
Cooperative Agent-Supported Learning with WeLearn

Michael Sonntag, Susanne Loidl-Reisinger

{sonntag, sreisinger}@fim.uni-linz.ac.at
Johannes Kepler University Linz, Altenbergerstr. 69, A-4040 Linz

Telephone: +43(70)2468-{9330, 8437}
Fax: +43(70)2468-8599

Topic areas: Online learning platforms, distance education, cooperative learning, intelligent agents, metadata,
agent-oriented software engineering

Neither this paper nor any version close to it has been or is being offered elsewhere for publication. All necessary
clearances have been obtained for the publication of this paper. If accepted, the paper will be made available in
Camera-ready forms by June 16th 2003, and it will be personally presented at the EUROMICRO 2003 Confer-
ence by the author or one of the co-authors. The presenting author(s) will pre-register (full fee) for EUROMICRO
2003 before the due date of the Camera-ready paper.

Michael Sonntag Susanne Loidl-Reisinger

Cooperative Agent-Supported Learning with WeLearn

Abstract: Distance Education sometimes suffers from the problem that the environment is powerful, but also
complicated to learn and to use. This detracts from the learning process and poses and initial barrier against
widespread acceptance. Also, creating teaching material (and holding courses) is more difficult and time-
consuming than in conventional form because of new possibilities and additional user expectations. We propose
the integration of intelligent agents into learning platforms to ameliorate some of these problems by automating
routine tasks and creating added value by themselves (e. g. creating new navigational paths or offering person-
alised simple coaching). These agents cannot and should not replace coaches, but rather ease their tasks and
fulfil additional ones, which were not doable before. The importance of metadata for agent-integration is also
touched briefly accompanied by a discussion of the applicability of agent-oriented engineering for online learn-
ing platforms.

Introduction
Currently, Distance Education (DE) is in a kind of
intermediate stage: The initial technical problems
have been solved, first standards are emerging, but
widespread adoption has not yet taken place and
also seems not likely for the immediate future. One
problem is the high cost of creating good learning
material. As e. g. electronic materials allow much
more freedom in navigation (hyperlinks) and more
types of media are available (video, sounds, anima-
tions, interactive elements…), they require exper-
tise in much more areas than when creating a text-
book. Another issue is that the starting vision of
producing courses to be completed by learners en-
tirely on their own could not achieve the expected
results. The need for coaches and tutors resulted in
the concept of “blended learning”, which again in-
curs costs weighing against widespread introduc-
tion of DE. Also resulting from the last argument
the importance of groupwork in DE is emphasised.
Intelligent agents can help in all these areas through
automating smaller and/or easier tasks. This would
probably not result in direct cost reduction, but
rather in improvements of quality, offering addi-
tional possibilities and perhaps slightly enlarging
the number of learners per coach. As an agent in
this context we understand software, which is
autonomous, proactive and goal oriented and inter-
acts with its environment. Often agents are also
mobile in the sense that they can move during their
execution from one computer to another. For the
applications envisaged here this is however of rela-
tively little concern. We focus on the aspects of
autonomy (fulfilling tasks on their own without
continued or detailed guidance) and interaction
(separating agents from the actual learning plat-
form, resulting in easier changes of functionality as
well as enhanced security and adaptability to per-
sonal requirements). Agents are here used on the
implementation side providing advanced function-
ality, leaving beside “avatars” and sticking with a
more conventional UI.

In the next chapter the online learning platform
(OLP) WeLearn is presented, which is the basis for
the implementation of the functionality described in
the chapter afterwards. Near the end the role of
agent-oriented design (a software development
method building up on object-orientation) for
groupware is discussed in the context of OLPs and
a short summary concludes this paper.

The WeLearn platform
WeLearn (Web Environment for Learning, [8]) is
an online learning platform developed at this insti-
tute. Actually WeLearn is a framework consisting
of 4 major components:

• The WeLearn learning environment or
shortly called the WeLearn-system (WS),
offering the basic functionality.

• The settings for schools, universities and
adult continuing education, providing
ready-made frameworks for different types
of courses.

• Course material, which was specified and
edited especially for DE. It can be used as
examples as well as parts for new material.

• The WeLearn Offline Converter that con-
verts courses in CPS [1] format to an off-
line (D)HTML version. Consequently
course material can also be presented on
CDs without any change required.

The WeLearn-system is a free and open Distance
Teaching/Coaching/Learning environment (GNU-
philosophy) [2]. It is universally useable, which
means that using it is not limited to specific target
groups, didactical models or training areas. There-
fore one major design goal was to keep the system
easily and intuitively useable, which e. g. would
also allow computer novices using it without or
with only very little training. The same is true for
the teaching side, which is also intended to be in-
tuitively useable and providing results as simple as
possible.

Figure 1: The WeLearn-system

Because of its implementation as a framework it
provides possibilities for both adapting and scaling.
The underlying construction kit philosophy allows
offering not only generally suited areas but also
tailored settings. So specific learner and coach pref-
erences can be realised and it is possible to respond
quickly to a changing learning situation [3].
From the technical viewpoint WS was developed
with the object-oriented paradigm and a view on
agent-oriented engineering at the design stage.
Therefore everything within is treated as an object:
users, folders, documents, forums, etc. As a result a
WeLearn-system is the arrangement of selected
objects within a highly dynamic system structure.
This structure can be continuously modified
through the addition and removal of objects, occur-
ring as the result of activities such as setting up
users, uploading documents, creating folders or
adding CPS material (e. g. courses).
Furthermore, in order to guarantee extensibility and
platform independence WS is fully implemented in
Java. Independence and extensibility are not the
only advantages of this design decision, but also the
possibility for integration with e. g. agent frame-
works (which are usually also written in Java). An-
other important fact is that newly created comp o-
nents can be added to existing WeLearn-systems at
runtime. This means that running systems can be
updated whenever needed. Reasons for that can be
various: updating features, enlarging the function-
ality, new materials, etc. This dynamic adaptability
is very similar to (especially mobile) agents and a
result of partially using the paradigm of agent-
oriented engineering for design. An important issue
resulting from this is that system objects (=code)
and objects created by users (=data) can be treated
independently and so user data is not affected by
updating the system itself.
Each configuration of a WeLearn-system can differ
in functionality. Furthermore, each course within a
WeLearn-system can differ in configuration and
functionality from each other. When talking about
functionality one can mainly distinguish between

administration, presentation of courses, contents (e.
g. online material), and support of the learning pro-
cess (e. g. discussion forums).
Administration in WS consists of the configuration
of the system itself, the handling of courses and
course materials and administration of users or
groups. Courses and content can be personalised so
a learner only sees courses he/she attends. This is
realised through a strong rights-system managing
access to all objects like documents, folders, fo-
rums, etc. The system allows treating each object
independently. This means that for each object in-
dividual rights can be defined for different users
and user groups. Furthermore, any data format can
be included: All kinds of documents (text, audio,
video, etc.) can be uploaded and accessed through
the system.
This is also an important issue for the presentation
of courses. Course providers can reuse their already
existing material without having to adapt it in any
way, and start immediately with DE. This is espe-
cially important for newcomers to DE desiring to
introduce it. Our experiences in schools show that
many teachers already possess electronical teaching
material. They can easily include this into WeLearn
without changes (no need to adopt or transform it)
and start teaching with DE-methods with further
ado. For realising this, the Content Packaging
Specification (CPS of IMS [1]) is supported by the
WeLearn-system. This specification defines the
structure of courses and couples hierarchical struc-
ture and physical resources. Consequently struc-
tured as well as unstructured content can be embed-
ded and presented.
In the area of learning process support WS offers
several tools and functionality. First of all, each
user has his/her own web space. This is a private
area where learners can work individually and in
addition also have the possibility to share data with
other users. This instrument of shared folders can
also be utilised within courses to realise collabora-
tive work amongst learners and coaches.
To enable and support communication and interac-
tion, forums can be added to individual courses.
These forums can be used as global discussion
boards but also for group discussions or chat. If a
coach wants to present information, information
boards and information texts can be used instead.
The whole development was driven by “keeping it
simple to use” (providing complexity but hiding it
to the utmost degree possible), platform independ-
ence and accessibility. WeLearn has reached these
goals as feedback from practical use at several in-
stitutions (University of Linz, University of Zurich,
BRG Wagrain, HBLA Steyr) shows. Users can ac-
cess their courses within WS from all over the
world simply by using a web browser, a feature
especially useful for coaches. This and appropriate
viewers for the content (if not in HTML; e.g. Acro-
bat reader) are the only requirements for users.
However, judging from our experience and the
feedback we receive from our partners and users
(course providers and learner), we are convinced

that further improvement is possible. We are now
working on a two-year project funded by the FWF,
for realising the vision of a personalisable and
adaptive platform supported by agents.
In order to achieve this, WeLearn will be redes-
igned and enhanced. As part of the new system a
docking point for mobile agents to an already ex-
isting platform called POND [9], [10] which was
also developed at the institute will be specified and
implemented. This docking point will allow them to
acquire information (topics, available courses, etc.)
and products (course materials) for their users to
present them (or derived or condense information)
in a simple and straightforward way as well as take
actions within the system, e. g. assisting coaches in
administration. Agents should therefore serve as a
kind of middleware to connect users to the new
system and hide additional complexity, respectively
providing new functions without increasing it. In
addition, agents should support the learner within
their learning process, as well as the coach within
its coaching process. This will be done on a more
internal level, trying to hide the complexity of the
use of agents, resulting in integrated kinds of “wiz-
ards”.

Supporting groupwork in DE
through agents
Enhancing groupwork in DE can be done in two
ways: Improving (either asynchronous or synchro-
nous) communication between learners or enhanc-
ing the presentation (awareness, finding other
learners to communicate with or to integrate indi-
vidual results building a base for cooperation). Sev-
eral ideas for these areas are presented along with
the plans for their implementation in (or integration
to) the WeLearn system.

Roadmaps and awareness
In the offline version of the WeLearn system (mate-
rials to be distributed on CDs) already a basic ver-
sion of a roadmap is included. Under a roadmap we
understand a graphical representation of course
material with special properties: Not each small
item/file is shown, but rather only larger elements
as nodes of a graph. Connections between nodes
represent ways of navigation between topical areas.
In contrast to the obligatory tree-like structure (both
navigational and from the content) of the IMS CPS
we soften a bit and allow references to submanifests
on different and sibling levels (which by default
represent nodes). Through this a network instead of
a tree is possible.
For the online version of this roadmap, agents will
be introduced to provide additional functionality.
They will track other users (by communicating
between themselves) and show them on the map (e.
g. as coloured dots), providing a kind of visual
“buddy list”. This helps a learner assess his own
progress in relation to others or to find someone
currently working on the same topic. This would
otherwise need additional communication just for
identifying such persons, which share (at least at

the moment) a similar interest. This results in more
focused communication on the topic.
Another related task for agents could be a kind of
“locality chat”: Only comments of those persons
can be heard which are in the vicinity (working on
the same or nearby topics). The special problem of
transitivity (the answering person is near enough,
but the person asking the question is outside your
listening area) is here the task for agents: An agent
must decide which parts (of a larger area) should
also be visible for the communication to be sensi-
ble. This requires identifying questions and associ-
ated responses and perhaps additional filtering ac-
cording to the topical content. As no real problems
can arise from mistakes (worst case: ask what it
was about), this is a prime area for agents.

Tracks
Related to the roadmap but working from the other
way around are “tracks", a well-known metaphor
for perhaps one of several common ways through a
large but finely partitioned set of data, usually ad-
hering to a general idea. This could be e.g. a track
for beginners, skipping technical details and exact
specifications, or tracks putting special emphasis on
one area but skirting around others.
Instead of creating them manually, the idea is to let
agents identify them by observing the users way
through the course. This ties in with the problem of
requiring extensive (and different) ways of navi-
gating through content. Two main forms can be
identified: Providing a complete (or at least very
extensive) mesh and “bundling” it together to
achieve tracks, or offering only a simple navigation
(e.g. linear or tree) and creating the additional
tracks through inserting jumps of several users as a
new connection (and track). As the first is very con-
fusing, we opt for the second approach offering at
least one usable navigation from the start.
Agents are used in this area for simultaneously
identifying patterns in the tracks and annotating
them accordingly. If many learners go back from
one place to another previously visited, linger there
or in the vicinity for a short time, and then return to
where they came from and go on, this looks like
some kind of lookup. They missed or forgot some-
thing and moved back to refresh it. This informa-
tion can be inserted automatically into the course as
an additional link with a matching icon. The cer-
tainty of the agent on the correctness can also be
visually displayed: Few data and therefore high
uncertainty would result in small text (or incon-
spicuous colour) while lots of exact data result in
larger and more prominent display. Moreover, a list
of all these additions can be maintained, giving the
author feedback on the use of the material by the
learners. Another pattern is looking things up (e. g.
index or glossary). Here perhaps the information
should be added directly to remove indirection. Yet
another pattern are “sidetracks”: Paths, which are
followed for some time, but then the learner returns
to the original position and goes on from there (dif-
ference to lookup: longer path instead of tightly
focused point).

If no previous roadmap exists, it could be built up
from the individual tracks through a kind of self-
organisation by learners. A drawback of this ap-
proach is that it works only slowly. Therefore only
relatively stable material can be enhanced in this
way. If only small changes are introduced, agents
can perhaps adapt tracks accordingly. This is a pos-
sibility only because of an explicit description of
the course and its structure in the form of a mani-
fest: changes can be detected rather easily and
parsing webpages or other documents for identify-
ing connections between them is unnecessary. As
this is still rather complicated, it is not planned for
initial implementation.

Active training
In special areas where the learner is trained as a
service person for non-specialists, agents could be
used for practical experience. An example is in E-
Government, where clerks are trained to deal with
petitioners: Because of the usually rather limited
knowledge of them on the topic and only a specific
desire, agents can represent them and in this way
provide live examples. If an agent does not fully
understand the questions or answers presented to
him (e. g. because of deficiencies in natural lan-
guage parsing), this is no problem here: It might
also occur in real life and patience and rewording is
trained also. A related area, where instead of much
freedom very structured communication takes
place, is training of callcenter agents. From a set of
responses the agent selects the most appropriate one
(or sometimes selects another, e. g. when incorpo-
rating “moods” by callers).
In this way interactivity and some communication
skills can be trained without needing a human
counterpart or a coach. The latter is not needed here
as the agents can explain how and why they se-
lected their responses: The learner can then itself
find out why his responses where suboptimal and
what the agent had expected.
As no expertise in natural language processing is
available and the intended target groups do not
match either possibility, this is currently not
planned for implementation.

Asynchronous support
One problem of cooperation is asynchrony: Not all
learners are available all the time, introducing
communication problems (e. g. the person to ask is
not available, and later the asking person must be
notified of the now available answer). The same
applies to the coach. He cannot be available all the
time and not all actions (e. g. postings in forums)
can be supervised. The learners/coaches agents
(being available all the time) might mitigate this.
Standard tasks like arranging appointments for syn-
chronous communication or receiving documents,
noting the time and further handling can be done
automatically. As these are relatively simple tasks,
agents are not really needed but can be of utility
because they can be easily exchanged (versioning)
and communication with other entities (often in-
volved) is their speciality.

Another type of asynchrony is, that navigation
within a course can be difficult because of its net-
work structure. Roadmaps (see above) could help.
But the same applies to the whole learning plat-
form: Taking a test, looking at material explaining a
wrongly answered questions, reading a response to
a previous question, and so on can also cause con-
fusion. Agents can easily remember the path and
provide direct links to important points, e. g. the
last stage in each main subpart (example above: last
question answered, current place within the course,
forum visited last), enhancing learner’s navigation.

Assembling results
A task planned for implementation is automatically
integrating material from several students to a
whole. As an example a seminar can serve, where
different persons (or small groups) work on indi-
vidual but related topics. Currently the results (usu-
ally websites) must then be integrated manually
into the course website. Collecting individual re-
sults and placing them into a common place is easy,
but rewriting URLs (as might be needed if students
do not adhere to guidelines of using e. g. only rela-
tive links) or to replace E-Mail links by images
(spam protection), is already more complicated.
Also, to be integrated into the WeLearn system, a
manifest should be created so also a navigational
structure within the collected material can be pro-
vided. For this all the referenced items (files, im-
ages, …) must be derived from the webpages as
well as a sensible structure be found. The latter can
either also be taken from the webpages (if simple;
e. g. already like a tree), or be done in a simple way
and left for manual improvement.
To enhance this material for the WeLearn platform
(and generally) metadata should be provided for
them. If this is not explicitly included, agents can
derive at least some from the webpages itself (e. g.
identifying abstracts and keywords from the text,
using the title tag as subject, look for “last changed”
information for the date, …). As an example, agents
for deriving Dublin Core–Metadata [5] from web-
pages already exist. They will be extended for
identifying further information (and differently pre-
sented one) and integrating it into the WeLearn
system (by being able to insert this information also
into manifests). If such metadata exists for each
course (regardless whether created by agents or the
authors), it should then be integrated into a descrip-
tion of the whole course (or at least prepared for the
coach to review). Here not only simple copying
together but also reducing material (e. g. omitting
date/time) and ordering (e. g. keywords) are tasks
agents are required for.
As most of these tasks can be done automatically,
continuous improvement is possible in the sense
that every time new material gets available, it can
be immediately included into the whole instead of
having to wait for all of them to arrive when done
manually. This partly reduces the work for the
coach and partly changes it to check and correct the
proposed results from the agent.

Simple personal coach
As an extension to the human coach, agents can
provide additional guidance. Agents can here be
seen as personal helpers, facilitating the learning
process. They can easier remember the exact
learning history of “their” learner: What chap-
ters/parts of the course he/she had already visited
and which test have been completed (together with
the results on the different topic areas), and what
the personal interests are (either explicitly set or
derived from visits to other courses). Based on this
information, recommendations for further actions
can be given. Examples are chapters to repeat be-
cause of low results on tests in this area or the next
part to visit. In this way an individual path through
a course can be recommended. This is eased
through the existence of tracks (reducing the com-
plexity for the agents) and metadata (giving infor-
mation on the topics of a part). However, this only
works for routine parts. Special recommendations
for newcomers (which course to take or which path
to follow) are probably outside the scope of agents
and should remain task of the coach, providing
more reliable guidance.
Based on the same information, agents can also
create individual tests, taking note of previous re-
sults and the parts viewed. This again is based on
metadata information, both from courses (and parts
of them) and the list of questions. As this informa-
tion is available for personalised examinations, it
can also be used simultaneously for giving immedi-
ate feedback on wrong answers, including direct
links to the part of the course material this is ex-
plained in.

Community Building

Metadata and personal profiles can be used to find
learners with similar interests for discussion,
learning communities, etc. Another scenario would
be to find learners facing the same or similar prob-
lems (through their queries; to be seen apart from
the area they are currently looking at) or one can
even find learners that have already solved such
problems (who could take the role of a coach).
First, using the metadata helps to find problem-
related communities. Second, learners see that oth-
ers also face similar problems and that they are not
“lonesome riders”. Last but not least coaches get
the possibility to concentrate on severe problems
when they do not have to cope with all problems.

Task automation

Many tasks within a DE learning environment are
repetitive or long drawn-out. These tasks are often
very simple to perform but time-consuming. There-
fore automation through agents would be welcome.
When talking about administration, agents can help
arranging the platform (set up and archiving of
documents and courses, setting user rights, creating
the local/preferred “standard” environment for new
courses, etc.).
Agents can also be used as notification systems.
Every time a new message is posted in a forum, a
file is added or modified, tests or test results are

available, agents can automatically create notifica-
tion messages or summaries of the elements in-
volved and notify users by E-Mail, SMS, etc., also
including direct links for faster access.
Partially also the correctness of exercises (multiple
choice, gap-fill-in, etc.) can be checked by the
agents (see also above). Agents can also here aid
administration by sending the answers given di-
rectly to the coach or the tutors for detailed check-
ing. Also, keeping track of lists (what parts are
completed, questions answered correctly, etc.) is a
task to be automated.

Metadata in cooperative learning
Metadata has already been mentioned as a leading
actor and an enabler of cooperative learning. But
what is metadata and why is it so important?
Metadata is data about data. So when using meta-
data, data is added to enable precise identification,
retrieval and distribution of the actual content data.
Data enriched with metadata evolves into structured
information. The general idea of metadata is not
new. Actually we already use it in everyday life.
When we write papers, articles, etc. we sometimes
add annotations. Annotations represent additional
information directly related to the text at a certain
point and can be seen as metadata (although this
term is usually only applied to electronic additions).
In the area of DE several metadata specifications
have been developed so far, which are referring to
the additional information needed. LOM (Learning
Object Metadata) developed by IEEE LTSC [4] is
one of these specifications. It includes tags for ad-
ministrative metadata (e.g. author, revision date,
rights, etc.), technical metadata (duration, digital
format, platform requirements, etc.) or subject clas-
sification metadata (e.g. catalogue system, subject
heading, keywords, etc.).
Agents can use this valuable information in various
ways. Content can be found easier using metadata.
Furthermore, when considering the metadata,
agents can search for and assemble content espe-
cially suited for the individual learner. So within
one course each learner gets his/her personalised
learning material adapted to his/her skills and pre-
vious knowledge. Additionally, agents can also
handle the presentation of the content according to
personal preferences. If a learner is more text ori-
ented, agents can select material in text format (if
available, or convert it). If a learner desires to read
less or is visually impaired, agents will choose
audio files and larger graphical presentations.
But it is not only the content that can be looked
after by agents. Agents knowing the learning profile
of their user can build teams or learning groups.
Nowadays so-called “buddy lists” are used to form
learning groups. Learners can subscribe the list in
order to find learning partners, but most often dif-
ferent skills and their current knowledge are not
considered holistically.
Besides working with and using metadata, agents
can be enabled to create metadata as well. Docu-
ments and forums can be scanned by agents and

tagged with metadata according to their content.
Agents can also track learners within the learning
environment. Through this they build a model of
the users interests for personalisation and provide
input for other tasks (e. g. automatically creating
tracks; see above).
Finally, metadata is often expressed in several lan-
guages. If the needed one is missing, agents can
provide a first approximation using web-based
translation services. These can be either used di-
rectly or later be approved by the author or coach,
or remain as such (annotated with its unofficial
status as an automatic translation; a kind of meta-
metadata).

Agent-oriented design for OLP
The basic idea behind agent-oriented software en-
gineering (AOSE) [6], [7], [11], [12] is grouping on
an even higher level than object-orientation (OO).
OO is for the most part implementation centred and
static: a class in its function is rarely changed after
the design and modifications happen through add-
ing subclasses. AOSE on the other hand focuses on
the function of “things” (in this case objects) and
ignores implementation (which is then usually done
using OO techniques). The main emphasis of
AOSE is putting focus on the coordination of sev-
eral dynamically interacting components. Each
component works in a separate thread, therefore
inherently incorporating synchronisation problems
because of communication between them. In a
learning platform, each user should possess an own
path of execution (e. g. several processes or
threads), as tasks will vary widely. The idea behind
AOSE is seeing software design less as a decomp o-
sition of tasks (which is fine for single-thread or
individual complex problems) than as designing
protocols for communication. We can therefore
state that agents (usually, but not necessarily) con-
sist of objects, but are fundamentally different.
While objects can control their internal state (e. g.
via declaring attributes as “private”), they cannot
control their behaviour: A method is just called and
the object has no say in this. Agents however can
additionally control their behaviour in the sense that
they are asked to do something and they autono-
mously decide whether to do so or not. This differ-
ence is only of importance if entities might follow
different (and potentially conflicting) goals. This is
e. g. true for cooperation in DE. Each learner pos-
sesses his/her own topical focus, speed and way of
learning. Interaction between them must therefore
be based on mutual consent and always incorporate
the possibility of many (perhaps even wildly) dif-
fering environments (position within the course, on-
/offline status, role, …).
An advantage of using AOSE for implementing
learning platforms is, that usually all goals are more
or less decoupled: Cooperation improves results for
one or both parties, but usually does not reduce the
quality of either participant. Therefore a “fight”
between learners (and between their agents) for
resources does not happen, reducing the complexity

of interactions and the intelligence needed. Also,
the environment of a learning platform is much too
complex for an individual piece of software to
completely monitor or even understand (in the
sense of an internal description of it; a world
model). Agents always have to cope with a limited
view on their surroundings (and sometimes not only
incomplete but even wrong information) and are
therefore better suited for implementing advanced
tasks of such a platform like the ones described
above.
Deducing tracks from usage by learners is a good
example: personal agents record the individual
navigational paths (doing so on the server requires
lots of additional work, introduces delays, and data
must be sorted together afterwards for use). After-
wards, a separate agent retrieves these paths from
all the agents (communication) and compares them,
identifying and classifying new tracks. These must
then be integrated into the material (inserting new
links, changing the navigational structure), while
notifying agents of the changes. The latter is neces-
sary for those agents whose owners are currently
active, as their navigation must be redrawn to in-
corporate the changes. This central agent should
also be implemented as an agent as otherwise
changes (e. g. new types of paths or different
strategies) are difficult to incorporate and would
require stopping the whole system.
The last aspect is another advantage of using AOSE
for implementing advanced parts: OLP are almost
always asynchronous and provide only some syn-
chronous tools. This means it should never be taken
offline to be available round the clock. Updating
software is therefore a problem, as the whole sys-
tem must be stopped in case of monolithic design.
Exchanging dynamic libraries is also not possible
as they might be currently in use. Agents do not
possess this limitation. They can be rather easily
exchanged. If this is supported, new agents can just
copy the state of the old version, restart the last
activity, and remove the original. If restarting is
impossible or the agent is currently in use by its
owner, this is no problem for agents: The new agent
just waits for a better time and takes over later.
Each agent is a unique entity and therefore the same
(code) agent can exist for the same owner (state)
twice without problems. Also, extending the func-
tionality can be done very easily: Just a new agent
needs to be introduced and configured (and con-
nected to existing ones, if this is not done mostly
automatically as in our systems).
An optional quality of agents is mobility. In con-
nection with an OLP (where learners are by defini-
tion distributed) this can be an additional advan-
tage. While most agents will be located at or near
(on a dedicated host) the server, some agents might
be configured by their owners locally and then
transferred to an agent server for their work. In the
case of remote agents they can in this case also be
easily updated, by creating them on the server and
afterwards sending them to the user upon his next
login. This is however not a necessity.

Conclusions
In this paper we presented reasons for and some
ideas for tasks for integrating agents into online
learning platforms. The advantages are a reduction
of simple work and enhancing the experience for
the learner by providing personalised services and
addition support in the area of awareness and navi-
gation within course materials and the Distance
Education platforms itself.
For agents to provide suitable results without re-
quiring too much time and effort for parsing the
actual content, metadata is needed. Some parts can
be derived automatically by agents (e. g. simple
document information based on formats within the
content, or automatic translations), although the
most useful ones are probably those manually cre-
ated by the author.
The agent paradigm can also be useful in the area of
design, as online learning platforms are inherently
multithreaded and consist of many separate entities
communicating with each other. Design methods
focusing on the interaction between elements (like
AOSE) are therefore better suited for a high-level
design.
We are confident, that agents can improve DE,
leading to a more widespread acceptance, if their
complexity is hidden from the user and they fulfil
their tasks in the background, than offer rich func-
tionality, but at the cost of increased initial training
and the need for extensive configuration.

Acknowledgement
This paper is a result of the project “Integrating
Agents into Teleteaching-Webportals“ sponsored
by the FWF of Austria (Fund for the support of
scientific research; Project number P15947-N04).

Literature
1. IMS Content Packaging Specification, Version
1.1.2 Final Specification:
http://www.imsproject.org

2. Divotkey, R., Mühlbacher, J.R., -, Remplbauer,
D.: The WeLearn Distance Teaching Framework.
Granada: EDEN (European Distance Education
Network), 2002 Eden Annual Conference, Open
and Distance Learning in Europe and Beyond Re-
thinking International Co-operation, Conference
Proceedings, 2002
3. Mühlbacher, J.R., Mühlbacher, S.C, -: Learning
Arrangements and Settings for Distance Teach-
ing/Coaching/Learning: Best practice report. In:
Hofer Christian, Chroust Gerhard (Ed.): IDIMT-
2002. 10th Interdisciplinary Information Manage-
ment Talks. Linz: Universitätsverlag Rudolf
Trauner 2002
4. IEEE P1484.12 Learning Object Metadata
(LOM) Standard, http://ltsc.ieee.org/wg12/
5. Dublin Core Metadata Initiative:
http://www.dublincore.org/
6. Wooldridge, M., Ciancarini, P.: Agent-Oriented
Software Engineering: The State of the Art. In:
Ciancarini, P., Wooldridge, M. (Eds.): Agent-
Oriented Software Engineering. Berlin: Springer
2001. LNAI Vol. 1957
7. Jennings, N.: An agent-based approach for
building complex software systems. Communica-
tions of the ACM April 2001. New York: acm Press
2001. 35-41 (Volume 44, Number 4)
8. WeLearn: Web Environment for Learning:
http://www.fim.uni-linz.ac.at/research/welearn/
9. POND:
http://www.fim.uni-linz.ac.at/research/Agenten/
10. -: POND - Ein Agentensystem mit Fokus auf
Sicherheit und Bezahlung für Leistungen unter
Berücksichtigung rechtlicher Aspekte (POND - An
agentsystem with focus on security and payment for
services with consideration of legal aspects). Dis-
sertation. Johannes Kepler University Linz: 2002
11. Jennings, N. R.: On Agent-Based Software En-
gineering. Artificial Intelligence, 117(2), 277-296,
2000
12. Wooldridge, M.: Agent-based Software Engi-
neering. IEEE Proceedings on Software Engineer-
ing, 144(1), 1997

