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CooPerative Broadcasting 
A 

PATRICK P. BERGMANS, MEMBER, IEEE, 

Abstract--This paper shows that several transmitters operating in an 

additive white Gaussian noise environment can send at rates strictly 

dominating time-multiplex and frequency-multiplex rates by use of a 

superposition scheme that pools the time, bandwidth, and power alloca- 

tions of the transmitters. This pooling can be achieved without cooper- 

ative action, except for agreement on the actual rate of transmission 

each transmitter will allow itself. The superposition scheme involves 

subtraction from the received signal of the estimated signals sent by 

the other transmitters, followed by decoding of the intended signal. 

This scheme has been shown to be optimal. We conclude that present 

methods of allocating different frequency bands to different transmitters 

are necessarily suboptimal. 

I. INTRODUCTION 

C ONSIDER two radio transmitters with total allotted 
power P and total available bandwidth W. Suppose 

that transmitter i, i = 1,2, is transmitting to receiver i in 
the presence of additive white Gaussian noise of one-sided 
power spectral density Ni, N, I iVZ. The capacity of each 
channel operating alone (utilizing all of the available power 
P and the total bandwidth W) is then given by (Shannon 

Cll, PI> 

Ci = W In (1 + &) , nats/s, i = 1,2. (1) 

However, if one transmitter uses all the power and all the 
bandwidth, the other channel is being used at zero rate. 
We ask what set of rates (R,,R,) are simultaneously achiev- 
able. Clearly, the previous comments imply that (C,,O) and 
(0,CJ are achievable. 

The first logical candidate for a scheme of channel sharing 
is that of time sharing. That is, channel 1 is used at full 
power P and full bandwidth W, a proportion z1 of the 
time, and channel 2 a proportion z2 = 1 - z1 of the time. 
This allows any rate pair 

R, = zlC, 

R, = z,C, (2) 

to be achieved, as shown in Fig. 1. We shall refer to this as 
the naive time-sharing scheme, as opposed to the variable- 
power time-sharing scheme we will discuss in Section IV. 

The second logical approach is the standard frequency 
division or band allocation approach. Here, let transmitter i 
operate with power Pi in a band of width Wi, P, + P, = P, 
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Fig. 1. Rates achievable by naive time sharing. 
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Fig. 2. Rates achievable for fixed frequency division and variable 
power allocation. 

WI + W, = W. The set of achievable rates is then given by 

R, = W1ln(l +$$-) 

R, = W,ln (1 + &) 

where Pi, Wi vary within the constraints just given. Fig. 2 
depicts the set of (R,,R,) generated for a fixed frequency 
allocation WI, W, as the power P, = P - P, is allowed to 
vary in 0 < P, 5 P. As will be proved in Section II, allo- 
cation of power proportional to bandwidth achieves a point 
on the naive time-sharing line. Also, a certain range of 
power allocations dominates naive time sharing. Finally, 
the envelope of these curves, as WI = W - W, varies over 
0 < WI < W, strictly dominates the naive time-sharing 
bound as shown in Fig. 3. We show this in Section IV. 

We now turn our attention to superposition schemes in 
which the transmitters make independent use of the entire 
band allocated for both. 

The obvious decoding scheme, which we shall call naive 
superposition, decodes each signal separately as if the other 
signals were noise with respect to it. This yields rates 

i?,=Wln l+ 
( 

Pl 
WN, + P, 

iI,= Win l+WNp\p) 
2 1 
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R2 

Fig. 3. Rates achievable by frequency division and variable power 
time sharing. 

as achievable for power allocation (P1,P2), PI + P, = P. 
See, for example, Stefanyuk [3], [4] and Costas [S]. How- 
ever, this decoding scheme is strictly dominated by a 
scheme that subtracts out estimates of the other signal. 
Thus we are led to superposition codes achieving rates 

RI* = Wln(1 + -$--) 

p2 

WN, + P, 

for N, < N2. Note that (5) dominates (4) in the sense that 
R,* = fT, and RI* > ii,. The achievability of this rate 
pair is shown in Cover [6] and is a special case of the sub- 
sequent results on continuous degraded channels in 
Bergmans [7], [8]. The optimality is proved in Bergmans 

INI. 
II. THE ACHIEVABILITY OF THE SUPERPOSITION BOUND 

A heuristic motivation of the achievability of (5) is now 
given. Since N1 < N,, user 1 can also receive correctly all 
the information transmitted to user 2. Consequently, user 
1 can subtract out that information from the received mes- 
sage, and decode its own information as if no transmission 
to user 2 was present. This justifies the expression for RI*. 
User 2, however, cannot receive all the information intended 
for user 1, since N2 > N,. The power P, of the first trans- 
mission is only noise to it, and must be added to the noise 
power WN, in its own channel. Hence the expression for 
R,*. A more thorough discussion can be found in [6]-[S]. 

III. APPLICATIONS 

We envision the use of this idea in several ways. For 
example, suppose that a transmitter wishes to send a stereo 
audio signal if the reception is good (i.e., the noise power is 
N,), and wishes to send monaural if the reception is poor 
(i.e., the noise power is N2 > N,). Then, if the noise power 
is less than or equal to N,, stereo information can be re- 
ceived at the rate RI* + R,* given in (5). If, however, the 
noise power is between N, and N,, only monaural informa- 
tion will be received-at rate R,*. Finally, if the noise 
power exceeds N,, no information is received. 

Another example is that of TV information transmission, 
in which black-and-white information can be sent at rate 
R2*, and color can be sent at the rate RI* + R,*, in the 
noise regions where N, I N I N, and N I N,, respec- 
tively. 

Fig. 4. Dominance of frequency division over naive time division. 

As a final example, suppose that a deep-space probe must 
transmit all of its information before it plunges into some 
foreign planet. Suppose also that there is some probability 
7~~ that the additive Gaussian noise will be low (N = Nr) 
and some probability rc2 = 1 - 7ci that the noise will be 
high (N = N2 > N,). Then (5) implies that an expected 
rate rclR1* + R,* can be achieved. 

In all three examples just cited, these rates are strictly 
greater than the theoretically achievable rates achievable by 
frequency band allocation. 

IV. FREQUENCY MULTIPLEXING 

In this section, we formalize the results on frequency 
multiplexing presented in the introduction. Let yi = WJW, 
i = 1,2, be the fraction of the total bandwidth allocated to 
each transmitter, and C(i = Pi/P, i = 1,2, the fraction of 
the total power. Let a = (cQ,c(~) and y = (yl,y2) be two 
points in 9, = {(s1,s2) : Si 2 0, x1 + s2 = l}. All rate 
points of the form 

R, =y,Wln alp 1 +--- 
YIWN~ 

R, = y,W In 1 
cr2p 

f ___ 
~2wN2 

can be achieved by simple frequency multiplexing. Without 
loss of generality, we can set P and W equal to 1, to simplify 
the notation. This is really equivalent to substituting Ri for 
RiIW and Ni for NiW/P. The capacity Ci of each channel 
is now given by Ci = In (1 + l/N,), and (6) becomes 

R, = y1 In (1 + 5) = RI(Y~JQ) 

with 

R2 = y2 ln (1 f &) = RZ(Y~JQ) (7) 

Cfpy E 92 = {(Sl,S2): Si 2 0, $1 + S2 = l}. 

By varying the power distribution between transmitters 
1 and 2, we generate a curve C(y) as illustrated in Fig. 4. 
The curve intersects the axes at the points (C,(y,),O) and 
(O,C,(y,)), corresponding to the cases where, with the given 
bandwidth partition, the full power is allocated to trans- 
mitter 1 or transmitter 2. The “reduced-bandwidth” 
capacities C,(yi) and C2(y2) are defined by 

C,(yl) = R,hJ) = YI In (1 -+ y-jq-) 
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C2(~2)=R2(~2,1)=~21n(l +-&-). (8) Therefore, the curve e(y) is concave. Further, 

C,(y,) is an increasing function of yi, and is equal to Ci 
fory,= 1. 

We now prove the following propositions. 
Proposit& 1: A point on the naive time-sharing line is 

achieved by letting the power allocation be proportional to t$ [e + 4al + 41 = ($J (y,N,Y; J + 1 
the bandwidth allocation. This point is labeled P on Fig. 4. 

Proposition 2: Points above the naive time-sharing line =Z 0. (13) 

are achieved for a certain range of power allocations. Equating (12) and (13), we find 
To prove Propositions 1 and 2, we define I I \ 

(9) 
Y~(YJ% + aI> ln (1 + &) 

Ll L2 

The quantity e is proportional to the distance from a given = y1(y2N2 + a2) In (14) 
rate point (R,,R,) to the time-sharing line; e is positive for 
points above the time-sharing line, and negative for points If (14) were satisfied for CI~ = y1 and 01~ = y2, we would 
below it. have 

Let a = y. Thus 

p = Rl(Yl,Yl) + R2(Y,TY2) _ , 
(N, + 1) In 1 -k + = (A72 + 1) In (1 + jj-) (15) 

( ) 1 2 

yllrl(l ++)C2 y21nil +--$) 

which is true if and only if N, = N,. This is in accordance 
with general conclusions obtained in Bergmans (171 on the 
impossibility of dominating time sharing when the channels 

= 

ln(l+J-i + ln(l+$i -’ 
are identical. 

In general, (14) will not be satisfied for a = y, and the 
stationary point of e will be reached when e is positive, 

= y1 + y2 - 1 = 0. (10) since e = 0 when a = y. This, together with the concavity 

Hence, the point (Rl(yl,yl),R2(r2,y2)) is on the naive time- 
sharing line. 

To prove that there are points represented by (7) above 
the naive time-sharing line, we first prove that e(y) is con- 
cave. We then differentiate e with respect to CI~ and 01~, 
subject to the constraint a1 + a2 = 1. We shall find that the 
distance e is not maximized for the rate point achieving 
time-sharing rates, and that there must be a range of the 
a giving points above the naive time-sharing line. 

We have 

dR, 71 . - 1 
-= Yl 

da, 1 + ~I/YINI YINI YINI + a, 

dR, - -72 

da, - ~2N2 + (1 - a,) 

dRz YI 
dR, - --’ 

YlNl + Ml 

~2 ~2N2 + (1 - a,> 

d2R2 d dR, da, 

dR12 = G dR, ‘dR, 0 

~2 ~2N2 + (1 - al> + (YIN, + EI> = --. 

Yl b2N2 + (1 - Q>’ 

. YIN, + ~1 

Yl 

~2 YZNZ + YIN, + 1 . YIN, + a, = --. 
YI b2N2 + (1 - al>)” YI 

< 0. (11) 

of e(y), allows us to conclude that there is a nontrivial 
portion of that curve above the time-sharing line. 

It is possible to show that 

de - <o (16) 

and hence that the point corresponding to a = y is the 
point P on Fig. 4. Rates dominating time-sharing rates will 
be achieved for 

61 < a1 < Yl 

1 - 6, = d2 > c12 > y2 (17) 

where 6 is the second solution of the equation e(a) = 0 
(for a given y). In conclusion, we should give the noisier 
channel a fraction of the total power which is slightly 
greater than the fraction of the total bandwidth it was 
allocated. Also, as a consequence of the fact that time 
sharing cannot be dominated for equal channels, it is 
evident that the closer the S/N ratios of the two channels, 
the smaller the interval [6,,y,] will be. 

The curve of Fig. 4 was drawn for a given frequency 
partition y. By letting y vary, we shall generate a continuous 
set of similar curves. The envelope of all these curves 
strictly dominates the time-sharing line, since all the curves 
will have some portion of them above the time-sharing line. 

Points on the envelope will be achieved for an optimal 
proportion of power as a function of bandwidth. There will 
be some tradeoff between power and bandwidth for rate 
points below the envelope. 



320 IEEB TRANSACXTONS ON INFORMATION THFDRY, MAY 1974 

V. DUALITY OF TIME AND FREQUENCY 

The dominance of frequency multiplex over naive time 
multiplex has been established. However, in the naive 
approach we fixed the power of transmitter i to be a constant 
P over a certain proportion Zi of the available time and let 
the power be zero for the remaining proportion of the time. 
It is clear that, for transmitter i, the average power over the 
entire time is actually ZiP instead of P. An equivalence of 
the time and frequency rate curves can be established when 
the power is calculated with respect to the entire time 
interval. However, this equivalence is illusory from a 
practical standpoint, because it can only be achieved by 
lengthy power deviations from the average power con- 
straints in the time-varying case. 

To see this consider the frequency multiplex case, where 
the set of achievable rates is given by 

R, = y,W In alp 1 + ~ 
YIWNI 

R2 = y2W In a2P 1 + ~ 
YzWN, 

, a, Y E 9, (18) 

where a is the power division and y is the frequency division. 
Similarly the set of time-sharing rates is given by 

R, = r,Wln(l + &) 

P, = z,Wln (1 + &), zE92 (19) 

where z is the division in time, and Pi is the power of trans- 
mission during communication to user i. Clearly z,TP, + 
z2TP2 = TP where T is the total duration of the waveform. 
For the two transmitters we let the power Pi(t) and P2(t) be 

PI(t) = 
01 t(z,T 

z,T < t I T 

and 

P2(t) = 
0 I t I z,T 
z,T < t I T. (20) 

Letting ZiPiIP = li, 3. E Y2, we obtain 

R, = z,W In 1 v + ~ 
71 WN, 1 

R,=z,Wln 12p 1 +- 
~2 WN2 

, Z,3,E92 (21) 
Superposition coding will dominate frequency multiplex- 

ing if, for any given a,y E Y,, we can always find an a* E 5f’, 
such that 

which is, indeed, completely equivalent to the set of rates 
achievable by frequency multiplex. One major objection is 
the following. To achieve these rates in a coding sense, the 
time T must tend to infinity. Although it is still true that 
over the total time T the average power of the transmitter 
is P, over one of the two intervals the power Pi is larger 
than P. This may be inadmissible because of power limita- 
tions in the transmitter. An obvious solution to this problem 
would be to divide the total length of time T into n sub- 
intervals, and to let n -+ CO as T --f co. 

ln(1 +$) >y,ln(l +-+-$) 

In l+ 
( 

N2T*al*) 2 y2 ln (1 + --$-) (24) 

or, equivalently 

The argument against this is that the signal which results 
from this scheme does not have a vanishing power content 

(1 + 5) 2 (1 + -$-J’ 

( 
l+ N22*al*) 2 (1 + -$$‘. (25) 

outside (-0, W) when T + co, because of the switching 
between signals. If there are only two intervals (7,T and 
z,T), the fraction of the total power of the resuking signal 
outside (-0,W) will go to zero when T -+ co, provided 
the original signals in z,T and z,T satisfy this condition. 

In conclusion, time sharing is equivalent to frequency 
multiplex only if very long deviations from the average 
power P are allowed. 

The situation is very different in frequency multiplex, 
because in this case, the spectrum of the transmitter need 
not be flat; i.e., the (single sided) power spectral density 
Picf) is given by 

and 

alp 
P,(f) = 

- , 
y,w 

Olfly,W 

0, y,W<f< w 

l 
0, O_<fly,W 

P,(f) = a2P 

Yz’ ylwcfl w. (22) 

However, there will not be a time discontinuity in power. 
Since the transmitter is operating in the time domain, this 
is the important factor. One can consider time-sharing 
equivalent (dual) to frequency multiplex only if time 
variations in input power are allowed, just as spectral 
variations of power are allowed in the frequency multiplex 
case. 

VI. SUPERPOSITION CODING 

With the simplified notation introduced in Section II, the 
rates achieved by superposition coding are given by 

R * = In 1 + “* 2 
N2 + al* 

a* E 9,. (23) 

It can be easily shown that the curve described by (23) is 
concave, and that it dominates time sharing. The question, 
of course, is whether it dominates the envelope of frequency 
multiplexing curves described in the Section IV. This 
section establishes this dominance. 
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The proof of inequality (25) is deceptively difficult, and 
we are grateful to D. Hughes-Hartogs for his contribution 
of the following argument. We shall need the following 
lemmas, which we give without their straightforward 
algebraic verification. 

Lemma I: 

In (31), we invoked both Lemma I and Lemma II and the 
fact that N2 > Nr > 0. We now have 

1-k a2* 
N2 + aI* 

max 
( 1 
1 + ff ’ = 1 + a, a > 0. 

Y E[O,ll Y 

The maximum is achieved for y = 1. 

Lemma II: 

2 
N2 + 1 

UP1 N, - N, + a, - - a2Nl 

. (1 + -EL)*’ N2 

+ AT1 + al + - 

N2 

= (1 + --$-)y’. (32) 

),z;, (1 + y (1 + &)” 
= 1 + a + b, a, b > 0. 

The maximum is achieved for y = a/(a + b). 
Proposition 3-(Hughes-Hartogs) : Given a,y E Y,, i.e., 

al + a2 = 1;~~ + y2 = l;ai, yi 2 O;andN, > Ni > 0; 
then there exists an a* E Y2 such that 

(1 + 5) 2 (1 + 5)” (26) 

( 
l+ N2r;*al*) 2 (1 + -$)yz. (27) 

Proof: Using condition (26), which is then auto- 
matically satisfied, set 

al* = Nl [(I + -$-)‘I - l] * 

Since a1 2 0, yl 2 0, and Nl 2 0 

(1 + &)” r 1 

and 

By Lemma I 

al* 2 0. 

a,* I N, [(l + $) - l] = CIi I 1. 

Let a2* = 1 - al*, and hence a* E 9,. 
We now verify condition (27) 

(28) 

(29) 

(30) 

Equation (32) proves that condition (27) is also satisfied. 
The inequalities in the proof are strict for nondegenerate 
cases, i.e., for yi # 0. 

A set of e(y) curves, together with the superposition cod- 
ing curve, is given in Fig. 5. 

We now investigate the performance of multiband mixed 
modes of operation, and show that any such mode of 
operation is dominated by a superposition coding using the 
full available bandwidth. The following propositions are 
proved in the Appendix. 

Proposition 4: If a continuous AWGN channel is used 
to transmit information from a single source, the best 
performance is achieved by using a single code operating 
in the full available band, rather than by partitioning the 
total band in smaller bands and .using separate codes in the 
smaller bands. We shall refer to this iast mode of operation 
as the multiband mode for simple channels. Let 

9, = (S&,. * * 
i 

,S,):Sj r 0, ~ Sj = 1 
I 

(33) 
i=l 

and a,y E 9, be the power and frequency proportion in 
subband i. The total rate R, is given by 

(34) 

The Appendix shows that R, < C = In (1 + l/N), with 
equality iff a = y. 

Proposition 5: If a continuous AWGN broadcast channel 
is used to transmit information to two users using super- 
position codes exclusively, the best performance is achieved 

1 + a2* = NZ + al * + a2* 

N, + al* N, + al* 

N2 + 1 = 

(N2 - NI) + NI (1 + --$-)” 

N, + 1 

= (N, _ N,) (1 + 2)” + N, (1 + --$)‘I (1 + -$-)” (’ + ‘)” 

2 
N2+1 

(N, - N,) (1 + z) + Nl (1 + z + $) 

(1 + -$)“. (31) 
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RI 

Fig. 5. Cooperative broadcasting. 

cl TR, =I 

Yl 

7c 

7” 

I 

Fig. 6. Arbitrary frequency division. Fig. 7. Mixed multiband channel. 

by using a superposition code operating in the full available 
band, rather than by using separate superposition codes 
operating in disjoint smaller subbands (multiband super- 
position operation). 

To see this, let y E 9, represent the (relative) width of the 
ith subband, and a E 9, be the power repartition between 
transmitter 1 and transmitter 2. Finally, the repartition of 
the power for transmitter j (j = 1,2) in each subband is 
done proportionally to pj E Ypn, j = 1,2 (Fig. 6). We have 

R 1T = 

R 2T = (35) 

The Appendix shows that there exists an a* E Y, such that 

3 

E-l 

TRANSMISSION 

available bandwidth and which dominates any multiband 
mixed mode of operation. In Fig. 7, we represent a mode 
of operation involving both frequency multiplex (in so- 
called “private” bands) and superposition (in the common 
band). Moreover, each mode is multiband, as defined 
previously. 

Step I: Using Proposition 4, we first replace the various 
private bands for each transmitter by a single private band. 

Step 2: Using Proposition 3, we pool the powers and 
bandwidths of the two private bands and replace them by 
one single band with a superposition code over the width 
of the two private bands. 

Step 3: We are now operating with multiband super- 
position coding, and using Proposition 5, we replace this 
by a single superposition code using the full available 
bandwidth. 

with equality iff /I1 = /I2 = y. 

At each step, the achievable rates have been increased 
(except in trivial cases). This finally proves the dominance 
of superposition coding. 

(36) For Gaussian channels, the signals can be “mixed in the 
air.” That is 

The following procedure describes a method for finding 
a superposition transmission mode which uses the full 

s(t) = SlP> + s2@) 

.YiCt) = s(t) + ni(t>, i = 1,2. (37) 
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User 1 first determines sz(t) from yl(t), then finds sl(t) from duality and possible lack thereof of the time and frequency 
vi(t) - sz(t). Thus no active cooperation is needed-the multiplexing schemes as a consequence of remarks by 
channels only have to share the band. T. Gaarder and M. Hellman. 

The situation is different when the various bands are pre- 
assigned, because of receiver limitations or regulations. If 
the bands are disjoint, we are in the case of frequency 
multiplexing, and the results of Section IV apply. If there 
is some overlap between the bands, we shall use super- 
position coding in the common band, and the resulting 
maximization problem is awkward. 

APPENDIX 

Proposition 4: If a, y E 9, then 

The arguments of this paper can easily be generalized 
to a situation with N transmitters and N receivers. As shown 
in [S], the boundary of the set of rates achievable by super- 
position coding is given by 

with equality if and only if a = y. 

Proof: Consider RT as a function of a for a fixed y. We 
wish to maximize RT subject to a E 9,. Hence, define 

J = f, yr In 1 + -$ + J.2 @G 

i=l i 1 1=1 

= i$l (Yi In (1 + -$) + lai) 

‘%* 

Ni + C ~j* 

j<i 

for a* E 9’,, as opposed to 

%* 
Ni + C Mj* 

j#i 

for naive superposition [3], [4]. 

VII. SUMMARY 

First, we have shown that frequency 
equivalent to naive time multiplexing when the power 
allocation is proportional to the bandwidth allocation, and 
that it is better than time multiplexing when the power 
allocation is slightly biased over the bandwidth allocation 

multiplexing is 

in favor of the noisier channel. Second, we have proved that 
superposition coding (or cooperative broadcasting) dom- 
inates frequency multiplexing, unless very long deviations 
from average power are allowed. Finally, we have con- 
cluded that cooperative broadcasting strictly dominates 
any type of mixed-mode transmission, involving both 
frequency multiplexing (possibly multiband) and super- 
position coding (possibly multiband). The absolute opti- 
mality of the cooperative broadcasting scheme achieving 
rates as given by (38) is established in Bergmans [lo]. 

(38) 

(39) 
aJ -= -.- +rl=y1 +A=O. (41) 
aai YJ + at 

This is only possible if yI/(yIN + ai) does not depend on i, which 

C yi In (’ + $) = C. 

requires a = y. The convexity of the logarithm guarantees that 

(42) 

the extremum is a maximum. This maximum is given by 

i=l 

n / . . \ 

Moreover, we have observed that the cooperation needed 
for superposition codes need not be active-the signals can 
be independently generated by the two transmitters and 
“mixed in the air.” These results hold for Shannon-type 
encoding. It is to be hoped that the general result that 
“superposition dominates frequency multiplexing which in 
turn dominates time multiplexing” also holds for mod- 
ulation schemes and that improvements on existing 
transmission methods may be achieved by using clever 

Proposition 5: If y, &, PZ E Y,, a E ,4pZ, then the rate point 

RIT = *zl Yi ln (1 + ;$) (4W 
1 

(43b) 

is strictly dominated by the rate point 

(aa) 

R2* = (44b) 

for some a* E 9’,, unless & = p2 = y, in which case we have 
equality. 

Proof: We equate (43b) and (44b) to solve for al* 

1 + a2* 
N2 + al* 

* = (Nz + 1) fi (1 + u2B2i 
-Yi 

a1 

W2 + al&i 

- N2. 

modulation schemes with pooled powers and bandwidths. i>T \ 
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2Tsizlh1n(1 +$) 

(45) 

= c, 
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yields 

exp (RI*) = 1 + $ 

= 1 - 4 + (F) *Q (1 + yiNp:Bzhl~li)-y’. 

(46) 

To find a lower bound for exp (R1*), we minimize 

,Q (1 + a2Bzi 
riN2 + w%i 

)-” 

r exp 2 yi In 
( ( 

YiN2 + al&i 

I=1 YiN2 + alBli + a2h )) 

subject to C p21 = 1. Thus, taking the logarithm 

a n 

=( ( 
Yi In 

YiN2 + alB11 

aa,,i=l YiN2 + alS11 + a& ) 1 
+ 492r 

= y,~1N2 + al&~ + a2B2i -a2(YiN2 + alPli) 

YiN2 + alB11 (YIN~ + al&i + a2D2ij2 
+a=0 

or 

ha2 = a 
Y~NZ + alBli + dL 

(47) 

which requires 

B2i = Yi - aA 
(48) 

a2 

Since In (k,/(k, + x)) is convex for x 2 0, /?2 of (48) achieves a 
minimum, given by 

in (1 + yiN2a~~l~l)-y‘ 2 *Q (YJ&+yy (49) 

and 

exp (RI*) r 1 - 2 + ye) ,Q (yt~~:l~~i)yi 

=1-$+gq 1+ ( $y. (50) 

1 1 

Finally, 

exp (RI*) - exp (RIT) 2 1 - 2 + z ,ol ( k!dhy 1 + 

- *Q (1 + a&)yi 

+[N2@j(l+3- 9 

-N~(~~(l+~~~-l)] 

= T$ [f(W - fWd1 (51) 
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where 

f(x>B x I"r 1 + [i=l( yy - 11 

= iQ (x + FL$yyi - x. (52) 

We now show that f(x) is strictly increasing in x, unless /?l = y, 

in which case f (x) is constant. We have 

= 0. (53) 

The inequality in (53) is a consequence of the theorem of the 

arithmetic and geometric means ([9], pp. 16 et seq.). We shall 

have equality in (53) iff (x + al/Iri/yi)-’ is not a function of i, 
i.e., iff al/Iii is proportional to yi, which implies Ipl = y, since 

&, y E y,,. Hence f(x) is increasing in x (unless /?t = y), and 

f(N,) 2 f(N,). In conclusion 

em (RI*) - ew WIT) 2 k [f(%) - f(Ndl 
1 

10 (54) 

and the proof of the existence of a dominating point is completed. 

Finally, the inequalities in this proof are strict, unless y = /?i 

and (48) are satisfied, in which case y = /tl = p2. 
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