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Cooperative Aerial Load Transportation via Sampled Communication

Enrica Rossi1, Marco Tognon2, Ruggero Carli1, Luca Schenato1, Juan Cortés2, Antonio Franchi2,

Abstract— In this work, we propose a feedback-based motion
planner for a class of multi-agent manipulation systems with
a sparse kinematics structure. In other words, the agents
are coupled together only by the transported object. The
goal is to steer the load into a desired configuration. We
suppose that a global motion planner generates a sequence of
desired configurations that satisfy constraints as obstacles and
singularities avoidance. Then, a local planner receives these
references and generates the desired agents velocities, which
are converted into force inputs for the vehicles. We focus
on the local planner design both in the case of continuously
available measurements and when they are transmitted to the
agents via sampled communication. For the latter problem,
we propose two strategies. The first is the discretization of the
continuous-time strategy that preserves stability and guarantees
exponential convergence regardless of the sampling period. In
this case, the planner gain is static and computed off-line. The
second strategy requires to collect the measurements from all
sensors and to solve online a set of differential equations at
each sampling period. However, it has the advantage to provide
doubly exponential convergence. Numerical simulations of these
strategies are provided for the cooperative aerial manipulation
of a cable-suspended load.

I. INTRODUCTION

Unamnned Aerial Vehicles (UAVs) have received a lot of

attention in the last decade thanks to their broad field of

applications. In fact, they are employed to perform diverse

complex tasks from search and rescue to load manipulation

and transportation [1], [2]. Due to the limited payload of

commercially available vehicles, a group of robots is rather

employed to transport and manipulate payloads, e.g., for

construction and assembly tasks. The most direct approach

to control such a multi-robot system is by a centralized

kinematic/dynamic inversion [3]–[5]. However, a distributed

approach, where the communication among agents is re-

stricted to neighbors [6], [7] or not employed at all [8], [9], is

more favorable. This technique guarantees major robustness

and flexibility w.r.t. a centralized one, where a central unit

handles all the computational load and if the latter fails, then

the whole task fails. However, the distributed approach lacks

global information as the load state and parameters, or the

total number of robots. This aspect increases the difficulty of

the controller design and might degrade the performance as

well. Moreover, many communication-less approaches rely

This work Partially funded by: EU Horizon 2020 grant agreement
No 644271 AEROARMS, and the ANR, Project ANR-17- CE33-0007
MuRoPhen and by University of Padova grant “Magic” SCHE SID17 01.

1Department of Information Engineering, University of Padova, Italy
enrica.rossi.1@studenti.unipd.it, carlirug@dei.unipd.it,

schenato@dei.unipd.it
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on a leader-follower paradigm: the followers track the leader

who is the only agent aware of the desired task. Hence

i) if the leader fails, then the task will fail too, and ii) if

one follower fails, the formation might be loosen. In this

scenario, the communication is done implicitly by the forces

exchanged through the load [10], [11]. However, if a very

precise tracking is required, the force feedback is not enough

and a pose feedback from the load is needed. This can be

measured by a sensor placed on the load, or retrieved from

the robots pose if those are rigidly connected to the load.

Since in this work the load is suspended by cables, only

the first option is feasible. In particular, the load sensory

suit shall send the estimated load pose to the robots via a

communication channel.

To the best of our knowledge, in this work we investigate

for the first time the problem of cooperative aerial load

transportation via sampled communication. In fact, the band-

width required to fulfill real-time requirements in robotic

manipulation is larger w.r.t. the one provided by today’s Wi-

Fi. Therefore, the frequency of communication is not high

and neither constant. We tackle these problems by consid-

ering an architecture where a global motion planner [5]

generates off-line a sequence of reference points, taking

into account obstacles and singularities avoidance. These

points are then loaded in the computational unit, that in our

scenario can be placed on the transported platform or on

the vehicles, depending on the strategy. Then, to connect

each pair of consecutive points along the path computed

off-line, we propose a method that computes online the

reference vehicles velocities, guaranteeing the stability and

the exponential convergence of the pose load error, even

when the communication is not continuous. In the following,

we call this method a local motion planner. The design of

this planner is our main contribution: we firstly define it in

the continuous time scenario and later extend the analysis

to the more realistic case in which the measured variables

are transmitted via sampled communication to the low-level

agent controllers. Note that we focus only on the kinematic

model since it is assumed that each agent is endowed with

a dynamic model-based local controller. For this problem,

we propose two strategies: a static feedback technique that

exploits the sparsity of the system model and an adaptive one,

where the planner gain is adapted according to the system

state. The second strategy provides faster convergence rate

w.r.t. the first one, but cannot be implemented in a distributed

way.

The paper is organized as follows: in Sec.II we formalize

the problem for a particular class of systems. In Sec.III

we analyze the continuous-time scenario, extended to the
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Fig. 1: Example of a multi-agent system that transports a payload.

discrete-time case in Sec.IV. In Sec.V numerical simulations

are described.

II. MODELING AND PROBLEM FORMULATION

A. Kinematics of multi-agent systems

In this section we describe the kinematic model of a multi-

agent system composed by N actuated agents interacting

through a common object L (the load to be manipulated) by

means of passive mechanical connections, such as cables,

bars, joints, etc.. Agents can be, e.g., 1-DoF actuated cables

of variable length or even 3-DoF actuated points flying in

the 3D space. The kinematic model is derived as in [5]:

[

p1 . . . pN

]⊤ = h(q) =
[

h(1)(q1,qL) . . . h(N)(qN ,qL)
]⊤
. (1)

This function maps the Lagrangian coordinates of the sys-

tem q = [q⊤1 · · · q⊤N q⊤L ]
⊤ ∈ R

m to the vector collecting the

agents configurations p =
[

p1 . . . pN

]⊤ ∈ R
n where pi ∈ R

ni

represents the cables lengths in a cable-driven robot or

the positions of the flying points in an aerial system. In

particular, qi ∈ R
mi gathers the angles between the common

object L and the i-th robot, and qL ∈RmL represents the pose

(position and orientation) of the manipulated object itself.

Note that mi = 0 if pi can be fully described by the only load

pose qL. Otherwise, if pi depends also on qi, then mi = 1 if

one angle is sufficient to express the positions pi w.r.t. the

load pose (as in Fig.1); if a single cable connects a robot

to the load, then the cable orientation is described by two

angles, i.e. mi = 2. Note that we do not consider rotations of

the cables about their own axis, hence mi ≤ 2. A key feature

of the systems considered in this work is that they exhibit a

star-like interaction topology where each agent is connected

to a central unit (the load). This topology is more evident

when considering its differential kinematics:

ṗ = Aq q̇, (2)

where the Jacobian Aq = ∂h(q)
∂q
∈ R

n×m has the structure

Aq =









A
(1)
q1

0 A
(1)
qL

. . .
...

0 A
(N)
qN

A
(N)
qL









, (3)

and A
(i)
qi

= ∂hi(q)
∂qi
∈ R

ni×mi and A
(i)
qL

= ∂hi(q)
∂qL

∈ R
ni×mL .

LOAD

AGENT

u

GLOBAL PLANNER q
r

Fig. 2: Representation of (5) (left) and (6) (right). The load is
represented in gray, each agent (dynamical controller plus robot)
in blue, the measurements from the sensors in red and the global
planner in green. The dynamical controller converts u into forces for
the robot. The wireless symbol refers to sampled communication.

B. Problem Formulation

The goal of the paper is to design a feedback-based local

planner in order to steer the system from an initial configura-

tion q0 to a desired one qr. In general, qr could be a waypoint

sampled at the time instant tℓ, ℓ ∈N from a trajectory qp(t),
with t ∈R, generated off-line by a global path planner. This

can take into account high-level performance metrics such

as obstacles avoidance, minimum energy trajectories and

singularity avoidance (i.e., the configurations s.t. the Jacobian

Aqp(t) is not full rank). The objective is to steer the system

from a configuration q0 ≈ qp(tℓ) to a final one qr ≈ qp(tℓ+1)
faster than the intersample interval ∆t = tℓ+1−tℓ. We assume

that each agent has an inner-loop control sufficiently fast with

respect to the dynamics of the entire system, such that the

velocities of the variable vector p are fully controllable, i.e.:

ṗ(t) = u(t), (4)

where u = [u⊤1 · · ·u⊤N ]⊤ ∈ R
n. We consider two possible

architectures, depicted in Fig.2:

ui(t) = κs
i (qi(t),qL(t);qr

i ,q
r
L), i = 1, . . . ,N (5)

ui(t) = κc
i (q(t);qr), i = 1, . . . ,N (6)

where the former tries to maintain the same sparsity of the

Jacobian while the latter exploits the full knowledge of 1 q.

We will show that if q(t) is continuously accessible to the

local planner, then (5) is sufficient to drive the system from

q0 to qr very effectively. On the other hand, under the more

realistic scenario when some of the components of q(t) need

to be sampled and transmitted via wireless, then the two

architectures give rise to two different strategies with dif-

ferent performance and computational requirements. Before

proceeding, we define the set Br(q
r) := {q∈Rm |‖q−qr‖<

r,r > 0}, where ‖ · ‖ indicates the Euclidean norm and the

following assumption:

Assumption 1. The following relations hold:

1) n = m, i.e., Aq ∈ R
n×n

2) the matrix Aq is invertible and the map h is twice con-

tinuously differentiable for all q ∈Br(q
r). In addition,

these properties can be extended by continuity on the

closure of such set, defined as Br(q
r).

1Note that we do not pursue control strategies of type u(t) = κ(p(t);pr)
where pr := h(qr) since the function h might not be perfectly known and
avoidance of singular configurations cannot be guaranteed.
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3) q0 ∈Br(q
r)

The first assumption is adopted in the interest of space: an

example is reported in Fig.1. In particular, we refer to these

systems as square systems. The second assumption allows

defining the evolution of q(t) in Sec.III and IV and can be

satisfied in the points generated by the global path planner,

hence such an r exists by continuity arguments. The last

assumption is guaranteed if the planner properly selects the

waypoints such that ‖qp(tℓ+1)−qp(tℓ)‖ is smaller than r.

III. LOCAL PLANNER: CONTINOUS-TIME

In this section, we describe the local planner that generates

the desired vehicles velocity in the scenario of continuous

time measurements. The goal is to steer q(t) to qr. Assuming

Aq(t) full-rank, from (2) the evolution of q is ruled by

q̇(t) = A−1
q(t)u(t). (7)

A possible choice to define the desired vehicles velocities is:

u(t) =−Aq(t)K(q(t)−qr), (8)

where K is a gain matrix to be designed. With this choice,

if Aq(t) is invertible, we have that

q̇ =−K(q(t)−qr). (9)

The feedback gain K needs to guarantee stability, but also

to make the trajectory q(t) not to pass through a singularity.

This is established in the next Proposition.

Proposition 1. Consider the system (7)-(8) and Ass. 1. If

K+K⊤ is strictly positive definite, then

1) for all t ≥ 0, q(t) ∈Br(q
r)

2) the trajectory q(t) converges exponentially fast to qr.

Proof. 1) Take the Lyapunov function V (q) = ‖q− qr‖2.

Then its time derivative is as follow

V̇ (q) =−(q−qr)⊤(K+K⊤)(q−qr)< 0, q 6= qr,

if K+K⊤ > 0, i.e., if the symmetric part of K is so. Hence

V (q) does not increase and therefore q(t) ∈Br(q
r) ∀t ≥ 0.

2) The solution of (9) is q(t) = e−Ktq0 +qr that converges

exponentially fast to qr if −K is Hurwitz which is guaranteed

by the hypothesis K+K⊤ > 0.

We conclude this section observing that, if we choose K

to be block diagonal of the form K = diag{K1, . . . ,KN ,KL},
where Ki ∈ Rmi×mi and KL ∈ RmL×mL , then

ui = A
(i)
qi

Ki(qi(t)−qr
i )+A

(i)
qL

KL(qL(t)−qr
L), (10)

i.e., the desired velocity for the i-th robot does not depend

on the other robots state, as defined in (5).

IV. LOCAL PLANNER: SAMPLED MEASUREMENTS

We now consider the evolution of (7) under sampled

dynamics, that is, we assume that q is measured on the time

instants hT , h = 0,1,2, . . . where T is the sampling time.

Furthermore, we assume that the vehicles reference velocity

u(t) is kept constant within a time window T using (8):

u(t) = uh =−Aqh
K(qh−qr), hT ≤ t < (h+1)T,

for h = 1,2, . . ., and qh := q(hT ). K can be chosen to satisfy

Prop.1 and s.t. ui does not depend on q j with i 6= j:

K = kIn, k ∈ R>0,

with In ∈Rn×n the identity matrix. In this scenario, assuming

Aq(t) non singular, the evolution of q(t) becomes:

q̇(t) =−kA−1
q(t)Aqh

(qh−qr), hT ≤ t < (h+1)T. (11)

The main goal of this section is to design k, possibly time

varying, i.e., k = kh, such that the stability of the system is

still guaranteed. For the sake of notational convenience, we

apply a change of coordinates of type e(t)← q(t)−qr and

the simplified notation B0 := Br(e
r), with er = 0.

The design of k is based on the study of the following aux-

iliary system whose solution is characterized by interesting

and useful properties that will be analyzed later on:

ė′(τ;eh) =−A−1
e′(τ;eh)

Aeh
eh =: f(e′(τ;eh)) (12)

e′(0;eh) = eh; eh ∈B0,

where τ ∈ [0,kT ] and e′(·; ·) ∈ R
m. By direct inspection

e(t) = e′(k(t−hT );eh), hT ≤ t < (h+1)T. (13)

Hence, once the solution e′(τ;eh) is computed, then e(t)
is obtained through shifting by hT and rescaling by k as

long as e′(k(t − hT );eh) exists; then, q(t) = e(t)+qr. The

major benefit of this approach is that the analysis of (12) is

independent of the gain k and the sampling period T . From

Ass. 1, and since f and ∂ f
∂e′ are continuous maps on a compact

domain, the following properties follow, for some a,b > 0

f(e′(0;e)) = −e, ∀e ∈B0 (14)

‖f(e′(τ);e)‖ ≤ ‖A−1
e′ Ae‖‖e‖= a‖e‖, ∀q′,e ∈B0 (15)

∥

∥

∥

∥

∂ f(e′(τ);e)

∂e′

∥

∥

∥

∥

≤ b‖e‖, ∀e′,∀e ∈B0, (16)

Since the flow f(e′;eh) is locally continuously differen-

tiable in e′, then for each eh ∈ B0 there exists δ (eh) > 0

s.t. (12) has a unique solution e′(τ;eh) for τ ∈ [0,δ (eh)).
Without loss of generality we define τmax(eh) the maximum

time extension for which the unique solution e′(τ;eh) exists

for τ ∈ [0,τmax(eh)). An interesting property of e′(τ;eh) is

described in Prop. 2:

Proposition 2. Consider the dynamical system (12) and

assume Ass. 1 holds true. Then the solution e′(τ;eh) satisfies

one of these two properties:

(i) for all τ > 0, it holds ‖e′(τ;eh)‖ < ‖eh‖ and in such

case τmax(eh) = ∞;
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Fig. 3: Depiction of B0, δeh
, τ∗o , τo(eh), τ∗s , τs(eh) and τmax(eh).

The time values are in red, and the points or sets in R
m in black.

(ii) there exists 0 < τ̄ < τmax(eh) such that ‖e′(τ̄;eh)‖ =
‖eh‖ and ‖e′(τ;eh)‖< ‖eh‖ for all 0 < τ < τ̄ .

Proof. Only two scenarios are possible, either ‖e′(τ;eh)‖<
‖eh‖ for all τ > 0, from which τmax(eh) = ∞ follows, or not.

If not, then τ := infτ>0{τ |‖e′(τ;eh)‖≥ ‖eh‖} is well defined

and finite. Now, let us assume that τ̄ = 0: since e′(τ;eh) is

continuously differentiable in τ and since ė′(0;eh) = −eh,

then there exists ė′(0;eh) s.t. e⊤h ė′(0;eh) ≥ 0 ⇔ −e⊤h eh =
−‖eh‖2 ≤ 0 that is a contradiction. This implies that τ̄ > 0.

Finally, observe that the definition of τ̄ makes sense only if

a solution e′(τ;eh) exists, hence τ ≤ τmax(eh).

Based on the previous result, we can now define the

following temporal variables:

τs(eh) :=min
τ
{τ >0 |‖e′(τ;eh)‖= ‖eh‖}, τ∗s := inf

eh∈B0

τs(eh),

τo(eh) := arginf
0≤τ≤τs(eh)

‖e′(τ;eh)‖, τ∗o := inf
qh∈B0

τo(qh),

where τs(eh) = ∞ if ‖e′(τ;eh)‖< ‖eh‖,∀τ . These quantities

are sketched in Fig.3. Basically, τs(eh) represents the first

time that the solution e′(τ;eh) hits the boundary of the

ball centered at the origin and passing through the initial

condition eh, while τo(eh), represents the time that e′(τ;eh)
is closest to the origin. We will show in the next section,

that for any given set B0 we can find 0 < τ̄o < τ̄s and

0 ≤ ρ < 1 s.t. ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖ for all eh ∈ B0, and

τ̄o ≤ τ∗o , τ̄s ≤ τ∗s . The variables τ̄o and τo(eh) allow proposing

two different strategies to design the gain k. The first is

based on the observation that if k = τ̄o
T

, then e′(τ;eh) →
0 ∀eh at a convergence rate ρ . In fact, from (13) we have

‖eh+1‖= ‖e′(kT ;eh)‖= ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖. This suggests

an offline procedure to select k that will be described in the

next Sect. IV-A. However, based on the definition of τo(eh),
it might be likely that ‖e′(τo(eh);eh)‖< ‖e′(τ∗o ;eh)‖ for most

eh ∈B0. Therefore, an alternative approach is to select k at

each instant h such that kh := τo(eh)
T

. This idea suggests an

online strategy that will be described in Sect. IV-B.

A. Off-line procedure (Stability and convergence rate)

From (13), if we show that τ∗s > 0, then the original system

(12) is asymptotically stable for

kT < τ∗s ∀ e(0) ∈B0.

Note that if this condition is not satisfied, then we can find a

time instant τ ′ ∈ [τ∗s ,+∞] and e(0) such that ‖e′(τ ′;e(0))‖>
‖e′(0;e(0))‖, that is ‖e(kT )‖> ‖e(0)‖ for k = τ ′

T
. Although

this does not imply instability of the whole trajectory, it is an

undesired behavior. We now want to find an explicit lower

bound τ̄s > 0 for τ∗s . To do that, we consider an expansion

of the solution of (12) and numerically estimate the upper

bound of the approximation error via an additional parameter

µ . This allows deriving an analytical expression of τ̄s.We

recall that the solution of (12) can also be written as:

e′(τ;eh) = eh +
∫ τ

0
f(e′(τ ′;eh))dτ ′, 0≤ τ < τs(eh).

By using Taylor’s theorem for multivariate functions with

integral form of the remainder, it becomes

e′(τ;eh) = eh + τ f(e′(0);eh)+

+ τ2
∫ 1

0
(1− ε)

∂ f(e′(ετ);eh)

∂e′
f(e′(ετ);eh)dε

= (1− τ)eh + τ2d(τ,eh), 0≤ τ < τs(eh), (17)

where the reminder d has the property2:

Proposition 3. There exists 0 < λ < ∞ such that for all qh ∈
B0 and for all 0 < τ < τs(eh) it holds ‖d(τ,eh)‖ ≤ λ‖eh‖2.

Proof. As a consequence of the properties (15) and (16), the

reminder in (17) becomes

‖d(τ,eh)‖ ≤
∫ 1

0
(1− ε)

∥

∥

∥

∥

∂ f(e′(ετ);eh)

∂e′

∥

∥

∥

∥

‖f(e′(ετ);eh)‖dε

≤
∫ 1

0
(1− ε)ab‖eh‖2dε =

1

2
ab‖eh‖2 = λ‖eh‖2

where λ := 1
2
ab and a,b are the bounding constants intro-

duced in (15) and (16).

Notice that since eh ∈Bo, then ‖eh‖ ≤ r and there exists

µ :=
1

2
abr, (18)

such that ‖d(τ,eh)‖ ≤ 1
2
ab‖eh‖2 ≤ µ‖eh‖. Note that µ rep-

resents a rough estimate of the upper bound of ‖d(τ,eh)‖.
However, this estimate can be refined as follows. Let

d′(τ,eh) :=τ2d(τ,eh)
(17)
= e′(τ,eh)− (1− τ)eh and

µ∗ := inf
γ
{γ | ‖d′(τ,eh)‖ ≤ γ‖eh‖τ2,

∀eh ∈B0, ∀τ ∈ (0,τs(eh))}.

We are interested in providing an estimate µ̂∗ of µ∗. To this

aim, we randomly pick samples in B0, ei
h ∈B0, and for each

of them we simulate e′(τi;ei
h) for τi ∈ [0,τs(e

i
h)].

µ̂∗ :=max
i

{‖d′(τi,e
i
h)‖

τ2
i ‖ei

h‖
,∀ei

h ∈B0, ∀τi ∈ (0,τs(e
i
h))

}

. (19)

Since µ̂ is computed on a sampled B0, we may discard

some configurations which would give a larger value of the

2Note that the reminder scales as ‖eh‖2 which implies that as e′ becomes
closer to the origin, the faster it converges.
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Fig. 4: Representation of τs(µ), τ0(µ) and ρ(µ).

estimate. Hence µ̂ ≤ µ and µ̂→ µ as the number of samples

increases. From (17) and Prop. 3, for eh ∈B0 we have that

‖e′(τ;eh)‖ ≤ (|1− τ|+µτ2)‖eh‖, (20)

for all 0≤ τ < τs(eh). In order to evaluate upper bounds for

the convergence rate, we need to study the following function

g(τ; µ) := |1− τ|+µτ2

We start our analysis with the following result.

Proposition 4. Given µ , the function g(τ; µ) is strictly

smaller than 1, i.e., g(τ; µ)< 1 for τ ∈ (0,τs(µ)), where

τs(µ) :=

{

4
1+
√

1+8µ
if µ < 1

1
µ if µ ≥ 1

, (21)

where τs(µ) is such that g(τs(µ); µ) = 1.

The proof is available in Appendix A. Note that since τs

is obtained by using upper bounds on some terms, it holds

that τs ≤ τ∗s ≤ τmax(eh). Hence, in the following set

T := {τ |g(τ; µ)< 1}= (0,τs(µ)),

the norm ‖e′(τ;eh)‖ decreases w.r.t. ‖eh‖. We now want to

find the time τo(µ) ≤ τ∗o in order to maximally decrease

toward the origin, and the relative decreasing rate ρ(µ), i.e.,

τo(µ) := argmin
τ

g(τ; µ), ρ(µ) = g(τo(µ); µ).

The following proposition provides the values attained by

τo(µ) and ρ(µ), which are obtained from their definitions

and the computation of g(τ; µ).

Proposition 5. Consider function g(τ; µ). Then

τo(µ)=

{

1 µ < 1
2

1
2µ µ ≥ 1

2

and ρ(µ)=

{

µ µ < 1
2

1− 1
4µ µ ≥ 1

2

.

Note that ρ < 1 as shown in Fig. 4. The proof is available

Appendix A. A representation of τs(µ), τo(µ) and ρ(µ) is

reported in Fig. 4. Note that if µ = 0 then ρ = 0 and we

obtain a dead-beat controller. Indeed, from (20) with k = τ̄o
T

,

it holds ‖e(t)‖= ‖e′(τ̄o(µ);eh)‖= 0 in one step. Moreover,

for µ < 1
2
, τo(µ) = 1 regardless of µ and this is an indication

of robustness. The previous result suggests that a possible

choice for the optimal offline gain k, once the sampling time

T is known, is

k∗ =
τo(µ)

T
, (22)

as formally established in the next proposition.

Proposition 6. For all e(0) ∈B0 the following inequality

holds:

‖e(hT )‖ ≤ ρh(µ)‖e(0)‖
and ‖e(t)‖ ≤ ‖e(hT )‖ for all hT ≤ t < (h+1)T .

Proof. From Prop. 1 and (20) and recalling that ρ(µ)< 1:

‖eh+1‖ ≤ ‖e′(τ;eh)‖ ≤ ρ(µ)‖eh‖ ≤ g(τ; µ)‖eh‖
Hence ‖eh+1‖ ≤ ρ(µ)‖eh‖ ≤ ρ(µ)2‖eh−1‖ ≤ ρ(µ)h+1‖e0‖.

Notice that, from Prop. 6, it turns out that the origin is

an asymptotically stable equilibrium for the system and the

proposed offline strategy converges exponentially fast with

a rate at least ρ(µ), ∀e(0) ∈ B0 that is included in the

corresponding basin of attraction. We conclude this section

observing that, since µ can be computed apriori before

running the algorithm, then the offline strategy is amenable

of both distributed and centralized implementations.

B. Online model-predictive procedure

In this section we consider the possibility to numerically

compute the future trajectory e′(τ,eh) based on the model

dynamics f(q;eh) and the current position eh. This implies

that also τo(eh) can be computed at any time step h. If so,

under the assumption that the input is kept constant for the

following time interval T , we can propose the following input

u(t) = uh =−khAeh
eh, hT ≤ t < (h+1)T,

where

kh :=
τo(eh)

T
. (23)

A more precise characterization of the convergence proper-

ties of this strategy is stated in the next proposition.

Proposition 7. Consider the system in (11) with a time

varying sequence of gains k0,k1,k2, . . ., where the generic

kh is given as in (23). Then the system satisfies the following

properties:

• ‖e(t)‖ ≤ ‖e(hT )‖ for all hT ≤ t < (h+1)T ;

• the convergence rate of the sampled dynamics is at least

quadratic;

• the gain kh tends to 1
T

as h→∞, that is limh→∞ kh =
1
T

.

Proof. Observe that, according to (23), we necessarily have:

‖eh+1‖= ‖e′(τo(eh);eh)‖ ≤ ‖e′(τo;eh)‖ ≤ ρ‖eh‖,
hence the proposed scheme is exponentially stable with rate

ρ for any T . Since in the online scenario r = ‖eh‖ → 0,

then µ = 1
2
ab‖eh‖ → 0. As so, there exists h̄ s.t. µ < 1

2
for

h > h̄. Then from Prop. 5, ρ(µ) = µ and ‖eh+1‖ ≤ ρ‖eh‖=
1
2
ab‖eh‖2 for h > h̄. As a consequence

limsup
h→+∞

‖eh+1‖
‖eh‖2

≤ 1

2
ab,

and ‖eh‖ ≤ ( 1
2
ab‖e0‖)(2

h−1)‖e0‖. Since ab > 0, then the

quadratic convergence of the sequence ‖eh‖ is guaranteed.

Moreover, µ → 0 implies ‖d(τ,eh)‖ → 0 and the second
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Fig. 5: In the figure, label offline refers to the choice (22), while
label online refers to (23).

term in (17) becomes negligible. So, e′(τ;eh)→ (1− τ)eh

is minimized for τ = 1. In the online scenario, the optimal

gain is chosen as in (23), where τo(eh) corresponds to the

minimum norm, hence τo(eh) = 1 and kh =
1
T

.

Based on the definition of τo(eh) and on Prop. 7, we

expect the online strategy to exhibit a faster convergence

than the offline one. This fact is supported also by the

numerical results reported in the next section. However, the

higher rate of convergence comes at the price of a heavier

computational load. Indeed τo(eh) needs to be estimated

at each iteration and a global knowledge of the vector eh

is required; this implies that the online strategy cannot be

implemented distributively, but only in a centralized fashion.

V. SIMULATION RESULTS

The performance of the proposed steering method is

evaluated and compared in this section, reporting the results

obtained in Matlab. The platform edges of the simulated

system (the one in Fig. 1) are 1 [m] long and the cables

linking the robots to the load measure 1.5 [m]. The sampling

time is T = 0.01 [s]. The quantity µ̂∗ is estimated both for

a small Bo with radius r1 = 0.08 (that gave µ̂∗ < 1
2
) and

for a larger one with r2 = 0.5 (µ̂∗ > 1
2
), following the

reasoning of Sec. IV-A. Observe that r could be set as

an optimization parameter to generate the reference path.

Then, a desired configuration qr s.t. qr
L =

1
2
[1 1 1 0 0 0]⊤ and

qr
α = [75◦ 75◦ 75◦]⊤ is chosen and two initial conditions are

considered, one s.t. ‖q1(0)− qr‖ < r1 and the second s.t.

r1 < ‖q2(0)−qr‖< r2. Finally, from Prop. 5, τ̄o is obtained

based on the estimate µ̂∗, while the gain k∗ is computed

with (22). At this point, the system in (12) is simulated until

τ = τ̄o using the Matlab function ODE; then, the solution

of the original system, for hT ≤ t < (h+ 1)T , is retrieved

using (13). The procedure is repeated for every iteration.

Conversely, in the online strategy the optimal gain k = kh that

brings the system the closest to the desired configuration, is

recomputed at each instant hT based on the time τo(eh). We

implicitly assumed that the machine used for the simulations

can compute kh in less than T seconds. Moreover, T can

be designed by the path planner to satisfy this condition.

Fig. 5 shows the simulation results described above, where,

for µ smaller and greater than 1
2
, the online and offline

strategies are compared. We observe that for µ < 1
2

the two

strategies have quite the same behavior, as expected from

the proof of Prop. 6. Instead, as µ > 1
2
, the offline strategy

is not as efficient as the online one, since the convergence

rate ρ(µ)→ 1, as described in Prop. 5. In particular, it is

emphasized the difference between the exponential (offline

strategy) and doubly exponential (online) convergence rate

described respectively in Prop. 6 and 7. The soundness of the

proposed strategy is confirmed by preliminary simulations on

a dynamic simulator with force controller, not reported here

for space limitation.

VI. CONCLUSIONS

In this work, we faced the problem of steering a multi-

agent manipulation system to a desired configuration by

means of a feedback-based planner that exploits the sparse

structure of the system and provides the desired vehicles

velocities to be tracked by the system. We provided an

extension from the continuous time case to the one with

sampled measurements. This deals with a realistic scenario

where wireless communication is employed. Finally, two

different strategies were compared for the sampled scenario:

the offline strategy converges exponentially fast and exploits

a static control gain, while the second method is even

faster, but computationally demanding since the gain must

be computed online. Furthermore, if the second technique

can be implemented only in a centralized fashion, the first

one can be fulfilled also in a distributed way. Anyway, both

the techniques do not require any communication among the

robots. Some adaptations have been left for future work: we

aim at studying the non-square systems (n 6= m), analyzing

them under different norms definitions. As discussed in

Sec. II-B, there is potential for improving the trajectory

generation, taking into account additional parameters as the

inter-sample interval. Finally, we will apply the proposed

strategy to a dynamical system and include a more realistic

communication environment to simulate the whole structure.

APPENDIX

A. Stability and Convergence analysis

In this section we give the definition of the stability time

τ̄s(µ), the optimal time τ̄o(µ) and the convergence rate ρ(µ).
In order to evaluate upper bounds for asymptotic stability and

rate of convergence, we need to study the following function

g(τ; µ) := |1−τ|+µτ2 =

{

1− τ +µτ2 =: g−(τ; µ) τ < 1

−1+ τ +µτ2 =: g+(τ; µ) τ ≥ 1

We will study the function g(τ; µ) in three different scenar-

ios: µ ∈ [0, 1
2
), µ ∈ [ 1

2
,1) and µ ≥ 1. We start by observing

that

g(0; µ) = 1, g(1; µ) = µ,
d g+

dµ
= 1+2µτ > 0

and by defining the minimum of g−(τ; µ) and its minimizer

w.r.t. τ as

τp(µ) = argmin
τ

g−(τ; µ)⇔ dg−(τ; µ)

dτ
= 0 =⇒ τp(µ) =

1

2µ
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We now note that in the first scenario µ ∈ [0, 1
2
), τp(µ)≥ 1

which implies that the function g(τ; µ) is monotonically

decreasing for τ ∈ [0,1] and monotonically increasing for

τ > 1.

In the second scenario µ ∈ [ 1
2
,1), τp(µ) < 1, therefore

g(τ; µ) is monotonically decreasing for τ ∈ [0,τp(µ)] and

monotonically increasing for τ > τp(µ).
Finally note that for µ < 1, g(1;τ)< 1, therefore there exists

a unique τs(µ) such that g(τs(µ); µ) = g+(τs(µ); µ) = 1,

while for µ > 1, g(1;τ)> 1, therefore there exists a unique

τs(µ) such that g(τs(µ); µ) = g−(τs(µ); µ) = 1. A pictorial

representation of the three scenarios is shown in Fig. 6.

We are now ready to compute the stability region and

convergence rate.

0 0.5 1 1.5 2 2.5 3 3.5

 [s]

-0.5

0

0.5

1

1.5

(a) µ ≤ 1
2

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(b) 1
2
≤ µ ≤ 1

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(c) µ ≥ 1

Fig. 6: Representation of g(τ; µ) in the three scenarios.

1) Stability (g(τ; µ) < 1): According to the analysis

above, the stability set is given by:

T := {τ |g(τ; µ)< 1}= (0,τs(µ))

More specifically, we have two scenarios depending whether

the parameter µ is smaller or grater than unity.

If µ < 1 then −1+ τ +µτ2 = 1. Hence:

τs(µ) =
−1+

√
1+8µ

2µ
=

4

1+
√

1+8µ

while

µ > 1 =⇒ 1− τ +µτ2 = 1 =⇒ τs(µ) =
1

µ

which can be summarized in

τs(µ)

{

4
1+
√

1+8µ
µ < 1

1
µ µ ≥ 1

(24)

2) Optimal gain and rate (minτ g(τ; µ)): We now want to

find the optimal stopping time τo(µ) in order to maximally

decrease toward the origin, and the relative decrease rate

ρ(µ), i.e.

τo(µ) := argmin
τ

g(τ; µ), ρ(µ) = g(τo(µ); µ)

Once again, we can distinguish two scenarios, depending

whether the parameter µ is smaller or greater than 1
2

More specifically, for µ < 1
2

the function g−(τ; µ) is mono-

tonically decreasing for τ < 1, and therefore τo(µ) = 1, while

for µ > 1
2

then τo(µ) = τp(µ) =
1

2µ . This can be summarized

as

τo(µ) =

{

1 µ < 1
2

1
2µ µ ≥ 1

2

(25)

By substitution is easy to verify that

ρ(µ) =

{

µ µ < 1
2

1− 1
4µ µ ≥ 1

2

(26)
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