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Abstract—Recently, improvements in sensing, communicating,
and computing technologies have led to the development of
driver-assistance systems (DASs). Such systems aim at helping
drivers by either providing a warning to reduce crashes or doing
some of the control tasks to relieve a driver from repetitive and
boring tasks. Thus, for example, adaptive cruise control (ACC)
aims at relieving a driver from manually adjusting his/her speed
to maintain a constant speed or a safe distance from the vehicle
in front of him/her. Currently, ACC can be improved through
vehicle-to-vehicle communication, where the current speed and ac-
celeration of a vehicle can be transmitted to the following vehicles
by intervehicle communication. This way, vehicle-to-vehicle com-
munication with ACC can be combined in one single system called
cooperative adaptive cruise control (CACC). This paper investi-
gates CACC by proposing a novel approach for the design of au-
tonomous vehicle controllers based on modern machine-learning
techniques. More specifically, this paper shows how a reinforce-
ment-learning approach can be used to develop controllers for the
secure longitudinal following of a front vehicle. This approach uses
function approximation techniques along with gradient-descent
learning algorithms as a means of directly modifying a control pol-
icy to optimize its performance. The experimental results, through
simulation, show that this design approach can result in efficient
behavior for CACC.

Index Terms—Autonomous vehicle control, cooperative adap-
tive cruise control (CACC), neural networks, policy-gradient
algorithms, reinforcement learning (RL).

I. INTRODUCTION

R ECENT improvements in sensing, communicating, and
computing technologies have led to the development of

driver-assistance systems (DASs). Such systems aim at assist-
ing drivers by either providing warning to reduce crashes or
performing some of the control tasks to relieve a driver from
repetitive and boring tasks. Thus, a DAS can replace a driver’s
decisions and actions in some routines, without possible errors,
which can lead to accidents, while achieving more regulated
and smoother vehicle control [1]. As a consequence of this
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approach, we can cite the following three advantages: 1) more
comfort for drivers; 2) increased traffic capacity; and 3) energy
and environmental benefits.

According to Piao and McDonald [1], DASs encompass the
following three aspects: 1) adaptive cruise control (ACC) and
collision warning and avoidance (CWA); 2) legal aspects; and
3) implementation aspects. ACC aims at relieving a driver from
manually adjusting his/her control to achieve a safe cruise,
whereas CWA aims at reducing rear-end collisions by emitting
suitable warnings. Legal aspects study, in general, the legal
framework and market introduction of a DAS by analyzing its
different functions. Finally, the implementation of a DAS is a
complex task that encompasses a large variety of technologies,
user preferences, and government policies.

Both ACC and CWA can be categorized into the following
two types: 1) autonomous systems and 2) cooperative systems.
For an autonomous system, the vehicle control mechanism only
needs the information gathered by the sensors of the vehicle.
On the other hand, cooperative systems require communication
with adjacent vehicles or transportation infrastructure. Com-
munication can be from vehicle to vehicle (V2V) or from
the road to a vehicle (R2V). With V2V communication, a
group of equipped vehicles can form a “virtual” network that
is linked together by wireless ad hoc communication. With
R2V, communication is achieved through different technical
approaches, e.g., visible light, optical beacons, or the 5.9-GHz
Dedicated Short-Range Communications (DSRC) standard [2].
Undoubtedly, the next evolution for DASs will come through
the integration of modern wireless communication technolo-
gies as a means of sharing information between neighboring
vehicles. Using such systems will enable vehicles to gather ex-
tended information about their surroundings, e.g., acceleration,
heading, yaw rate, and even related to the driving intentions of
other vehicles.

Analytical solutions to control problems as ACC or cooper-
ative adaptive cruise control (CACC) are often elusive because
of nonlinear dynamics and high-dimensional state spaces. Lin-
earization, in general, does not help much in this case, and
it would be better to investigate new approaches, particularly
reinforcement learning (RL), which do not need the knowledge
of the Markov decision process (MDP) that sustains it. In this
paper, we consider a RL approach to the CACC approach that
uses policy search, i.e., directly modifying the parameters of a
control policy based on observed rewards. We have opted for
a policy-gradient method, because unlike other RL methods,
it scales very well to high-dimensional systems. The advan-
tages of policy-gradient methods are numerous [3]. Among
the most important approaches, it is required that the policy
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representation can be chosen such that it is meaningful for the
task, i.e., the domain knowledge can easily be incorporated.
This approach, in general, leads to fewer parameters in the
learning process compared to other RL methods. Moreover,
there exists a variety of different algorithms for policy-gradient
estimation in the literature, most of which are sustained with
strong theoretical foundations. Finally, policy-gradient methods
can be used model free and can therefore also be applied to
problems without analytically knowing task and reward models.

Consequently, this paper proposes a policy-gradient algo-
rithm for CACC, where this algorithm repeatedly estimates
the gradient of the value with respect to the parameters, using
information observed during policy trials, and then adjusts the
parameters in the “uphill” direction.

This paper is organized as follows. Section II reviews the
ACC, from autonomous to cooperative systems. Section III
presents RL, a practical approach for the adaptive control.
Section IV details the vehicle architecture and vehicle simu-
lator. Section V briefly exposes the theoretical aspects behind
the policy-gradient learning framework that sustains our RL.
Section VI presents the experiments that we have conducted
and gives the results achieved by the resulting controller.

II. ADAPTIVE CRUISE CONTROL: FROM AUTONOMOUS

TO COOPERATIVE SYSTEMS

A. Evolution of Cruise Control

New technology that actively intervenes and controls car
driving may have a very great effect on comfort, safety, and traf-
fic flow. ACC and CWA are representative of this technology,
and currently, ACC is becoming widely available in passenger
cars. The objective of ACC consists of automatically maintain-
ing safe cruise driving, thus relieving a driver from manually
performing a repetitive and boring task. When driving in free
traffic, the ACC system holds a preset speed similar to any
conventional cruise control system. When, on the other hand,
a driver has to follow another vehicle, the system automatically
maintains a desired time gap from the preceding vehicle [4].
An ACC can be conceived through an autonomous approach
(using ranging sensors) or a cooperative approach (using V2V
and/or R2V communication). Ranging sensors, e.g., radars or
lasers, are generally used to measure the range and the rates of
this range from the preceding vehicle. In general, ACC systems
switch off when the speed is less than 30 km/h, because most
of these systems are developed for highway traffic. In fact, the
autonomous ACC based on ranging sensors has limited antic-
ipatory capabilities, because it is impossible to react to what
happens in front of the immediate predecessor.

Equipping the vehicles with V2V or R2V to ensure a cooper-
ative approach started with the advent of intelligent transport
systems (ITSs) in the 1980s. However, large-scale research
and development of cooperative systems have only taken off
in recent years. Early investigations in Europe were under-
taken in the context of the PROMETHEUS project [5], where
a 57-GHz communication system was developed to achieve
an intervehicle communication system. Around 2000, the
CHAUFFEUR project [5] was developed for trucks so that
they can follow each other with a prerequired spacing. At

the same time, the CarTALK project 2000 [6] was developed
as a DAS that uses intervehicle communication. Currently,
several projects on cooperative systems are ongoing, partic-
ularly under the Sixth Framework Program of the European
Commission, e.g., Corporative Vehicle-Infrastructure Systems
(CVIS) [7] and Cooperative Systems for Intelligent Road Safety
(COOPERS) [8].

In Japan, one main program that is devoted to cooperative
systems concerned the use of the differential global positioning
system (DGPS) and V2V communication for the coordination
of vehicle control. Some of this program, called Supersmart
Vehicle Systems (SSVSs), was demonstrated in Smart Cruise
21 Demo 2000 [9]. During this demo, some facets of another
main program, called Assist Highway Systems Research Asso-
ciation (AHSRA), was also demonstrated. AHSRA defined the
following three levels of development of cooperative systems:
1) information to the driver (AHS-i); 2) control assist for the
driver (AHS-c); and 3) fully automated operations (AHS-a).

In the U.S., the Cooperative Vehicle–Highway Automation
Systems (CVHAS) Project was launched in 2000, with the main
objective of providing the driver with control assistance. It is
based on information about the vehicle’s driving environment
that we can obtain by communication through V2V or R2V.
In this project, great efforts have been put into the deploy-
ment of advanced V2V and vehicle–infrastructure communi-
cations [10].

B. Related Work on ACC

As related work to ACC, we can cite the works of
Hoffman et al. [11] and Davis et al. [12]. Hoffman et al. have
developed a system for hybrid adaptive control (HACC) on
high-speed roads, designed as a combination of a radar-based
ACC and visual perception. The authors have shown that the
combination of radar and vision leads to a system with an
enhanced performance, which can jointly handle several tasks
using a common knowledge base.

For their part, Davis et al. [12] have studied the flow of
traffic composed of vehicles that are equipped with ACC using
simulation. In their simulation, ACC vehicles are modeled by
linear dynamical equation with string stability. By doing so,
perturbations due to changes in the velocity of the lead of a
platoon do not cause jams.

More recently, a vehicle controller for stop-and-go (SG)
ACC has been proposed [13]–[15]. The main feature of this
controller is that there is adaptation to a user-preset speed
and, if necessary, speed reduction to keep a safe distance from
the vehicle ahead in the same lane of the road, regardless of
the speed. The extreme case is the SG operation, in which
the lead car stops, and the vehicle at the rear must do the
same. The authors of this approach did real experiments on two
mass-produced Citroën Berlingo electric vans, in which all the
actuators have been automated to achieve humanlike driving.
In this context, the input information is acquired by a real-time
kinematic phase-differential global positioning system (GPS)
and wireless local area network links. The experimental results
show that unmanned vehicles behave very similarly to human-
driven cars and are very adaptive to any kind of situation at a
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broad range of speeds, thus raising the safety of the driving and
allowing cooperation with manually driven cars.

A complete comprehensive review of the development of
ACC systems has recently been issued; see [16] for more
details.

C. Related Work on CACC

In the context of CACC systems, de Bruin et al. [17] gave
an overview on how such a system can be designed. They
suggested using the following four techniques:

1) a positioning system;
2) a world model;
3) a controller system;
4) an inter vehicle communication system that allows in-

cluding preview information from vehicles further in
front.

Their first test results show that such a system enables
anticipatory breaking actions, which means that upstream ve-
hicles do not have to brake as severely when a downstream
vehicle brakes, compared with the case without intervehicle
communication.

In the same context, Naus et al. [18] have worked on a
setup for CACC where the feasibility of the actual implemen-
tation is one of the main objectives. To this end, they have
considered communication with the directly preceding vehicle
only, as opposed to communication with multiple preceding
vehicles or with a designated platoon leader. In addition, the
communication has been implemented as a feedforward signal
so that, if such a communication is not present, the standard
ACC functionality will be available. To our knowledge, this
approach has not been tested.

The communication aspect of CACC has particularly been
studied by van Eenennaam et al. [19]. They proposed a channel
busy-time model to evaluate the solution space of a vehicular-
beaconing system designed to communicate information that
is both vital and sufficient for vehicular traffic applications.
These authors have identified that the solution space is 3-D
because of the following three aspects: 1) the number of nodes
(or vehicles); 2) the beacon generation rate of the nodes; and
3) the size (or duration) of a beacon message. Based on the
channel busy-time model, the authors derived boundaries and a
range of parameters, within which the beaconing system can be
adapted to meet the requirements of the CACC system.

Finally, van Arem et al. [20] have studied the impact of
CACC on traffic-flow characteristics. The authors have exam-
ined to what extent CACC can contribute to better traffic-flow
performance. To this end, the authors performed simulations
with data measured on a four-lane Dutch highway with a bot-
tleneck due to a lane drop. Their simulation results indicate that
CACC can improve traffic-flow performance. However, to what
extent depends heavily on the traffic-flow conditions on the
highway stretch and the CACC penetration rate. The traffic flow
particularly improves in conditions with high traffic volume and
when high fractions of the vehicle fleet are CACC equipped.
Under these conditions, more vehicles can participate in a
CACC platoon, resulting in reduced time gaps and improved
string stability.

III. REINFORCEMENT LEARNING AS AN

ADAPTIVE CONTROL SYSTEM

Most of the projects on CACC have relied on the classic
control theory to develop autonomous controllers. However,
ongoing research from the machine-learning community has
yielded promising theoretical and practical results for the reso-
lution of control problems in uncertain and partially observable
environments, and it would be opportune to test it on CACC.
One of the first research efforts to use machine learning for
autonomous vehicle control was Pomerleau’s autonomous land
vehicle in a neural network (ALVINN) [21], which consisted
of a computer vision system, based on a neural network, that
learns to correlate observations of the road to the correct action
to take. This autonomous controller drove a real vehicle by
itself for more than 30 mi.

To our knowledge, Yu [22] was the first researcher to suggest
using RL for steering control. According to Yu, using RL allows
control designers to eliminate the need for external supervision
and also to provide continuous learning capabilities. RL is a
machine-learning approach that is shown as the adaptive opti-
mal control of a process P , where the controller (called agent)
interacts with P and learns to control it. To this end, the agent
learns behavior through trial-and-error interactions with P .
It then perceives the state of P , and it acts to maximize the
cumulative return that is based on a real-valued reward signal,
which comes from P after each action. Thus, RL involves
modifying the control policy (which associates an action a
to a state s) based on responses from the environment, and
consequently, it is closely related to adaptive control, a family
of successful control techniques held in high regard in the
control systems community [23].

As aforementioned, Yu [22] was the first researcher to intro-
duce RL to steering control. More precisely, he proposed to take
vision sensor input (road boundary images) and generate steer-
ing control input while maintaining the vehicle moving within
road boundaries. In addition to the usual neural learning using
supervised data, the system uses the RL mode to eliminate the
need for external supervision while, at the same time, providing
the system with continuous learning ability similar to human
driving practice. Road following has also been investigated by
Se-Young et al. [24] using RL and vision. Through RL, the
control system indirectly learns the vehicle–road interaction
dynamics, the knowledge of which is essential to stay on the
road in high-speed road tracking.

Mixing supervised learning and RL, Moriarti et al. [25]
have proposed an approach that generates the lane-selection
strategies through trial-and-error interactions with the traffic
environment. The authors evaluated their approach through
simulations and found that, compared with both a selfish strat-
egy and the standard “yield to the right” strategy, their smart
cars maintained speed close to the desired speeds of their
drivers while making fewer lane changes.

The Forbes’s work [26] has been directed toward obtaining
a vehicle controller using instance-based RL. To this end, the
work utilized stored instances of past observations as values
estimates for controlling autonomous vehicles that were ex-
tended to automobile control tasks. An extensible simulation
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Fig. 1. Overview of the vehicle architecture with its CACC system.

environment and a hierarchical control architecture for au-
tonomous vehicles have been implemented. In particular, the
controllers derived from this architecture were evaluated and
improved in the simulator until they took into account difficult
traffic scenarios in a variety of (simulated) highway networks.
This approach is, however, limited to the memory length, which
can very rapidly grow when we deal with a realistic application.

More recently, Ng et al. [27] have proposed an adaptive
control system using gain scheduling learned by RL. By doing
so, they somehow kept the nonlinear nature of vehicle dynam-
ics. This approach performs better than a simple linearization
of the longitudinal model, which may not be suitable for the
entire operating range of the vehicle. The performance of the
proposed controller at specific operating points shows accurate
tracking of both velocity and positions in most cases. When
the adaptive controller is deployed in a convoy or a platoon,
the tracking performance is less smooth. In particular, as the
second car attempts to track the leader, slight oscillations result.
This oscillation is passed onto the cars following, but as we
move farther in the platoon, the oscillations decrease, implying
stability. Thus, this approach is more convenient for platooning
control than the CACC, because in this later case, it engenders
slight oscillations.

Thus, although some attempts have been directed toward
lateral and longitudinal control using RL, no researcher has
particularly used RL for controlling CACC. This paper attempts
to fill this gap.

IV. VEHICLE ARCHITECTURE AND SIMULATOR

A. Vehicle Architecture

We have designed system architecture around a vehicle archi-
tecture in connection with its environment encompassing other
vehicles. Fig. 1 illustrates this architecture by showing, in par-
ticular, that the CACC system has two separate layers. First, the
coordination layer is responsible for the selection of “high-level

actions,” e.g., lane changing or secure vehicle following. It was
created for experiments, which were conducted at the Decision
Adaptation Multiagents (DAMAS) Laboratory by Laumônier
[28], on learning multiagent interactions in the context of a
collaborative driving system. Once this layer has chosen the ap-
propriate action to take, it transmits it to the action layer, which
must achieve this action by selecting the appropriate “low-level
actions” that correspond to the vehicle’s steering, brakes, and
throttle. In our case, the action layer aims at elaborating actions
according to a policy-gradient estimation represented under the
form of a backpropagation neural network, as explained in
Section V-C. Notice that this paper focuses only on learning
a policy for the secure longitudinal vehicle-following behavior,
and consequently, it ignores the presence of the coordination
layer in the simulator’s control loop. For more details about
this specific layer, see [29] and [30].

Accurate simulation also requires the use of an environment
perception mechanism. To address this simulation need, we
designed two modules to handle information gathering from
the neighborhood of vehicles. First, we designed a positioning
system that is sustained by a “sensor manager” in charge of
all sensors embedded on a vehicle. Among existing sensing
solutions, front-vehicle sensors are particularly interesting, be-
cause several of these sensors are currently built by third-party
manufacturers and are embedded in vehicles for ACC applica-
tions. These sensors all work in a similar fashion by employing
either radar or laser technology to sense the area in front of
a vehicle. Their specifications are usually described by their
reach, their angle of observation, and their update (refresh) rate.
The European Commission Intelligent Vehicles (IV) project
Preventive and Active Safety Applications to Improve Traffic
Safety (PReVENT) explains how such sensors work in their
state of the art on that technology [31], whereas its companion
report [32] gives a list of existing sensors and their specifica-
tions. Using similar approaches as presented in these papers,
we have implemented the specifications of the Bosch long-
range radar sensor. Thus, we considered a range value of 120 m,
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a beam angle of 8◦, and a sensor refresh rate of 10 Hz. Finally,
our front laser implementation does not include the notion of
sensor noise or delay.

The other important module for the management of vehicle
perceptions is the communication system, which is used to
handle each car’s intervehicle communication system. When
vehicles decide to transmit information to other vehicles, they
pass the messages through their communication system. For
protocols that specify how the reception of messages is affected
by factors such as communication range, researchers use param-
eters such as delay and packet loss. These parameters are ap-
plied by the global communication system to every transmitted
message. These messages are then accordingly transferred to
each receiving vehicle’s communication system. In our case, we
have made the assumption of the availability of a communica-
tion channel with a messaging delay of 100 ms, which is a value
that has been considered acceptable for future safety-critical
systems [33]. The transmission range has been evaluated to
100 m, because this value is consistent with the IEEE 802.11b
wireless local area network (LAN) communication protocol
used for intervehicle messaging [34]. As aforementioned, we
did not consider noise in the communication channel or packet
loss; the messages are received exactly as they were sent.

The world model, which represents a snapshot of the envi-
ronment at the moment considered, elaborates the current state
and sends it to the CACC system, which, in turn, deliberates on
the low-level action to send to the actuators.

Finally, note that the focus of our experiments was not on
the integration and implementation of exact specifications and
behavior of vehicle systems. However, the approach that we
developed is still a precise model that is also adequate for our
needs related to environment perception. Of course, it is inter-
esting, in future work, to bring this framework even closer to
reality by integrating more accurate sensor and communication
models that can include precise simulation.

B. Vehicle Simulator

Designing an autonomous longitudinal vehicle controller
using RL implies running numerous experiments in a simulator.
To build such a simulator, we have adopted the following three
requirements.

1) The behavior of the simulated vehicles should be as close
as possible to the real vehicles.

2) The simulator should be flexible enough to embed a RL
engine.

3) The simulator should run “faster than real time” to
execute a large number of learning simulations in
decent time.

A study of existing vehicle simulation tools justified the de-
velopment from the ground up of a new vehicle simulator, with
the main reason being the lack of flexibility of current simu-
lators for the integration and implementation of RL algorithms.
Thus, to address our needs for a precise simulation tool in which
we can embed an autonomous vehicle control system based
on RL, we have built a microscopic vehicle simulator. The
microscopic simulation approach has been justified by the fact
that it focuses on more or less accurately modeling the behavior

of each simulated vehicle, depending on the required precision.
This condition contrasts with macroscopic vehicle simulation
methods, which, in general, put emphasis on equations that
globally model the traffic conditions. Macroscopic simulators
are mainly used to simulate a large number of vehicles for
traffic-flow studies [35].

Another important characteristic of our simulator lies in its
discrete-time approach. This condition means that simulations
are divided into time steps Δt, which represent a certain amount
of simulated time that occur between two executions of the
simulator’s main control loop. Whenever the loop ends an
iteration, the current time is increased, and then, the loop
restarts to update the position of the objects for the following
time step. Because the computation of these updates does not
rely on actual time but, rather, on the simulation time step value
Δt, this method has the advantage of efficiently simulating
“faster than real time.”

We have used a time step value of 10 ms (corresponding to a
100-Hz update frequency), a value required for accurate physics
modeling. However, we designed our control loop so that we
can decouple the refresh rate of the different modules from
the simulator’s main loop. Thus, sensor, communication, and
learning modules updated at different frequencies. For example,
we can update sensors and communication at every 100 ms
while taking learning decisions at every 250 ms.

To show that it is possible to learn an autonomous vehicle
controller in a complex environment, our simulator should
model with accuracy the motion of real vehicles. More specifi-
cally, the dynamics engine should update the state of simulation
vehicles by taking as input commands from their actuators
(steering, brakes, and throttle) and computing their resulting
position, velocity, and acceleration.

For a computationally efficient simulation, we relied on
dynamics based on the “single-track” model, as described by
Kiencke et al. [36]. This model features a nonlinear approxima-
tion technique that takes particular care in the description of the
wheel model and the vehicle’s longitudinal and lateral motion.
Although this “single-track” approach simplifies the calculation
by considering the wheels on each axis as a single unit (thus, for
example, both front wheels are shown as one), the model is still
quite precise, because it integrates the notions of friction and
wheel slip in the computation of the resulting wheel traction
force. Of course, these wheel dynamics play an important role
in the representation of realistic vehicle behavior.

The dynamics module also implements the simulation of a
vehicle’s driveline, as detailed by Huppé [37]. By taking as
inputs the pressure on the acceleration and brake pedals, the
driveline model first computes the engine torque and transmits
it to the automatic transmission module, which then calculates
the resulting drive torque. Finally, the drive torque is trans-
formed to obtain the wheels’ angular acceleration that can be
used as input by the wheel model. Because our driving agents
take direct action on the vehicle’s acceleration and brake pedals,
the presence of a complex nonlinear driveline whose behavior is
close to a real vehicle is a valuable characteristic for us, because
it gives much more realism to the definition of our problem.
For a complete description of the modules that are part of our
vehicle dynamics engine, see [36]–[38].
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V. CONTROLLER DESIGN USING

POLICY-GRADIENT METHODS

A. RL: A Brief Introduction

In RL, the agent-learner observes the state s (where s ∈ S,
and S is the finite set of states) and takes an action a that can
depend on s. The action a causes the environment to change
its state from s to s′ according to the probability pss′(s). Note
that the action set of the agent is assumed to be finite, and it
is allowed to depend on the current state, i.e., the action set
is A(s). In these conditions, after taking action a ∈ A(st), the
agent receives a reinforcement signal under a real value form
rs,a(s′) that depends on the action a taken and the successor
state s′. The environment that sustains RL is typically formu-
lated as a finite-state MDP, and RL algorithms are consequently
highly related to dynamic programming. The Markov property
beside the MDP requires that the probability distributions on
the successor state and on the rewards depend on the current
state and action only. In other words, the distributions do not
change when additional information on past states, actions, and
rewards is considered.

In RL, at each time step t, the agent perceives its state st ∈ S
and the set of possible actions A(st); it chooses and executes
an action a ∈ A(st) and then receives the new state st+1 and
the reward rt+1. The aim of the agent is to find, through its
interactions, a policy π : S → A that maximizes the cumulative
reward R = r0 + r1 + · · · + rn for an MDP with a terminal
state or the quantity R =

∑
t γtrt for an MDP without terminal

states (note that 0 ≤ γ ≤ 1 and is the discount factor that
promotes recent rewards). The expectation of the cumulative
reward V π(s) = E[R|s0 = s] is defined as the “value” of the
state s with respect to π. There exists a stationary and deter-
ministic policy π∗ for which V π∗

(s) is optimal for every state
s. This policy π∗ is termed the optimal policy. Sometimes, it
would be more useful for an agent to learn a Q-value that learns
an action-value representation instead of the value (V (s)) in a
state. The idea is to learn a Q-function, which is a prediction of
the return associated with each action a ∈ A in each state. This
prediction can be updated with respect to the predicted return
of the next state visited Q(st, at) ← rt + γV (st+1).

Because the overall aim of the system is to maximize the
payoffs received, the current estimate of V (st) of a state is
given by maxa∈A Q(st, a). In these conditions, the previous
value of Q(st, at) ← rt + γV (st+1) becomes

Q(st, at) ← rt + γ max
a∈A

Q(st+1, a).

One major issue of classic RL algorithms as applied in the
previous section is that they are often limited when trying to
efficiently solve real-world problems. The main issue is related
to the size of the tabular value function representation, because
it rapidly grows with the number of possible values of state
variables and actions. In some cases, the state space can grow
up to a size where efficient learning, which normally requires
infinite visits to (s, a) pairs, becomes impossible. Thus, solving
complex problems, where the resolution of state variables must
be high, requires some sort of value function approximation.
Unfortunately, function approximation methods applied to clas-

sic RL algorithms do not have convergence guarantees (simple
examples have been shown to diverge), but these methods might
still yield good results in practice.

Another interesting approach as a means of solving control
problems that has gained particular interest in recent years
has been the use of policy-gradient methods. This class of
algorithms modifies the parameters of a stochastic policy in the
direction that optimizes the expected reward. These algorithms
have can work with continuous-state variables, because the
policy that they use is based on a value function approximator.
However, these approaches are different, because they do not
rely on accurately approximating the value function but, rather,
on modifying it to improve the current policy. Their advantage
over classic RL methods that use function approximation is
that policy-gradient algorithms are guaranteed to converge (al-
though only to a local maximum). Of course, such abilities to
handle high-resolution continuous environments are prerequi-
sites for efficiently solving the problem of autonomous vehicle
control considered here.

Another important aspect of policy-gradient methods that
justifies our choice comes from the fact these methods are
model-free approaches. This condition means that these meth-
ods can learn an efficient behavior by direct interaction with
the environment. This characteristic is also important in the
context of our problem, because the driving simulator used
to model the environment is quite accurate and features a
complex dynamics model for which we do not know the
transition function. Because it is quite difficult to solve such
a control problem using analytical mathematics with precision,
approaches that learn to control a system by direct interaction
offer an obvious advantage, because they reduce the complexity
of the designer’s task while still yielding good action policies.
Finally, another benefit of using policy-gradient algorithms is
that these methods react fairly well to learning under noisy
dynamics [39].

Policy-gradient algorithms have been applied to various con-
trol problems, e.g., autonomous helicopter flight [40], robot
locomotion [41], [42], and unmanned underwater vehicle con-
trol [43]. In this paper, we show that this approach can also
be efficient for the resolution of the autonomous longitudinal
vehicle control problem.

For these reasons, we selected the policy-gradient algorithm
proposed in [44], because it is well adapted to solve the problem
of finding an ACC control policy in our complex vehicle
simulator. This online algorithm can update the weights of the
policy using an estimation of the gradient at each iteration. In
fact, this algorithm is designed to handle partially observable
MDPs, but to solve our problem, we assumed full observability
over the environment.

B. Estimation of the Policy Gradient

Policy-gradient methods rely on the computation of the
gradient of a policy’s performance according to its parame-
ters. However, because the exact calculation of this gradient
is only possible when the transition probabilities are known
[44], researchers have, instead, focused on estimating it through
simulation.
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In the case where the policy is under the form π�θ(xt, at),
denoting the probability that the agent chooses action at in
state st, the performance ρ of such a policy according to its
parameters1 �θ corresponds to the expected reward r(X), which
can be obtained through a trajectory X [44]. The following
equation reflects that

ρ(�θ) = E [r(X)] .

This expectation can be expressed as a sum, over all possible
trajectories, of the reward obtained through a trajectory X
weighted by the probability q�θ(X) of observing this trajectory

ρ(�θ) =
∑

X r(X)q�θ(X).
As we can see, this probability is parameterized by weights

�θ, because it depends not only on the environment’s transition
probabilities but also on the choices made using the stochastic
parameterized control policy. Its gradient is then expressed by
the following equation: ∇�θρ(�θ) =

∑
X r(X)∇�θq�θ(X).

By multiplying the right term of this equation by
(q�θ(X)/q�θ(X)), we see that the gradient calculation corre-
sponds to

∇�θρ(�θ) =
∑
X

r(X)
∇�θq�θ(X)
q�θ(X)

q�θ(X) (1)

=E

[
r(X)

∇�θq�θ(X)
q�θ(X)

]
. (2)

Finally, the expectation that is reflected by (2) can be esti-
mated by averaging over N trajectories as

∇̂�θρ(�θ) =
1
N

N∑
i=1

r(Xi)
∇�θq�θ(Xi)
q�θ(Xi)

. (3)

Under the MDPs framework, the probability q�θ(X) of ob-
serving a specific trajectory X corresponds to the product of all
the individual transition probabilities p(xt+1|xt)(�θ) from state
xt to state xt+1 in this trajectory, as reflected by the following
equation:

q�θ(X) = p(x0)p�θ(x1|x0)p�θ(x2|x1) . . . p�θ(xT |xT−1) (4)

= p(x0)ΠT−1
t=0 p�θ(xt+1|xt). (5)

However, and as noted earlier, these transitions depend both
on the environment’s dynamics and the policy used for control.
As a result, it is possible to rewrite (5) as

q�θ(X) = p(x0)ΠT−1
t=0 p(xt+1|xt)π�θ(xt, at) (6)

where p(xt+1|xt) are the transition probabilities of the environ-
ment, and π�θ(xt, at) are the action selection probabilities of the
stochastic policy.

This result can be used to replace the trajectory’s proba-
bility q�θ(X) in (3), because it is possible to show that the

1The parameters vector θ represents all the modifiable parameters of the cho-
sen function approximation representation, e.g., the weights that are adjusted
during learning in a neural network.

ratio (∇�θq�θ(X)/q�θ(X)) corresponds to a sum, over the tra-
jectory, of ratios (∇�θπ�θ(xt, at)/π�θ(xt, at)), as given by the
following:

∇�θq�θ(X)
q�θ(X)

=
T−1∑
t=0

∇�θπ�θ(xt, at)
π�θ(xt, at)

. (7)

Thus, and as suggested by the policy-gradient name, we end
up differentiating the policy’s representation π�θ(s, a) according

to its parameters �θ. This method reflects an important aspect
of policy-gradient algorithms, because it renders possible the
optimization of the policy’s performance without having any
knowledge of the system’s dynamics. Further details about this
transformation are given in [41], [45], and [46].

Now that we have differentiated the policy’s representation
according to its parameters, (7) can recursively be accumulated
over the course of a trajectory using an intermediate variable
�zt. This variable, which is called the eligibility trace, contains
a sum of gradients in the space of the policy parameters that
result from each transition and represents the influence of each
weight in the previous decisions, i.e.,

�zt+1 = β�zt +
∇�θπ�θ(xt, at)
π�θ(xt, at)

. (8)

Using the same technique, rewards can also recursively be
accumulated through a trajectory using an intermediate variable
rt. With these two new variables, the gradient estimator of (3)
can now be expressed by

∇̂�θρ(�θ) =
1
N

N∑
i=1

ri�zi (9)

where ri and �zi, respectively, denote the reward and the eligibil-
ity trace cumulated over trajectory i. This equation also shows
that the rewards are distributed to each weight according to their
influence in the decision. Finally, the estimation of the gradient
can be used to update the policy parameters.

We have briefly described the general policy-gradient frame-
work; see [45], [47], and [48] for more details.

C. Policy-Gradient Estimation Through a Backpropagation
Neural Network

The OLPOMDP algorithm, as proposed in [39] and [49] and
prolonged by [45], is an online algorithm based on the policy-
gradient principle described in the previous section. Instead of
estimating the gradient over a certain number of state transitions
T , the online approach modifies the weights of the policy
representation at each step. This stochastic gradient algorithm,
as presented in the algorithm in Fig. 2, has been shown to
converge to local optima [50].

This algorithm works as follows. After initializing the pa-
rameters vectors �θ0, the initial state x0, and the eligibility
trace z0 = 0, the algorithm iterates T times. After each itera-
tion, the parameters’ eligibility zt is updated according to the
policy-gradient approximation. The discount factor β ∈ [0, 1]
increases or decreases the agent’s memory of past actions.
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Fig. 2. Policy-gradient algorithm (adopted from [45]).

The immediate reward rt+1 and the learning rate α allow for
computing the new vector of parameters �θt+1. Finally, the new
parameters allow for modifying the current policy, making it
closer to a final policy (local optima) that represents a solution
to our problem.

The most important operation of this algorithm is the compu-
tation of the gradient of the policy ∇�θπ�θ(xt, at). Consequently,
policy-gradient algorithms consider the use of stochastic poli-
cies, because they are usually easily differentiable. The use
of neural networks for policy representation is a particularly
appropriate technique that offers significant advantages. First,
because the network’s task is to return action probabilities
according to the current state features, these networks can easily
be extended with an additional layer that uses the soft-max
function to compute these probabilities.

The soft-max function is particularly useful in the policy-
gradient context, because it easily meets the differentiability
requirements of the algorithm presented in Fig. 2. This function
is expressed as follows:

πθ

(
xt, a

i
t

)
=

eQ�θ(xt,a
i
t)

eQ�θ(xt,a1
t) + · · · + eQ�θ(xt,am

t )
. (10)

In fact, this function generates the action selection probabil-
ities using their Q-values Q�θ(x, a), which correspond to the
outputs of the neural network before their soft-max exponenti-
ation, and thus, they depend on the parameters �θ. In this case,
∇θπθ = ∇Qπ∇θQθ.

Using the neural network, step 10 of algorithm 2 can be
rewritten as

zt+1 = βzt +
∇Qπ

πθ
∇θQθ. (11)

Then, we can differentiate the soft-max function and eval-
uate ∇Qπ. To do so, we have two cases to evaluate. In the
first case, we have to compute the partial derivative of the
policy π(xt, a

i
t) according to the value of the selected action

Q(xt, a
i
t): (∂π�θ(xt, a

i
t)/∂Q�θ(xt, a

i
t)).

Next, we have to calculate all the partial derivatives of the
policy according to the values of all the other actions Q(xt, a

j
t )

(where ai
t 
= aj

t ) that were not selected: (∂π�θ(xt, a
i
t)/

∂Q�θ(xt, a
j
t )).

This case leads to the following result:

∂π�θ

(
xt, a

i
t

)
∂Q�θ(xt, a

j
t )

=

{
π�θ

(
xt, a

i
t

) (
1 − π�θ

(
xt, a

i
t

))
, if ai

t = aj
t

−π�θ

(
xt, a

i
t

)
π�θ

(
xt, a

j
t

)
, if ai

t 
= aj
t .

Of course, to compute policy-gradient ∇�θπ�θ(xt, at), we
need to differentiate the policy according to all of its weights.
This condition can easily be achieved using the standard back-
propagation algorithm, which is another reason that neural
networks are appropriate for use with policy-gradient algo-
rithms. Backpropagation is used to backpropagate the soft-
max gradient through the network to obtain the gradient of
each weight. However, the policy-gradient algorithm defines
the eligibility (local gradient of the weights for a single step) as
(∇Qπ�θ(xt, at)/π�θ(xt, at)). As a result, the soft-max gradient
divided by π�θ(xt, at) is the actual value to be backpropagated,
and this value is expressed as follows:

∇Qπ�θ

(
xt, a

i
t

)
π�θ

(
xt, ai

t

) =

{
1 − π�θ

(
xt, a

i
t

)
, if ai

t = aj
t

−π�θ

(
xt, a

j
t

)
, if ai

t 
= aj
t .

(12)

If we refer to (11), it remains to evaluate ∇θQθ. This ex-
pression corresponds to the derivative of the activation function
associated with each neuron of the output layer. Note that we
do not backpropagate the gradient of an error measure; instead,
we back propagate the soft-max gradient of this error.

To sum up, the algorithm represented in Fig. 2 works as
follows. First, we initialize the parameters β, T , θ0, and �z0.
At every iteration, the parameters gradient zt is updated. Ac-
cording to the immediate reward received r(xt+1), the new
parameter vector θt+1 is calculated, and the current policy πt+1

followed the next iteration, getting closer to t → T to a final
policy πT .

The next section shows how the policy-gradient estimation
can be used to learn a longitudinal vehicle controller.

VI. EXPERIMENTS AND RESULTS

This section details our efforts in designing an autonomous
CACC system [33] that integrates both sensors and intervehicle
communication in its control loop to keep a secure longitudinal
vehicle-following behavior. To achieve this approach, we used
the policy-gradient method that we described in the previous
section to learn a vehicle control by direct interaction with a
complex simulated driving environment. This section presents
the driving scenario considered, details the learning simula-
tions, and evaluates the performance of the resulting policies.

A. Experiments

1) Learning Task: The learning task considered here cor-
responds to a Stop&Go (SG) scenario. This type of sce-
nario is interesting, because it usually happens on urban
roads. It has been used by several researchers for the de-
velopment of autonomous controllers and the assessment
of their efficiency and effects on the traffic flow [15],
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Fig. 3. Reward function.

[51], [52]. In our case, a leading vehicle that starts at
standstill accelerates to a velocity of 20 m/s (72 km/h),
slows down to 7 m/s (25.2 km/h) for 40 s, and then accelerates
back to its original 20 m/s cruising velocity. In this case, the
learning vehicle’s task was to learn to follow the leading vehicle
while keeping a specific desired range of 2 s. These simulations
were executed in our vehicle simulator presented in Section IV.

2) State and Action Spaces: For the definition of the
states, we have considered the following three state variables:
1) the headway (Hw); 2) the headway derivative (ΔHw); and
3) the front-vehicle acceleration (Acc). Headway (also called
the “range”) refers to the distance in time from a front vehicle
and is calculated as follows:

Hw =
(PositionLeader − PositionFollower)

VelocityFollower

. (13)

This measurement is standard for intervehicle spacing (see
[15], [53], and [54]) that has the advantage of being dependent
on the current velocity of the follower. This state representation
is also interesting, because it is independent of the velocity of
the front vehicle (i.e., the leader). Thus, a behavior learned
using these states will generalize to all the possible front-
vehicle velocities.

The headway derivative (also called the “range rate”)
(ΔHw) contains valuable information about the relative veloc-
ity between the two vehicles and is expressed by

ΔHw = Hwt − Hwt−1. (14)

It indicates whether the vehicles have been moving closer
to or farther from each other since the previous update of
the value. Both the headway and the headway derivative are
provided by a simulated laser sensor, as detailed in Section IV.
Although we consider continuous values, we restrict the size
of the state space by bounding the value of these variables to
specific intervals that offer valuable experience to learn vehicle-
following behavior. Thus, we bounded the possible values of

headway from 0 s to 10 s, whereas the headway derivative was
bounded from −0.1 s to 0.1 s.

The acceleration (Acc), which is obtained through wireless
intervehicle communication, is another important state variable
of our system. Similar to other variables, the acceleration values
were bounded to a particular interval, ranging from −2 m/s2

to 2 m/s2.
Finally, the action space contains the following three actions:

1) a braking action (B100); 2) a gas action (G100); and 3) a
“no-op” action (NO − OP ). The state and action space of our
framework can formally be described as follows:

S = {Hw,ΔHw,Acc} (15)

A = {B100, G100, NO − OP}. (16)

3) Reward Function: The success of the learning task de-
pends on the reward function used by the agent, because this
function is mostly used by the learning algorithm to direct the
agent in areas of the state space where it will gather the maxi-
mum expected reward. Evidently, the reward function must be
designed to give positive reward values to actions that get the
agent toward the safe intervehicle distance to the preceding ve-
hicle (see Fig. 3).

Because the secure intervehicle distance should be around
2 s (a common value in industrialized countries’ legislation
[33]), we decided that a large positive reward should be given
when the vehicle enters the zone that extends at ±0.5 s from
the headway goal of 2 s. We also considered a smaller zone at
±0.1 s from the safe distance, where the agent receives an even
more important reward. The desired effect of such a reward
function is to advise the agent to stay as close as possible to
the safe distance. On the other hand, we give negative rewards
to the vehicle when it is located very far from the safe distance
or when it is very close to the preceding vehicle. To reduce
learning times, we also use a technique called reward shaping
[55], which directs the exploration of the agent by giving
positive rewards to actions that make the agent progress along
a desired trajectory through the state space (i.e., by giving
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Fig. 4. Neural network architecture policy representation.

TABLE I
OLPOMDP PARAMETERS FOR THE SINGLE-TRACK

ACC LEARNING TASK

positive rewards when the vehicle is very far but gets closer
to its front vehicle).

4) Algorithm: We have used the policy-gradient algorithm,
as presented in Section V-C, to solve the aforementioned SG.
The neural network that corresponds to the policy representa-
tion for the problem that we consider is shown in Fig. 4.

The parameters that must be set for the algorithm include
β, which describes the bias-variance tradeoff, α, which refers
to the learning rate, and T , which refers to the number of
iterations of the algorithm. The parameters were empirically set
to the values shown in Table I. The number of iterations was at
most of 2 500 000 (5000 episodes of 500 steps), but in practice,
this number was slightly lower, because some episodes were
reset when the agent was very close from its preceding vehicle.
Evaluated over ten learning simulations, we obtained an aver-
age number of iterations of 2 202 718.

In our case, we have opted for an artificial neural network
with two inputs for state variables (the headway and the head-
way derivative), one hidden layer of 20 neurons, and one output
layer of three neurons (1 for the value of each action). The
threshold function used for the hidden-layer neurons was a
sigmoid function, whereas the output-layer nodes used a linear
function. This network architecture is adopted to function ap-
proximation, because it has been shown that networks with one
hidden and one output layer using, respectively, sigmoidal and
linear transfer functions can approximate any given function
with a precision that depends on the number of neurons on the
hidden layer [56]. Because the OLPOMDP algorithm considers
the use of stochastic policies, we have added an additional
layer that calculates, using a soft-max function, a probability
distribution over the actions.

B. Results

1) Learning: Due to the stochastic nature of the policy-
gradient algorithms, ten learning simulations that result in ten

Fig. 5. Rewards sum for ten learning simulations of 5000 episodes.

Fig. 6. Vehicle velocities for a single-track CACC simulation.

different control policies have been executed. Results of the
learning process are given in Fig. 5, which gives the minimum,
average, and maximum reward sum obtained through our learn-
ing simulations.

2) Execution: After the learning phase, the policy that
yields the highest reward sum (shown in green in Fig. 5) has
been selected and was tested in the same scenario that was
used for learning. Other results are presented in Figs. 6–8. They
show, respectively, the velocities of both vehicles during the
simulation, their accelerations, and the headway of the follower.

3) Discussion: The headway result of the follower, as
shown in Fig. 8, indicates that, when the front vehicle is brak-
ing, the follower can keep a secure distance by using the learned
policy. During this time interval, the headway of the follower
oscillates close to the desired value of 2 s (approximately
1.85 s). Note that this oscillatory behavior is due to the small
number of discrete actions that we consider here.

From timesteps 5500 to 5600, however, it can be observed
that CACC steers the vehicle away from the desired headway as
it gets closer to its predecessor. This behavior can be attributed
to the fact that, at this timestep, the front vehicle has stopped
accelerating. Thus, to select actions, the follower’s controller
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Fig. 7. Vehicle accelerations for a single-track CACC simulation.

Fig. 8. Headway of the following vehicle for a single-track CACC simulation.

observes a constant velocity (acceleration of 0 m/s2) of the
leader and accordingly selects actions. In reality, at this time,
the follower still goes a little faster than the front vehicle (as
shown in the velocity profile in Fig. 6). As a result, the follower
has a tendency to get closer to the front vehicle, because it uses
“no-op” actions, although it should still be braking for a small
amount of time.

The CACC behavior obtained is also interesting when look-
ing at the acceleration of the follower. Indeed, Fig. 7 shows that
CACC does not need to use much harder braking than the leader
(around −3 m/s2). This behavior is interesting, because it shows
that there is no amplification of accelerations or decelerations,
which would result, with several vehicles, in a complete halt of
the traffic flow further down the stream. Thus, from this point
of view, the presence of the acceleration signal of the leader
enables the learning of a better control policy.

C. Improvements and Comparisons

We have also lead experiments on ACC to see how CACC
can be compared with it. We have experimented the SG scenario

TABLE II
HEADWAY AND HEADWAY ERROR VALUES FOR THE SINGLE-TRACK

ACC, CACC, AND CACC+ (i.e., CACC WITH REALISTIC

SENSORS DELAYS) SIMULATIONS

in the context of ACC, where there is no communication
and, consequently, no acceleration Acc in the state. In this
case, states and actions are simply given as follows: 1) S =
{Hw,ΔHw}, and 2) A = {B100, G100, NO − OP}. The re-
ward function is identical to the previous function presented in
Fig. 3. We also used the policy-gradient algorithm estimated
through a neural network backpropagation, as was the case
with CACC.

Table II compares ACC and CACC by summarizing their
performance using the corresponding headway Hw and head-
way error of their execution on the same SG scenario. This
table is based on the root-mean-square (RMS) error of Hw,
which is a particularly interesting measure, because it gives
more weight to values far from the desired safe distance. As
shown in Table II, CACC is generally closer to the desired goal
region than ACC. This condition confirms that the acceleration
signal was successfully integrated in CACC.

To be closer to real-life values, we have also simulated the
learned CACC policy with realistic sensor delays (+). For this
simulation, we increased the sensor refresh rates at higher fre-
quencies than the 4 Hz (250 ms) used for CACC. Our intuition
was that, with a refresh rate of 10 Hz (100 ms), we would
observe a more precise control of our vehicle. This condition
was, indeed, confirmed by results, as shown in Table II. As
we can see, the amplitude of the oscillations of the headway,
velocity, and accelerations of CACC+ are smaller than CACC.
Similarly, CACC+ offers better performances at staying within
the desired safe distance.

Note that these results have been obtained in “ideal” situ-
ations, where the flow traffic is tidy. It would be interesting to
simulate untidy situations and see how RL reacts to them. To do
so, we have approached this type of situation by an increase of
the frequency of SG; the more that the number of SG is higher
with a short time between two successive SG, the more that
the traffic flow is untidy. Our preliminary results show that, if
the time between two successive SG is less than 2 s and the
SG is repeated at least three times, then the control becomes
completely unstable after the second SG. In this case, the best
approach is to take off the cruise control; in this type of intense
SG, it is not useful, because humans are more adapted to this
sort of situation.

Finally, it is interesting to measure the performances of our
controller against other similar autonomous controllers. Unfor-
tunately, this case is difficult to achieve, because our research
work is entirely done through simulation, and we have made
several assumptions to simplify the problem (e.g., no sensor
noise and a simplified communication protocol that does not
consider several factors such as packet loss), which would have
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to be lifted to compare our controller with other controllers.
Moreover, while being precise, our vehicle dynamics model is
still an approximation of real vehicular dynamics.

VII. CONCLUSION

This paper has proposed a novel design approach to obtain
an autonomous longitudinal vehicle controller. To achieve this
condition, a vehicle architecture with its ACC subsystem has
been presented. With this architecture, we have also described
the specific requirements for an efficient autonomous vehicle
control policy through RL and the simulator in which the
learning engine is embedded.

A policy-gradient algorithm estimation has been introduced
and has used a backpropagation neural network for achieving
the longitudinal control. Then, experimental results, through
simulation, have shown that this design approach can result in
efficient behavior for CACC.

Much work can still be done to improve the vehicle controller
proposed in this paper. First, it is clear that some modifications
to the learning process should be made to improve the resulting
vehicle-following behavior. Issues related to the oscillatory
behavior of our vehicle control policy can be addressed by
using continuous actions. This case would require further study
to efficiently implement this approach, because it brings addi-
tional complexity to the learning process. Once the oscillatory
behavior of the RL approach has been addressed, it would
be profitable to compare it with a control obtained by the
traditional proportional–integral–derivative (PID) controllers.

Some elements with regard to our simulation framework can
also be improved, with the ultimate goal of having an even
more realistic environment through which we can make our
learning experiments. In fact, an important aspect to consider
would be to integrate a more accurate simulator for sensory
and communication systems. This way, we can eliminate some
of our current assumptions, e.g., the absence of sensor and
communication noise. This condition would make the learning
process more complex, but the resulting environment would be
much closer to real-life conditions.

Our controller can also be completed by an autonomous
lateral control system. Again, this approach can be done using
RL, and a potential solution is to use a reward function in the
form of a potential function over the width of a lane, similar to
the current force feedback given by the existing lane-keeping
assistance system. This reward function will surely direct the
driving agent toward learning an adequate lane-change policy.
The lateral control system may be completed by a situation
assessment for automatic lane-change maneuvers, as proposed
by Schubert et al. Finally, the integration of an intelligent
vehicle coordination system for collaborative decision making
can transform our system into a complete DAS.
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