will now address by the use of computer simulations
how the dynamic model evolves in time, and the central
question of how cooperation performs in such an adaptive
environment. Our results show that cooperation emerges as a
steady state for the whole range of 1 <5/ <2 and all networks
studied. Also, surprisingly, the average payoff of defectors is
larger than that of cooperators. This points to the existence of
leaders, which have a very important role in determining the
asymptotic evolution in time of the system. The main param-
eters in this investigation will be the incentive to defect b,
the network adaptation rate p, and the average degree of the
network K.

The statistical measures we studied have been

(i) the fraction of cooperating agents (C agents), denoted
sz(Zﬁlsi)/N;

(ii) the probability of having a link between two C
agents, pcc, between a C agent and a D agent, pcp, and
between two D agents, ppp. These quantities satisfy

1 =pec+2pep + Pop- (15)

Simulations were performed with a total number of agents in
the range N €[300,10000], displaying qualitatively the
same results. We have adopted N=10 000 as the base case.
With this number of agents, the initial fraction of ran-
domly distributed C agents in the network A was set to
0.6N. Any initial fraction of C agents above this value was
observed not to influence the final outcome. Clearly, if the
randomly distributed C agents does not form a sufficiently
wealthy C leader, cooperation may not be promoted and
the final state is an all-D network (see Sec. III C). Also all
time series have been evolved during an initial 50 time
steps without network adaptation (nor indicator measure-
ments), to allow for a transient behavior due to the ran-
dom initial distribution of strategies. The starting network
is random: KN/2 links are distributed randomly among the
N agents in the network.

A. Temporal evolution and steady states characteristics

A typical time evolution of cooperation fraction fc is dis-
played in Fig. 5(a). First notice that the cooperative fraction
increases on average steadily, until most of the network
agents are cooperative. Computation of the density of all the
possible links among agents reveals that the number of links
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FIG. 5. (Color online) Time evolution of (a) the fraction of
cooperators fc, and (b) the probability to have a link between two C
agents (pcc), a C and a D agent (pcp), and two D agents (ppp). ()
Degree distribution for cooperators and defectors in the steady state.
Parameter values: p=0.015, b=1.45, and K=5.

between D agents, decreases also on average steadily. The
steady state is reached at 7=700 when there are no links
between D agents (ppp=0) and the chains of cooperators
satisfy Eq. (8), as Proposition 1(a) shows. On the other hand
the number of links between C and D agents is low (most of
the time below 20%). Therefore the structure of the steady
state network is composed by chains of cooperators together
with exploiting D agents.

A closer look at the distributions of links corresponding to
the steady state is shown in Fig. 5(c), which reveals differ-
ences in how C and D agents connect. In general one obtains
an exponential decrease in the number of links between C
agents with C agents (C-C links), while D agents exploit a
narrow distribution of C agents. Notice also that the maxi-
mum number of links C-C links may become several times
the average degree K, and there is approximately 10% of
solitary D agents without links at all.

Extensive numerical simulations reveal that there are two
types of temporal evolutions in our model. For approxi-
mately »<<1.45 the evolution is characterized by a roughly
steady increase in fc [as shown in Fig. 5(a)], a relatively
constant pcp, while ppp decreases on average monotonously
until complete extinction. On the other hand, when b > 1.45
some realizations display global oscillations in the fraction
of cooperators. In this case, pcp,pcce, and ppp are coupled
together, and follow always the trend displayed in Fig. 6. The
figure shows a typical time evolution where several large
global cascades developed before settling into a cooperative
steady state. The number of large cascades may vary signifi-
cantly from run to run. The final outcome of the above tem-
poral evolution may either be a cooperative steady state, or
the all-D network. The origin of these large cascades and the
asymptotic outcome relies on a strong interaction between C
and D leaders, and a detailed discussion is delayed until
Sec. IV E.

operation performs asymptotically in time for various values
of the incentive to defect b, network adaptation p, and aver-
age degree K.

Figure 7 displays the results of the fraction of C agent f
as a function of the incentive to defect . The experiment
was run for 50 random realizations, and a maximum time of
integration of 7=1000 time steps. Given the network adapt-
ability p=0.1 chosen, the total time of integration was suffi-
cient in order for the system to reach either a steady state, or
the all-D network. As before, a steady state was found when-
ever the links between D agents disappeared (ppp=0). To
characterize solely the cooperative steady state for p >0, we
did not include in the statistical average of Fig. 7 those real-
izations reaching the all-D network. The f-=0 absorbing
state is present in the whole range of b, and our results show
that depending on the initial condition, the system may reach
either of them.

Numerical simulations with different average degree K
does not change the general behavior of the fraction of co-
operation. For p=0.1 the average cooperation is over 94%
for K=12, 89% for K=8, and 75% for K=4 for b<<2. We
also tested regular lattices as initial networks, as those stud-
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e % = K=8
W r \ —o K=4 .
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b

FIG. 7. (Color online) Fraction of cooperation f as a function
of b for K=4, 8, 12 and p=1.0. The filled symbols indicate that all
the averaged realizations reached a steady state. The nonadaptive
case p=0, K=8 (dashed line) seldomly reached a steady state, and
the average was performed on all final conditions, including all-D
networks. The maximum integration time was 7=1000 time steps
and 50 random realizations for every point.
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ied in Ref. [15]. The resulting final network was random, and
no trace of the initial regular lattice was observed, e.g., com-
parison of the average asymptotic value of f starting with a
regular first neighbors lattice was statistically insignificant to
that of starting from a random K=4 lattice. For a network
adaptation p >0.1, cooperation was enhanced and the differ-
ence between K=8 and K=12 was reduced to become nearly
identical at p=1.

On the other hand, for smaller values of p, the network
adaptability occurs less frequently, and a larger integration
time was required to reach a final state. Making numerical
simulations with a fixed integration time T=7", and perform-
ing an analysis of the average value of f-(T") as a function of
p, shows a continuous crossover from the high cooperation
level found in cooperative steady states to those found in
nonadaptive networks p=0.

For comparison, results on a random nonadaptive net-
works (p=0) is also included in Fig. 7. Our results are in
agreement with those obtained by other authors [30]: the
fraction of cooperation decreases as b increases, up to a criti-
cal b* where defection always dominates. As long as there is
a single D agent, for b>b" the system asymptotically goes to
the all-D network. For K=8 and 6=0.1 we have obtained an
approximate b" =~ 1.75.

This marks a strong contrast between adaptive and non-
adaptive networks. In the latter case partial cooperation is
found up to a critical b”, after which cooperation disappears.
The former case displays an enhanced cooperation through-
out the whole range of b, which coexists with the absorbing
all-D network. In the case of nonadaptive network D agents
can get a larger profit only at the boundaries where they meet
C agents to exploit [15]. By enumerating the finite neighbor-
hood configurations possible at the boundary of C and D
agents in regular networks, one may find a lower bound on b
such that D strategy is replicated by the boundary C agents
(thus the D agents advances and invades a cluster of C
agents). With the adaptive network considered here, clusters
of D agents tend to dissappear and only D agents exploiting
a large number of C agents is able to replicate D strategies.

C. Wealth distribution

Although cooperation in steady states is highly enhanced
throughout the network, we find an uneven wealth distribu-
tion among agents. The surprising result is that the average
payoff of D agents in a steady state is found to be larger than
C agents, and increases with larger b.

A comparison is illustrated in Fig. 8, where the wealth
distribution for a low and a large value of b is shown. This is
a specific consequence of the selective adaptability of the
network, and does not occur with fixed and regular neighbor-
hoods as those studied in previous works [15,32]. The net-
work adaptation favors D agents to search for C agents to
exploit, until they become satisfied (or become C agents).
Once in steady states, D agents are passive local maxima,
and have reached the maximum payoff allowed by its neigh-
borhood. C agents, do not have such a mechanism and only
those agents with sufficiently large payoff may also increase
its payoff (by Proposition 3). The overall effect is that in

PHYSICAL REVIEW E 72, 056118 (2005)

distribution
distribution

0 5 0 15 20 25 0 5 10 15 20 25
payoff I1 payoftf I'1

FIG. 8. Distribution of payoffs for cooperators (empty squares)
and defectors (filled circles) in a steady state (normalized by the
number of cooperators and defectors, respectively). Parameter val-
ues: p=0.08, K=38, for (a) b=1.25 and (b) b=1.75.

general we observe that D agents are wealthier than C
agents. In other words, our numerical findings points that
with network adaptability both populations of agents may be
better off in a steady state: C agents may become more nu-
merous, but on average are poorer than defectors.

More detailed numerical simulations show that the un-
evenness in wealth distribution occurs in particular in the
region of incentive to defect b where Nowak and May ob-
tained only partial cooperation. As a measure of uneven
wealth distribution, consider the computation of the average
payoff for C and D agents at steady state, labeled Il and
[T, respectively. Figure 9 shows how the average over dif-
ferent realization of I1,—1II. behaves as a function of b. In
general we find that on average defectors have a better profit
than cooperators. For small p=0.01, 0.1 (slow convergence
to a steady state) the uneven wealth distribution is observed
for the whole range of b. For p=1 (very fast convergence to
a steady state) the result holds for most of the range of b.
There seems to be a relation between the speed a steady state
is reached and the possibility of D agents to improve on
average their payoff past the C agents’ payoff.

D. Leaders and topology of cooperators clusters

The uneven wealth distribution found in the previous sec-
tion may seem a priori a contradiction from the point of
view of standard game theory. However, we find that the
sustainability of our networks depends crucially on the pay-
off relation among the C and D agents with largest payoff. In
this section we present more detailed numerical results,
which reveal some other leaders’ properties.
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FIG. 9. Payoff difference between average D agent and average
C agent as a function of b. Parameter values: K=8. Data have been
averaged over 50 realizations.
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FIG. 10. Payoff of C and D leaders as a function of b. Parameter
values: p=1.0, K=8, averaged over 30 realizations.

An illustration of the maximum payoff C agents and de-
fectors may reach in a steady state is shown in Fig. 10. We
have performed a numerical study varying the incentive b,
with fixed p=1.0 and K=8, averaging over 30 realizations.
We find a steady growth with b for the maximum payoff of
both C and D leaders. Also, due to the imposed conservation
of the total number of links in our model, the maximum
payoff acquired by C leaders depends on the average degree
K of the network: for large values of K, C leaders may ac-
quire larger payoffs.

In a steady state, the structure of the network changes as a
function of b. On the one hand, we have computed the num-
ber of C local maxima which are all candidates of being C
leaders. Figure 11(a) shows the results. For low b there is a
large fraction of competing local maxima in the steady state,
while for large incentive b their number is reduced drasti-
cally reaching approximately 20 C agents or roughly 0.2%.
the whole network. On the other hand, we have measured the
relative size of the cluster of the agents connected to the C
leader as a function of b. Figure 11(b) shows that for high b
approximately half of the population is associated with that
of the leaders cluster. These results indicates that for larger b,
the structure of the network depends very strongly on the
robustness of only a few local maxima with a very large
payoff, and the C leader dominates at least half of the C
population.

A typical network structure may be obtained by display-
ing only the links corresponding to the neighbors of C agents
from which they imitate. Figure 12 offers such view. The
local maxima are observed to lead large clusters of C agents.
It is clear that an exogenous perturbation flipping the strategy
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FIG. 11. Leaders’ characteristics for K=8 and p=0.01 (empty
squares), and 1.0 (filled circles). (a) Number of local maxima in a
steady state. (b) Fraction of agents which belong to the C leader
cluster. Data have been averaged over 30 realizations.
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FIG. 12. (Color online) Partial network displaying only C agents
and the links corresponding to the evolution of the imitation map
I(i) for each agent. The most connected agent corresponds to a C
leader. Agents without a link have been withdrawn. Parameter val-
ues: N=900, b=1.45, p=0.03, K=8. Adapted from Ref. [22].

of any of the local maxima will result in a large dropout of
cooperation in very few time steps. This will affect of course
other chains due to the links not shown in Fig. 12. Thus the
vulnerability of the network to stochastic perturbations is
dramatically increased for large b.

Finally, in the discussion on chains robustness (Sec.
II E), we argued that in order for uphill perturbations not to
occur, the “payoff gaps” between neighboring agents had to
be sufficiently big (see Table I). A closer look at the resulting
chains on any particular steady states reveal that in general
“gaps” are very frequent and large. In Table II we reproduce
the payoffs for several chains on a particular steady state.
The results show that indeed at steady states gaps for agents
with high payoff develop. In the next section we will relate
this result with the occurrence of avalanches and large cas-
cades.

E. Leaders and global cascades

We now turn to a detailed discussion of the role of leaders
in the global cascades described above. As before, we denote
the C agent with maximal payoff by «, and the D agent with
maximum payoff by S.

Proposition 3(a) showed how the payoff of a C leader is a
nondecreasing function of time, as long as it is larger than
the payoff of 8. Figure 13 illustrates a numerical simulation

TABLE II. Examples of chains of cooperators for b=1.55.

K K o Kito o
7 12 15 21 37
5 13 16 24 38
5 13 21 26 38
9 14 17 32 38
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FIG. 13. (Color online) Time evolution of the fraction of coop-
erators fc and the rescaled maximum payoff of C (I,) and D
agents (Ilg). Parameter values: b=1.75, p=0.08, K=8.

where the (rescaled) payoff of the C and D leaders are shown
along with f- as a function of time, where several large
global cascades developed before settling into a cooperative
steady state at 7= 300. The simulation illustrates the leaders
payoff increase on each period where I1,>1lz+b. More-
over, we find that whenever 11,~1lg, the maximum (mini-
mum) of fc is approximately reached if 11z increases (de-
creases). The destructive perturbations dominate when 1T,
<HB, and may even affect the maximum C agent; see, for
example, at T=106, where a drop of II, is observed. It re-
mains to be explained what is the mechanism by which a D
leader may increase its payoff past a C leader.

To answer this question we performed a close inspection
to the evolution of a D leader. Our results show that it is the
occurrence of uphill perturbations on a chain of cooperators
connected to the C leader, which allows in very few time
steps for a D leader to increase its payoff past the C leader.
As discussed in Sec. IIT E, uphill perturbations are inhibited
if the payoff “gap” between C agents in a chain is suffi-
ciently large [see Eq. (13)]. This boundary where uphill per-
turbations are inhibited increases linearly with b, thus for
large b these perturbations will appear more frequently. In
accordance, we have found from numerical experiments that
for b>1.45 and p>0.01 large global cascades could easily
be observed, and it became easier for larger b.

Consider a chain of cooperators whose local maximum is
the C leader and the whole chain allows the development of
uphill perturbations. Alternatively the discussion is also valid
for a chain associated to a local maximum with large payoff.
As a D agent perturbs this chain at one point, uphill pertur-
bations will create a “wave” of new D agents moving along
the chain with larger and larger payoff (see for a schematic
simulation Fig. 3). At some point, the payoff of these newly
created D agents will become so large that they will effec-
tively become an uphill “wave” of new D leaders. This phe-
nomenon is visually observed in Fig. 13, where at T= 100
the slope of the D leader’s payoff changes abruptly. Also
note that the maximum payoff attained by a D leader at any
oscillation is approximately bII,, which occurs when the C
leader « is perturbed by an uphill perturbation becoming a D
leader. Whenever a C leader is perturbed, then a new C
leader with less payoff is selected, as, for example, at T
~105 in Fig. 13.

Once an uphill perturbation affects a C leader (or a local
maximum with a similar payoff), downhill perturbations will
start. This will generate a large global cascade replicating D
strategy on all the remaining chains associated to this local
maximum. Unlike the uphill perturbations which occurs at a
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rate proportional to the network adaptation p, this process
occurs deterministically on every time step until the whole
cluster of C agents disappears. Also, the evolution of the D
leader follows closely the rapid decrease of the fraction of
cooperation. On each time step of the downhill replication of
D strategy, there is a D leader B(r) which will have a lower
payoff than the D leader at the previous time step B(t—1).
This occurs because at time ¢, the previous D leader repli-
cated its strategy to all its C neighbors, reducing completely
its payoff. Thus the payoff of D leaders decreases steadily
I 4(t) <Ilg(z—1) until a new D leader from another chain is
selected.

The subsequent time steps after the leader’s cluster repli-
cates D strategy depends on the network structure left by the
global cascade. If another C leader exists with a payoff such
that IT,>IIz+b, then cooperation may be recovered and the
time evolution of f- shows a minimum. Otherwise, the C
leader may be affected by more destructive perturbations
driving it towards the payoff lower boundary [Proposition
3(b)] where C chains may survive. This may drive the whole
C population to extinction, reaching the full-defective state.

If the fraction of cooperation reaches a minimum, coop-
eration may build up again. However, we find that the num-
ber of oscillations is finite, and the system either reaches a
steady state of the all-D network. We have already described
two mechanisms by which global cascades will be hindered
and a steady state may be reached:

(a) We have already seen in the discussion after
Proposition 3(a) that the existence of “wealthy” C agents
such that Hi>ng+b, will absorb a number of constructive
perturbations, which effectively decrease the number of links
between unsatisfied D agents.

(b) By Proposition 4 the payoff gaps for all wealthy
agents is nondecreasing, making it possible to “protect” the
C leader from uphill perturbations. Therefore the number of
“dangerous” chains which favor uphill perturbations right
up to the C leader decreases.

Clearly from the above discussion, both effects disappear
whenever II,~1Ilg, and the “protection mechanism” to C
leaders from uphill perturbations ceases. If a dangerous chain
is perturbed then large global cascade is ignited, which in
very few time steps affects a large fraction of the whole
network. On the other hand, if protection of the C leader was
guaranteed, then there would be no dangerous chains to per-
turb. In this case, the maximum attainable payoff the uphill
perturbations may reach without affecting the leader is also
lg=1II,. An example of this is observed in Fig. 13 at T
=206, where the perturbation did not affect the C leader at
all, and the size of the cascade was small. By mechanism (a)
above, the network reached a steady state by a steady reduc-
tion on the available unsatisfied D agents’ links.

We have performed several other computer simulations to
visualize different dynamic evolution of the network for vari-
ous values of p and b. For small values of the adaptability
parameter p, as shown in Fig. 14(a), the typical time for the
network to reach a steady state is very large, and the leader «
increase its payoff very slowly. The fraction of cooperators
increases on average as the leader increases its number of
links, and only small cascades are shown. In this case, the
network has many local maxima, and the cascades do not
affect a large portion of the network.
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FIG. 14. (Color online) Time evolution of f and the rescaled
payoff of the C agent (Il,) and the D agent with maximum payoff
(ITg). Parameter values: K=38, (a) p=0.005, b=1.35; (b) p=0.01,
b=1.75; and (c) p=0.05, b=1.75.

For a higher value of b, the structure of the network has
wealthier local maxima but also fewer, so large cascades are
possible. Figure 14(b) shows that the fraction of cooperators
grows steadily, until an uphill perturbation wipes off the
cluster, affecting most of the network. This particular run
also illustrates how even after having a large II, the
asymptotic solution is the all-D network. The key factor to
sustain cooperation is to have several local maxima, with
large payoff, which are able to survive cascades.

A very interesting situation occurs in Fig. 14(c) at ¢
=~ 150, where the network is composed of mostly unsatisfied
D agents together with a very wealthy leader a (which at
least has sufficient neighbors to keep up its payoff). Note
how the leader is able to increase its number of links by the
intense (unsuccessful) “searching” done by D agents, and by
t=200 the fraction of cooperators also increases. This recov-
ery is a clear example of the importance of a wealthy leader,
which enables a full cooperative final outcome. Also note
that small size uphill cascades for > 200 did not reach the C
leader and wealthy agents just absorbed all the unsatisfied D
agent links.

F. Noise and errors

In typical evolutionary game theory studies, one is inter-
ested to contrast the main results of the original game to
those from another perturbed game, which takes into account
random variations of the assumed rationality, i.e., errors are
possible.

To this end we have modified our model to account for
two different types of noise. The first type assumes the imi-
tation process is not perfect and there is a probability p,,, that
the opposite strategy is imitated. The second type of noise
consists of taking at each time step a fraction p,,,; of agents
and randomize their strategies. Thus on average there is a
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time

FIG. 15. (Color online) Time evolution of fc, and rescaled
maximum payoff of C and D agents when the imitation has a prob-
ability p.,=0.1% of making an error copying the strategy at each
time step: (a) b=1.45, (b) b=1.55. Parameter values: K=8, p
=0.08, 6=0.1.

probability p,,., that the agent switches spontaneously its
strategy.

In both cases we find that for small p,,, or p,,,, there is a
region of the incentive to defect b where cooperation is sus-
tained, but now there is a critical value b" where defection
sets in. The nature of the transition is that these perturbations
affect those agents with highest payoff, which are known to
sustain cooperation. Also we have seen that after a large
cascade, the cooperative state may be recovered if there is a
C leader with sufficiently large payoff. The speed at which
the cooperative state forms depends on the network adapta-
tion rate p and the noise intensity, which introduces further
randomness. Therefore there is always a sufficiently strong
noise intensity which perturb most C local maxima before
they ever regenerate, driving the system to the all-D network.

We display in Fig. 15 two time series of f- and the payoff
of the maximal C and D agents, showing the two possible
asymptotic states. Both panels show how the C leader is
affected by the noise perturbations, and new C local maxima
take its place. In Fig. 16 we display how the fraction of
cooperation changes as b is increased for fixed values of the
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FIG. 16. (Color online) Fraction of cooperation vs b for differ-
ent types of noise. p,,, corresponds to the probability that imitation
reads the opposite value, while p,,,, is the probability that an agent
is selected and its strategy randomized. Data have been averaged
over 100 realizations (p=0.08, K=8, T=500).
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Perr and p,.... The value of the sharp transition depends on
that of the chosen noise intensities.

V. DISCUSSION

Social and economical interactions are frequently based
on the ability of the agents to choose and refuse partners
depending on their own interests. In this paper we have pro-
posed, assuming the bounded rationality of agents, a frame-
work that naturally incorporates such possibility. We have
presented numerical and theoretical results of a Prisoner’s
Dilemma game played in an adaptive network, where the
agents have the possibility to change their local neighbor-
hood depending on their level of satisfaction and the strategy
played.

In other recent studies of network evolution the adaptation
does not depend on the outcome of a game, but instead links
are created or destroyed according to a balance between ben-
efit and cost these represent [10,27,33,34]. The paper of Ref.
[10] studies network formation where the costs incurred to
form a new link is taken only by one of the agents. The agent
receiving a link does not incur in a cost and just shares the
benefit. If the link benefits both agents, then it is established,
otherwise it is discarded. In our case, we have followed a
different approach. Our agents cannot assess a priori if the
receiving link will be entirely beneficial or not, but as it is
costless, it is willing to accept it. Also as only D agents are
responsible for the initiative of neighborhood adaptation,
they are mostly interested in finding a C agent to exploit.
Thus in order to avoid a generation of (costless) links, we
specifically study an evolution where the number of links is
conserved.

Another related work to ours is Ref. [35], where the net-
work is not assumed a priori, but is determined endog-
enously from expected payoffs agents have across them. If
this payoff exceeds a given threshold, then the agent makes
an offer to play with that neighbor; next, it revises all offers
it receives and refuses those which are below his threshold.
Therefore the game is carried out on a network which is
formed in a preplay stage, depending on the outcome of the
previous game. Their main result also includes that coopera-
tion is highly enhanced, although a steady state is never
reached, for exploiter D agents migrate continuously among
C agents. Our approach assumes agents’ computation capa-
bilities to be much more restrictive, and C agents cannot
explicitly refuse to play with D agents. In our model steady
states display D agents exploiting C agents. This results from
two assumptions: (i) satisfied D agents do not change their
neighbors, and (ii) the desire a C agent has to dismiss an
interaction with a D neighbor exactly balances the effort of
the D neighbor to maintain the interaction.

Our approach focuses on a specific coupling between the
network adaptation mechanism and the agents’ strategy. Co-
operators play a conservative role, while unsatisfied D agents
search for new C agents in order to improve their payoff. The
searching stops whenever all D agents become satisfied,
reaching a steady state configuration. In some sense, the net-
work adaptability is analogous to a mutation process (as in
the traditional evolutionary game theory) to the network,
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which succeeds in finding an “optimal” compromise to the
roles taken by the agents. This solution makes (i) D agents in
steady state become satisfied, with a higher average payoff
(with respect to C agents), and (ii) C agents are in general
unsatisfied (but conformists), with a lower average payoff.
Very remarkably, considering the average payoff of agents,
the social dilemma holds, because on average defectors are
wealthier than cooperators.

In a more detailed description, the searching capabilities
of defectors has an interesting effect towards the evolution of
network “leaders.” The C leader is selected among those C
local maxima with largest payoff. These special agents are
responsible of sustaining cooperation, for whenever their
payoff is larger than the D leader, its payoff increases by
accommodating new C neighbors.

Our numerical findings show that as a result of the net-
work adaptation, the network topology becomes more hierar-
chical as b increases (the wealth of C local maxima in-
creases, while the number of them in steady states
decreases). In this case the emergence of wealthy leaders
makes the sustainability of cooperation rely heavily on them,
especially under some destructive endogenous perturbations
produced by searching D agents. These special perturbations
may occur for given network configurations, through “dan-
gerous chains,” and may affect a C leader. When this hap-
pens, global cooperation is temporally abandoned and a large
cascade of D strategy replication is started. However, the
payoff of D agents soon drops until once again cooperation
slowly recovers when the C leader is the wealthiest agent in
the whole network. If the latter does not happen, then by
more destructive perturbations there is the probability that
the system reaches the all-D network. We also remarked that
there exists a mechanism by which the dangerous chains in
the network decrease in number, providing the possibility
that the leader may be well protected and inhibiting large
cascades.

By adding the “degree of freedom” of network adaptation,
we were able to explore how well established results in co-
operation theory with fixed neighborhoods might be affected.
Cooperation among a set of selfish agents is possible in an
adaptive local neighborhood, even when the time scale of
network adaptation is slow compared with the strategy up-
date.

Finally we mention the work of Ref. [11] which shows the
relevance of context preservation, i.e., dynamics where the
neighborhood remained unaltered get better average payoff
than those dynamics that do not preserve the neighborhoods.
The framework we have presented in this paper allows us to
study a different dynamics with variable adaptation. Our re-
sults show that cooperation can be sustained even in situa-
tions where the neighborhoods are not fully preserved, with
the fraction of cooperation being similar to the preserved
one. However, our model differs from the situations studied
by Ref. [11] in which the adaptation of the network is inde-
pendent of the process of decision making, i.e., there is no
feedback from the payoff to the network evolution. In our
framework, the feedback between payoff and network adap-
tation is clear: the adaptation of the network only takes place
locally for the unsatisfied agents. This difference is funda-
mental to explain the results we have obtained.
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Many social interactions can be modeled in the frame-
work of networks with adaptive interactions: new interac-
tions are created or suppressed depending on the benefits
obtained by the agents taking part on the interaction. Col-
laboration networks in science is an example of a social sys-
tem that could be modeled with this approach. While we
have shown that cooperation can be sustained in an adaptive
network, a more realistic version of the model aiming to
capture also the stylized features of scientific collaboration
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networks should include some sort of preferential search for
new partners. Work along these lines is in progress.
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