
0018-9162/04/$20.00 © 2004 IEEE32 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Cooperative Cache-
Based Data Access
in Ad Hoc Networks

M obile ad hoc networks have potential
applications in civilian and military
environments such as disaster recov-
ery efforts, group conferences, wire-
less offices, mobile infostations (in

tourist centers, restaurants, and so on), and bat-
tlefield maneuvers, making them a focus of current
research.

A battlefield ad hoc network might consist of sev-
eral commanding officers and a group of soldiers.
The soldiers could access officers’ information cen-
ters for detailed geographic information, informa-
tion about the enemy, new commands, and so on.
Because neighboring soldiers tend to have similar
missions and thus common interests, several soldiers
might need to access the same data at different times.
Having a nearby soldier serve later accesses to this
data instead of the faraway information center saves
battery power, bandwidth, and time.

In ad hoc networks, mobile nodes communicate
with each other using multihop wireless links. Due
to a lack of infrastructure support, each node acts
as a router, forwarding data packets for other nodes.
Most previous research in ad hoc networks focused
on the development of dynamic routing protocols
that can efficiently find routes between two com-
municating nodes. Although routing is an impor-
tant issue, the ultimate goal of ad hoc networks is
to provide mobile nodes with access to information.

If mobile users around infostations, which have
limited coverage, form an ad hoc network, a mobile

user who moves out of the range of a particular
infostation can still access the data it contains. If
one of the nodes along the path to the data source
has a cached copy of the requested data, it can for-
ward the data to the mobile user, saving bandwidth
and power. Thus, if mobile nodes can work as
request-forwarding routers, they can save band-
width and power and reduce delays.

Cooperative caching, in which multiple nodes
share and coordinate cached data, is widely used to
improve Web performance in wired networks. The
“Related Work in Cooperative Caching” sidebar
provides additional information about recent
research focusing on cooperative caching approaches
for wired networks. However, resource constraints
and node mobility have limited the application of
these techniques in ad hoc networks.

Our proposed caching techniques—CachePath,
CacheData, and HybridCache—use the underly-
ing routing protocols to overcome these constraints
and further improve performance by caching the
data locally or caching the path to the data to save
space.

To increase data accessibility, mobile nodes should
cache different data items than their neighbors.
Although this increases data accessibility, it also can
increase query delays because the nodes might have
to access some data from their neighbors instead of
accessing it locally. In addition, replicating data from
the server could create security problems.

As Figure 1 illustrates, the cooperative cache-

A cooperative cache-based data access framework lets mobile nodes
cache the data or the path to the data to reduce query delays and improve
data accessibility.

Guohong
Cao
Liangzhong
Yin
Chita R.
Das
Pennsylvania State
University

based framework stays on top of the routing pro-
tocols. It relies on several components, such as
secure cooperative caching, cache management,
and information search to provide services to the
upper layer.

ROUTER SUPPORT FOR COOPERATIVE
CACHING

Suppose that in the ad hoc network in Figure 2,
N11 is a data source containing a database of n
items d1, d2, …, and dn. N11 might be a connecting

February 2004 33

Fixed network
Fixed router

Mobile node

Satellite

Ad hoc networks

Middleware support

Cooperative cache services to upper layer

Routing protocols for ad hoc networks

CachePath CacheDataHybridCache

Cache management
delay versus
accessibility

Information
research

Secure cooperative
cache

Figure 1.
Cooperative caching
in ad hoc networks.
Middleware support
mechanisms provide
secure cooperative
caching, cache
management, and
information search.

Existing cooperative caching schemes for the Web environ-
ment can be classified as message-based, directory-based, hash-
based, or router-based.

Duane Wessels and Kim Claffy introduced the standardized
and widely used Internet cache protocol.1 As a message-based
protocol, ICP supports communication between caching prox-
ies using a simple query-response dialog.

Directory-based protocols for cooperative caching—such as
cache digests2 and summary cache3—let caching proxies
exchange information about cached content.

The cache array routing protocol is the most notable hash-
based cooperative caching protocol. The rationale behind
CARP constitutes load distribution by hash routing among
Web proxy cache arrays.

As a router-based protocol, the Web cache coordination pro-
tocol transparently distributes requests among a cache array.
Because these protocols usually assume fixed network topol-
ogy and often require high computation and communication
overhead, they might be unsuitable for ad hoc networks.

To tolerate network partitions and improve data accessibil-
ity, Takahiro Hara proposed several replica allocation methods
for ad hoc networks.4 In Hara’s schemes, a node maintains
replicas of data that is frequently requested. The data replicas
are relocated periodically based on three criteria: access fre-
quency, neighbor nodes’ access frequency, or overall network
topology. Later, Hara proposed schemes to deal with data
updates. Although data replication can improve data accessi-

bility, significant overhead is associated with maintaining and
redistributing the replicas, especially in ad hoc networks.

Maria Papadopouli and Henning Schulzrinne5 proposed a
7DS architecture similar to cooperative caching, which defines
two protocols to share and disseminate data among users expe-
riencing intermittent Internet connectivity. It operates on a
prefetch mode to gather data for serving the user’s future needs
or on an on-demand mode to search for data on a single-hop
multicast basis. The 7DS architecture focuses on data dissem-
ination instead of cache management. Further, it focuses on a
single-hop rather than a multihop environment.

References
1. D. Wessels and K. Claffy, “ICP and the Squid Web Cache,”

IEEE J. Selected Areas in Comm., Mar. 1998, pp. 345-357.
2. A. Rousskov and D. Wessels, “Cache Digests,” Computer Net-

works and ISDN Systems, vol. 30, 1998, pp. 2155-2168.
3. L. Fan et al., “Summary Cache: A Scalable Wide Area Web

Cache Sharing Protocol,” Proc. ACM SIGCOMM, ACM
Press, 1998, pp. 254-265.

4. T. Hara, “Effective Replica Allocation in Ad Hoc Networks
for Improving Data Accessibility,” Proc. IEEE Infocom, IEEE
CS Press, 2001, pp. 1568-1576.

5. M. Papadopouli and H. Schulzrinne, “Effects of Power Con-
servation, Wireless Coverage and Cooperation on Data Dis-
semination among Mobile Devices,” Proc. MobiHoc, ACM
Press, 2001, pp. 117-127.

Related Work in Cooperative Caching

34 Computer

node to the wired network with the database. The
blue nodes are router nodes, which can be cluster
heads if a cluster-based routing protocol is used;
otherwise, they are just mobile nodes. Around each
cluster head (as illustrated by node N1) are several
mobile nodes, or cluster members. To reduce band-
width and power consumption, the number of hops
between the data source and the requesting node
should be as small as possible.

Routing protocols can help reduce bandwidth
and power consumption to a limited degree. Our
proposed caching techniques use the underlying
routing protocols to further improve performance.

CachePath and CacheData concepts
Figure 2 illustrates the CachePath concept.

Suppose node N1 requests a data item di from N11.
When N3 forwards di to N1, N3 knows that N1 has
a copy of the data. Later, if N2 requests di, N3

knows that the data source N11 is three hops away
whereas N1 is only one hop away. Thus, N3 for-
wards the request to N1 instead of N4. Many rout-
ing algorithms provide the hop count information
between the source and destination. Caching the
data path for each data item reduces bandwidth
and power because nodes can obtain the data using
fewer hops. However, mapping data items and
caching nodes increases routing overhead. We pro-
pose various optimization techniques to improve
CachePath’s performance.

In CachePath, a node need not record the path
information of all passing data. Rather, it only
records the data path when it’s closer to the caching
node than the data source. For example, when N11

forwards di to the destination node N1 along the
path N5 – N4 – N3, N4 and N5 won’t cache di’s path
information because they’re closer to the data
source than the caching node N1.

In a mobile network, the node caching the data
might move or it might replace the cached data
because of cache size limitations. Consequently, the
node modifying the route should reroute the
request to the original data source after discovering
that the node moved or replaced the data. Thus,
the cached path might be unreliable, and using it
can increase the overhead.

To deal with this issue, in our approach a node
caches the data path only when the caching node is
very close. The closeness can be defined as a func-
tion of the node’s distance to the data source, its
distance to the caching node, route stability, and
the data update rate. Intuitively, if the network is
relatively stable, the data update rate is low, and its
distance to the caching node is much shorter than
its distance to the data source, the routing node
should cache the data path.

In CacheData, the router node caches the data
instead of the path when it finds that the data is fre-
quently accessed. For example, in Figure 2, if both
N6 and N7 request di through N5, N5 might think
that di is popular and cache it locally. N5 can then
serve N4’s future requests directly. Because the
CacheData approach needs extra space to save the
data, it should be used prudently.

Suppose N3 forwards several requests for di to
N11. The nodes along the path—N3, N4, and N5—
might want to cache di as a frequently accessed
item. However, they’ll waste a large amount of
cache space if they all cache di. To avoid this,
CacheData enforces another rule: A node does not
cache the data if all requests for the data are from
the same node.

In this example, all the requests N5 received were
from N4, and those requests in turn came from N3.
With the new rule, N4 and N5 won’t cache di. If N3

receives requests from different nodes, for exam-
ple, N1 and N2, it caches the data. If the requests
all come from N1, N3 won’t cache the data but N1

will, or the requesting node in N1’s cluster will
cache the data if it’s the only requesting node.
Certainly, if N5 later receives requests for di from
N6 and N7, it can also cache the data.

Maintaining cache consistency. To handle cache con-
sistency, CachePath and CacheData use a simple
weak consistency model based on the time-to-live
mechanism. In this model, a routing node consid-
ers a cached copy up-to-date if its TTL hasn’t
expired. If the TTL has expired, the node removes
the map from its routing table (or removes the
cached data). As a result, the routing node for-
wards future requests for this data to the data
source. We optimize this model by allowing nodes
to refresh a cached data item if a fresh copy of the
same data passes by. If the fresh copy contains the
same data but a newer TTL, the node updates only
the cached data’s TTL field. If the data center has
updated the data item, the node replaces both the
cached data item and its TTL with the fresh copy.
When strong cache consistency is needed, we adopt
techniques reported in earlier work.1

N6

N7 N2

N1N3N4

N12
N8

N9

N5

N11

N10

Figure 2. Ad hoc
network. Node N11 is
a data source and
the blue nodes are
router nodes. Node
N1 is a cluster head
surrounded by
mobile nodes.

Locating cached data within a cluster. To save power,
many routing protocols divide areas into clusters
(or grids), with only one node in the cluster active
while others sleep. To avoid network partitioning
and maintain fairness, all nodes in the cluster alter-
nate the role of the cluster head, or coordinator.
Nodes can also leave or join the cluster. In such an
environment, to ensure that all nodes can share the
cached data, the cluster head needs to know which
node caches which data.

A simple solution has each node send its cache
data IDs to the cluster head. Most data IDs are very
long, so sending the cached data IDs can consume
a lot of bandwidth and power. Cache digests—a
lossy compression of all cache keys with a lookup
capability—offer a low overhead option that facil-
itates data searching in cluster-based ad hoc net-
works.2 A node can check another node’s digests
to discover (with some uncertainty) whether it
holds a given data item. When a node joins a clus-
ter, it sends its cache digests to the cluster head.
During the query reply phase, the cluster head cal-
culates the cache digests based on the data ID and
updates relevant information accordingly. If the
current cluster head needs to sleep, it sends the
cache digests to the new cluster head.

By caching the data or the data path, a nearby
node can serve requests instead of the distant data
center. This reduces query latency as well as band-
width and power consumption because fewer
nodes are involved in the query process. In addi-
tion, because the data center handles fewer
requests, the workload is spread over the network,
reducing the load on the data center.

The HybridCache approach
CachePath and CacheData can significantly

improve system performance. Our analysis showed
that CachePath performs better when the cache is
small or the data update rate is low, while
CacheData performs better in other situations.3

To further improve performance, we propose
HybridCache, a hybrid scheme that exploits the
strengths of CacheData and CachePath while
avoiding their weaknesses. Specifically, when a
mobile node forwards a data item, it caches the
data or path based on some criteria. These criteria
include the data item size si and the TTL time TTLi.

For a data item di, we use the following heuris-
tics to decide whether to cache data or the path:

• If si is small, CacheData is optimal because the
data item only needs a small part of the avail-
able cache; otherwise, CachePath is preferable

because it saves cache space. We denote the
data size threshold as Ts.

• If TTLi is small, CacheData is preferable.
Because the data item might soon be invalid,
using CachePath can result in chasing the
wrong path and having to resend the query to
the data center. For large TTLis, however,
CachePath is acceptable. We denote the TTL
threshold value as TTTL.

To achieve better performance, the threshold val-
ues used in these heuristics must be set carefully.3

Figure 3 shows the algorithm applying these heuris-
tics in the HybridCache scheme.

In CachePath, caching a data path only requires
saving a node ID in the cache, which has a very
small overhead. As a result, in HybridCache, when
a node caches a data item di using CacheData, it
also caches di’s path. Later, if the cache replace-
ment algorithm decides to remove di, it removes
the cached data but keeps the path. Thus,
CacheData degrades to CachePath for di. Similarly,
CachePath can upgrade to CacheData again when
data item di passes by.

When TTL expires, some cached data can be
invalidated. Usually, the node removes such invalid
data from the cache. However, invalid data items
can be useful. For example, caching the data indi-
cates the mobile node’s interest in it.

When forwarding a data item, if a mobile node
finds an invalid copy of that data in its cache, it
caches the new copy for future use. To save space,
when a cached data item expires, the mobile node
removes the item from the cache, keeping the data’s
path in invalid state to indicate its interest. Because
the mobile node’s interest can change, it should not
keep the expired path in the cache forever. In our
design, if an expired path or data item has not been
refreshed for the duration of its original TTL time

February 2004 35

(A) When a data item di arrives:
if di is the requested data by the current node
then cache di

else /* Data passing by */
if there is a copy of di in the cache
then update the cached copy if necessary
else if si < Ts or TTLi < TTTL then

cache data item di and the path;
else if there is a cached path for di, then

cache data item di;
update the path for di;

else
cache the path of di;

(B) When a request for data item di arrives:
if there is a valid copy in the cache
then send di to the requester;
else if there is a valid path for di in the cache then

forward the request to the caching node;
else

forward the request to the data center;

Figure 3.
HybridCache
concept. The hybrid
caching scheme
caches the data
or path based on
criteria such as
data item size and
TTL time.

36 Computer

(set by the data center), the node removes it from
the cache.

Experimental results
To compare the performance of CachePath,

CacheData, HybridCache, and traditional caching,
in which a mobile node only caches the data it
requests from the data center, we developed a sim-
ulation platform based on a simulator called ns-23.

Figure 4 shows the impact of cache size on aver-
age query delay. When the cache is small,
CachePath performs better than CacheData. When
the cache is more than 800 Kbytes, CacheData per-
forms better because it uses more cache space to
save passing data.

HybridCache performs better than either ap-
proach because it applies either CacheData or
CachePath to different data items. HybridCache
dynamically switches between CacheData and
CachePath at the data item level, not at the data-
base level.

PROACTIVE COOPERATIVE CACHING
With HybridCache, router nodes help other

mobile nodes get the requested data quickly. A
mobile node doesn’t know whether the data source
or some other nodes serve its request. If multiple
data sources exist, or if the mobile node doesn’t
know where the data source is, HybridCache might
not be a good option. In addition, caching nodes
outside the path between the requesting node and
the data source might not be able to share cache
information with the requesting node.

Proactive cooperative caching, in which the
requesting node actively searches for data from
other nodes, is a possible solution. Rather than
locating data within a cluster, the information
search can go through multiple hops.

In proactive cooperative caching, the requesting
node broadcasts a request to its neighbor nodes. If
a node receiving the request has the data in its local

cache, it sends an acknowledgment (ACK) to the
requesting node; otherwise, it forwards the request
to its neighbors. In this way, a request is flooded to
other nodes and eventually acknowledged by the
data source or a node with the cached copy.

The requesting node uses the arriving order of
ACKs from the mobile nodes to select a path to the
requested data. For example, if the requesting node
gets an ACK from Ni earlier than it gets one from
Nj, it requests the data from Ni. To improve per-
formance, if the data size is small, it can be piggy-
backed with the ACK.

Flooding can create problems such as redun-
dancy, contention, and collision—collectively
referred to as the broadcast storm problem.4 When
a node receives multiple broadcast requests, many
of its neighbors have already sent out broadcast
requests, and an extra broadcast might not add
much additional coverage. However, this extra
broadcast can increase network contention and col-
lision, thus the broadcast might be unnecessary.
Techniques used to reduce the broadcast storm
problem can be applied to information search to
reduce flooding overhead. Other techniques such
as dominant pruning5 and dominating sets6 can be
used to further reduce collision, contention, and
redundancy problems.

Because of flooding overhead, most information
searches should be limited to some range instead
of the entire network. One simple solution is based
on the hop counter concept used in routing proto-
cols. When the hop counter reaches some thresh-
old, nodes stop flooding.

Setting up the hop counter is challenging. A hop
counter that is too small reduces network traffic,
but at the cost of not finding the data. A hop counter
that is too large increases the probability of finding
the data, but it also increases network traffic.

Intuitively, if the data size is very large or if the
requesting node is closer to the caching node than
the data source, the information search overhead
might pay off. Otherwise, limiting the search range
is preferable. Thus, the hop counter’s value is
related to the data size, flooding message size, dis-
tance to the caching node, and distance to the
source node.

Information search is always valuable in net-
work partitions, because the data may be found
through information search when the data center
is not accessible. However, because information
search creates a large amount of network traffic, it
should be used only when the data source is
unreachable, using the basic cooperative cache
scheme otherwise.

Figure 4. The aver-
age query delay as a
function of the
cache size. Hybrid-
Cache performs bet-
ter than both Cache-
Data and CachePath
because it
combines the
strengths of the two
approaches.

0.10

0.15

0.20

0.25

0.30

0.35

200 400 600 800 1,000 1,200

Av
er

ag
e

de
la

y
(s

ec
on

ds
)

Cache size (Kbytes)

Cache
CachePath
CacheData

HybridCache

CACHE MANAGEMENT
Cache management is more complex in cooper-

ative caching because deciding what to cache can
also depend on the node’s neighbors. Cooperative
caching presents two problems: cache replacement
and cache admission control.

Cache replacement algorithms
When the cache is full, cache replacement algo-

rithms can find a suitable subset of data items to
evict from the cache. Cache replacement algorithms
have been extensively studied in operating systems,
virtual memory management, and database buffer
management. However, these algorithms might be
unsuitable for ad hoc networks for several reasons:

• Because the data item size is not fixed in wire-
less environments, the least recently used pol-
icy must be extended to handle data items of
varying sizes.

• The data item’s transfer time might depend on
the item’s size and the distance between the
requesting node and the data source (or cache).
Consequently, the cache hit ratio might not be
the most accurate measurement of a cache
replacement algorithm’s quality.

• The cache replacement algorithm should also
consider cache consistency—that is, data items
that tend to be inconsistent earlier should be
replaced earlier. For example, one item is
accessed 1 percent of the time at a particular
client and is also updated 1 percent of the
time.7 A second item is accessed 0.5 percent of
the time at the client, but updated only 0.1 per-
cent of the time. In this example, the LRU algo-
rithm would replace the second item and keep
the first. However, keeping the second item
might result in better performance.

Most cache replacement algorithms designed for
the Web are function-based, employing factors such
as time since last access, the item’s entry time in the
cache, transfer time cost, and item expiration time.
Most of these cost functions are valid only for the
traces used, however, and are not generic enough
for insightful observations. These algorithms work
relatively well under a certain goal—for example,
response time. When the goal changes, they must
produce another experience function.

Environments in which data accessibility is a con-
cern require an enhanced cache replacement policy.
Here, we consider two factors in selecting the data
item (victim) to be replaced. The first factor is the dis-
tance (δ)—the number of hops away from the data

source or caching node. Because δ is closely
related to latency, if the node selects the data
item with a higher δ as the victim, access
latency will be high. Therefore, it selects the
data item with the lowest δ.

The second factor is data access frequency.
Node mobility means the network topology
can constantly change. As the topology
varies, the δ value becomes obsolete. Therefore, we
use a parameter τ that captures the time elapsed
since the last δ update. We obtain τ by 1/(tcur – tup-

date), where tcur and tupdate are δ’s current and last
updated times for the data item. If τ is close to 1, δ
has recently been updated. If τ is close to 0, the
update gap is long. Thus, we use τ as an indicator
of δ to select a victim. Using these two factors, we
can design different cache replacement algorithms.
For example, the victim can be the item with the
least value of (δ + τ) or (δ × τ).

Some preliminary results show that different val-
ues for these parameters affect the tradeoffs
between data accessibility and query delay.8

Cache admission control
Cache admission control decides whether a data

item should be brought into the cache. Inserting a
data item into the cache might not always be favor-
able because it can lower the probability of cache
hits. For example, replacing a data item that will
be accessed soon with a data item that won’t be
accessed in the near future degrades performance.
We can use the cache replacement value function
to implement cache admission control simply by
comparing the requested item’s cost to the cached
item with the highest cost.

To increase data accessibility, a node cannot
cache data that some neighbors already cache;
rather, it uses its local space to cache more data.
For example, if the requesting node is less than a
(a system parameter) hops away from a node that
has cached the data, it won’t cache the data. Thus,
the same data item is cached at least a hops apart.

A tradeoff exists between query latency and data
accessibility. With a small a, the number of replicas
for each data item is high, and the access delay for
this data is low. However, with a fixed amount of
cache space, mobile nodes can cache a limited num-
ber of distinct data items.

If a network partition exists, many nodes might
not be able to access this data. On the other hand,
with a large a, each data item has a small number
of replicas, and the access delay can be a little
longer. On the positive side, mobile nodes can
cache more distinct data items and still serve

February 2004 37

Node mobility means
the network
topology can

constantly change.

38 Computer

requests when the data source is not acces-
sible.

Depending on the application, a can take
different values. Accessibility can outweigh
access latency when network partitions occur
frequently. Instead of waiting for the network
topology to change, the nodes should main-
tain high probability of finding the requested
data items. A large a lets a node distribute
more distinct data items over the entire cache
due to admission control, increasing the num-

ber of accessible data items and thereby improving
overall data accessibility. Note that when a reduces
to 1, the node can cache the data with minimal
latency.

SECURE COOPERATIVE CACHE
Caching nodes can replicate data from the server.

Because of security concerns, the owners of some
sensitive data might want to restrict access to the
data, preventing its duplication. We define differ-
ent levels of data security with regard to duplication
and storage in node caches. The data server can
specify the level of security for each data item.
Depending on the security level, the server can pre-
vent nodes from caching some data or limit the
number of nodes that can cache it. For most sensi-
tive data, the data server sends the encrypted ver-
sion to a few trusted nodes, which decrypt the data
using a shared key.

Future research should focus on mechanisms that
let the data owner control the caching scope with-
out undermining its flexibility. Such mechanisms
should maintain a balance between security
strength and system performance because encrypt-
ing or limiting the distribution of the most sensi-
tive data can reduce cooperative caching’s benefits.

With cooperative caching, mobile nodes can
return the cached data or modify the route and for-
ward the request to the caching node; hence, the
mobile nodes should not be able to modify the data
maliciously. With data authentication, a receiver
can ensure that the received data is authentic—that
is, it originated from the source and was not mod-
ified on the way—even when none of the other data
receivers is trusted.

Authenticating the data source is more compli-
cated. Appending each packet with a message
authentication code calculated using a shared key
does not work because any receiver with the shared
key can forge the data and impersonate the sender.
Consequently, we use solutions based on asym-
metric cryptography, namely digital signature
schemes. After the data source signs the data with

its private key, mobile nodes can verify the data’s
integrity using the data source’s public key.

Because digital signatures have high overhead in
terms of both time to sign and verify and band-
width, we focus on reducing authentication over-
head. For example, if the data has gone through
nodes with good reputations, the receiver might not
need to verify the signature. This trades some secu-
rity strength for system performance. Periodically,
the receiver might want to verify the signature and
change a node’s credit rating based on the verifica-
tion results. A mobile node can verify the signature
if the data is important or the node has enough
computation power. This allows the user to choose
the proper tradeoffs between security and perfor-
mance—for example, trading security strength for
performance if the data is not very important and
requires less computation power.

A lthough ad hoc networks have attracted many
researchers, most previous research in this area
focuses on routing, with little work on data

access. We anticipate that our work will stimulate
further research on cooperative cache-based data
access. For example, how can we reduce the broad-
cast overhead during information search? How can
we maintain cache consistency and deal with attacks
on cache consistency? Comparing cooperative
cache-based data access with data replication tech-
niques might also be interesting. We are currently
setting up a prototype to test the proposed proto-
cols and address the implementation issues. ■

Acknowledgments
This work was supported in part by the US

National Science Foundation through career grant
CCR-0092770 and grant ITR-0219711.

References
1. G. Cao, “A Scalable Low-Latency Cache Invalida-

tion Strategy for Mobile Environments,” IEEE Trans.
Knowledge and Data Eng., vol. 15, no. 5, 2003, pp.
1251-1265.

2. A. Rousskov and D. Wessels, “Cache Digests,” Com-
puter Networks and ISDN Systems, vol. 30, 1998,
pp. 2155-2168.

3. L. Yin and G. Cao, “On Supporting Cooperative
Cache in Ad Hoc Networks,” to appear in Proc.
IEEE Infocom, IEEE CS Press, 2004.

4. Y. Tseng, S. Ni, and E. Shih, “Adaptive Approaches
to Relieving Broadcast Storms in a Wireless Multi-

The server can
prevent nodes from
caching some data
or limit the number
of nodes that can

cache it.

February 2004 39

hop Mobile Ad Hoc Network,” Proc. IEEE Int’l
Conf. Distributed Computing Systems, IEEE Press,
2001, pp. 481-488.

5. W. Lou and J. Wu, “On Reducing Broadcast Redun-
dancy in Ad Hoc Wireless Networks,” IEEE Trans.
Mobile Computing, vol. 1, no. 2, 2002, pp. 111-123.

6. I. Stojmenovic and J. Wu, “Broadcasting and Activ-
ity Scheduling in Ad Hoc Networks,” to appear in
Ad Hoc Networking, S. Basagni et al., eds., IEEE
Press, 2004.

7. G. Cao, “Proactive Power-Aware Cache Manage-
ment for Mobile Computing Systems,” IEEE Trans.
Computers, vol. 51, no. 6, 2002, pp. 608-621.

8. S. Lim et al., “A Novel Caching Scheme for Internet-
Based Mobile Ad Hoc Networks,” Proc. IEEE Int’l
Conf. Computer Comm. and Networks (ICCCN),
IEEE Press, 2003, pp. 38-43.

Guohong Cao is an assistant professor of computer
science and engineering at Pennsylvania State Uni-
versity. His research interests are wireless networks,

mobile computing, and distributed fault-tolerant
computing. Cao received a PhD in computer sci-
ence from Ohio State University. Contact him at
gcao@cse.psu.edu.

Liangzhong Yin is a PhD candidate at Pennsylva-
nia State University. His research interests include
wireless/ad hoc networks and mobile computing.
Yin received an ME in computer science and engi-
neering from the Southeast University, Nanjing,
China. Contact him at yin@cse.psu.edu.

Chita R. Das is a professor in the Department of
Computer Science and Engineering at Pennsylva-
nia State University. His research interests include
parallel and distributed computing, cluster com-
puting, mobile computing, performance evalua-
tion, and fault-tolerant computing. Das received a
PhD in computer science from the University of
Louisiana, Lafayette. He is a Fellow of the IEEE.
Contact him at dsag@cse.psu.edu.

CERTIFIED SOFTWARE DEVELOPMENT PROFESSIONAL PROGRAM

2004 Test Windows: 1 April—30 June and 1 September—30 October
Applications now available!

G E T C E RT I F I E D

Visit the CSDP web site at http://computer.org/certification

or contact certification@computer.org

Doing Software Right

■ Demonstrate your level of ability in relation to your peers

■ Measure your professional knowledge and competence

Certification through the CSDP Program differentiates between you and other software
developers. Although the field offers many kinds of credentials, the CSDP is the only one
developed in close collaboration with software engineering professionals.

“The exam is valuable to me for two reasons:

One, it validates my knowledge in various areas of expertise within the software field, without regard to specific
knowledge of tools or commercial products...

Two, my participation, along with others, in the exam and in continuing education sends a message that software
development is a professional pursuit requiring advanced education and/or experience, and all the other require-
ments the IEEE Computer Society has established. I also believe in living by the Software Engineering code of
ethics endorsed by the Computer Society. All of this will help to improve the overall quality of the products and
services we provide to our customers...”

— Karen Thurston, Base Two Solutions

