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We consider a model in which firms first choose process R&D expenditures
and then compete in an output market. We show the symmetric equilibrium
under R&D competition is sometimes unstable, in which case two asymmetric
equilibria must also exist. For the latter, we find, in contrast to the literature that
total profits are sometimes higher with R&D competition than with research
joint venture cartelization (due to the cost asymmetry of the resulting duopoly
in the noncooperative case). Furthermore, these equilibria provide another
instance of R&D-induced firm heterogeneity.
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1 Introduction

Recent studies by d’Aspremont and Jacquemin (1988, 1990) and Ka-
mien etal. (1992) provide a performance comparison between vari-
ous R&D cooperation scenarios, ranging from full cooperation, as in a
cartelized research joint venture (RJV), to pure (strategic) R&D compe-
tition (see also Katz, 1986). One of the main results is that a cartelized
RIV, which may be viewed as a situation where firms run one joint R&D
laboratory at equal cost to each and fully share R&D results, yields the
best performance among all the scenarios considered, in terms of R&D
propensity, consumer surplus, and producer surplus. This result is based
on a comparison of each scenario’s symmetric equilibrium.

Our study shows that under R&D competition the firms’ reaction
functions may cross the “wrong” way. In this case the R&D game has
three equilibria — one equilibrium is symmetric, interior, and unstable
under Cournot best-reply dynamics. The other two equilibria are asym-
metric, on the boundary, and locally stable. (According to Cournot
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best-reply dynamics, each firm best responds to his rival’s action in the
previous period.) The reaction functions in R&D decisions, given the
unique second-stage equilibrium in outputs, are depicted in Fig. 1. If
reaction functions cross as in Fig. 1a, then under Cournot best reply the
firms’ actions converge to the symmetric equilibrium. If they cross as
in Fig. 1b then, depending on the starting point, actions either converge
to one of the asymmetric equilibria or they eventually cycle between
both firms choosing the maximal action and both choosing the best
response to the maximal action.

When the R&D game has three equilibria, there are a number of
reasons to take the asymmetric equilibria as a benchmark for the out-
come under R&D competition. First, if Cournot best-reply dynamics
converges, then it converges to one of the asymmetric equilibria and
never to the unstable symmetric equilibrium. Another justification for
selecting the asymmetric equilibria is suggested by results for Cournot
oligopolies. Seade (1980) and Amir and Lambson (1997) show the
(unique) unstable symmetric equilibrium in a Cournot oligopoly has
economically unintuitive properties; in particular, the price is increasing
in the number of firms. Furthermore, experimental evidence obtained
for Cournot output games suggests that the interior Nash equilibrium
predicts play well if the equilibrium is stable, but predicts play poorly
if it is unstable (see Holt, 1995; Cox and Walker, 1997). Finally, we
note that while the classical refinements of the Nash-equilibrium so-
lution concept for one-shot games (such as normal-form perfection or
stability in the sense of Kohlberg and Mertens, 1986) do not rule out
the unstable equilibrium (in the sense of best-reply dynamics), some
of the selection criteria from evolutionary game theory (Kandori etal.,
1993) or adaptive learning (Milgrom and Roberts, 1991) do.

Using the asymmetric Nash equilibria as a benchmark for the out-
come under R&D competition, we find in contrast to Kamien etal.
(1992) that total profits are sometimes higher with R&D competition
than with RJV cartelization. This result is obtained for a particular
specification of the R&D production function, and for simplicity we
assume there are no spillovers. For our example, like Kamien et al. we
find that R&D propensity and consumer surplus are both higher un-
der RJV cartelization than under the asymmetric equilibrium with R&D
competition. Overall, therefore, our results only partially confirm the
central conclusion of Kamien etal. We also show that the superiority
of RIV cartelization over R&D competition can be re-established by
imposing an additional condition insuring that demand is sufficiently
high, relative to initial unit costs.

The analysis of Kamien etal. (1992) builds on d’Aspremont and
Jacquemin (1988, 1990), the primary difference between the two, be-
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yond the greater generality of the former, is that in Kamien et al. spill-
overs are in R&D expenditures while in d’Aspremont and Jacquemin
spillovers are in R&D results (see Amir, 1997, for a discussion of the
significance of this difference). In a perceptive note, Henriques (1990)
points out that in d’Aspremont and Jacquemin the symmetric equilib-
rium under R&D competition is sometimes unstable. We go further
by identifying the conditions under which the symmetric equilibrium
is unstable, and by providing a re-examination of the conclusions of
Kamien et al. in this case.

The existence of asymmetric Nash equilibria when firms engage
in R&D competition provides an endogenous explanation of firm het-
erogeneity. Amir and Wooders (1997a, b) show that firm heterogeneity
also arises endogenously when R&D spillovers flow only from the more
Ré&D-intensive firm to its rival. Salant and Shaffer (1992) make the im-
portant point that an R&D cartel (maximizing total profit while keeping
the spillover parameter at its original value) may well find it globally
optimal to choose different levels of R&D for the two participating
firms: This is another instance of R&D-induced firm heterogeneity.

2 The Models

Consider an industry in which two firms, each with unit cost ¢ > 0,
engage in a two-stage game. At the first stage, firms 1 and 2 choose
R&D expenditures x; and x;, respectively. An expenditure of x; by
firm i reduces its unit cost of production by A./x;, where A > 0. Since
firms cannot reduce their costs below zero, we have x|, x; € [0, ¢2 /12].
At the second stage each firm observes its rival’s R&D expenditure,
and then chooses its output. In the output market the firms face a linear
inverse demand with quantity units normalized so that P(qy, q2) = a
~ (g1 + q2), where g; is the output of firm i. Attention is restricted
to subgame-perfect equilibria. Thus, our setup follows Kamien et al.
(1992) with the spillover parameter set to zero, in which case the model
is clearly equivalent to that of d’ Aspremont and Jacquemin (1988).!

Assumption 1: Demand is sufficiently high relative to costs so that a
> 2c.

1 Therefore, one can alternatively use cost reductions as the decision
variables. Furthermore, given the absence of spillover effects, the model at
hand is also equivalent to the model of Amir and Wooders (1997a), and both
are special cases of the setup of Brander and Spencer (1983).
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Assumption 1 insures that every subgame at the second stage has a
unique Nash equilibrium with both firms in the market. In the subgame
where firm i’s R&D expenditure is x; and its rival’s expenditure is
xj, firm i’s Nash output and profit are, respectively, (@ — ¢ + 2A/x;
~A/%)/3 and [(@ — ¢ + 2h/x; — A /%;)/3)%. Firm i’s profit in the
overall game is its profit at the second stage less its R&D costs at the
first stage. Specifically, when firm i’s R&D expenditure is x; and its
rival’s expenditure is x;, then its profit in the overall game is

a~c+2lJ.x_f—k,JJTj)2
3

Mexi, ) = ( o))

Clearly firm i’s payoff is concave in its R&D expenditure.?

Since the second-stage game has a unique Nash equilibrium, every
Nash equilibrium of the game with payoffs given by (1) induces a sub-
game-perfect equilibrium of the two-stage game, and vice versa. For
simplicity, we refer to the Nash equilibria of the game with payoffs giv-
en by (1) rather than the subgame-perfect equilibrium of the two-stage
game.

Our next assumption insures that firm i’s best response to an R&D
expenditure of ¢2/A2 by its rival is less than c2 /2.

Assumption 2: The R&D production function is not too productive, i.e.,
20%a/c < 9.

If Assumption 2 did not hold, then it would be a dominant strategy
for each firm to choose its maximal R&D expenditure, which is an
uninteresting case.

Define the best-response functions in the usual way. For firm i, say,
and x; € [0, ?/A%] let r;(x;) = argmax{ T1(x;, x;) | x; € [0, 2/A*]}.
Since the game is symmetric, the firms’ reaction functions are the same,
i.e., ri(x) = rj(x), and thus to reduce notation we write r (x) for a firm’s
best response to an autonomous cost reduction of x by its rival.

Proposition 1: Suppose Assumptions 1 and 2 hold. Then each firm’s

2 We have that 32T1(x;, x;)/8x2 = —(A/9)(a — ¢ — A J&x /> < 0 for
X; > 0.
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Fig.1: a, 2A2 < 3;b,2A%2 > 3

reaction to an R&D expenditure of x by its rival, is given by

o) = (=5 4i2f) AGY

Furthermore, (x*, x*) is a Nash equilibrium of the R&D game, with
x* =42%((a — ¢)/(9 — 2A2))2. If 2A% < 3, then (x*, x*) is unique and
stable. If 242 > 3, then this equilibrium is unstable and the game has,
in addition, two (locally) stable equilibria of the form (x, X) and (%, x)

with ¥ = (¢/A)? > 4A2((a — 2¢)/ (9 — 4AH))? = x.

The two possible configurations for the reaction functions appear
in Figs. 1a and b. Reaction functions have been “linearized” by taking
the decision variables to be the square root of R&D expenditures.

We now consider R&D cooperation via a joint laboratory. With this
form of cooperation, the R&D expenditure of a jointly owned laboratory
is chosen in order to maximize the sum of the firms’ profits when R&D
results are fully shared. The R&D expenditure of the joint laboratory
is given by the solution to

mgx[%(a —c+AV/x)? —x}. )
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The solution to (2), denoted by xj, is xy = 4A%((a@ — ¢)/(9 — 212))2.3
Denote by Ij each individual firm’s profit under the joint laboratory
when costs are equally shared. We note that the joint laboratory is
equivalent to the case CJ, or cartelized RJV, in Kamien etal. (1992)
in which firms conduct R&D in separately owned laboratories, and
coordinate their R&D efforts to maximize total profits upon setting the
spillover parameter to 1.4

- Comparing the symmetric Nash equilibrium under R&D competi-
tion to the equilibrium under the joint laboratory yields: (i) total cost
reduction is the same in each case, i.e., 2A+/x* = 21 ,/xj, and therefore
total output and the output’s price are also the same in each case, and
(i1) total profits are higher under the joint laboratory. The preceding
analysis is clearly a special case of the result of Kamien etal. estab-
lishing the superiority of the joint laboratory over R&D competition
when the outcome under R&D competition is given by the symmetric
Nash equilibrium.

3 R&D Competition (Asymmetric Equilibrium)
versus the Joint Laboratory

When r'(x*) < —1 (ie., 242 > 3), the symmetric Nash equilibrium is
unstable and, as argued in the Introduction, the relevant benchmark for
the outcome under R&D competition is the asymmetric Nash equilib-
rium. Hereafter, we focus on the comparison of the joint laboratory
and the asymmetric Nash equilibrium under R&D competition. We
begin with a comparison of R&D propensmes showmg that 2X./xy

>kf+l«/§ ie.,

3 The second derivative of the objective function is —(1/9)A(a — ¢)x~>/2
< 0, and therefore the first-order condition is sufficient. Assumption 2 implies
that xj < c2/A2.

4 The cartelized RIV solves max,, r, 2IT1(x; + x2, X1 + x2) + x1 + x3,
where IT is given by (1) and x; is firm i’s contribution to the RIV’s R&D
expenditure. If (X;, X>) solves this problem, then X + £ = x;. Thus the joint
laboratory and the cartelized RJV call for the same total R&D expenditure and
cost reductions. In the symmetric solution to this problem, i.e., X; = %, each
firm obtains profit IT;.
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This inequality can be rewritten as

3202 - 3)(9¢ — 2a)?)

©—250 —a3 > °

which holds since 2A% > 3, and since 9¢ > 2aA? by Assumption 2.
Therefore we have the following result.

Proposition 2: If 2A2 > 3, it follows that r'(x*) < —1, and the sym-
metric Nash equilibrium under R&D competition is unstable. Then total
cost reduction under the joint laboratory is greater than total cost re-
duction in the asymmetric Nash equilibrium under R&D competition,

ie., 20/X] > A /X + A%,

By Proposition 2, the superiority of the joint laboratory in terms of
R&D propensity still holds. In addition, with linear demand, consumer
surplus is increasing in total cost reductions, and therefore is also higher
under the joint laboratory.

The following example shows, however, that total profit is some-
times higher in the asymmetric Nash equilibrium under R&D competi-
tion than under the joint laboratory.

Example 1: Leta =2.01, ¢ =1, and A = 1.3115. With R&D competi-
tion the R&D expenditures are x = 1.5308 x 10~ and x = 0.5814, the
cost reductions are 1.6227 x 1072 and 1.0, respectively, and profits are
M(x,x) =4.717x 1077 and I (x, x) = 0.41446. The R&D expenditure
of the joint laboratory is xy = 0.22703, each firm’s cost reduction is
0.6249, and each firm’s profit is 0.18347. Total profit is greater under
R&D competition.

The intuition underlying this example is that R&D competition con-
veys the (potential) advantage that firms compete asymmetrically at the
second stage, while in the joint laboratory, symmetry at the second stage
is built in. This advantage can more than offset the disadvantageous as-
pects of R&D competition that firms do not coordinate R&D decisions
to maximize total profits and that R&D effort is duplicated since results
are not shared.

To see that asymmetry can be advantageous, consider the hypothet-
ical problem in which a joint laboratory has the know-how to lower
costs by k < c, and this know-how is to be distributed to the firms in or-
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der to maximize total profits. Denoting by k; the know-how distributed
to firm i, the joint laboratory’s problem is

1 2,1 :
05112.2}32(5k§(a_c+2k1 k2) +§(a—c+2k2—k1)

The objective function is jointly (strictly) convex in kj and k;. There-
fore, the solution has maximal differentiation (i.e., k; = 0 and k; =k,
i # j)if 3k — 2(a — ¢) > 0 and minimal differentiation (i.e., k1 = k2
= k) otherwise. In the former case, differentiation is advantageous.

Our next proposition shows that the superiority of the joint labora-
tory in terms of total profits can be re-established with a strengthening
of Assumption 1.

Proposition 3: If demand is high relative to initial unit costs, then total
profit is higher under the joint laboratory than under the asymmetric
Nash equilibrium with R&D competition. Specifically, a/c > 5/(2 +
222/9) implies 21Ty > T(x, x) + (X, x).

Since r'(x*) < —1 only if A> > 3/2 , it is clear that a/c > 5/[2 +
(2/9)(3/2)] =~ 2.14 is sufficient to insure that the sum of profits is
always higher under the joint laboratory than under R&D competition.
Defining social welfare to be the sum of total profits and consumer sur-
plus, this condition also guarantees that social welfare is higher under
the joint laboratory than under R&D competition.

4 Conclusion
If the symmetric equilibrium under R&D competition is unstable, then
the relevant benchmark when comparing this scenario to others is its
asymmetric equilibrium. Using this benchmark, we find that total firm

profits are sometimes higher under R&D competition than under RJV
cartelization.

Appendix
Proof of Proposition 1

A straightforward calculation shows that

i iy -
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oTI(xi, x;) 2% a — ¢+ 20 /xi — A /xj
ax,- - 9JE 3

Since limy; .o dI1(x;, x;)/dx; = oo, we have that r;(x;) € (0, cz/Az]
Vx; € [0, ¢2/A%). For ri(x;) € (0, ¢?/A%), we obtain r;(x;) = 412((a -
c—AJX))/9 - 4)2))2 from the first-order condition

2) G—C"l‘ZJLJF;(Xj)—JL,\/x_j 0
3

By the concavity of I (x;, x;) in x;, the first-order condition is sufficient.
The concavity of IT(x;, x;) also implies that r; (x;) is single-valued and
continuous and, hence, r;(x;) is as given in Proposition 1.

To find the Nash equilibria of the R&D game it is useful to “lin-
earize” reaction functions. We have that /r (x) = 2i(a — ¢ — A/X)/
(9 — 4A2) A c/x and, therefore, the square root of a firm'’s reaction (on
the interior) is a linear function of the square root of its rival’s R&D
expenditure. If —212/(9—41%) > —1 (i.e., 2A? < 3), then the linearized
reaction functions cross as illustrated in Fig. la. In this case there is a
unique Nash equilibrium (x*, x*) where x* satisfies x*=2Ma -c
—A+/x*)/(9—412), and which is stable. Solving this equation yields the
expression for x* provided in the proposition. If —2A2/(9 — 4% < -1
(i.e., 222 > 3), then the linearized reaction functions cross as illustrated
in Fig. 1b. In this case, in addition to the interior Nash equilibrium
(x*, x*), there are two boundary equilibria satisfying, for i, j € {1, 2},
i # j, that /% = ¢/A and /% = 2A(a — 2)/(9 - 422). In this case
the interior Nash equilibrium is unstable, while each of the boundary
equilibria is (locally) stable. O

Proof of Proposition 3

We first show that a/c > 5/(2+A22/9) implies that total profits in the
second stage (ignoring R&D costs) when both firms reduce their cost
by ¢ exceeds total profits when costs are reduced by the asymmetric
Nash equilibria amounts, i.e., we establish ’

2, (a+c—2k (9 4x2)) +(a —_2c+4xz(§“—_%))z

9 3 3
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This inequality can be rewritten as

LO-mHEE -9

(9 — 4A2)2 =

which follows from Assumption 2 and a/c > 5/(2 + 122/9).
We have, therefore, that '

2 a—2c¢
zaz_(£)2>(a+c 20 ('9_412) 2_(2)2
9 A 3 A
2f @—2¢C
+(a~2(:+4l (—9_42@))2_4)‘2(‘1_26 )2
3 9—4x2/

The left-hand side is total profits under the joint laboratory were it
to choose the maximal R&D expenditure, and the right-hand side is
total profits under R&D competition, i.e., [1(x, ) + I1(x, x). Since xj

maximizes total profits under the joint laboratory, we have 2I1; > a?.
2/9 — (c/A)? and, therefore 2ITy > M (x, x) + (%, x). a
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