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Abstract

Chip multiprocessor (CMP) systems have made the on-chip caches a critical resource shared among

co-scheduled threads. Limited off-chip bandwidth, increasing on-chip wire delay, destructive inter-thread

interference, and diverse workload characteristics pose key design challenges. To address these challenge,

we propose CMP cooperative caching (CC), a unified frameworkto efficiently organize and manage on-chip

cache resources. By forming a globally managed, shared cache using cooperative private caches. CC can

effectively support two important caching applications: (1) reduction of average memory access latency and

(2) isolation of destructive inter-thread interference.

CC reduces the average memory access latency by balancing between cache latency and capacity opti-

mizations. Based private caches, CC naturally exploits their access latency benefits. To improve the effective

cache capacity, CC forms a “shared” cache using replicationcontrol and LRU-based global replacement

policies. Via cooperation throttling, CC provides a spectrum of caching behaviors between the two extremes

of private and shared caches, thus enabling dynamic adaptation to suit workload requirements. We show

that CC can achieve a robust performance advantage over private and shared cache schemes across different

processor, cache and memory configurations, and a wide selection of multithreaded and multiprogrammed

workloads.

To isolate inter-thread caching interference, we add a time-sharing aspect on top of spatial cache parti-

tioning. Our approach uses Multiple Time-sharing Partitions (MTP) to simultaneously improve throughput

and fairness while maintaining QoS over the longer term. Each MTP partition unfairly improves at least

one thread’s throughput, and partitions favoring different threads are scheduled in a cooperative, time-

sharing manner to either maintain fairness and QoS, or implement priority. We also integrate MTP with

CC’s LRU-based capacity sharing policy to combine their benefits. The integrated scheme—Cooperative

Caching Partitioning (CCP)—divides the total execution epochs into those controlled by either MTP or the



ii

baseline CC policy, respectively, according to the fraction of threads that can benefit from each of them. Our

simulation results show that for a wide range of multiprogrammed workloads, CCP can improve throughput,

fairness and QoS for workloads suffering from destructive interference, while achieving the performance

benefit of the baseline CC policy for other workloads.
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CHAPTER 1

I NTRODUCTION

Chip Multiprocessors (CMPs) have been widely adopted and commercially available [4,54,72,87,148] as

the building blocks for future computer systems. Instead ofbuilding highly complex, power-hungry, single-

threaded processors, CMP designers integrate multiple, potentially simpler, processor cores on a single

chip to improve the overall throughput while reducing powerconsumption and design complexity. As the

number of processor cores increases [73], a key aspect of CMPdesign is to provide fast data accesses for

on-chip computation resources. Although caching has been one of the first and most widely used techniques

to improve memory access speed in single-core chips, it faces several challenges when used in multi-core

environments. To address these challenges, this dissertation studies the organization and management of

CMP on-chip cache resources and proposes a unified caching framework to satisfy both performance and

non-performance (e.g., fairness and Quality-of-Service (QoS)) requirements of future CMP systems.

1.1 CMP Caching Challenges

Unlike conventional designs with caches dedicated to a single processor core, CMP caches serve multiple

threads running concurrently on physically distributed processor cores. This change of execution paradigm

both aggravates caching demands and introduces new challenges that can not be sufficiently addressed by

prior caching proposals.
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1.1.1 Limited Off-chip Bandwidth

The main purpose of on-chip cache memory is to streamline processor operation by reducing the number

of long-latency off-chip accesses. Based on a von Neumann architecture, processor computation involves

frequent accesses of the memory system to fetch/store instructions and data. Historically, the performance

gap between processor and DRAM has been increasing exponentially for more than two decades [118],

which makes memory operations very expensive (costing hundreds of processor cycles). Even with large

on-chip caches, high-performance processors often spend more than 50% of the time waiting for memory

operations to complete [111].

Recently, improvement of single processor performance hasslowed down as frequency scaling ap-

proaches its limit, but the “memory wall” problem is likely to persist for CMPs due to limited off-chip

bandwidth. Technology trends [51] indicate that off-chip pin bandwidth will grow at a much lower rate than

the number of processor cores (and thus their aggregate memory bandwidth requirement) on a CMP chip.

Without disruptive technology (e.g., proximity communication [39]), the increasing bandwidth gap has to

be bridged by efficient organization and use of available CMPcache resources.

Emerging software such as “Recognition, Mining and Synthesis” (RMS) workloads [71] can also stress

the memory bandwidth requirement. Many such programs have poor data locality, either due to inherent

streaming/scanning behaviors in the workload, or because better locality is only possible when their large

working sets can be simultaneously satisfied by the last-level cache [75]. Therefore, both technology and

software trends demand the CMP cache resources to be well utilized to reduce off-chip accesses.

1.1.2 Growing On-chip Wire Delay

In future technology, on-chip wire delay [63] will increaseto a point that cross-chip cache accesses are

far more expensive than local cache accesses. Without careful data placement, such non-uniform latencies

reduce the benefit of on-chip caches because on average only asmall fraction of blocks are located in cache
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banks that are close to their consuming processors.

To reduce on-chip cache access latency, single-core designs exploit non-uniform cache architecture

(NUCA) [26, 83] by migrating frequently used data into closer and faster cache banks. However, with

multiple distributed cores accessing shared data, migration may be ineffective because the competition

between different cores often leaves shared data in banks that are farther to all requesters [15]. In contrast,

private cache organization reduces on-chip access latencyby locally replicating frequently accessed data,

but such replication can waste capacity and incur more expensive off-chip misses. CMP caching thus faces

the conflicting requirements of saving off-chip bandwidth and reducing on-chip latency, and has to trade off

between techniques that reduce off-chip vs. cross-chip misses [13].

1.1.3 Destructive Inter-thread Interference

The ineffectiveness of shared data migration among CMP cores demonstrates that competition of shared re-

sources can lead to destructive inter-thread interference. For multiprogrammed workloads, threads also com-

pete for cache capacity and associativity which can cause lowered performance (e.g., due to thrashing [35]),

unexpected performance (e.g., due to unfair resource allocation [84]), lack of performance QoS [74] (i.e.,

no guarantee in providing certain baseline performance [151]) and lack of control over the per-thread and

overall performance (e.g., no priority support). Without hardware solutions, their remedy can complicate the

task of operating systems (e.g., to improve fairness and avoid priority inversion) and server administration

(e.g., to maintain QoS for consolidated server workloads).

Because fairness, QoS and priority support are important requirements for CMP users, and are often

assumed by software running on CMPs, CMP caching schemes have to attack the problem of destructive

interference and answer the challenge of simultaneously satisfying multiple, potentially conflicting, require-

ments such as throughput and fairness improvement.
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1.1.4 Diverse Workload Characteristics

With multiple execution contexts available, CMPs can support both single-threaded and multithreaded

workloads as well as their multiprogramming combinations.These workloads demonstrate different caching

characteristics, therefore prefer different cache organizations or caching policies. For example, multi-

threaded workloads with large working sets prefer a shared cache for better effective capacity [75] while

smaller workloads prefer a private cache organization for better on-chip latency [13]. Workloads with little

sharing can benefit from dynamic migration [15], but aggressive sharing requires careful tradeoff between

replication and migration. Furthermore, LRU-based cache replacement performs well for workloads with

good temporal locality, while frequency-based policies (e.g., LFU) are more suitable for workloads with

poor locality [142].

Diverse workload preferences suggest that using a single caching scheme with fixed policies is unlikely

to provide robust performance for a wide range of workloads.An ideal CMP caching scheme should be able

to combine the strengths of different cache organizations and policies, and dynamically adapt to suitable

behaviors to accomodate individual workload’s caching requirements.

1.2 Prior Caching Proposals

The importance of CMP caching has spurred many research proposals to answer some of the aforementioned

challenges. Below we provide a brief overview of them.

1.2.1 Private and Shared Caches

Proposals for CMP on-chip memory hierarchy have borrowed heavily from the memory hierarchies of

traditional multiprocessors. Here, each core have privateL1 data and instruction caches tightly coupled

with the processor pipeline. L2 caches are usually private because building a shared L2 for processors
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on multiple chips requires significant complexity and pin bandwidth (for L1 to L2 cache communication).

Proposals for CMPs also use the private L1 cache structures of traditional multiprocessors, although the

L1 caches may not use inclusion [9, 12]. The interesting question has to do with the organization of large,

last-level cache resources (in this dissertation we focus on L2 cache design).

Most current CMP designs adopt a logically shared L2 cache organization [4,72,87,148] to make efficient

use of the overall cache capacity and reduce off-chip accesses. However, the latency of a shared L2 cache is

heavily influenced by the increasing wire delay, and its unconstrained capacity sharing can cause destructive

inter-thread interference. Private L2 caches are more tolerant of on-chip wire delay, and naturally avoid

inter-thread interference by statically partitioning theaggregate capacity among processor cores. However,

this organization incurs many more off-chip accesses due toinefficient use of the aggregate on-chip capacity

(e.g., replication of shared data and static capacity allocation).

Because private and shared cache organizations have their unique advantages and disadvantages, two

separate lines of research have been launched to combine their strengths to: (1) reduce average memory

access latency and (2) improve throughput, fairness, and QoS provisioning via cache partitioning.

1.2.2 Latency Reduction Proposals

As a practical step towards the ideal zero-latency infinite-capacity cache, these proposals attempt to reach

the off-chip miss rate of a shared cache with only the latencyof a private cache. Private cache based

optimizations improve capacity utilization by controlling replication [13, 27, 138] and allowing capacity

sharing between caches [27,156]. Shared cache based optimizations reduce on-chip latency by cache block

migration [15, 158], replication [159] or limiting the scope of sharing within a small cluster [68]. However

the proposed solutions are either limited in only improvinga certain class of workloads [13, 15, 138, 156]

or relying on specific cache or coherence protocol implementations [15,27,68,138,156,159]. Furthermore,

most of these proposals are unable to deal with workloads having poor locality and destructive interference
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(with the exception of PDAS [156], which provides QoS support for multiprogrammed embedded work-

loads).

1.2.3 Cache Partitioning Schemes

CMP cache partitioning schemes [68, 74, 84, 96, 121, 123, 144, 156] extend a private cache organization’s

static capacity partitioning to isolate inter-thread interference. Specifically, they orchestrate cache alloca-

tion with dynamically adjustable, often heterogeneous, cache partitions to match the perceived capacity

requirements of co-scheduled threads. Despite their differences in metrics, mechanisms and policies, prior

cache partitioning schemes have two common limitations. (1) Limited functionality. None of the current

proposals addresses all CMP caching requirements, including thrashing avoidance, fairness improvement,

QoS guarantee and priority support, partially due to the difficulty of satisfying multiple, often conflicting,

goals with a single cache partition. (2) Limited scope of application. Cache partitioning can only outperform

LRU-based latency-reduction schemes for some multiprogrammed workloads. An attempt to use cache

partitioning for a wide range of workloads either causes sub-optimal performance [141], or requires more

complex partitioning scheme to close this performance gap [123].

1.3 Overview of Our Approach

Although prior CMP caching proposals can meet subsets of CMPcaching requirements, an integrated

scheme is needed not only to answer performance, fairness and QoS related challenges, but also support

other optimizations such as power efficiency and reliability. The goal of this dissertation is to: (1) develop a

unified framework to facilitate and integrate CMP caching optimizations and (2) demonstrate its effective-

ness in improving both performance and non-performance objectives (such as fairness and QoS).

The basic ideas of our CMP Cooperative Caching (CC) are embodied in the CC framework, which

consists of the following three layers.
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• Mechanisms.This layer lies in the middle of the framework, using three key components to enable

and control cooperative cache resource sharing: (1) private cache organization that reduces latency,

bandwidth and design complexity while improving fairness and power-efficiency; (2) cooperation

mechanisms that control data placement and replacement in the aggregate on-chip cache to support

resource sharing among private caches; and (3) cooperationthrottling mechanisms that control the

amount and flow of resource sharing to achieve certain caching behaviors. The combination of these

primitives can render many possible caching behaviors for CMP designers to explore.

• Policies. On top of the mechanism layer, this layer includes cooperative caching policies to achieve

various optimization goals using the basic mechanisms. Thecooperation philosophy is applied at this

layer to resolve conflicts among competing peer caches as well as different caching objectives.

• Implementations. The underlying implementation layer realizes cooperativecaching mechanisms

by either augmenting existing cache designs and coherence protocols or introducing new designs.

The separation of mechanisms, policies and implementations allows different layers to be extended

independently, so that the framework can be used for different caching optimizations, and incorporated

by various CMP implementations.

CC answers CMP caching challenges in the following ways.

• Reducing off-chip accesses.Via cooperation among private caches, CC can form an aggregate

cache having an effective capacity comparable to a shared cache, to reduce costly off-chip misses.

Specifically, three capacity sharing policies are proposed: (1) The first policy facilitates cache-to-

cache transfers of on-chip “clean” blocks to eliminate unnecessary off-chip accesses to data that

already reside elsewhere on the chip. (2) The second policy reduces replication to make room for

unique on-chip copies (calledsinglets), thereby making better use of the on-chip cache resources.(3)

The third policy places locally evicted blocks into peer caches (calledspill). It lets the private caches
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cooperatively identify singlet but inactive blocks, and keep globally active data on-chip. By combining

local LRU with global spill/reuse history, this policy approximates global LRU replacement for

efficient capacity sharing.

• Improving on-chip latencies. By using private caches as the baseline organization, CC attracts data

locally to reduce remote on-chip accesses, thus lowering the average on-chip cache access latency.

When combined with capacity improving policies, CC can achieve an off-chip miss rate similar

to that of a shared cache, and a local cache hit rate similar tothat of using private caches. Our

evaluation using full-system simulation shows that CC performs robustly over a range of system/cache

sizes and memory latencies. For an 8-core CMP with 1MB L2 cache per core, CC can improve

the performance of multithreaded commercial workloads by 5-11% compared with a shared cache

and 4-38% compared with private caches. For a 4-core CMP running multiprogrammed SPEC2000

workloads, CC is 5-23% faster than a shared cache, and at worst 1.5% slower than using private

caches. CC also outperforms the victim replication scheme [159] by 9% on average over a mixture

of multithreaded, single-threaded and multiprogrammed workloads, while the performance advantage

increases for workloads with large working sets.

• Dealing with inter-thread interference. CC extends previous cache partitioning schemes with

Multiple Time-sharing Partitions (MTP), to improve throughput and fairness while maintaining QoS.

Specifically, each MTP partition improves at least one thrashing application’s throughput by tem-

porarily shrinking the capacity of other applications to make room for it. By time sharing cache

resources among multiple unfair partitions that favor different applications, the problems of fairness

improvement and priority support are translated into well-studied time-sharing resource management

problems. Fairness can thus be improved by giving differentapplications equal opportunity to speed

up, while priority can be supported by allocating differentnumbers of time slices to different unfair

partitions. The MTP partitioning algorithm further guarantees QoS by using partitions that, on
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average, can bound each application’s slowdown against theuniform partitioning baseline. Comparing

with the best single spatial partition based scheme withoutQoS constraint, MTP can achieve up to

60%, and on average 12%, better performance.

• Adapting to workload characteristics. CC can adapt to diverse workload characteristics by provid-

ing a spectrum of caching behaviors and selecting the best policy to meet workload preference. In

terms of latency reduction, CC can throttle the amount of block replication and capacity sharing to

find the best tradeoff between the two extremes of private andshared caches. CC further integrates

latency reduction policies with MTP to combine the benefits of LRU-based fine-grained sharing with

cache partitioning schemes. The complementary advantagesof MTP and LRU-based optimizations

are achieved by dividing the total execution epochs into those controlled by MTP and the baseline

CC policies, respectively, according to the fraction of applications that can benefit from each of them.

The integration not only provides the best performance for awide range of workloads, but also can

simplify MTP partitioning by focusing only on applicationswith large speedup potentials, leading to

a heuristic-based, practical implementation. Our evaluation shows that the resulted scheme— Coop-

erative Cache Partitioning (CCP)—achieves comparable performance as an (impractical) exhaustive

search of MTP partitions for workloads that need cache partitioning, which is up to 80%, and on

average 7%, better than the baseline CC policies. For workloads where cache partitioning hurts, CCP

usually defaults to the baseline CC and consistently outperforms all other cache partitioning schemes.

1.4 Thesis Outline

We have motivated CMP cooperative caching with technology and software trends in this chapter. Chapter

2 discusses related work in CMP caching. Chapter 3 then presents the cooperative caching framework,

detailing its mechanism and implementation layers. Chapter 4 and Chapter 5 use latency reduction and

throughput/fairness/QoS improvement as two example applications to demonstrate the benefits of our ap-
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proach. We conclude in Chapter 6 by summarizing thesis contributions and pointing out future research

directions.

The gist of Chapter 3 and Chapter 4 appeared in our ISCA 2006 paper [23], while we extend the published

work in several aspects: (1) the ideas of CMP cooperative caching are now presented in a layered framework,

(2) the mechanisms and implementations are introduced to support general cache cooperation instead of only

reducing memory latency, (3) a discussion of scalable CC anda possible implementation are included, and

(4) the evaluation is extended with adaptive throttling results.

A modified version of Chapter 5 was published in ICS 2007 [24],which is augmented in this disser-

tation with motivating examples, detailed discussion of implementation options, as well as an extensive

presentation of the evaluation results.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, we discuss the background and previous workon CMP caching. Section 2.1 overviews

the background on caching, with emphasis on the aspects where our proposed scheme (CC) differs from

conventional uniprocessor caching: (1) cache placement and replacement, (2) support for non-uniform

cache latencies, and (3) extensions to manage the sharing ofcache resources among multiple competing

consumers. Section 2.2 and Section 2.3 survey recent CMP caching proposals to improve average memory

access latency and mitigate destructive inter-thread interference, respectively, and compare them with CC.

Section 2.4 summarizes prior work with a taxonomy of hardware CMP caching schemes.

2.1 Caching

Although CMP caching presents a set of new challenges to processor cache designers, these challenges are

not new in the history of general caching research and have been individually addressed in other caching

systems such as virtual memory paging, web caching and conventional shared-memory multiprocessor

memory designs.

The idea of caching was first documented in the IBM System/360implementation [95] which used

a high-speed buffer to bridge the processor-memory speed gap by exploiting the locality of references

principle [37]. For a given cache size (which is determined by engineering tradeoffs), the cache’s effi-

cacy is largely determined by its data placement and replacement policies. Theoretically, Belady’s MIN

replacement algorithm is optimal by providing a provable upper limit for hit ratio [16]. However, because

this algorithm evicts data with farthest reuse distance, itis limited in: (1) being an offline algorithm that

requires both future knowledge and unbounded lookahead to make replacement decisions, (2) assuming
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uniform cache hit latencies and miss latencies and (3) not considering conflicts between multiple cache

resource consumers. Below we discuss extensions in these aspects separately.

2.1.1 Cache Replacement and Placement

To attack the first limitation of the MIN algorithm, many practical, online replacement policies have been

proposed, among which the least recently used (LRU) and least frequently used (LFU) policies are two

typical examples. The two policies are near optimal, respectively, for programs with strong and weak

temporal locality [43]1. LRU is arguably the most widely used policy because its implementation is simpler

than LFU and it can quickly adapt to working set changes. To provide good caching performance for a

wide range of workloads, many software policies (e.g., [77,106]) and hardware designs (e.g., [42,142]) are

proposed to combine the benefits of both LRU and LFU. CC achieves the same goal, but instead by using

cache partitioning to isolate workloads with weak localityfrom those with good locality and by integrating

LRU replacement with cache partitioning.

In the context of CMP caching, flexible data placement is alsoneeded to exploit the benefits of advanced

cache replacement policies [57], reduce inter-thread conflict misses [158], provide QoS support via cache

partitioning [81], and keep frequently accessed data closeto the processor [26]. Highly associative caches

(used by most CMP caching proposals) are thus needed to allowflexible data placement at the cost of

extra area, latency, power and complexity overhead. Page coloring and remapping [130] can reduce conflict

misses with low associativity, but require profile-based software optimization. Across cache banks, distance-

aware placement attempts to keep frequently used data in theclosest (and thus fastest) banks. For example,

D-NUCA [83] dynamically migrates “hot” data towards the processor core, and NuRapid [26] further

decouples data placement from tag placement using forward pointers.

1The notions of strong and weak temporal locality were formally treated by Coffman and Denning [43] and were later explained
by Megiddo and Modha in the context of paging [106]: LRU is theoptimal policy if the request stream is drawn from an LRU Stack
Depth Distribution (SDD) which is “useful for treating the clustering effect of locality but not the nonuniform of page referencing.”
LFU is optimal if the workload can be characterized by the Independent Reference Model (IRM), which assumes that each reference
is drawn in an independent fashion from a fixed distribution over the set of all pages in the auxiliary storage.
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CC improves cache associativity through cooperation amongprivate caches, each with lower associativ-

ity, without extra hardware and software overhead. The aggregate cache is managed by an approximation of

global LRU via a combination of local LRU and global placement history, therefore can support fine-grained

sharing for both multithreaded and multiprogrammed workloads. To achieve distance-aware data placement,

CC relaxes the inclusion requirement between L1 and L2 caches, and improves data locality using private

caches that keep frequently used data close to the requesting processors.

2.1.2 Non-uniform Latencies

In web caches that buffer files from multiple servers, cache misses have non-uniform latencies. Because

Belady’s MIN algorithm can only support uniform cache latency, new cache replacement policies are

needed to prioritize data with variable costs and provide the best average access latency [157]. Similarly,

processor caches can also exploit the cost difference between misses having non-uniform memory-level

parallelism [52], as shown by proposals for cost-sensitiveand MLP-aware uniprocessor caches [76,122].

Distributed web and file caches can also cooperate to form a logically shared, global cache with non-

uniform hit latencies [32,46,50]. By exploiting a high-speed network that makes inter-cache communication

much faster than accessing remote servers, physically separated caches work closely together to improve the

effective cache capacity without significantly hurting local hit rates. The situation is analogous to CMP

caching, where private caches can exchange information anddata over a high-bandwidth, low-latency,

on-chip interconnect to reduce expensive off-chip misses.Our research is directly inspired by the above

observation, and borrows from existing cooperative file caching policies.

The most related research to CMP caching, in terms of handling non-uniform access latencies, focuses on

the memory organization of shared memory multiprocessors.To improve scalability of small-scale Uniform

Memory Access (UMA) machines (SMP systems [25]), Non-uniform Memory Access (NUMA) systems

statically partition the memory space among processor/memory nodes [91, 93]. Because local memory
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DSM Memory CMP Cache Common Features
UMA [25] Shared cache (UCA) High capacity, uniformly long latency
NUMA [91,93] Shared, banked, cache (S-NUCA) [83] High capacity, non-uniform latencies
COMA [56,129] Private caches [67] Lowered capacity, low latency
RC-NUMA [160] Adaptive private/shared NUCA [40] Partition between private/shared space
VC-NUMA [108] VC-CMP [115], Victim replication [159] Victim caching
R-NUMA [45] CMP-NuRapid [27] Counter-based hints for relocation
AS-COMA [88] CMP cooperative caching [23] Biased replacement
OS support [150] ASR [14] Selective replication

Table 2.1: Corresponding Proposals for Organizing DSM Memory and CMP Caches

accesses can be several times faster than remote accesses ina NUMA system, a significant amount of

research was done to improve data locality via a Cache-Only Memory Architecture (COMA) that uses local

memory to attract frequently used data [56, 129], NUMA augmented with remote data caches or victim

caches [108, 160], adaptation between COMA and CC-NUMA [45,88] according to perceived memory

pressure, and software techniques for page migration and replication [137,150].

Due to similar latency/capacity tradeoffs, techniques to improve the average memory latency of dis-

tributed shared memory (DSM) systems can also be used to improve CMP caching. To illustrate this,

Table 2.1 lists some of the corresponding proposals in DSM memory organization and CMP caching and

their common features. CMP caching faces similar issues as their counterparts in DSM page caching such

as cache coherence, replacement policies, control of replication/migration and scalability, although different

tradeoffs and implementations are needed for DSM vs. CMP architectures.

2.1.3 Shared Resource Management

The third limitation of the MIN algorithm, its inability to deal with competition among multiple cache

consumers, has been addressed by paging techniques (i.e., caching at the memory level). Sharing physical

memory among competing threads, and specifically avoiding destructive interference such as thrashing [35],

is a classic problem for virtual memory management [36]. This problem is solved in software by proac-

tively co-scheduling programs whose aggregate working setcan be contained by available resources (e.g.,
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balanced-set schedulers [48]), or reactively reducing thelevel of multiprogramming (i.e., the number of

in-memory programs) to fit resource constraints. Similarly, Fedorova studied CMP-aware operating system

schedulers [47] to avoid cache thrashing [49] and maintain fair cache usage by adjusting the CPU time

quantum allocated to different threads.

Memory partitioning is another mechanism to avoid interference. As an example, local memory man-

agement policies (such as the WS policy used in Windows operation systems) ensure that each thread has

enough pages to hold its working set [34] and only replace pages from a thread’s local page pool. The

concept of working set and local replacement is also exploited by CMP caching partitioning schemes (e.g.,

[40,123,144,156]). On the other hand, global replacement policies allow different threads to share space in

a fine-grained manner, but are prone to inter-thread pollution. WSClock [22] achieves the benefits of both

schemes by integrating working set based partitioning withglobal LRU replacement. In a similar vein, we

integrate cache partitioning and LRU-based latency reduction policies to combine their strengths.

Verghese et al. [151] recognized the need for performance isolation in a central server environment, and

proposed mechanisms to provide isolation under heavy load while allowing sharing under light load. Later,

the notion of performance isolation was extended to provideflexible QoS [145], including QoS guarantee,

fairness and differentiated services. Waldspurger [152] introduced several novel policies for virtual machine

servers, which: (1) identify and reclaim least valuable pages, (2) eliminate redundancy overhead and (3)

support performance isolation. This dissertation attack the same problems for processor caching via: (1)

global replacement of inactive blocks, (2) replication-aware replacement and (3) cache partitioning support.

To simultaneously improve throughput, fairness and QoS, wealso extend spatial partitioning with time-

sharing, which has been well studied and implemented by operating systems [62,153].

2.2 CMP Caching Optimizations for Latency Reduction

Besides studies in CMP cache organizations [67, 113, 146], many hybrid caching schemes have been pro-

posed to reduce the average memory access latency for CMPs [14,15,27,59,68,94,115,138,158,159].
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2.2.1 Shared Cache Based Proposals

Oi and Ranganathan [115] made the analogy between CMP caching and CC-NUMA memory organiza-

tion, and evaluated the benefit of using part of the shared L2 cache as fix-sized victim caches. They

discovered that aggressive replication (using large victim caches) can hurt performance, and for SPLASH2

workloads [155], suggested using 1/8 of total L2 capacity for victim caching. Zhang and Asanovic [159]

proposed a dynamically adaptable form of victim caching, called Victim Replication (VR), in a tile-based

CMP. Their scheme allows an L1 victim to be cached in the localL2 bank, potentially evicting data without

replicas. A random replacement policy and a directory-based coherence protocol are required by their

implementation to simplify replication control and replica identification. Because VR keeps replicas in both

the home node cache and all consumer caches, it can waste capacity when little data sharing exists (e.g., in

multiprogrammed workloads). This issue was resolved by victim migration [158] via home block migration,

implemented with extra shadow tags to keep track of the migrated data.

Beckmann and Wood [15] studied CMP-NUCA schemes to mitigatethe impacts of increasing on-chip

wire delay. Their results showed that, different from single-core caching, dynamic migration (D-NUCA) in a

CMP is ineffective for widely shared data. They also identified the issues with CMP-NUCA implementation

and power consumption, and proposed using LC transmission lines to reduce wire delay. Li et al. [94]

extended their work with 3D die-stacking and network-in-memory, and demonstrated better performance.

The techniques proposed in this dissertation are orthogonal to these new technologies and can potentially

exploit fast wires and 3D caches to improve latency and capacity.

Chishti et al. proposed CMP-NuRapid [27] to optimize replication and capacity in CMP caches. Their

design, like CMP-NUCA, uses individual algorithms to optimize special sharing patterns (i.e., controlled

replication for read-only sharing,in-situ communication for read-write sharing, and capacity stealing for

non-sharing). In contrast, CC aims to achieve these optimizations through a unified technique: cooperative

cache placement/replacement, which can be implemented in either a centralized or distributed manner.
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CMP-NuRapid implements a distributed directory/routing service by maintaining forward and reverse point-

ers between the private tag arrays and the shared data arrays. This implementation requires extra tag entries

that may limit its scalability, and increases the complexity of the coherence protocol (e.g., the protocol has

to avoid creating dangling pointers). CC tries to avoid suchissues by using a simple, centralized directory

engine with less space overhead.

Based on NUCA, Huh et al. [68] introduced a cache organization to support a spectrum of sharing

degrees, which denote the number of processors sharing a pool of their local L2 banks. The average access

latency can be optimized by partitioning the aggregate on-chip cache into disjoint pools, to fit the running

application’s capacity requirement and sharing patterns.Their study showed that static mappings with a

sharing degree of 2 or 4 can provide the best latency, and dynamic mapping can improve performance at the

cost of complexity and power consumption. CC is similar in trying to support a spectrum of sharing points,

but achieves it through cooperation among private caches and adaptive cooperation throttling.

Cho and Jin [28] recently proposed an OS-level page allocation approach to address CMP caching’s

locality, capacity and isolation issues. Based on shared cache organization, their proposal maps physi-

cal pages into cache slices to exploit locality and uses “virtual multi-cores” to provide isolation between

multiprogrammed threads. However, this approach requiresboth hardware page mapping support [78],

and significant modifications in the operating systems (e.g., location-aware page allocation, locality and

capacity aware OS scheduling). Comparatively, CC answers CMP caching challenges with simple hardware

extensions, while being amenable to software-based solutions by providing capacity sharing and isolation

mechanisms.

2.2.2 Private Cache Based Proposals

Harris proposed synergistic caching [59] for large scale CMPs, in which neighboring cores and their private

L1 caches are grouped into clusters to allow fast access of shared data. Synergistic caching offers three
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duplication modes (i.e., beg, borrow and steal), corresponding to replication, use without replication and

migration. Because no single duplication mode performs thebest across all benchmarks, reconfiguration

was suggested, although not evaluated, to statically or dynamically choose the best mode.

Speight et al. [138] studied adaptive mechanisms in privatecache based designs to reduce off-chip traffic.

They used an L2 snarf table to identify locally evicted blocks that might be reused soon. Upon local eviction,

such blocks are kept on-chip via write-backs to peer caches.The host cache will replace either invalidated

or shared clean blocks to make room for them, potentially reducing expensive off-chip misses when they are

reused later. This scheme is limited by only supporting multithreaded workloads, and differs from CC in its

write-back and global replacement policies.

Motivated by the need for dynamic adaptation, Beckmann et al. [14] proposed Adaptive Selective Repli-

cation (ASR) for multithreaded workloads. ASR uses privatecaches and dynamically seeks an optimal

degree of replication for each individual thread. The cost and benefit of current and future replication levels

are estimated using on-chip counters, which are consideredwhen determining whether a thread can benefit

from more aggressive replication. Their cost/benefit estimation mechanisms can be used to throttle CC’s

replacement-aware cache replacement. Although ASR was proposed to control replication in multithreaded

workloads, its per-thread threshold and counters do support heterogeneous workloads and can potentially be

extended and used in a multiprogramming environment.

2.3 CMP Cache Partitioning

Below we survey CMP cache partitioning proposals that prevent destructive inter-thread interference via

resource isolation, according to their different optimization purposes.

Miss reduction. Stone et al. [141] studied the problem of partitioning cachecapacity between different

reference streams, and identified LRU as the near-optimal policy for their workloads. They also showed

empirically that LRU can swiftly adapt to working set changes, without explicit repartitioning support. Liu
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et al. [96] proposed Shared Processor-based Split L2 cache that partitions the shared L2 space in units of

“split.” Their scheme can be configured to suit for both inter-application and intra-application non-uniform

caching requirements, but involves both profiling support and operating system modification to determine

and enforce cache partitioning. Suh et al. [143,144] applied way partitioning to shared CMP caches. Using

in-cache monitoring mechanism, their partitioning algorithm assumes convex miss rate curves and allocates

extra capacity to threads having the best marginal miss ratereduction. Qureshi and Patt [123] proposed

UMON sampling mechanism to provide more precise measurement, and lookahead partitioning algorithm to

handle workloads with non-convex miss rate curves. Dybdahlet al. [41] extended way partitioning [144] by

overbooking cache capacity to account for non-uniform per-set requirements, and evaluated its effectiveness

using private L1/L2 caches with a shared L3 cache. Dybdahl and Stenstrom [40] further extended CC

with an adaptive shared/private partitioning scheme to avoid inter-thread interference. Their partitioning

algorithm is essentially the same as Suh’s proposal, but instead of in-cache monitors, “shadow tags” are

used to measure the benefit of having one extra cache way.

Fairness improvement. Kim et al. [84] emphasized the importance of fair CMP caching, discussed the

implication of unfairness (such as priority inversion) andproposed a set of fairness metrics as their goal of

optimization. They evaluated both static and dynamic partitioning (both requiring profiling information),

and discovered that, under heavy caching pressure, fair caching often improves overall throughput. Yeh and

Reinman [156] proposed fast and fair partitioning, based ona NUCA cache consisted of ring-connected

distributed banks. Their scheme ensures the “baseline fairness” by guaranteeing QoS for all co-scheduled

threads. To enforce partitioning decision, each NUCA bank is divided between portions used by the local

thread and remote threads. Such partitioning is dynamically adjustable based on program requirements and

phase changes. Instead of cache partitioning, Kondo et al. [86] applied dynamic voltage and frequency

scaling (DVFS) to maintain CMP fair caching. Using the same metrics and policies as Kim et al., they also

observed throughput improvement over shared cache for manycases and energy saving due to decreased
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voltage and frequency.

QoS provisioning. Iyer [74] motivated the importance of QoS guarantee and prioritization, not only

between different users but also different types of access streams (e.g., demand vs. prefetch requests)

generated by the same thread. He also proposed the CQoS framework that defines and implements QoS

via priority classification, assignment and enforcement. Yeh and Reinman [156] focused on throughput

improvement on top of data QoS guarantee. Kannan et al. [81] studied CMP resource management to

support flexible QoS. Their work demonstrated the feasibility of QoS-aware hardware and software using

prototypes and showed predictable performance in multiprogramming and virtualization environments.

Vardarajan et al. [149] proposed molecular caches to accomodate the diverse requirements of multipro-

grammed workloads. By varying the number of allocated tiles(or molecules) and the per-tile management

policies, molecular caches can provide varied cache line sizes, associativities and cache sizes for different

co-scheduled threads. Molecular caches achieve power efficiency via private tile based organization, and

provides software-defined QoS (specified as target miss rates) by dynamically adjusting per-application

capacity.

Generic support. Rafique et al. [125] and Petoumenos et al. [121] proposed spatially fine-grained parti-

tioning support, which can be used by various partitioning policies (such as miss rate reduction, fair caching

and QoS provision). Hsu et al. [66] studied various partitioning metrics and policies. Their study focused

on three caching paradigms (communist caching for fairness, utilitarian caching for overall throughput and

uncontrolled capitalist caching), and recognized the difficulties to improve both overall throughput and

fairness using a single partitioning scheme.



21

Goals Target Workloads Baseline Schemes
La

te
nc

y 
R

ed
uc

tio
n Multithreaded Private

Adaptive L2 snarfing [138]
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Synergistic cache [59]

Ineffective for shared data
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CMP-DNUCA [15]
Victim replication [159]

Multithreaded and multiprogrammed Shared

Victim migration [158]
CMP-NuRapid [27]
NUCA substrate [68]
OS-level page mapping [28]
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Multithreaded and multiprogrammed
Multiprogrammed
Multiprogrammed
Multiprogrammed
Multiprogrammed

Shared
Shared
Shared
Shared
Private

Profile-based partitioning [96]
Dynamic partitioning [144]
Utility-based partitioning [123]
Overbooked partitioning [41]
Share/private partitioning [40]
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s 
/ Q

oS

Multiprogrammed

Shared
Shared
Shared
Shared
Private
Private

Fair caching [84]
Fair caching via DVFS [86]
CQoS [74]
QoS prototypes [81]
Fast and fair (QoS) [156]
Molecular caches [149]

M
ec

ha
ni

sm

Multiprogrammed Shared
STATSHARE [121]
OS-driven partitioning [125]
Hsu et al. [66]

All Multithreaded and multiprogrammed Private CC/CCP (this dissertation)

Table 2.2: A Taxonomy of Hardware CMP Caching Schemes

2.4 A Taxonomy of CMP Caching Techniques

Table 2.2 provides a taxonomy of related hardware CMP caching proposals. These schemes are classified

along three dimensions: (1) goals (latency reduction, interference isolation, or their combinations), (2) target

workloads (multithreaded or multiprogrammed) and (3) baseline cache organizations (shared or private).

A desirable CMP caching scheme should be able to simultaneously achieve multiple optimization goals,

perform robustly for a wide range of workloads, while being amenable to simple and modular hardware

implementations.
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The first group of proposals in Table 2.2 aim at memory latencyreduction, but 5 out of 9 of them are

limited in only supporting multithreaded workloads or being ineffective for workloads with significant data

sharing. The schemes that do support both multithreaded andmultiprogrammed workloads are all based on a

shared cache design, and they either rely on specific hardware implementations (e.g., victim migration [158]

requires a directory protocol and CMP-NuRapid [27] dependson a snooping bus) or have to cooperate with

software for cache management (e.g., NUCA substrate [68] and OS-level page mapping [28]).

The schemes in the second group use cache partitioning to achieve some of the interference isolation

goals. Among them, the first 5 schemes only minimize off-chipmiss rate to improve overall throughput.

Except for profile-based partitioning [96], these schemes are only applicable to multiprogrammed work-

loads. Share/private partitioning [40] is the only proposal that combines cache partitioning with latency

reduction techniques (it uses CC as the baseline design). Other cache partitioning schemes either focus

only on fairness or QoS improvement, or only provide genericpartitioning mechanisms. Except for fast

and fair [156] which improves throughput while maintainingQoS, none of these proposals support multiple

optimization goals.

Finally, CC is the only hardware CMP caching scheme that addresses all aspects of latency reduction

and interference isolation optimizations, supports both multithreaded and multiprogrammed workloads and

exploits the latency, power, and design modularity benefitsof private caches.
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CHAPTER 3

CMP COOPERATIVE CACHING FRAMEWORK

Consider the task of building a CMP cache hierarchy that not only has high capacity and low latency, but

also is fair, reliable, power-efficient, and easy to design and verify. Each of these requirement may prefer a

different way to organize the available resources and a different policy to strike the balance between resource

sharing and isolation, while all optimizations have to fit inthe same design. As shown in previous chapters,

existing proposals do address some of the key challenges of CMP caching. However, without a unified

solution, these schemes can not satisfy all of these important, yet potentially conflicting, requirements for

workloads with diverse caching characteristics.

We need a holistic approach to address the challenges of CMP caching, which can integrate and trade

off among available optimizations, preferably based on a unified supporting framework. The questions

are whether such a framework exists and, if so, how to use it toaccomodate conflicting requirements.

This chapter answers the first question with the cooperativecaching framework for efficient organization

and management of CMP cache resources, while the following two chapters will demonstrate its uses in

latency reduction and interference isolation, respectively. Below, we introduce the three-layer model of

CC framework in Section 3.1. The mechanism and implementation layers are covered by Section 3.2 and

Section 3.3, while example policies will be detailed in Chapter 4 and 5. Section 3.4 discusses the extension

of CC for large-scale CMPs.

3.1 CMP Cooperative Caching Framework

The basic idea of CC is to form a globally-managed, aggregateon-chip cache via cooperative resource

sharing among private caches. CC is inspired by software cooperative caching algorithms [32], which have
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Figure 3.1: Cooperative Caching (The shaded area represents the aggregate cache formed via cooperative
private caches.)

been proposed and shown to be effective in the context of file and web caching [32, 46]. The key principle

of CC is to support a wide spectrum of sharing behaviors via the combination of private cache’s resource

isolation with various forms of cooperative capacity sharing/throttling. Such capabilities will be exploited

by high-level cache cooperation policies to satisfy different sets of optimization goals.

Figure 3.1 shows a picture of the CC concept for a CMP with fourcores. To simplify discussion in

this dissertation, we assume a CMP memory hierarchy with private L1 instruction and data caches for each

processing core. We focus on using L2 cache as the last level on-chip cache, although the ideas of CC

are equally applicable if there are more levels of caches on the chip (e.g., Dybdahl and Stenstrom [40]

evaluated CC with L3 caches). Each processor core’s local L2cache banks are physically close to it, and

privately owned by it such that only the processor itself candirectly access them. Local L2 cache misses can

possibly be served by remote on-chip caches via cache-to-cache transfers as in a traditional cache coherence

protocol. The key difference between CC and conventional private caches is that here the private caches

are not isolated from each other, instead they act as parts ofa logically shared cache by sharing information

and resources. Such sharing activities are enabled by CC’s cooperation and throttling mechanisms, and

orchestrated by cooperation policies to achieve specific optimization goals.

Before elaborating on why we choose a private cache based organization and how to support inter-

cache sharing in the CC framework, we now introduce the layered structure of CC framework. As depicted
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Figure 3.2: The CMP Cooperative Caching (CC) Framework

in Figure 3.2, the idea of cooperative caching is supported by three layers focusing on implementation,

mechanism and policy, respectively. This separation of layers not only allows their independent extension,

but also simplifies the design and analysis of CMP cache hierarchy by isolating and addressing system

properties at appropriate levels of abstraction.

Implementation layer. At the lowest level, the layer contains various implementations of cooperative

cache structures and resource sharing/isolation mechanisms. This layer encapsulates the implementation

details such as cache sub-banking, chip layout, interconnection networks and coherence protocols, so that

the key mechanisms can be supported by different designs. Correctness and scalability are the main system-

level properties maintained at this layer.

Mechanism layer. In the center of the framework, the mechanisms layer provides abstractions of cache

organization and resource management to support cooperative caching policies. This layer consists of

three key components:(1) private cache based organizationthat provides on-chip locality and resource

isolation;(2) cooperation mechanismsused by co-scheduled threads to explicitly share the aggregate cache
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resources; and(3) cooperation throttling mechanismsused to control and orchestrate cooperative resource

sharing. These components can each be populated with concrete mechanisms, and the key property of this

layer is composability. When these mechanisms are combinedby caching policies, a wide spectrum of

sharing behaviors should be available to suit the needs of specific workloads and cache optimizations.

Policy layer. This layer optimizes the cache hierarchy’s high-level properties such as performance, fair-

ness, QoS, and reliability, to fit for its intended use. A specific policy can optimize for one property such as

fairness, and potentially impact the other properties in positive or negative ways. CMP caching optimizations

(e.g., power or reliability optimization) or applications(e.g., QoS provision) can further select from available

policies according to their strengths and shortcomings.

3.2 CC Mechanisms

Below we describe the key components in CC’s mechanism layer. This layer plays a similar role as the IP

layer in the Internet protocol suite [29,30] because they both aim to support diverse higher level applications

with a small set of abstractions that are open to many possible implementations.

3.2.1 Private Cache Organization

Compared with many shared cache based CMP caching schemes, CC uses a private cache based organization

because it has the following advantages that are likely to beof increasing importance for future CMPs.

1. Latency. Private caches reduce on-chip access latency by keeping frequently referenced data locally

for fast later reuse.

2. Bandwidth. Locally cached data can filter out accesses to remote caches,significantly lowering the

bandwidth requirement on the cross-chip interconnection network. This can translate into a simpler

and potentially faster network, while the saved area and power budget can be used for other purposes.
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3. Associativity. Instead of building a highly-associative shared cache to avoid inter-thread conflict

misses, the same set-associativity is available for an aggregate cache formed by private caches each

with much lower associativity, thus reducing power, complexity and latency overhead.

4. Modularity. Compared with a shared cache whose directory information isstored with cache tags

and distributed across all banks, a private cache is more self-contained and thus serves as a natural

unit for resource management (e.g., power off to save energy).

5. Encapsulation. Because private caches interact only through exchanges of cache coherence mes-

sages, the internal organization and operation of individual caches are encapsulated and thus hidden

from other caches and processors. Encapsulation enables CMP caches to have different sizes, asso-

ciativities, caching policies, voltage/frequency configurations and reliability characteristics to either

support heterogeneous processors, or accomodate workloads with diverse performance, power, and

reliability requirements.

6. Explicit sharing. Because encapsulation forces inter-cache resource sharing to be explicit, cooper-

ation throttling is thus easy to implement. Because a cluster of cooperative private caches can be

viewed as one larger private cache, explicit sharing based cooperation mechanisms and policies are

reusable at the granularity of cache-clusters, thus simplifying the task of composing a large-scale

CMP from small-scale clusters of cores and caches.

7. Adoption of existing hardware optimizations. Because many microarchitectural optimizations

assume a uniprocessor with an exclusively owned cache hierarchy, private cache based designs allow

a smooth adoption of such techniques into CMP systems.

8. Software portability. Existing parallel software (in particular the operating system) is written for

processors with private caches, and thus directly portablefor private cache based CMP systems.

On the other hand, breaking the assumption of an exclusivelyowned cache could cause unexpected
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problems (e.g., fairness and security issues [120]).

But partaking of these potential advantages first requires asolution to the major, and predominant,

drawback of private cache designs: the larger number of off-chip cache misses compared to shared cache

designs. CC attempts to make the ensemble of private L2 caches (the shaded area in Figure 3.1) appear

like a collective shared cache via cooperative resource sharing. For example, cooperative caching will use

remote L2 caches to hold (and thus serve) data that would generally not fit in the local L2 cache, if there

is spare space available in a remote L2 cache. To support suchcapacity sharing, CC extends conventional

private caches in two ways. It relaxes multi-level inclusion between L1 and L2 caches to enable flexible data

placement, and it supports sharing of on-chip clean data to save unnecessary off-chip misses.

Non-inclusive Caches

Capacity sharing among private caches requires decoupled data placement in the L1 caches and their

companion L2 caches. Conventionally, multi-level cache hierarchies often employ inclusion, where the

lower level caches (which are closer to the processors and often smaller) can only maintain copies of data

in their companion higher level caches. Cache inclusion implies that a block will have to be invalidated in

an L1 cache when it is evicted from or invalidated in the companion L2 cache. This can greatly simplify the

implementation of the coherence protocol because invalidation requests can be filtered by the higher level

on-chip caches. However with CC, since the objective is to create a global L2 cache from the individual

private L2 caches, maintaining inclusion with only a singleL2 cache bank unnecessarily restricts the ability

of an L1 cache to buffer a variety of data that reside in on-chip L2 caches. An arbitrary L1 cache needs

to be able to cache any block from the aggregate L2 cache, and not only a block from the companion L2

cache bank. Thus, for CC to be effective, the L1 caches have tobe eithernon-inclusive(where a block may

be present in either the L1 or companion L2 cache, or both) orexclusive(where a block can be present in

either the L1 or companion L2 cache, but not both), i.e., be able to cache a block that may not reside in the
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associated L2 cache bank.

Sharing Clean Data Among Private Caches

With private L2 caches, memory access can be avoided on an L2 cache miss if the data can be obtained

from another on-chip cache. Such inter-cache data sharing (via cache-to-cache transfers) can be viewed

as a simple form of cooperation, usually implemented by the cache coherence protocol to ensure correct

operation. Except for a few protocols that have the notion ofa “clean owner,”1 modern multiprocessors

employ variants of invalidate-based coherence protocols that only allow cache-to-cache transfers of “dirty”

data (meaning that the data was written by a processor and hasnot been written back to the higher level

storage). If there is a miss on a block that only has clean copies in other caches, the higher-level storage

(usually the main memory) has to respond with the block, eventhough it is unnecessary for correct operation

and can be more expensive than a cache-to-cache transfer within a CMP.

There are two main reasons why coherence protocols employedby traditional multiprocessors do not

support such sharing of clean copies. First, cache-to-cache transfer requires one and only one cache

to respond to the miss request to ensure correctness, and maintaining a unique clean-owner is not as

straightforward as a dirty-owner (i.e., the last writer). Second, in traditional multiprocessors, off-chip

communication is required whether to source the clean copy from another cache or from the main memory,

and the latency savings of the first option is often not big enough to justify the complexity it adds to the

coherence protocol. In fact, in many cases obtaining the data from memory can be faster than obtaining it

from another cache.

However, CMPs have made off-chip accesses significantly more costly than on-chip cache-to-cache

transfers; currently there is an order of magnitude difference in the latencies of the two operations. Moreover,

unlike traditional multiprocessors, (on-chip) cache-to-cache transfers do not need off-chip communication.

Furthermore, a high percentage of misses in commercial workloads can be satisfied by sharing clean data,

1For example, the Illinois protocol [116], EDWP protocol [5]and Token Coherence [101].
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due to frequent misses to (mostly) read-only data (especially instructions) [11, 13, 97]. These factors make

it more appealing to let caches share clean data2.

3.2.2 Cooperation Mechanisms

By sharing on-chip clean/dirty data and relaxing multi-level cache inclusion, an aggregate cache is formed

by the collection of on-chip private caches. This aggregatecache differs from the baseline private cache

organization in that, through cache cooperation, its content can be controlled to offer different capacities

and latencies for different processor cores.

Cache cooperation, for example to share the aggregate cachecapacity, is a new hardware caching op-

portunity afforded by CMPs. As we shall see, cooperation between caches will require the exchange of

information and data between different caches, under the control of cooperation and throttling policies.

Such an exchange of information and data, over and above the support of a basic cache coherence protocol,

was not considered practical, or fruitful, in multiprocessors built with multiple chips. For example, for a

variety of reasons, when a data block is evicted from the L2 cache of one processor, it would not be placed in

the L2 cache of another processor. The complexity of determining which L2 cache to place the evicted block

into, and transferring the block to its new L2 cache home, would be significant. Moreover, this additional

complexity would provide little benefit, since the latency of getting a block from memory would typically

be lower than getting it from another L2 cache. But, the situation for CMP on-chip caches is very different:

the transfer of information and data between on-chip cachescan be done relatively easily and efficiently,

while the benefit of cooperation (e.g., avoiding costly off-chip misses) can be significant.

The CC framework provides cache placement and replacement based cooperation mechanisms to exploit

the aforementioned opportunities. These mechanisms add local extensions to each cache in two aspects:

2IBM Power4 [148] and Power5 systems add two states (SL and T) to their MESI-based coherence protocol to select and transfer
clean ownership. The first module that fetches a clean data naturally becomes its owner, and the ownership transfers to the next
requester when the data is forwarded to a different cache. Ifthe data is replaced before requested, the ownership is lost. But with
the help of highly associative (8-way) L2 caches, this should happen only infrequently.
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(1) what blocks are placed into it and (2) what blocks are replaced (or displaced) from it. CC policies can

combine these mechanisms to determine what data are kept in the aggregate on-chip cache, and specifically,

in which individual caches.

Cache Placement Based Cooperation

Cache placement based cooperation treats each L2 cache as a black-box: without changing the internal

caching operation, it affects cache content by modifying what data can be placed into the cache. This is

achieved by modifying an L2 cache’s local and remote requeststreams, as illustrated in Figure 3.3.

An L2 cache’s local request stream consists of demand missesand prefetches generated by its associated

L1 caches. Placement based cooperation can filter such requests to avoid L2 cache pollution. One such

example is cache bypassing [80]: by using compiler-generated hints or runtime statistics to predict data

locality in large chunks, it only insert data with good temporal locality in the cache. Similarly, CMP-

NuRapid [27] reduces unnecessary data replication by only placing data in a local L2 when it has been

recently reused (thus is likely to be reused in the future). Both examples selectively bypass L2 placement to

improve the effective cache capacity.

CC also introduces a remote request stream by placing (or “spilling”) locally evicted blocks into remote

on-chip caches (labeled asspill streams in Figure 3.3). Spill allows capacity sharing amongpeer caches,
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making all on-chip storage resources available for one processor core to use. Through spill, each cache can

observe the reference and reuse streams from both local and remote computation threads. Such information

can be used to devise approximate global cache management policies (such as global LRU replacement)

without paying the overhead of global coordination and synchronization.

The spill mechanism can be tailored in different ways. For example, cooperation policies can vary

in deciding (1) what data can be spilled, (2) which cache to host the spilled data, (3) what data should

be replaced to make room for the spilled data, (4) whether spilled data can trigger further spills, and (5)

how to balance the competition between local and remote data, etc. We leave policy decisions for later

discussion, but make two mechanism-level decisions here. First, by default, we choose to randomly pick a

host cache while giving higher probabilities to close neighbors. The random algorithm requires no global

coordination, and allows one cache’s victims to reach all other on-chip caches without requiring “rippled

spilling”. Keeping spilled blocks close to their previous caches can reduce both spilling time and access

latency for later reuse. Second, because one of the purposesof spill is to extend the on-chip life cycle of

local victims, the host cache should handle a newly-arrivedspilled block in the same way as a demand miss.

This implies that for LRU-based replacement policies, the spilled block is initially set as the most recently

used (MRU) entry in the host cache.

Cache Replacement Based Cooperation

Through placement based cooperation, each on-chip cache can be potentially shared by many computation

threads generating heterogeneous memory access streams and having different locality, communication and

sharing properties. Consequently, conventional cache replacement policies (e.g., LRU, random or pseudo-

LRU) that treat all references equally can cause poor QoS andsub-optimal performance. To recognize and

exploit data heterogeneity, cache replacement based cooperation combines the default cache replacement

with data priority.
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This mechanism augments each cache block with a few bits for data classification, which can represent

compiler generated locality hints [154] or dynamic sharingand communication properties [23, 159]. The

cache replacement logic is extended to use such informationand always evict blocks with the lowest priority.

For example, giving lower priority to data with on-chip replicas can quickly yield space for unique data

copies, thus increasing the aggregate cache’s effective capacity. If multiple candidates exist in the lowest

priority, the default cache replacement policy is used to break even. Because replacement based cooperation

only changes how victim blocks are selected, it has no correctness implication and allows more flexible

implementations (e.g., trading accuracy or even correctness for simplicity).

Replacement based cooperation basically allows the customization of individual caches to prefer different

types of data. This mechanism can be combined with spill in various ways to manage the content of the

aggregate on-chip cache as well as individual on-chip caches. Below we discuss three examples. First,

caches with the same priority setting can be composed via spilling to collectively replace undesirable data.

Consider a 2-core CMP where one core’s L2 cache contains onlyhigh priority data while the other L2

cache only has low priority data. When isolated, each individual cache has only one class of data, so the

prioritized replacement policy falls back to the default replacement policy. However, with the help of spill,

the two caches can be glued together as an aggregate cache with two data classes. High priority data spilled

from its original cache will cause global eviction of low priority data, leading to better utilization of the

aggregate cache. Second, caches with opposite priority settings can be connected via spilling as producer-

consumer pairs, where the cache blocks updated by a producercache are evicted and spilled directly into

its consumer cache. Such capability can be exploited by computation with task-level pipeline parallelism

for streamlined data communication [53]. Lastly, caches with different performance, reliability and power

characteristics can potentially be configured with different priority settings, so that heterogeneous cache

resources can be matched to data classes with different properties [69].

On the other hand, priority-based replacement should be used wisely to avoid cache resources being
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entirely occupied by high priority data, potentially leading to a Denial-of-Service (DoS) attack for low

priority data. In this dissertation, DoS is not an issue because we use priority-based replacement only in

L2 caches, and only to reduce the amount of data replication (Section 4.2.1). Other uses of priority-based

replacement can avoid the DoS problem with a probabilistic implementation, where high priority data have

a small chance of being evicted while low priority blocks exist.

3.2.3 Cooperation Throttling Mechanisms

Because CC’s cooperation is based on modifications of cache replacement and placement logic, it simpli-

fies cooperation throttling to a small set of control points.Below we consider two classes of throttling

mechanisms.

Probability Based Throttling

To adjust the amount of cooperation, cooperation probabilities can be specified at the following three control

points: (1) local L1 to L2 data path, (2) L2 replacement logic, and (3) L2 spill logic. These probabilities

are used to decide how often to apply cooperation instead of taking the default action. Probability based

throttling allows CC to provide a wide spectrum of sharing behaviors. If all three probabilities are set to 0,

CC defaults to private caches (albeit with support for cache-to-cache transfer of clean data). CC’s behavior

moves towards more aggressive resource sharing as these probabilities increase.

Probability based throttling can be used for different workloads. For homogeneous workloads where

all threads have similar caching behavior, only one set of system-wide probabilities is needed. However,

heterogeneous workloads demand thread-specific probabilities to suit the caching requirements of individual

threads. For example, programs with larger working sets canhave higher probability for spill and cooper-

ative replacement, while smaller programs can have higher probabilities on L2 bypassing. This way the

smaller programs can save space in their local caches for larger programs, and the aggregate cache resource
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are more efficiently shared.

Quota Based Throttling

CC also supports quota based throttling: each thread’s maximum resource consumption can be specified and

CC will make sure these quotas are honored. Resource quota can be either coarse-grained or fine-grained.

Many cache partitioning schemes allocate capacity in largechunks, based on way partitioning [144]. Fine-

grained quota, on the other hand, can be an arbitrary number of cache blocks.

CC maintains quota by tracking each thread’s resource consumption and replaces data from over-quota

threads with data from other threads. CC throttles a thread’s data placement decisions based on whether

the thread has used up its capacity quota. Specifically, CC disallows a thread to spill locally evicted data to

other caches if the thread’s current capacity exceeds its quota. As data spilled by another thread replaces

data stored in its local cache, an over-quota thread’s capacity usage will be decreased. On the other hand,

CC avoids selecting a under-quota thread’s private cache asa recipient of spilled data, so that this thread’s

capacity usage will only gradually increase.

3.3 CC Implementations

In this section, we present the implementation of the CC framework. Section 3.3.1 enumerates CC’s

functional requirements, and Section 3.3.2 proposes a possible implementation that exploits a CMP’s high-

bandwidth, low-latency, on-chip communication network and flexible topology to reduce space, latency and

complexity overhead. Other CC implementations are possible by extending various existing implementa-

tions, which are discussed in Section 3.3.3.

3.3.1 General Requirements

The functional requirements for CC are described before andsummarized below.
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• Cache coherence extensions.Beyond a conventional cache coherence protocol for non-inclusive

caches (e.g., implemented by Piranha [12]), CC also requires support for cache-to-cache transfer of

clean blocks and block spill. As part of the coherence protocol, this support has to be implemented

correctly.

• Cache replacement extensions.Data classification information needs to be created, exchanged

and maintained, while L2 cache replacement logic uses such information to support priority-based

replacement. Because these modifications only affect the selection of eviction candidates, an incorrect

or slow implementation should only cause performance degradation rather than correctness problems.

• Extensions to support throttling. To allow L2 cache bypassing, L1 caches need to directly writeto

the L2 write-back buffer (assuming write-back caches), which is straightforward to implement. CC

also adds (1) extra states to track the amount of capacity used by each core (which can be imprecise)

and (2) extra logic to decide whether to use cooperation and whether/where to spill. Such extensions

do not affect correctness, thus can be imprecise or slow.

3.3.2 Cluster-based CMP Organization

In this section we detail our proposed implementation of CC using a specialized, on-chip, centralized

directory, which will be used to evaluate the performance ofboth private cache organization and CC in

Chapters 4 and 5. We focus on the implementation of cache coherence extensions because they are critical

for correctness. It should be noted that this design can be used for other CMP systems while CC can also be

implemented in various other ways.

Centralized On-chip Directory

Our design is based on a directory protocol, which has two advantages over a snooping protocol. (1) Latency.

In a snooping protocol, every L2 miss incurs long-latency arbitration overhead to gather responses from all
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Figure 3.4: Private Caches with a Centralized Directory

on-chip caches. A directory protocol can reduce such overhead into a request transfer and a directory

lookup. The reduced network switching activities can also save active power. (2) Bandwidth. Compared

with snooping, a directory protocol can significantly reduce the number of broadcast requests and network

bandwidth requirement. However, implementing a directoryprotocol has to solve two challenges: directory

storage overhead and protocol design complexity.

The proposed implementation is based on a MOSI directory protocol to maintain cache coherence, but

improves over a traditional directory-based system in several ways: (1) To reduce storage requirements,

the directory memory for private caches is implemented by duplicating the tag structures of all private

caches, requiring only 3% extra cache space (Table 3.1); (2)The directory is centralized to serve as the

only serializing point for cache coherence, which can greatly simplify the implementation of the directory

protocol; (3) Located at the center of the chip, the directory can provide fast access to all caches; (4) The

directory is connected to individual cores using a special point-to-point ordered request network, separate

from the network connecting peer caches for data transfers.

Figure 3.4 illustrates the major on-chip structures for an 8-core CMP. The Central Coherence Engine

(CCE) embodies the directory memory and coherence engine, whose internal structure and directory mem-

ory organization is shown in Figure 3.5. The CCE consists of spilling buffers and the directory memory

connected with router queues for incoming and outgoing messages. The spilling buffer is organized as a
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circular buffer, where each valid entry stores an in-flight spilling block (data and state) and its host cache ID.

The lookup, insertion and deletion of spilling buffer entries will be discussed later (in Section 3.3.2). The

CCE’s directory memory is organized as a duplication of all private caches’ tag arrays, similar to [112]’s

remote cache shadow directory. Because CC requires the private caches to be non-inclusive, the CCE has to

duplicate the tags for all cache levels. The tags are indexedin exactly the same way as in an individual core.

A tag entry consists of both the tag bits and state bits.

In our implementation, the directory memory is multi-banked using low-order tag bits to provide high

throughput. Incoming coherence requests trigger lookups in both the spilling buffer and the directory

memory. A directory lookup will be directed to the corresponding bank, and to search the related cache

sets in all cores’ tag arrays in parallel. The results from all tag arrays are gathered to form a state/presence
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vector as in a conventional directory implementation. An individual block’s state may be updated according

to the request type and current coherence state. The coherence engine will finish processing the request

by generating requests for invalidation, data forwarding,or replies with data or acknowledgment messages.

The latency of a directory lookup is expected to be almost thesame as a private L2 cache tag lookup, since

the extra gather step should only marginally increase the latency.

The coherence engine maintains each processor’s duplicatetag arrays to reflect what blocks are stored in

its corresponding local caches and what their states are. For non-inclusive caches, a cache block can remain

in a processor core’s private cache hierarchy (L1 and L2 caches) while moving frequently between local

caches. CCE only keeps track of block installation and eviction from one processor’s entire private cache

hierarchy, because its correct operation only requires knowledge on whether a processor’s private cache

hierarchy has a block, but not its precise location within the hierarchy. However, lack of such information

requires the CCE to carefully manage its tag arrays to avoid conflicts. Specifically, when allocating a new

block in the directory, the CCE first attempts to allocate in the L2 tag array before filling the L1 tags. This

is because for large L2 caches, blocks from multiple L2 sets can be mapped to the same L1 cache set and

potentially cause an overflow in the L1 cache set. Filling theL2 tags first will guarantee the directory

can find a free L1 tag when it is needed. Conversely, when CCE evicts a block from an L2 tag array, it

also checks whether any L1 tags can be mapped and immediatelymoved to the corresponding L2 set. By

keeping the L2 tag arrays as full as possible, the CCE ensuresthat no overflow occurs in its L1 tag arrays.

Table 3.1 lists the storage overhead for an 8-core CMP with a 4-way associative 1MB per-core L2 cache,

2-way 32K split L1 instruction/data caches, and 8-entry per-core spilling buffers. The tag bits storage

overhead is estimated assuming a system having 4 Terabytes of physical memory, and a 128-byte block size.

The total storage needed for extra tag bits (recording information used for cache cooperation), processor

ID (used for quota-based cooperation throttling), duplicate tag arrays and spilling buffers is 271.5KB,

increasing the on-chip cache capacity by 3.12% (or 6.10% fora 64-byte block size). This ratio is similar to
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Component Location Size (KB)
Tag extension (2-bit) Caches 17.0
Processor ID (3-bit) Caches 25.5

Tag duplication Directory 221.0
Spilling buffers CCE 8.0

Total (3.12%) 271.5

Table 3.1: CCE Storage Overhead for an 8-core CMP with 1MB 4-way Per-core L2 Cache

Piranha [12] and lower than CMP-NuRapid [27]. Table 3.2 shows CCE’s relative space overhead for several

different CMP configurations. Although the absolute storage size increases with the number of cores and

per-core cache size, the relative overhead remains stable and actually slightly decreases. We do not model

the area of the separate point-to-point network as it requires the consideration of many physical constraints,

which is not the focus of this dissertation. However, we believe it should be comparable to that of existing

CMP’s on-chip networks.

Configuration Variable Parameter Value (Overhead)
8-core, 4-way (varied L2 size) 512KB (3.30%) 1MB (3.12%) 2MB (2.98%)
1MB, 4-way (varied CMP size) 4-core (3.20%) 8-core (3.12%) 16-core (3.07%)

Table 3.2: CCE Storage Overhead under Different CMP Configurations

Cache Coherence Extensions

Besides maintaining cache coherence, the CCE also needs to support cooperation-related on-chip data

transfers — (1) cache-to-cache transfers of clean data and (2) spills. The implementation of these functions

is discussed below.

Sharing of clean Data. To support cache-to-cache transfers of clean data, the CCE needs to select a

clean owner for a miss request. By searching the CCE directory memory, the CCE can simply choose any

cache with a clean copy as the owner and forward the request toit, which will in turn forward its clean block

to the requester. This implementation requires no extra coherence state or arbitration among the private

caches. On the other hand, the CCE has to be notified when private caches replace clean blocks, in order
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to keep the directory state updated. This requirement is metby extending the baseline cache coherence

protocol with a “PUTS” (or PUT-Shared) transaction, which notifies the CCE about the eviction of a clean

block. On receiving such a request, the CCE will invalidate the block in the corresponding core’s tag arrays.

Spill. Figure 3.6 illustrates two implementations of spill using coherence messages communicated

among the spilling cache, CCE and host cache. In a pull-basedimplementation (Figure 3.6 (A)), a local

victim is locally buffered while the evicting cache notifiesa randomly chosen host cache to fetch the block.

The host cache then issues a special prefetch request to pullthe block. In addition to serving the prefetch

request, the spilling cache also transfers the state bits and removes its local copy (thus migrating the block

to the host cache). The implementation of pull-based spill is straightforward as most modern processors

support prefetching. As shown in Figure 3.6 (B), push-basedspill consists of two pairs of data transfer and

acknowledge messages. The first transfer is the same as a normal write-back initiated by the private cache.

Upon receiving a spilled block, the CCE temporarily buffersthe data in its spilling buffer and acknowledges

the sender. The second transfer ships the block from the CCE to the chosen host cache. The host cache

treats the incoming data similarly as a demand request, allocates space for it by possibly replacing another

block, then acknowledges the directory to release the spillbuffer. Race conditions can occur when the host

cache issues a request for the spilled block during the second data transfer, in which case the CCE will

receive the request message instead of the acknowledgment.The CCE handles it by searching the spilling

buffer and releasing the entry with both matching block address and host cache ID. Similar as update-

based coherence protocols, push-based spill can have deadlock issues, which are often solved by using

different virtual channels for different types of communications. We have implemented push-based spill in

our simulator to prove its feasibility, and avoided deadlock by using a dedicated virtual channel for block

spilling.

Data Classification. Because the coherence engine can observe all on-chip transactions, it has been

used extensively to detect sharing, communication and synchronization patterns [31, 70, 82, 89, 90, 92, 93,
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110, 126, 140]. The CCE can classify data according to their coherence states or behaviors, and use such

information for CC’s prioritized cache replacement. For example, Chapter 4 presents replication-aware

cache replacement that tries to keep unique data on chip. CCEdetects unique on-chip copies when a

write-back leaves only one cache holding the data, and communicates this information to that cache with a

notification message.

3.3.3 Other Implementation Options

This section discusses other possible implementations of the three key components in CC’s mechanism

layer: the private cache organization, cooperation mechanisms and throttling mechanisms.

Cache Coherent On-chip Private Caches

Cache coherence among on-chip private caches can be maintained by snooping or directory based protocols,

as well as token coherence [101]. Multiple private caches can be connected via snooping buses as in
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traditional SMPs, and CMPs such as IBM Power4 and Power5 systems [148]. Non-inclusive L1/L2 caches

are also supported by previous CMP designs. For example, Piranha [12] uses shadow tags to encode L1

cache states on the shared L2 cache side. Similarly, each private L2 cache can include duplicated L1 tags

(with cache states) to simplify the implementation of cachecoherence. Snooping requests can be filtered by

simultaneously looking up both L2 and duplicate L1 tags, andforwarded to an L1 cache only if the data is

actually stored in it. A similar implementation can be used for token coherence, as demonstrated in [13],

while further optimizations can use soft-state directory information to reduce the number of broadcast

requests.

Implementing private caches with a directory protocol is less straightforward, because the naive imple-

mentation of on-chip directory memory can incur prohibitive storage overhead. A concise on-chip directory

can be implemented by duplicating private L1 and L2 cache tags (as shown in Section 3.3.2), or using a

sparse directory cache [55]. The latter approach works wellfor workloads with good directory reference

locality, but misses in the directory cache either incur expensive off-chip misses or require eviction of valid

on-chip blocks.

Many options exist to support on-chip sharing of clean data.The clean owner can either be encoded in

the protocol as a new state, or selected via arbitration of peer caches in a snooping protocol [148], or chosen

by the directory if it keeps track of clean data write-backs (Section 3.3.2).

Supporting Cooperation

Spill-based cooperation can be implemented in either a “push” or “pull” strategy, which have been discussed

in Section 3.3.2.

Both placement and replacement based cooperation need to associate policy-specific information with

individual cache blocks, which can be recorded in the cache tag with a few bits. These bits are initialized

upon cache allocation, possibly using information associated with the newly arrived data block. Updates of



44

A

B

C

D

Cache Tag

0

0

0

0

P1

0

1

0

0

P2
Priority bits

Stack Depth

1MRU

2. Finding the first 

non-zero bit
2

3

4LRU

1. Finding the first non-zero membership vector

(A) LRU replacement

1. Find the first non-zero membership vector

2. At each non-leaf node along the search path:

IF (subtrees are both non-zero or both all-zero)

THEN follow the LRU subtree

ELSE follow the non-zero subtree

(B) Pseudo-LRU replacement

Figure 3.7: Implementing Priority-based Replacement (N=3, M=4)

these bits are triggered by external events, which can either be actively observed by caches in a snooping

protocol or generated by the directory when it detects statechanges. Because these bits are only used to

make caching decisions, and not involved in cache coherenceand computation efforts, they are allowed to

be imprecise or out-dated without causing correctness problems.

Prioritized replacement can be implemented with extra circuitry in the cache replacement logic. Fig-

ure 3.7 illustrates its integration with two representative cache replacement policies, assumingN classes of

data are prioritized in anM-way associative cache.

• LRU replacement. As shown in Figure 3.7 (A), each cache block is associated with N-1 priority

bits, each bit indicating whether it belongs to a certain data class between priority1 andN-1. A

block belongs to classN (the highest priority level) if all priority bits are 0. We can also view the array

of priority bits in a cache set asN-1 class membership vectors (each vector hasM bits corresponding

to theM blocks). In a stack-based implementation [105], a block’s priority bits move along with it to

reflect changes of the block’s position in the LRU stack. The replacement candidate is selected from
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the lowest-priority non-zero membership vector, and the victim should have the lowest stack position

among the blocks belonging to the selected priority class. This implementation can also be used for

other stack-based replacement algorithm (such as random replacement [105]).

• Pseudo-LRU replacement.Figure 3.7 (B) shows a tree-based pseudo-LRU implementation [136].

To integrate with priority-based replacement, we first select the lowest-priority non-zero membership

vector. At each non-leaf node along the binary search path, the LRU-based search logic is augmented

to also consider priority information. Specifically, the augmented logic selects the LRU subtree if the

membership vectors for both subtrees are simultaneously non-zero or all-zero; otherwise, it selects

the subtree with a non-zero membership vector.

The size and complexity of these extra circuits grow with both levels of priorityN and cache associativity

M. We set (N, M) to be (2, 4) in this dissertation, while expectingN to be less than 4 andM no more than

8, so these changes can only add minimal storage and latency overhead. More aggressive assumptions

are made by other CMP caching proposals because write-backsare not on the critical path and they have

negligible performance impact. For example, victim replication [159] uses a 4-level prioritized replacement

in a 16-way set-associative shared cache.

Supporting Throttling

To support cooperation throttling, each private cache should include two sets of registers: the "knob"

registers to store specified probabilities or quotas, whilethe "measurement" registers to save performance

measurements which are fed back to adjust the degree of cooperation throttling. For quota-based throttling,

every cache block includes a processor-ID field to indicate for which core’s data it stores. Each private

cache maintains a set of counters to reflect the number of cache blocks used by each thread, as well as the

number of invalidated/unused blocks. By periodically sharing such information among different cores, CC

can monitor the capacity usage of different cores.
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Cooperation throttling can be either static or dynamic. Setting the throttling knobs statically is straight-

forward and requires no special support. Dynamic throttling consists of a feedback loop where current

throttling performance and program behavior changes are used to adjust the degree of future throttling.

In this dissertation, we assume that throttling decisions are made by the hardware, but CC itself has the

flexibility to support software controlled adaptation. Thesoftware can periodically read the "measurement"

registers, make adaptation decisions and update the "knob"registers, while CC is responsible for enforcing

the specified throttling decisions.

3.4 CC for Large Scale CMPs

The advent of CMPs has changed the scaling trend from boosting frequency into increasing the number of

on-chip cores [119]. With Intel announcing its 5-year 80-core CMP plan [73] and Rapport Inc.’s shipping

of single-chip with 256 mini-cores [128], computer architects are now starting to consider how to build and

use CMPs with 1000 cores in a few technology generations [7].In this section, we discuss several directions

in improving the scalability of CC and outline a possible implementation of CC for large scale CMPs. This

proposal is by no means the best approach, but only serves as our first step towards the design of many-core

systems.

3.4.1 Directions to Improve CC’s Scalability

We believe that CC’s private cache organization is essential for highly scalable CMPs due to its modularity

and locality benefits. It will be difficult for a shared cache to support hundreds of threads, because the

L1 miss traffic can saturate the on-chip network, and the needed cache associativity to avoid inter-thread

conflict misses may incur prohibitive overhead. CC addresses the off-chip bandwidth bottleneck of private

caches through inter-cache cooperation, which may limit the scalability in two aspects. The first bottleneck

for current CC design is its central-directory based implementation. As the number of cores managed by

the CCE increases, contention within CCE will delay cache coherence operations and cooperation activities.
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Scalability barriers also exist at the policy level even if we have a scalable cache coherence protocol. As

the number of cores increases, the average latency for cooperative capacity sharing among all cores (e.g.,

via spilling/reusing) will also grow, eventually hitting apoint where the capacity benefit provided by global

sharing is offset by the growing on-chip communication overhead. Cooperative capacity sharing policies

should consider such tradeoffs and limit cooperation within a group of closely located caches. Other cache

optimizations may also prefer such a scoping policy if theiralgorithms cannot scale to hundreds of cores.

A natural way to accomodate these requirements is to build large-scale CMPs via composition of small-

scale clusters (e.g., 4-8 cores) and reuse the current CC design within each cluster. Comparing to a flat

directory protocol possibly embedded in a mesh-base on-chip network, the hierarchical design can sig-

nificantly improve latency and reduce bandwidth by exploiting intra-cluster data/communication locality.

This approach provides a smooth transition path for small-scale workloads because it requires no extra

modifications of cooperation policies and incurs little extra performance overhead. Figure 3.8 illustrates

such a hierarchical design for a 128-core CMP with 16 8-core clusters. Within each cluster, the CCE is

augmented to maintain cache coherence at two levels. Intra-cluster coherence is provided by the central
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directory (CCE) as discussed in Section 3.3.2, and inter-cluster coherence is achieved with a directory

organization where, through address space partitioning, each CCE serves as the home node for a fraction

of physical addresses. Multiple memory controllers (MC) are used, each responsible for servicing DRAM

accesses generated by one or more neighboring inter-cluster directories.

This design mitigates the implementation bottleneck by limiting the number of cores within each clus-

ters, while encapsulating each cluster as a single core withprivate caches to build larger systems. Such

encapsulation not only reduces inter-cluster traffic for data forwarding, block invalidation, and write-back,

but also decouples intra- and inter-cluster coherence, allowing flexible combination of coherence protocols

at different levels.

Treating a cluster as a single core (by aggregating reference streams and cache resources) also allows

the reuse of previously proposed cooperation mechanisms and policies across multiple clusters. Instead of

using a fixed scope of cooperation defined by the cluster boundary, inter-cluster cooperation will take place

in “logical domains” (as shown in Figure 3.9), which can be statically or dynamically formed according

to management domains, communication patterns, or data locality. With cooperative caching at different
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levels, a single core can have a deep on-chip cache hierarchyconsisting of its private L1 and L2 caches, as

well as the L3 and L4 caches formed through intra- and inter-cluster cooperation.

3.4.2 An Implementation of Large-scale CMP

Below we describe a cluster-based implementation of large-scale CMP in details. Most the techniques

used here have been evaluated by other researchers for small-scale multiprocessors (e.g., no more than 16

nodes) [21, 101, 103, 104, 109]. We leave their evaluation under large-scale CMPs for future work because

evaluating large-scale CMPs is still an open research question [7,65].

Figure 3.10 shows the key components of this implementation, as well as their interaction when servicing

(A) L2 cache misses and (B) inter-cluster coherence requests. The required components (shaded in the

figure) are (1) intra-cluster directory and (2) inter-cluster token coherence engine which are collocated in

the CCE, and (3) the memory controller for off-chip DRAM accesses. The other components are optional

filters and predictors to improve performance and scalability.

At a high level, an L2 miss is handled in the following steps. First the CCE receives the miss request,

looks up in the intra-cluster directory and generate intra-cluster forward or invalidation requests if the miss

can be satisfied by other caches in the local cluster. If the request misses in its local cluster (the L3 cache in

Figure 3.9), it will check the Exclusive Region Cache (ERC) to see whether the coarse-grain region (that the

block belongs to) is exclusively cached by the local cluster. If the region is exclusively cached, implying that

the miss cannot be serviced on-chip, the miss request is directly sent to the memory controller for off-chip

memory access. Otherwise, the region is potentially sharedby other on-chip clusters, the token coherence

engine will try to service the miss via inter-cluster coherence requests. The token coherence engine predicts

a set of destination clusters (the L4 cache in Figure 3.9), and multi-casts the request. The multicast request

can either be satisfied, or needs to be retried by the Memory Interface Cache (MIC) if none of the destination

clusters can serve it. Depending on whether the block has on-chip copies, the MIC will either generate an
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on-chip broadcast request, or an off-chip memory request which will eventually satisfy the miss request.

Below we describe the operation and implementation of different components. As we have already

discussed the internals of intra-cluster directory and memory controller, we only cover the remaining com-

ponents used for large-scale CMPs.

• Exclusive Region Cache (ERC).ERC records frequently accessed coarse-grained regions (contin-

uous, aligned, power of 2 sized memory areas) [109] that are exclusively cached within the local

cluster. When an L2 miss enters the CCE (Figure 3.10 (A)), it first triggers a lookup in the intra-cluster

directory. If the block hits in the local cluster, the directory will issue intra-cluster request messages;

otherwise, the ERC is checked. The ERC directly sends out an off-chip request to the memory

controller if the block belongs to a region exclusively stored in the local cluster, therefore filtering

unnecessary inter-cluster traffic via the early detection of on-chip misses. Previous research has

observed significant coarse-grained exclusive caching forboth multiprogrammed and multithreaded

workloads [21, 109] and shown that small ERCs (64-entry per 1MB cache for 16K regions) are
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sufficient for effective filtering.

• Inter-cluster token coherence.We employ token coherence [101,103] to keep inter-cluster cache co-

herent (Figure 3.10 (A)) because it allows direct communication between the miss-causing cache and

neighboring sharers without expensive intervention of global ordering points (e.g., bus or directory).

A destination-set predictor [100] is used to predict the destination cluster sets for misses in the local

cluster, which are used to generate multicast requests and avoid broadcast on the global network. By

sourcing data directly from close-by sharers to the requesting cache, this design reduces average cache

latency for workloads having significant sharing among neighboring clusters or between predictable

producer-consumer pairs. For workloads that cannot exploit token coherence, we use the memory

controller as the global ordering points to broadcast requests. We make two modifications to the

original token coherence [101] for better scalability: (1)Each cluster is treated as one cache to

reduce the token size and predictor storage; (2) For read requests (GETS), the multicast request is

implemented as one cruise-control message (as used by Piranha [12] for on-chip invalidation) which

sequentially visits each cluster in the destination set until it finds the first sharer. This optimization

can further reduce latency by fetching data from the closestcluster.

• Memory Interface Cache (MIC). Requests are routed to the memory controller if initial searches

in their local cluster and predicted destination clusters fail (Figure 3.10 (A)). For correctness and

performance reasons, off-chip DRAM accesses should be avoided if on-chip copies exist. We adopt

the memory interface cache proposed by Marty and Hill [104] to maintain such information, thus

avoiding the complexity and space overhead of using an extrachip-level directory. Here, each memory

block is augmented with an owner bit to indicate whether the memory should respond to on-chip

requests. This bit is cleared (as 0) when data is first fetchedon-chip, and set to 1 upon off-chip write-

back. The MIC records on-chip regions with their block-level owner-bit vectors. When a request

misses in the MIC, the memory controller will read the owner-bit from memory and fetch the data if
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the memory should respond. Otherwise, a broadcast is issuedto find the on-chip copies. To maintain

the owner-bit, replacing a block with partial tokens needs to merge its tokens with other on-chip

copies, as did in [104].

• Cached Region Hash (CRH).Figure 3.10 (B) shows the processing of inter-cluster request within

a CCE. We use a Bloom filter [18] called Cached Region Hash (CRH) [109] to filters unnecessary

directory lookups to save latency, bandwidth and power. CRHrecords a superset of regions cached in

the local cluster using a small bit vector (1KB per 1MB cache)and can filter most unnecessary region

lookups. The intra-cluster directory is only accessed if the request hits in the CRH, which generates

either intra-cluster forwarding requests, or an acknowledgment if the data is not cache in the cluster.

From the viewpoint of a processor core, the proposed large-scale CC design can effectively support all

levels of on-chip cache hierarchy (L1 to L4 caches as shown inFigure 3.9) because it avoids higher-level

cache accesses and global communication whenever a miss request can be serviced by a lower-level cache.

We believe that this design can improve scalability in several important scenarios: (1) locality is exploited

at the following three cache levels to reduce global communication: private L2 cache, caches in a cluster

managed by the intra-cluster directory, and neighboring clusters glued with token coherence (e.g., logical

domains and stable sharers); (2) with ERC, no coherence overhead is incurred for exclusively owned data;

(3) global ordering points (here the memory controller) areaccessed only when global communication is

needed; (4) off-chip accesses are reduced through on-chip cooperation and by the MIC structure.

The drawback of this design is its inefficiency for global communication, which can at worst involve

both a multicast message generated by the token coherence protocol and a broadcast message generated by

the global ordering point. To support workloads with less data and communication locality for CMPs with

kilo-cores, future research is needed in understanding large-scale parallel workloads, and providing scalable

communication infrastructure (e.g, high-dimensional interconnection networks), programming models (e.g.,

hybrid between shared memory in small scopes and message passing across clusters) and cache management
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policies.

3.5 Summary

To meet both performance and non-performance related, potentially conflicting cache requirements, a wide

spectrum of application/optimization specific cache resource sharing behaviors are needed. Because neither

private nor shared cache organization can answer these challenges, we advocate a unified framework to

manage the aggregate CMP on-chip cache resources.

The proposed CC framework includes three key mechanisms. (1) Private cache based organization

provides both latency/bandwidth benefits and resource isolation. CC also removes the inclusion restriction

within a processor core’s multi-level private cache hierarchy for flexibility and supports cache-to-cache

transfers of clean data to avoid unnecessary off-chip misses. (2) Cache placement and replacement based

cooperation mechanisms enable inter-cache resource sharing. (3) Probability and quota based throttling

mechanisms can orchestrate and control cooperative resource sharing.

Cooperative policies can thus combine these core mechanisms in various ways to suit the resource sharing

needs for specific workloads and optimization goals. CC can also be implemented in different ways. As

an example, we propose a cluster-based CMP organization using a on-chip central directory, and discuss

possible extensions to support large-scale CMPs. Chapter 4and 5 will elaborate on how to combine CC

mechanisms with innovative cooperation policies for memory latency reduction and inter-thread interference

isolation.
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CHAPTER 4

L ATENCY REDUCTION VIA COOPERATIVE CACHING

In this chapter we extend the CC framework with cooperation policies to reduce the average memory

access latency. In Section 4.1 we motivate the problem and outline our proposed solution. Section 4.2

describes cooperation policies to reduce the number of long-latency off-chip misses. An evaluation of our

approach is presented in Section 4.3, and we conclude with Section 4.4.

4.1 Motivation and Proposed Solution

4.1.1 Motivation

An important goal of a cache hierarchy is to improve performance by reducing the average memory access

latency. For CMPs, the average memory access latency can be broken into cycles spent at different levels

of the memory hierarchy: (1) local L1 caches; (2) local L2 cache, which can either be a processor core’s

private L2 cache or local L2 banks as part of a shared cache; (3) remote caches, which are on-chip caches

that are not local to the requesting processors; and (4) off-chip storage (any external caches and DRAM).

Correspondingly, Equation 4.1 calculates the average memory latency, wherePc denotes the probability that

a memory access hits in cache levelc, andLc denotes the (round-trip) hit latency to cache levelc. For a

given workload and processor configuration, memory latencyreduction usually correlates to performance

improvement because the number of memory accesses to complete a certain amount of work (measured as

the number of committed instructions or user-defined transactions) is mostly determined1.

1Workload variability [2] can change the number of memory accesses per unit of work, usually due to spin locks and idle loops.
However, such effects are largely filtered by private L1 caches commonly used in CMP designs, and we use the same methodology
as suggested in [2] to compensate the effects that workload variability has on simulation results.
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Latency = (PL1 ∗ LL1) + (PLocalL2 ∗ LLocalL2) + (PRemoteL2 ∗ LRemoteL2) + (PMem ∗ LMem) (4.1)

Several terms in Equation 4.1 can be viewed as constants across different CMP caching schemes. First,

the access latencies of various cache/memory levels are fixed by their tag/data array lookup time and network

latencies2. Second, the L1 cache hit ratio is constant because L1 cachesare similar across various CMP

caching schemes and usually independent of the organization and management of L2 cache resources. These

factors have left the probability distribution of L1 cache misses (or the relative hit ratios to L2 caches

and memory) as the determining factor of CMP caching performance. These terms are marked bold in

Equation 4.1.

This aspect is exactly where various CMP caching proposals differ. Pure private caches make efficient

use of their portion of on-chip cache resources, leading to more local L2 hits (higherPLocalL2) as well as

potentially more off-chip accesses (higherPMem); a shared cache can reduce off-chip misses by storing data

across the chip, but a local bank is only able to satisfy a fraction of total L1 misses (lowerPLocalL2). Shared

cache based hybrid schemes try to exploit data replication and migration to increase local L2 hit ratio (higher

PLocalL2 and lowerPRemoteL2), without significantly increasing off-chip accesses [15,27,94,115,158,159].

Private cache based hybrid schemes attempt to make use of remote on-chip caches (increasingPRemoteL2

and decreasingPMem), while retaining higher local L2 hit ratio [14,59,68,138]. Depending on the aggregate

caching requirement of the workloads, these schemes can deliver different results: small workloads that can

be cached by a local L2 cache do not need the larger capacity ofshared cache; larger workloads prefer

shared cache based or hybrid designs to reduce off-chip misses.

In order to suit the diverse requirements of different workloads, an ideal CMP caching scheme must

2This is only a first-order approximation because congestionin the network and memory controller can cause extra delays.
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be able to: (1) provide a spectrum of options between the two extremes of private and shared cache

designs, and (2) dynamically adapt to the best sharing pointfor a given combination of workload and system

configuration.

4.1.2 Proposed Solution

We try to optimize the average latency of memory requests with CC by combining the strengths of private

and shared caches adaptively. This is achieved in three ways: (1) by using private caches as the baseline

organization, CC attracts data locally to reduce remote on-chip accesses, thus lowering the average on-chip

memory latency; (2) via cooperation among private caches, it can form an aggregate cache having similar

effective capacity as a shared cache, to reduce costly off-chip misses; (3) by cooperation throttling, it can

provide a spectrum of choices between the two extremes of private and shared caches, to better suit the

dynamic workload behavior.

Our approach attempts to manage the aggregate on-chip caches with a set of unified heuristics. By

mimicking a shared cache, CC does not distinguish between different sharing types (e.g., private, read-only,

read-write) or treat individual threads separately (according to their different working set sizes and locality

characteristics). The proposed cooperation policies are conceptually simple, only requiring modifications to

the default cache placement and replacement policies, and are easily supported by the CC framework.

4.2 Policies to Reduce Off-chip Accesses

Because CC’s baseline organization already uses private caches to reduce cache latency, we now consider

cooperation policies to efficiently use the aggregate on-chip cache resources and thereby reduce the number

of off-chip accesses. We choose to mimic the caching behavior of a shared cache with a group of cooperative

private caches. Compared with private caches, a shared cache makes more efficient use of available capacity

in three ways, corresponding to the three cooperation polices we discuss in this section.
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First, a shared cache uses all on-chip data (both dirty and clean) to satisfy processor requests. On

the contrary, traditional private caches only support the sharing of on-chip dirty data. As discussed in

Section 3.2.1, CC matches a shared cache by supporting cache-to-cache transfer of clean data. Because

unnecessary off-chip accesses are removed when there are clean copies residing elsewhere on the chip, we

show in Section 4.3 that this baseline CC design can significantly outperform conventional private caches.

Second, a shared cache eliminates replication by storing only one copy of each unique data, while private

caches may keep multiple copies of the same data on-chip. We introduce a cooperation policy that replaces

replicated data blocks to make room for unique on-chip copies (calledsinglets), thereby making better use

of the available cache resources.

Third, a shared cache observes references from all processor cores and chooses replacement victims

globally. Consequently, different cache capacities are allocated to different threads according to their

requests3. On the other hand, cache capacities are statically allocated to different threads in a private

cache organization, and each private cache can only observerequests and select replacement victims locally.

Using CC’s spill mechanism, the last cooperation policy combines local replacement policies with global

spill/reuse history to approximate a global replacement policy, thereby keeping potentially more useful data

on the chip.

Because Chapter 3 has described the details of cache-to-cache transfer of clean data, below we will only

discuss the two new cooperation policies and their throttling.

4.2.1 Replication-aware Cache Replacement

The baseline private L2 caches employed by CC allow replication of the same data block in multiple on-

chip caches. When cache capacity can sufficiently satisfy the program’s working set requirement, replication

reduces cache access latency because more requests can be satisfied by locally replicated copies. However,

3The model here is that a thread runs on a processor core, whoserequests are filtered by L1 private caches and triggers capacity
allocation in the shared cache.
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Figure 4.1: State Diagram for the Singlet Bit

when cache size is dwarfed by the working set size, replicated blocks will compete for the limited capacity

with unique copies. CC uses replication-aware data replacement to optimize capacity, which discriminates

against replicated blocks in the replacement process. Thispolicy aims to increase the number of unique

on-chip blocks, thus improving the probability of finding a given block in the aggregate on-chip cache.

We define a cache block in a valid coherence state as asinglet if it is the only on-chip copy, otherwise it

is a replica because multiple on-chip copies exist. We employ a simple policy to trade off between access

latency and capacity: evict singlets only when no replicas are available as victims. This can be implemented

by CC using prioritized cache replacement. All on-chip dataare classified as either singlets or replicas, and

replicas are first selected when choosing victims.

With CC, a singlet block evicted from a cache can be further spilled into another on-chip cache. Using the

aforementioned replacement policy, both invalidated and replica blocks in the receiving cache are replaced

first, again reducing the amount of replication. By giving priority to singlets, all private caches cooperate

to replace replicas with unique data that may be used later byother caches, further reducing the number of

off-chip accesses.

To indicate whether a block is a singlet, each cache tag is augmented with a singlet bit. This bit is

advisory and not needed for correctness. Figure 4.1 describes the state diagram for the singlet bit, which can

be initialized in two ways: (1) it is set to 0 if the block is first fetched from off-chip memory or as a result of

write miss (assuming an invalidation based coherence protocol), or (2) it is set as 1 if the block is forwarded
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from other caches. In the second case, the forwarding cache also resets its singlet bit to 0, indicating the

data now has replicas. The singlet information is also communicated from the directory to on-chip caches:

when the directory receives a write back message, or a PUTS message which indicates the eviction of a

clean block, it checks the presence vector to see if this action leaves only one copy of the data on-chip. If so,

an advisory notification message (SINGLET) is sent to the cache holding the last copy of the block, which

can set the block’s singlet bit to 1.

4.2.2 Global Replacement of Inactive Data

Spilling a victim into a peer cache both allows and requires global management of cooperative private

caches. The aggregate cache’s effective associativity nowequals the aggregate associativity of all caches.

For example, 8 private L2 caches each with a 4-way associativity effectively offers a 32-way set associativity

for CC to exploit.

Similar to replication-aware data replacement, we want to cooperatively identify singlet but inactive

blocks, and keep globally active data on-chip. This is especially important for multiprogrammed workloads

with heterogeneous access patterns. Because these applications do not share data and have little operating

system activity, almost all cached blocks are singlets after the initial warmup stage. However, one program

with poor temporal locality may touch many blocks which soonbecome inactive (or dead), while another

program with good temporal locality but large working set will have to make do with its fixed, private cache

space, frequently evicting active data and incurring misses.

Implementing a global-LRU policy for CC would be beneficial but is also difficult because all the

private caches’ local LRU information has to be synchronized and communicated globally. Practical global

replacement policies have been proposed to approximate global age information by maintaining reuse coun-

ters [124] or via epoch-based software probabilistic algorithms [50]. We modify N-Chance Forwarding [32],

a simple and fast algorithm from cooperative file caching research, to achieve global replacement.
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Figure 4.2: Percentages of Unique Cache Blocks in DifferentSchemes

N-Chance Forwarding was originally designed with two goals: it tries to avoid discarding singlets, and it

tries to dynamically adjust each program’s share of aggregate cache capacity depending on its activity level.

Specifically, each block has a recirculation count. When a private cache selects a singlet victim, it sets the

block’s recirculation count to N, and forwards it to a randompeer cache to host the block. The host cache

receives the data, set it as the most recently used (MRU) entry in the chosen cache set and evicts the least

active block in its local cache. The life cycle of the spilledblock is thus extended, giving it new chances

to compete with other cache blocks for on-chip space. If a recirculating block is later evicted, its count is

decremented and it is forwarded again unless the count becomes zero. If the block is reused, its recirculation

count is reset to 0. To avoid a ripple effect where a spilled block causes a second spill and so on, a cache

that receives a spilled block is not allowed to trigger a subsequent spill.

The parameter N was set to 2 in the original proposal [32]. A larger N gives singlet blocks more

opportunities to recirculate through different private caches, hence makes it more likely to reduce the amount

of replication and improve the aggregate cache’s effectivecapacity. We have studied CC schemes with

different N values, and found that increasing N beyond 1 has little additional benefit for CMP caching. To
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explain this, we compare the percentages of singlet blocks under various N values in Figure 4.2. It shows

that, for 4 commercial workloads with significant data sharing, CC with N=1 can achieve almost the same

level of replication control as CC with N=8, therefore providing the same level of performance4. Figure 4.2

also shows that, even with N=8, N-Chance Forwarding cannot remove all replicas in the aggregate cache.

This is because CC can only reduce replication in cache sets where singlets compete space with replicas,

which may not cover all cache sets.

We therefore sets N to 1 in this dissertation, and call the modified policy 1-Fwd. 1-Fwd dynamically

balances each private cache’s allocation between local data accessed by its own processor and global data

stored to improve the aggregate cache usage. The active processors’ local references will quickly force

global data out of their caches, while inactive processors will accumulate global data in their caches for the

benefit of other processors. This way, both capacity sharingand global age-based replacement are achieved.

Implementing 1-Fwd in CC is also simple. Each cache tag needsto be extended with one bit to indicate

whether the block was once spilled but has not been reused. Figure 4.3 illustrates the operation of the spilled

bit with a state diagram. This bit is initialized to 0 for blocks installed due to local accesses. It is set to

1 when a cache receives the spilled block, and reset to 0 if theblock is reused by either local or remote

processors. Similar to the singlet bit, the spilled bit is advisory and not needed for correctness.

4For multiprogrammed workloads with little replication, CCwith larger N values perform essentially the same as CC with N=1.
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4.2.3 Cooperation Throttling

At this point, CC can operate in one of two extreme modes: (1) shared cache mode by always using its

cooperative capacity improvement policies, and (2) private cache mode that never uses cooperation policies.

Now we use probability based cooperation throttling to provide a wide spectrum of caching behaviors

between the two extreme modes, and discuss how to dynamically choose the best cooperation probabilities.

As discussed in Section 3.2.3, probability based throttling controls how often to apply the cooperation

policies. In the context of memory latency reduction, CC behaves more like as a shared cache with higher

cooperation probabilities and more like a group of isolatedprivate caches with lower probabilities. Although

cooperation throttling is needed for both multithreaded and multiprogrammed workloads, we focus on

multithreaded workloads in this chapter, and apply quota based throttling in Chapter 5 to enforce isolation

among multiprogrammed applications.

Several options exist in choosing the best cooperation probabilities for a given workload. Static tuning

sets the optimal probability based on profile information, and dynamic tuning adapts by predicting the

costs/benefits of various throttling degrees. Beckmann et al. [13, 14] examined the tradeoffs in balancing

latency and capacity, and proposed adaptive selective replication (ASR) mechanisms and policies to reach

the best replication level. ASR can be integrated with CC to optimize both homogeneous and heterogeneous

workloads.

Alternatively, we can use dynamic set sampling (DSS) [122] to predict the memory latencies experienced

under different cooperation probabilities simultaneously. The key intuition behind DSS is that a caching

scheme’s impact on on the whole cache can be accurately predicted by sampling its impact on a small

fraction of cache sets. As shown in Figure 4.4, we divide eachL2 cache into 5 disjoint cache set groups:

4 small sampling groups (each having 3% of the total cache sets) and one large group consisting of all

the remaining cache sets. Each sampling group uses a different cooperation probability (0%, 30%, 70%

and 100%, respectively), and periodically a global selector will choose the best performing sampling group
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Figure 4.4: DSS-based Adaptive Throttling

(performance measured in average memory latency) and use its cooperation probability in the remaining

cache sets.

In this dissertation we compare the average memory latencies of various throttling options by assuming

strong correlation between memory latency and performance, similar to previous proposals [13,122]. Tech-

niques such as out-of-order processors, prefetching and memory-level parallelism optimizations can break

this assumption by partially or totally overlapping cache misses with useful computation or concurrent

memory accesses. More accurate prediction can be made by sampling the direct performance measurement

such as IPC or user-specified throughput metrics (as suggested in [3]), which is left as future work.

4.3 Performance Evaluation

In this section we evaluate the effectiveness of CC using full-system simulations. We first describe our

simulation and workload setup in Section 4.3.1, then present the performance, latency and bandwidth results

for multithreaded commercial workloads and multiprogrammed SPEC2000 workloads in Sections 4.3.2

and 4.3.3, respectively. In Section 4.3.4, we evaluate CC’sperformance sensitivity with different system

sizes, memory latencies and directory overheads. CC is thencompared against the recently proposed Victim

Replication (VR) scheme [159] in Section 4.3.5, using the same simulation parameters as in the original VR

proposal. The benefits of adaptive cooperation throttling is evaluated in Section 4.3.6.

Table 4.1 summarizes the different setups we use in our evaluation. We use multiple setups to demonstrate
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Variable Values
Workloads Multithreaded commercial workloads (OLTP, Apache, JBB, and Zeus)

Multiprogrammed SPEC2000 workloads (heterogeneous and homogeneous)
Multithreaded SPECOMP workloads (for VR comparison)
Single-threaded MinneSPEC benchmarks (for VR comparison)

System sizes 4-core and 8-core CMPs
Processor models 4-way out-of-order, 12 FO4 cycle time [60,64] (default)

In-order blocking, 12 FO4 cycle time [60,64] (for sensitivity study and throttling)
In-order blocking, 24 FO4 cycle time [61,139] (for VR comparison)

Cache sizes 1MB per-core L2 (default)
512KB and 2MB per-core L2 (for sensitivity study)

Memory latency 300 cycles (default)
600 cycles (for sensitivity study)

Table 4.1: Evaluation Scenarios

Component Parameters
Out-of-order processor pipeline4-wide issue, 10-stages
Instruction window / scheduler 128 / 64 entries

Branch predictors 12K YAGS + 64-entry RAS
Block size 128 bytes

L1 I/D caches 32KB, 2-way, 2-cycle hit latency
L2 caches/banks Sequential tag/data access, 15-cycle hit latency
On-chip network Point-to-point mesh network, 5-cycle per-hop latency

Main Memory 300 cycles total, 16 outstanding requests per core

Table 4.2: Processor and Cache/Memory Parameters

that CC achieves a robust performance advantage across manydifferent processor, cache and memory

configurations and a wide selection of workloads.

4.3.1 Simulator and Workload Setup

We use a Simics-based [99] full-system execution-driven simulator. The cache simulator is a modified

version of Ruby from the GEMS toolset [102]. The processor modulems2simis a timing-directed functional

simulator that models modern out-of-order superscalar processors using Simics Microarchitecture Interface

(MAI). Table 4.2 lists the relevant configuration parameters used in our default simulation setting.

For benchmarks, we use a mixture of multithreaded commercial workloads and multiprogrammed SPEC
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Multiprogrammed (4-core)
Name Benchmarks
Mix1 apsi, art, equake, mesa
Mix2 ammp, mesa, swim, vortex
Mix3 apsi, gzip, mcf, mesa
Mix4 ammp, gzip, vortex, wupwise
Rate1 4 copies of twolf, small working set (< 1MB)
Rate2 4 copies of art, large working set (> 1MB)

Multithreaded (8-core)
Name Transactions Setup
OLTP 400 IBM DB2 v7.2 EEE, 25000 warehouses, 128 users
Apache 2500 20000 files (500MB data), 3200 clients, 25ms think time
JBB 12000 Sun HotSpot 1.4.0, 1.5 warehouses per-core, 44MB data
Zeus 2500 Event-driven, other configurations similar to Apache

Table 4.3: Workloads

workloads. Table 4.3 provides more information on the workload selection and configuration. The commer-

cial multithreaded benchmarks include OLTP (TPC-C), Apache (static web content serving using the open

source Apache server), JBB (a Java server benchmark) and Zeus (another static web benchmark running

the commercial Zeus server) [1]. To compensate for workloadvariability, we measure the performance of

multithreaded workloads using a work-related throughput metric [1, 3] and run multiple simulations with

random perturbation to achieve statistically valid conclusions. The number of transactions simulated for

each benchmark is listed in Table 4.3.

Multiprogrammed workloads are combinations of heterogeneous and homogeneous SPEC CPU2000

benchmarks. We use the same set of heterogeneous workloads as [27] for their representative behaviors,

and include two homogeneous workloads with different working set sizes to explore extreme cases. The

commercial workloads are simulated with an 8-core CMP, while the multiprogrammed workloads use a

4-core CMP, as we believe the scale of CMP systems may be different for servers vs. desktops.

Our default configuration associates each core with a 1MB 4-way associative unified L2 cache. Inclusion

is not maintained between local L1 and L2 caches for CC (thus the baseline private caches) for the reasons

described in section 3.2.1. For the shared cache scheme, private L1 caches are inclusive with the shared
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4-core, 4MB total L2 capacity
Network L2 assoc. Worst-case latency

Private 2X2 mesh 4-way 50-cycle
Shared 2X2 mesh 16-way 40-cycle

8-core, 8MB total L2 capacity
Network L2 assoc. Worst-case latency

Private 3X3 mesh 4-way 70-cycle
Shared 4X2 mesh 32-way 60-cycle

Table 4.4: Network and Cache Configurations

L2 cache to simplify the protocol design. Because the L1 cache capacity is only 6.4% of the L2 cache,

the performance impact of multi-level inclusion/exclusion is negligible. Throughout our evaluation, we

compare a group of private L2 caches with a shared L2 cache having the same aggregate associativity and

total capacity. We classify L2 hits for a shared cache into local and remote L2 hits, meaning hits into

a processor’s local and remote L2 banks, respectively. Unless noted otherwise, all caches use LRU for

replacement. We view prefetching as a orthogonal approach to improve performance via latency hiding, so

none of the caching schemes incorporates prefetching. Independently, Beckmann [13] has evaluated state-

of-the-art CMP caching schemes with token coherence and a IBM Power4 like prefetcher, and shown CC is

able to perform competitively for both commercial and scientific workloads.

Table 4.4 reports the cache and network latencies for our default simulation setup. These latencies are

modeled similar to those in previous proposals [27,104,159], and consistent with CACTI [132] results. The

default setup assumes a 12-FO4 pipeline delay to model a high-performance design [60,64], and we scale the

cache and network latencies in Section 4.3.5 to model a 24-FO4 pipeline delay based, performance/power

balanced processor design. We use mesh networks for intra-chip data transfers, modeling the non-uniform

hit latencies for the shared cache. CC and private caches communicate with the on-chip directory (detailed

in Section 3.3.2) using one-hop point-to-point links, therefore adding extra latencies for local L2 misses

(including the one-hop network latency and the directory access latency). The performance impact of

directory overhead will be evaluated in the sensitivity study (Section 4.3.4).
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Thousand misses per transaction L1 Misses breakdown (Private / Shared / CC)
Off-chip (Private / Shared / CC) Local L2 Remote L2 Off-chip

OLTP 9.75 / 3.10 / 3.80 90% / 15% / 86% 7% / 84% / 13% 3% / 1% / 1%
Apache 1.60 / 0.90 / 0.94 65% / 9% / 51% 15% / 77% / 36% 20% / 14% / 13%

JBB 0.13 / 0.08 / 0.10 72% / 10% / 57% 14% / 80% / 32% 14% / 10% / 11%
Zeus 0.71 / 0.46 / 0.49 67% / 9% / 45% 15% / 78% / 41% 19% / 12% / 13%

Table 4.5: Multithreaded Workload Miss Rate and L1 Miss Breakdown

4.3.2 Multithreaded Workloads

In this section, we compare the performance of CC against private and shared cache schemes, as well as an

“ideal” caching scheme that models a shared cache (for its capacity advantage) but with only the latency of

a local cache bank (15-cycle).

Table 4.5 shows the off-chip miss rates and L1 miss breakdowns for various workloads and caching

schemes. For each benchmark, we report the off-chip miss rate in terms of thousand misses per transaction

(column 2), and break down L1 misses into local and remote L2 hits as well as off-chip accesses (columns

3-5). The ideal caching scheme (not reported here) should have an off-chip miss rate as low as the shared

cache, and local L2 hit ratio as high as the private scheme. CChas much lower off-chip miss rates (within

4-25% of a shared cache) than the baseline private caches, and 5-6 times higher local L2 hit ratios than the

shared cache. According to Equation 4.1, these characteristics suggest CC will likely perform better than

both private and shared cache schemes unless off-chip miss rates are very low (favoring private caches) or

memory latencies are extremely long (favoring a shared cache).

Performance

Figure 4.5 compares the performance of private, shared, CC and the “ideal” caching schemes, as transaction

throughput normalized to the shared cache. Four CC schemes are included for each benchmark: from

left to right they use system-wide cooperation probabilities of 0%, 30%, 70% and 100% respectively.

As discussed in Section 3.2.3, the cooperation probabilityis used by L2 caches to decide how often to

apply replication-aware data replacement and spilling of singlet victims. The baseline CC design (without
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Figure 4.5: Multithreaded Workload Performance (The “ideal” scheme models a shared cache with only the
latency of a local bank.)

capacity improvement policies) uses 0% cooperation probabilties, while the default CC scheme uses 100%

cooperation probabilities to optimize capacity. We chooseonly four different probabilities as representative

points along the sharing spectrum, although CC can support finer-grained throttling by simply varying the

cooperation probabilities.

For our commercial workloads, the default CC scheme (“CC 100%”) always performs better than the

private and shared caches. The best performing cooperationprobability varies with different benchmarks,

which boosts the throughput to be 5-11% better than a shared cache and 4-38% better than with private

caches. CC achieves over half of the performance benefit of the ideal scheme for all benchmarks.

Memory Latency

The average memory access latencies (normalized to the shared cache) for different schemes are shown in

Figure 4.6. In each case we break down the access latency intocycles spent in L1 hits, local and remote

L2 hits and off-chip accesses. We calculate the average latency by assuming no overlap between memory
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Figure 4.6: Multithreaded Workload Average Memory Access Latency (from left to right in each group:
Private (P), Shared (S), CC 0% (0), CC 30% (3), CC 70% (7) and CC100% (C))

accesses. Comparing Figures 4.5 and 4.6, we see that, for out-of-order processors, lower access latency

does not necessarily result in better performance. For example, in the case of OLTP, private caches have

a relatively lower access latency but effectively the same performance as a shared cache. This is because

off-chip accesses have a much smaller contribution to the average latency for shared caches than they do

for private caches, whereas the contribution of on-chip accesses is much larger. An out-of-order processor

can tolerate some of the on-chip latencies, even to remote L2cache banks, but can do little for off-chip

latencies. Because CC’s capacity improving policies can effectively reduce the impact of long off-chip

latencies for private caches, it achieves better performance than both private caches and the CC scheme with

no cooperation (CC 0%).

On the other hand, Apache and Zeus spend over 50% of the total memory cycles on off-chip accesses,

suggesting these workloads either have large working sets or poor locality. The off-chip latency gap between

private and shared cache is essentially removed by CC 0% withcache-to-cache transfer of clean data.
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Figure 4.7: Multithreaded Workload Bandwidth (“#” indicates the best performing CC scheme.)

Increasing CC’s cooperation probability has little benefiton reducing the off-chip latency, but consequently

increases the on-chip latency. For this class of workloads,CC with 0% cooperation probability achieves the

best performance.

Bandwidth

Figure 4.7 compares (A) the amount of on-chip network trafficand (B) the number of coherence messages

generated to accomplish the same amount of work (e.g., an OLTP transaction) for different caching schemes.
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Misses per thousand instructions L1 Misses breakdown (Private / Shared / CC)
Off-chip (Private / Shared / CC) Local L2 Remote L2 Off-chip

Mix1 3.1 / 2.0 / 2.4 78% / 19% / 67% 3% / 73% / 22% 19% / 9% / 11%
Mix2 3.0 / 1.6 / 1.8 64% / 35% / 75% 4% / 55% / 14% 32% / 9% / 11%
Mix3 1.2 / 0.7 / 0.8 91% / 20% / 87% 1% / 77% / 9% 7% / 3% / 4%
Mix4 0.6 / 0.3 / 0.3 95% / 12% / 90% 0% / 86% / 8% 4% / 2% / 2%
Rate1 0.8 / 0.6 / 0.8 90% / 20% / 80% 3% / 76% / 13% 7% / 4% / 6%
Rate2 53 / 51 / 41 31% / 7% / 24% 11% / 47% / 34% 58% / 46% / 42%

Table 4.6: Multiprogrammed Workload Miss Rate and L1 Miss Breakdown

These numbers quantify the requirements for (A) the on-chipnetwork bandwidth and (B) cache coherence

engine’s execution bandwidth. The total bandwidth requirements are broken down into 4 categories: (1)

control messages, (2) data forwarding messages, (3) block write-backs, and (4) block spills.

The network and coherence bandwidth requirements of CC without cooperation (CC 0%) are both

comparable to those of the private caches, which are often several times lower than a shared cache. As

the cooperation probability increases from 0% to 100%, CC consumes extra bandwidth to exchange control

information (e.g., communicated via PUTS and SINGLET messages) and data (via block spills) between

the on-chip directory and caches. Cache cooperation also increases the amount of data forwarding between

peer caches because it causes (1) more misses in local L2 caches and (2) more local misses to be satisfied by

a peer L2 cache. However, CC often requires less bandwidth than the shared cache because its use of private

caches can filter most L1-L2 communications. Overall, although CC 100% can sometimes require more

bandwidth than a shared cache, the best performing CC schemes’ bandwidth requirements are usually less

than 50% of a shared cache. The saved bandwidth not only leadsto reduced network power consumption,

but also allows a potentially simpler and faster network design.

4.3.3 Multiprogrammed Workloads

In this section, we analyze CC’s performance for multiprogrammed SPEC2000 workloads. We compare

performance using the aggregate IPCs from 1 billion cycles of simulation. No cooperation throttling is

used because a single system-wide cooperation probabilityis not sufficient to accomodate the heterogeneity
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across benchmarks, and we leave the adaptive throttling forheterogeneous workloads as future work.

Multiprogrammed SPEC2000 workloads differ from commercial multithreaded workloads in several

ways: (1) no replication control is needed for private caches as little sharing exists among threads; (2)

consequently most L1 cache misses in the private cache scheme are satisfied by the local L2 cache, which

often leads to reduced average on-chip cache latency and better performance than a shared cache; (3) the

aggregate on-chip cache resources still need to be managed globally to allow dynamic capacity sharing

among programs with different working set sizes. Because CCsupports global management of distributed

private caches, we expect CC to retain the advantages of private caches while reducing the number of off-

chip misses via cooperation.

Table 4.6 lists the off-chip miss rates and L1 miss breakdowns for private, shared and CC schemes. As

with multithreaded workloads, CC can effectively reduce the amount of both off-chip (shown by the low

miss rates in column 2) and cross-chip references (demonstrated by the high local L2 hit ratios in column

3). The off-chip miss rates are only 0-33% higher than a shared cache, and the local L2 hit ratios are close

to those using private caches.5

Notice the high off-chip miss rates of Rate2 (over 40 misses per thousand instructions) are caused by

running four copies ofart, whose aggregate working set size significantly exceeds thetotal cache capacity.

Thrashing occurs as the result of overcommiting cache resource usage, causing the shared cache to have an

off-chip miss rate similar to private caches. CC has 20% fewer misses because its spill based global capacity

allocation is less intrusive than the shared cache’s request driven capacity allocation, therefore can mitigate

the negative effect of thrashing. This case is an example of destructive inter-thread interference, which will

be addressed in Chapter 5.
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Figure 4.8: Multiprogrammed Workload Performance

Performance and Memory Latency

The aggregate IPCs for the different schemes, normalized tothe shared cache scheme, are shown in Fig-

ure 4.8. CC outperforms the private scheme by an average of 6%and the shared caches by 10%. For

Rate2, CC performs better than the ideal shared scheme because it has lower miss rate than a shared cache.

Figure 4.9 shows the average memory access latency, assuming no overlap between accesses. It illustrates

that private caches run faster than a shared cache for Mix1, Mix3 and Mix4 by reducing cross-chip references

(also shown in Table 4.6), while a shared cache improves Mix2’s performance by having many fewer off-

chip misses. CC combines their strengths and outperforms both for all heterogeneous workloads. For

homogeneous workloads, Rate1 consists of four copies oftwolf, whose working set fits in the 1MB L2

cache, so private caches are the best choice while CC performs slightly worse. CC reduces the off-chip miss

rate for Rate2, and consequently improves its performance by over 20%.

5For Mix2, CC’s local L2 hit ratio is higher than the private scheme because one of the benchmarks (ammp) experiences much
fewer off-chip misses thus progresses faster and reaches a different computation phase during the simulation.
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Figure 4.9: Multiprogrammed Workload Average Memory Access Latency (from left to right in each group:
Private, Shared, and CC)

Bandwidth

Figure 4.10 shows the amount of network traffic and coherencemessages generated per committed instruc-

tion, normalized to the shared scheme. Comparing with private caches, CC incurs extra network traffic

mainly due to block spills and more frequent inter-cache data forwarding. On the other hand, the coherence

messages generated by CC are mainly due to cooperation related information communication (e.g., PUTS

and SINGLET) which can be easily combined with other coherence messages. Compared with the shared

cache, CC often filter many more L1 to L2 messages than the added cooperation messages. Except for the

pathological case of Rate2, where frequent local L2 evictions cause CC to generate many spills and more

cross-chip traffic than the shared cache, CC only generates 25-60% of the network traffic and 28-82% of the

coherence messages of a shared cache.
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Figure 4.10: Multiprogrammed Workload Bandwidth

4.3.4 Sensitivity Study

After showing CC’s benefits with the default simulation parameters, we now evaluate the performance

robustness of CC with a sensitivity study of commercial workload performance using in-order, blocking

processors. We choose to use in-order processors mainly to reduce simulation time, but they also represent

a relevant design choice (e.g., [87]). The main idea here is to assess the benefit of CC across a spectrum of

memory hierarchy parameters.

Figure 4.11 compares the relative performance (transaction throughput normalized to the shared cache
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Figure 4.11: Performance Sensitivity (300 and 600 cycles memory latencies; from left to right in each group:
4-core and 8-core CMPs with 512KB, 1MB and 2MB per-core caches)

scheme) of private, shared and CC for different system sizes(4-core vs. 8-core), per-core cache capacities

(512KB, 1MB, and 2MB) and memory latencies (300 cycles vs. 600 cycles). For a given CMP size (e.g., 4-

core), the normalized throughput of both CC and private schemes increases with the per-core cache capacity,

while the performance gap between CC and private schemes gradually decreases. Overall, CC achieves the
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Extra cycles 0 +5 +10 +15
Multithreaded 7.5% 4.7% 3.2% 0.1%

Multiprogrammed 11% 8.0% 7.0% 5.9%

Table 4.7: Speedups with Varied CCE Latencies

best performance for most configurations with a 300-cycle memory latency. When memory latency doubles,

the latency of off-chip accesses dominate, and CC becomes similar to a shared cache, having -2.2% to 2.5%

average speedups.

Besides cache and memory parameters, the overhead of CC’s implementation can also impact its per-

formance. As discussed in Section 3.3.2, our CC implementation uses an on-chip, centralized directory

called CCE. Because every local L2 miss has to be serviced through and potentially delayed by the CCE,

we study CC’s performance sensitivity to the CCE overhead. Table 4.7 shows the speedups of CC over the

baseline shared cache design when the CCE latency (originally 5 cycles) is doubled, tripled and quadrupled.

Speedups over private caches are not included because both CC and private caches are implemented using

the CCE, and increasing CCE latency has a similar effect on them. We observe that CC can tolerate directory

overhead, and perform better than a shared cache, even with quadrupled CCE latency.

4.3.5 Comparison with Victim Replication (VR)

In this section, we compare CC with victim replication [159], an example of recently proposed CMP caching

optimizations. We choose to study VR but not other CMP caching schemes (e.g., [15, 26, 83]) for several

reasons: (1) both VR and CC use cache replacement as the underlying technique to control replication; (2)

both schemes are based on a traditional cache organization,while other proposals require significant changes

in the cache organization; (3) they both use a directory-based protocol implementation, rather than requiring

different styles of coherence protocols (e.g., snooping protocol or token coherence).

The comparison is conducted using in-order, blocking processors (12 FO4 cycle time) with the same

L1/L2 cache sizes and on-chip latency parameters as [159] tospecifically match its evaluation. We also
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Figure 4.12: Latency Comparison with Victim Replication (from left to right in each group: Private (P),
Shared (S), CC (C), and VR (V))

tried using the set of parameters as in previous experiments, however, VR performs worse than both shared

and private schemes for 3 out of 4 commercial benchmarks. As in [159], we use random replacement for

victim replication, because it’s not straightforward to set the LRU information for the replica. To create as

realistic a match to the previous paper as possible, we also include results for 9 SPECOMP benchmarks [8]

and 4 single-threaded SPEC2000 benchmarks with the MinneSPEC reduced input set [85], all running on
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Figure 4.13: Performance Comparison with Victim Replication

8-core CMPs. The single-threaded benchmarks are in common with [159], and the SPECOMP benchmarks

have characteristics similar to the multithreaded workloads it used.

Same as reported by [159], Figure 4.12 compares the average memory latencies of private, shared, CC

and victim replication schemes. We also report the performance measurement (either transaction throughput
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or IPC, normalized to the shared scheme) in Figure 4.13. By comparing the two figures, we can see that,

with in-order processors, the relative ordering of different schemes’ latency reduction capabilities correlates

well with their relative performance ordering, however, latency reduction results cannot directly predict

performance improvement. Therefore we focus on Figure 4.13in the following discussion.

Figure 4.13 (A) includes (1) commercial multithreaded workloads with large working sets and substantial

inter-thread sharing, and (2) SPEC2000 multiprogrammed workloads, while (3) SPECOMP multithreaded

workloads with little sharing and (4) single-threaded workloads are covered by Figure 4.13 (B). Victim

replication outperforms both private and shared schemes for SPECOMP and single-threaded workloads,

on average by 5% and 18%. However, victim replication performs poorly for multithreaded commercial

workloads and multiprogrammed workloads, being on average6% slower than private caches and 11%

slower than a shared cache.

CC consistently performs better than victim replication (except for OLTP). CC provides the best perfor-

mance for 3 out of 4 commercial workloads, 5 out of 6 multiprogrammed workloads and all single-threaded

workloads; it is less than 1.4% slower than the best schemes for all SPECOMP benchmarks. Across all of

these benchmarks, CC is on average 9% better than private andshared schemes, and 10% better than victim

replication.

Victim replication is especially ineffective for multiprogrammed workloads because it blindly replicate

blocks in both the referencing processor’s local bank and its home node bank. This can cause significant

waste of on-chip capacity (as indicated by VR’s higher “off-chip” bars shown in Figure 4.12), when the

home node does not reference the data but has to keep the master copy of the data.

4.3.6 Adaptive Throttling

Previously we have evaluated CC schemes with different cooperation probabilities for multithreaded work-

loads, now we study the performance of adaptive cooperationthrottling which dynamically selects the best
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Figure 4.14: Adaptive Throttling Results

performing cooperation probability. Our experiments are based on Dynamic Set Sampling (DSS), which was

discussed in Section 4.2.3. Figure 4.14 compares the performance of CC schemes with various cooperation

probabilities and CC with adaptive throttling (Adaptive).Besides the commercial workloads, we also

include two SPECOMP benchmarksapsi andart to represent multithreaded scientific workloads6.

Figure 4.14 (A) shows that, except forart, adaptive throttling achieves the same performance as the

6Other SPECOMP benchmarks are excluded here because varyingthe cooperation probability has little impact on them.
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best static throttling scheme (at worst 1% lower). For OLTP,adaptive throttling even outperforms the best

static scheme because it can dynamically change the cooperation probabilities to accomodate program phase

changes. For SPECOMP benchmarkart, DSS-based dynamic adaptation performs worse then the best

static scheme because it mispredicts future program behavior. Although this benchmark prefers the capacity

optimizations of CC 100%, it repetitively goes through phases that prefer more replication. Without phase

prediction support, our current adaptation scheme prematurely increases the amount of replication and evicts

data that will be reused in later phases. This causes extra off-chip misses, leading to a 3% performance gap

between the adaptive scheme and CC 100%. As a sensitivity test, Figure 4.14 (B) reports similar results

using longer memory latency (600-cycle). Due to increases off-chip miss penalty, the performance gap

between CC 100% and CC adaptive forart is increased to 7%. For other workloads, adaptive throttling

continues to reduce memory latency and performs within 1.5%as the best static throttling scheme.

4.4 Summary

In this chapter we proposed cooperation policies for CC to reduce processor stalling cycles due to memory

access latency. Our proposed solution is based on the CC framework for the latency benefit of private

caches. Expensive off-chip misses are reduced by mimickingthe behavior of a shared cache: (1) replication

is controlled to keep unique blocks on-chip, and (2) local cache replacement is combined with global

spill/reuse history to approximate a global cache replacement policy. Probability based throttling is applied

to trade off between cycles spent on on-chip wire delays and off-chip memory accesses, and adaptively

select the best cooperation option.

Our simulation shows that CC achieves the best performance for different CMP configurations and

workloads. CC can reduce the runtime of simulated workloadsby 4-38%, and performs at worst 2.2% slower

than the best of private and shared caches in extreme cases. CC also outperforms the victim replication

scheme [159] by 9% on average over a mixture of multithreaded, single-threaded and multiprogrammed

workloads, while the performance advantage increases for workloads with larger working sets.
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CHAPTER 5

COOPERATIVE CACHE PARTITIONING

With multiple execution contexts simultaneously sharing on-chip cache resources, CMPs must accomo-

date multiprogrammed, concurrently running threads with different localities and working set sizes. In the

previous chapter, CC is extended with global replacement policies to dynamically adjust the cache allocation

in a fine-grained manner. This policy is simple by assuming benign interaction among different threads

and being oblivious to their caching characteristics. However, under high caching pressure, destructive

inter-thread interference can happen, causing sub-optimal performance, unfair progress and poor Quality-

of-Service (QoS). In this chapter, we further extend the CC framework with policies to mitigate the impacts

of such destructive interference.

In Section 5.1, we illustrate the problems caused by cache resource contention, discuss previous cache

partitioning proposals for interference isolation and pinpoint their limitations. We outline our proposed

solution by addressing the limitations of prior cache partitioning schemes. Section 5.2 provides background

information on metrics, workloads characteristics and evaluation methods. In Section 5.3 and 5.4, we detail

the two aspects of our approach—time-sharing based cache partitioning and its integration with CC’s LRU-

based capacity sharing policy. The evaluation results are presented in Section 5.5, and we conclude in

Section 5.6.

5.1 Motivation and Proposed Solution

5.1.1 Motivation

To make efficient use of the aggregate on-chip cache capacityand off-chip bandwidth, most CMP caching

designs support dynamic capacity sharing either via a logically shared cache [12,15,27,58,113,148,159] or
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by adding inter-core capacity sharing policies onto private cache based designs [23,59,138,156]. However,

capacity sharing in a conventional, unconstrained manner can cause destructive interference among co-

scheduled threads, leading to sub-optimal overall performance and unfair impact on individual threads.

In contrast, a private cache design avoids inter-thread interference by statically partitioning the aggregate

capacity between processor cores. This design is simple, fair and guarantees QoS, but often incurs many

more expensive off-chip misses for thread mixes with non-uniform caching requirements.

A Thrashing Example

Figure 5.1 shows an example of destructive inter-thread interference, by considering the task of execut-

ing many copies of SPEC2000 benchmarkart on a 4-core CMP with a 4MB 16-way shared L2 cache.

Figure 5.1 (A) shows the capacity allocation among co-scheduled threads, while Figure 5.1 (B) plots the

corresponding throughput (measured as IPCs). In each bar graph, the 4 bars on the left represent an LRU-

based shared cache with the number of co-scheduled threads ranging from 1 to 4, and the rightmost bar

represents a cache partitioning scheme with 4 threads concurrently running.

For LRU-based shared cache, the total capacity is evenly divided among co-scheduled threads. The

overall throughput doubles when the number of co-scheduledthreads increases from 1 to 2, but starts to

decrease when more (i.e., 3 and 4) threads share the aggregate cache resources. This is a typical example of

thrashing [35], where the overall throughput drops after the system is overloaded beyond a certain threshold

(2 copies ofart being co-scheduled in this example). The performance degradation is actually caused by

cache resource contention among threads with large workingsets. Hereart’s working set size is 1.75MB,

which can only be satisfied when less than 3 threads share the aggregate 4MB L2 cache. Adding more

threads will cause significantly more off-chip misses, leading to lowered system throughput.

To optimize the aggregate throughput, the operating systemcan be modified to consider cache resource

contention and only schedule 2 copies ofart at a time [49]. On the other hand, hardware cache partitioning
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Figure 5.1: Different Ways to Run Many Copies ofart on a 4-core CMP and Their Throughput

schemes (for example, [123,144]) can achieve even higher throughput without adding software complexity.

As shown by the rightmost bars in Figure 5.1, this is achievedby partitioning the total L2 capacity among

4-copies ofart to: (1) provide the minimum capacity needed by threads 1 and 2to satisfy their working

set requirements and (2) allocate the remaining capacity between threads 3 and 4.

Cache Partitioning Background

Cache partitioning manages the aggregate cache resources via explicit allocation to different reference

streams (e.g., generated by different threads), as opposedto caching policies that treat all requests as

from a single source [144]. By dividing the total capacity among co-scheduled threads, cache partitioning

can isolate the destructive interference among co-scheduled threads and potentially improve the system



86

throughput (as shown in Figure 5.1 and prior proposals [96,123,144]), fairness [84] or QoS [156].

We can view private caches as an example of static cache partitioning, where the aggregate cache

resources are divided among processor cores at design time.However, cache capacity requirements are

non-uniform across threads and across different program phases of a single thread. To accomodate such

dynamic and often heterogeneous capacity requirements, recent cache partitioning proposals [68,74,84,96,

121, 123, 144, 156] match the perceived requirements of different threads by orchestrating cache resource

allocation with more flexible, usually heterogeneous partitions.

CMP cache partitioning schemes generally work in repetitive epochs, each consisting of three steps: (1)

measurement, (2) partitioning, and (3) enforcement. The first step is to measure and estimate each thread’s

performance (in terms of miss rate or IPC) for candidate cache partitions. This information is then used to

determine the next cache partition to reach a given optimization goal. The new partition will be enforced in

the next execution epoch, while new measurement will be gathered and used in later epochs.

Cache partitioning proposals can differ in measurement andenforcement mechanisms, optimization goals

and metrics as well as their partitioning policies. Measurement information can be gathered via profiling [66,

84], LRU stack hit position counting [156], monitoring [143], or dynamic set sampling [123]. Table 5.1

compares the optimization goals and policies used by prior schemes. The partitioning algorithm has to be

simple by avoiding exhaustive search, thus often uses heuristics to prioritize capacity allocation according

to the miss rate and speedup characteristics of co-scheduled threads. Both the measurement and partitioning

steps can incur space or execution time overheads, while inaccurate information/decisions can lead to sub-

optimal results.

Despite their differences in metrics, mechanisms and policies, prior cache partitioning schemes have two

common characteristics and consequently two limitations.
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Optimization goals Policies (threads with allocation priority)
Liu et al. [96] Max throughput Static partitioning

Suh et al. [144] Min miss rate Greedy (app. with best marginal miss reduction)
CQoS [74] QoS Generic framework, open for various policies

Fair Sharing [84] Min slowdown difference Greedy (app. with most extra misses)
Fast and Fair [156] Max

∑
speedup under QoS Greedy (app. with best speedup)

OS-managed [74] Open Generic mechanism, open policies
STATSHARE [74] Open Generic model/mechanism, open policies
Utility-based [123] Max WS Lookahead (app. with best marginal utility)
MTP (this chapter) Max FS under QoS Iterative (threads with high speedups)

Table 5.1: Comparing CMP Cache Partitioning Schemes.

Coarse-grained vs. Fine-grained Capacity Allocation

Most current cache partitioning schemes are coarse-grained, allocating large capacity units (e.g., in 64KB

chunks) for long epochs (e.g., 5-million cycles [123]). A fine-grained partitioning scheme needs to (1)

estimate the costs/benefits of capacity allocations in smaller units (e.g., 128B cache blocks) and (2) using

such information to frequently trigger the partitioning step, both incurring significant overhead [121]. To

reduce such overhead, most prior proposals useway partitioning [144] as the basic mechanism to enforce

a cache partition1. Assuming a set-associative cache, way partitioning allocates cache resources in units of

cache ways (each way having the same number of cache sets). This mechanism can be implemented with a

modified cache replacement policy to ensure that the number of blocks used by a thread at a cache set level

does not exceed its way quota.

On the other hand, the commonly used LRU-based capacity sharing is fine-grained and can outperform

coarse-grained cache partitioning schemes when little inter-thread interference exists. To illustrate this,

Figure 5.2 plots the amount of cache allocated by (A) an LRU-based scheme and (B) a way partitioning

scheme that optimizes overall throughput, for workloadart-art-apsi-apsi (2 copies ofart and

apsi sharing a 4MB L2 cache). The cache partitioning scheme is coarse-grained because it allocates

1STATSHARE [121] and cache-level-quota enforcement [125] do provide spatially, but not temporally, fine-grained partitioning
mechanisms, however without specific policies to exploit such mechanisms. STATSHARE [121] also provides an analyticalmodel
to calculate the cost/benefit of block-based capacity allocation, but evaluating this model for every L2 request is expensive.
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Figure 5.2: LRU vs. Cache Partitioning for 2 Copies ofart andapsi (art-art-apsi-apsi)

capacity in cache ways and triggers repartitioning at the boundary of 10M-cycle epochs. On the other hand,

LRU allocates on average 6.5 ways and 1.5 ways of capacity toart andapsi to better fit their capacity

requirements. LRU also supports temporally fine-grained sharing whenapsi enters a phase that needs

more capacity (simulation time 500 to 530 million cycles), adapting to phase changes swiftly without extra

support or overhead.
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Due to spatially fine-grained sharing,art with LRU achieves 34% better speedup than with way par-

titioning. Apsi’s throughput is also slightly better than using cache partitioning because of temporally

fine-grained sharing (even though its average cache capacity is lower than way partitioning). Similar

observations have been made in [141], which shows that LRU can provide near-optimal cache allocation

for many workloads.

Fairness and QoS Issues

Another common characteristic of prior cache partitioningschemes is that they are Single Spatial Partition

(SSP) based: they all attempt to reach their optimization goals by selecting the best spatial partition and

use a single spatial partition repeatedly for all epochs in astable program phase (as previously shown in

Figure 5.2 (B)). In other words, these scheme consider only space sharing among threads, but not time

sharing among different spatial partitions. This implies that it may be difficult for prior proposals to

simultaneously improve performance/efficiency and fairness while maintaining QoS, as it is intrinsically

hard to satisfy multiple conflicting goals with a single partition. We will describe our notions and metrics

for performance/efficiency, fairness and QoS in Section 5.2.1, but use the following example to briefly

illustrate the related issues.

Figure 5.3 plots the normalized performance of benchmarkvpr across a set of 4-thread multipro-

grammed workloads with large working set requirements (e.g., workloadart-mcf-ammp-vpr). The

shared L2 cache is managed by one of 4 caching schemes. (1) PAR_Fair is a cache partitioning scheme

that equally divides the L2 capacity among co-scheduled threads. This scheme is fair (in terms of resource

allocation) and maintains QoS (i.e., providing predictable performance across different workloads). (2)

LRU (often implemented as pseudo-LRU) is the caching policyfor most CMP designs, which allocates

cache blocks based on L2 requests. (3) PAR_WS is a cache partitioning scheme that optimizes the Weighted

Speedup (WS) metric (a speedup/efficiency metric proposed for SMT architecture [134] and used in prior
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Figure 5.3: Throughput of Benchmarkvpr in Different Workloads and Caching Schemes

CMP cache partitioning schemes [123,156]). (4) CCP is our proposed caching scheme that will be described

in later sections.

Because PAR_Fair provides consistent performance for all workload combinations2, we use its perfor-

mance as a stable baseline for comparison. The LRU policy often performs worse than PAR_Fair because its

demand-driven capacity allocation favors threads with frequent misses and unfairly shrinksvpr’s capacity.

It is also hard to predictvpr’s performance as it is dependent on the caching characteristics of co-scheduled

threads. Therefore LRU cannot maintains fairness or QoS. PAR_WS improves the performance over both

PAR_Fair and LRU for many workloads by balancing the capacity allocated to different threads, but it can

still unfairly shrink the capacity ofvpr to achieve its optimization goal. Same as LRU, PAR_WS does not

guarantee QoS. A better cache partitioning scheme (e.g., the CCP scheme) should be able to achieve both

2Contention in other shared resources, especially the memory system, can also cause destructive interference. Here we focus on
the impact of destructive interference occurring in the last-level CMP caches, assuming a fair memory system (supporting min-max
fairness [17]) as proposed in [114].
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throughput and fairness/QoS goals.

Summary

We view the sharing of CMP cache resources among threads as a resource management problem. The

properties of a good resource manager have been extensivelyexamined by the operating system researchers

(e.g., in [147]), which include (1) abilities to improve overall performance, (2) maintenance of fairness

and QoS, and (3) suitability for a wide range of workloads combinations. Fairness and QoS are especially

important for CMP as it is used in consolidated servers, shared computing clusters, embedded systems, and

other platforms where meeting these requirements is as important as improving overall throughput.

Previous research in CMP cache management mainly focused onusing cache partitioning to achieve

some of these requirements [68,74,84,96,121,123,144,156]. However, none of these proposals is sufficient

to satisfy all CMP cache management requirements because oftwo limitations. (1)Limited function-

ality. Prior proposals cannot address all functional requirements, including thrashing avoidance, fairness

improvement, QoS guarantee and priority support, partially due to the difficulty of satisfying multiple, often

conflicting, goals in a single cache partition. (2)Limited scope of application.Cache partitioning can only

outperform LRU-based latency-reducing CMP caching schemes for some multiprogrammed workloads.

An attempt to solely use cache partitioning can cause sub-optimal performance for workloads that do not

experience destructive inter-thread interference.

5.1.2 Proposed Solution

Our proposal has two aspects, each addressing one of the two limitations of cache partitioning: (1) we

introduce a time-sharing based cache partitioning scheme to simultaneously improve throughput and fairness

while maintaining QoS; (2) our cache partitioning scheme isintegrated with CC’s LRU-based capacity shar-

ing policy (covered in Chapter 4) to support both workloads that prefer caching partitioning and workloads
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that prefer LRU-based sharing.

To provide multiple functionalities, our Multiple Time-sharing Partitions (MTP) scheme makes different

threads cooperatively shrink and expand their capacity allocations across multiple partitions, and schedules

different partitions in a time-sharing manner. Specifically, each MTP partition improves at least one thrash-

ing thread’s throughput by temporarily shrinking the capacity of other threads to make room for it. By time

sharing cache resources among multiple unfair partitions that favor different threads, the problems of fairness

improvement and priority support are translated into well-studied time-sharing based scheduling problems.

Fairness can thus be improved by giving different threads equal opportunity to speed up, while priority

(or QoS differentiation) can be supported by allocating different numbers of time slices to different unfair

partitions. The MTP partitioning algorithm further guarantees QoS by using partitions that, on average, can

bound each thread’s slowdown against the even partitioningbaseline (PAR_Fair in Figure 5.3).

Depending on whether destructive inter-thread interference exists, a workload can either prefer cache

partitioning or LRU-based sharing. In order to combine the strengths of cache partitioning and LRU,

we integrate MTP with CC’s baseline capacity sharing policy(1-Fwd as discussed in Section 4.2.2). The

complementary benefits of these two approaches are achievedby dividing the total execution epochs into

those controlled by either MTP or CC’s baseline policy, according to the fraction of threads that can benefit

from each of them. The integrated scheme,Cooperative Caching Partitioning (CCP), can achieve robust

performance for both workloads with and without destructive inter-thread interference. Furthermore, having

CC as the default policy can simplify the MTP partitioning algorithm by focusing only on threads with large

speedup potentials, leading to a heuristic-based algorithm that can be practically implemented.

5.2 Metrics and Methodology

In this section, we provide background information on multiprogramming metrics and evaluation methods

to simplify later discussion.
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5.2.1 Multiprogramming Metrics for CMP Caching

To compare the effectiveness of CMP caching schemes for multiprogramming, we first need to find proper

metrics to summarize the overall performance, fairness andQoS results for a thread schedule. A multi-

programmed workload’s throughput can be simply measured asthe sum of per-thread throughput (i.e., IPC

for our workloads), but quantifying QoS and fairness can be hard, and requires an understanding of these

notions in the context of CMP caching.

Our notions of performance, fairness and QoS are based on twoprinciples: (1) proportional-share

resource allocation and (2) Pareto efficiency. The first principle states that QoS and fairness is achieved when

the shared resource is divided among sharers in proportion to their priorities or weights [19,135,151,153]3.

Using proportional-share allocation to maintain the baseline fairness, the second principle further improve

performance (efficiency) by allowing disproportional sharing if it helps some sharers without hurting the

others. These principles have been used to define min-max fairness [17], which has wide applications in

computer networks and scheduling policies (e.g., Generalized Processor Sharing [117]).

QoS Metric

QoS is the ability to provide a thread with guaranteed baseline performance (corresponding to a specific re-

source partition) regardless of the load placed on the shared resource from other co-scheduled threads [151].

We useequal-share cache allocationto define the performance bottom line for QoS, which corresponds to

the special case of proportional-sharing when all threads have the same priority. Notice that equal-priority

has been implicitly assumed by previous fair caching proposals [66, 84, 156], while our MTP scheme can

also support threads with different priority levels (referto Section 5.3.3). This baseline can be implemented

either by uniform-sized private caches or an equal partitioning of shared cache capacity between on-chip

cores, and it guarantees QoS because all threads get the samecapacity and thus can achieve the same

3Contention in other shared resources, especially the memory system, can also cause destructive interference. Here we focus on
the impact of destructive interference occurring in the last-level CMP caches, assuming a fair memory system as proposed in [114].
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performance across different schedules. The equal-share allocation baseline also provides intuitive QoS

results to multiprocessor users because it corresponds to traditional multiprocessors with private caches. For

similar reasons, Yeh and Reinman [156] use this baseline implemented by private caches. Here we use the

even partitioning of a shared cache as our baseline because most existing cache partitioning schemes assume

a shared cache.

The QoS metric is thus defined as the sum of per-thread slowdowns (as negative percentages) over this

baseline. Same as [114,156], we claim a caching scheme can guarantee QoS if this measurement is bounded

within a user-defined threshold (e.g., -5%). Other ways of measuring QoS exist (e.g., reporting the maximum

slowdown or the number of threads that violate QoS), but we use the total slowdown because it captures the

behavior of the entire workload and thus is a more stringent criteria.

QoS(scheme) =
∑#app

i=1 min(0, IPCi(scheme)
IPCi(base) − 1)

Fair Speedup Metric

According to the principle of Pareto efficiency, CMP cachingschemes can further improve performance

while maintaining fairness, if uneven resource allocationcan speed up some threads over the equal-share

allocation baseline without hurting others. Now we consider how to measure the scale of performance

improvement for multiple co-scheduled threads.

Summarizing the overall performance of multiple benchmarks (co-scheduled threads in our context) has

been an extensively discussed topic [79, 133]. We adopt prior wisdom and define theFair Speedup (FS)

metric to quantify the overall performance of co-scheduledthreads. FS is calculated as the harmonic mean

of per-thread speedups over the equal-share allocation baseline.

FS(scheme) = #app/
∑#app

i=1
IPCi(base)

IPCi(scheme)

Using harmonic mean of speedups, FS measures the execution time reduction (more accurately, execution
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resource occupation) against a baseline cache configuration that resembles traditional multiprocessors (so

higher FS is better). FS is also a fair metric because using the harmonic mean (instead of the sum as used

by [156]) rewards uniform speedups and penalizes slowdowns4, which corresponds to the principle of Pareto

efficiency.

The notion of fair speedup is similar to the fair slowdown metrics proposed by Kim et al. [84], which

is measured against a single-thread execution baseline where one thread has exclusive use of all cache

resources. Such a baseline is borrowed from SMT processors [134], where it corresponds to the single-

thread execution mode that allocates all execution and cache resources to one thread. However, single-

thread execution in a CMP will waste the majority of execution resources. Instead, we choose to use the

equal-share allocation baseline because it has better resource utilization by supporting multiple concurrently

running threads and performs similarly as in traditional multiprocessors. For the same reason, two other

SMT performance metrics using a single-thread execution baseline—weighted speedup (or WS, which is

the sum of speedups) [134] and harmonic mean of speedups [98]—are not used.

Metrics Comparison

The choice of optimization metrics has a significant impact on CMP caching policies. Below we use two

examples to demonstrate the differences between caching schemes that optimize for different metrics.

Figure 5.4 shows the per-thread speedups of benchmarksart andvpr using two cache partitioning

schemes (2 threads sharing a 2MB L2 cache). Scheme (A) maximizes weighted speedup (WS) by tripling

the performance ofart, however, its fair speedup (FS) measurement is worse than the baseline (FS = 1) due

to unfair per-thread speedups. On the other hand, the fair scheme (B) optimizes FS at the cost of a lowered

WS result because the low-speedup thread is given a more faircache allocation. This example shows that

(1) FS optimization has the side effect of avoiding unfair caching, (2) a scheme that optimizes FS may hurt

its WS or IPC results, and vice versa.

4According to the power-mean inequality, the harmonic mean of a vector is maximized when all elements have the same value.
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Figure 5.4: FS vs. WS for Two Example Schemes

Metrics Scheme A <=> Scheme B

Per-thread Speedups0.76 / 0.76 / 3.18 / 3.18 1.97 / 1.97 / 1.97 / 1.97

Throughput (IPC) 0.52 == 0.52
Weighted Speedup 2.42 == 2.42

QoS -52% < 0%
Fair Speedup 1.22 < 1.97

Table 5.2: Performance Comparison Using Different Metrics

Table 5.2 compares the performance of two cache partitioning schemes for workloadart-art-art-art.

Scheme A optimizes WS and throughput without considering its implications on fairness and QoS, while

Scheme B aims to optimize FS while maintaining QoS. If only comparing throughput and WS results, the

two schemes have the same performance (shown asitalic in Table 5.2). However, our QoS and FS metrics

(marked asbold in Table 5.2) reveal that Scheme A cannot guarantee QoS whileScheme B can, and Scheme

B achieves better fairness and execution time than A. This example shows that our QoS and fair speedup

metrics are able to distinguish whether a scheme can maintain QoS and fairness, but the WS and IPC metrics

cannot.

To summarize, using QoS and FS metrics together, we can measure a caching scheme’s effectiveness in
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improving performance, fairness and QoS. We will report results using the FS and QoS metrics throughout

this chapter, and provide WS and IPC results in the evaluation section for comparison.

5.2.2 Benchmark Selection and Characteristics

CMP caching schemes should be compared using a wide range of multiprogrammed workloads to evaluate

their performance robustness. For evaluation purpose, we model a CMP with 4 single-threaded cores and

consider all 4-thread multiprogramming combinations (repetition allowed) from 7 representative SPEC2000

benchmarks. There are 210 workloads because the number ofK combinations (with repetition) selected

from N objects isCN+K−1
K , so selecting 4-thread combinations from 7 benchmarks can generateC7+4−1

4

(=210) workloads.

Figure 5.5 shows the performance of our benchmarks under different cache allocations. The IPC data

are gathered using a 4MB 16-way total L2 cache. With way partitioning, cache resources are allocated

in 256KB chunks. The equal-share allocation baseline (marked as the vertical line) is for each thread to
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use 1MB cache. At least 1 way is allocated to each thread. Withthree other cores on-chip, this leaves 13

ways (13=16-3 ∗ 1), or 3.25MB, as the maximum capacity for one thread to have. This figure shows that

our selected benchmarks have a wide variety of working set sizes, and IPC curve shapes, therefore their

combinations are able to generate a wide range of workload behaviors.

To understand the relationship between capacity allocation and benchmark performance, Figure 5.6

breaks the IPC curve ofart into three distinctive regions as more capacity is allocated: (1) pre-working-set

region (from 1 way to 4 way) represents gradual speedups before the program’s working set starts to fit

into cache; (2) in-working-set region (from 5 way to 7 way) indicates dramatic throughput increases when

the working set can be partly cached; (3) post-working-set region (starting from 7 way) shows saturated

performance after the working set is fully cached. Except for benchmarks whose working sets are beyond

the capacity of the on-chip cache (e.g., streaming benchmarks), most benchmarks demonstrate IPC curves

that consist of regions with distinct slopes, albeit with different cache configurations.

According to which region intersects with the equal-share allocation (which is dependent on both bench-

mark characteristic and cache configuration), we classify these benchmarks into 3 categories. This classifi-
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cation will be used to describe our cache partitioning heuristics.

• Supplier benchmarks: These benchmarks can supply some or all of their equal-share capacity for

other benchmarks while still achieving the same level of performance as using all cache resources.

They include workloads with very small working sets (e.g.,apsi andgcc whose working set sizes

are less than 1MB) and streaming benchmarks (e.g.,swim andfacerec which are not included in

Figure 5.5).

• Sensitive benchmarks: vpr andtwolf are benchmarks whose in-working-set regions are divided

by the line of equal-share capacity. The performance of suchprograms changes significantly over

the baseline as cache size varies, therefore judicious cache partitioning is needed when they are co-

scheduled with other benchmarks.

• Thrashing benchmarks: art, ammp andmcf are benchmarks whose in-working-set regions are

beyond their equal-share capacity. These benchmarks usually slow down gradually with reduced

capacity, but can speed up dramatically when a certain amount of extra capacity is allocated.

A similar classification can be found in [123], according to the benefit of increased capacity (or utility).

Our classification is different by separating thrashing benchmarks from sensitive benchmarks, both called

high-utility programs in [123] because they can speed up with more capacity. We focus on thrashing

benchmarks because they can easily benefit from our proposedcache partitioning policy.

5.2.3 Offline Analysis vs. Online Simulation

Because cache partitioning schemes are often coarse-grained, they are amenable to not only the commonly

used online simulation approach, but also offline analysis [66, 84, 96]. To do offline analysis, we first

gather performance profiles for all possible (benchmark, capacity) combinations. Comparing against each

benchmark’s baseline IPC, we can calculate the per-thread speedups for all (benchmark, capacity) com-
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binations and use them to calculate metrics such as FS, WS andQoS. For a given metric, we construct

the candidate cache partition space for each workload and exhaustively search in the partition space for

the optimal result. Compared with online simulation, offline analysis is idealized because (1) it uses

accurate measurement information and (2) it searches for all possible partitions, which can be too slow

to be practically implemented.

Due to its idealized nature, offline analysis can be used to estimate the performance upper bounds

for given cache partitioning policies. We will use this approach to demonstrate the advantage of our

proposed MTP policy over prior cache partitioning schemes,and avoid the need to compare against realistic

implementations of prior proposals. We will also compare the offline analysis results of MTP with online

simulation results of LRU-based caching schemes to identify the limitation of cache partitioning schemes.

However, our final scheme CCP, which integrates MTP with CC, will be evaluated using a practical imple-

mentation, online measurement information, and execution-driven simulation results.

Our offline analysis method assumes the evaluated executioninterval has stable program phases (which

can be composed by regular interleaving of sub-phases). Forour selected benchmarks, this requirement

is satisfied by using sufficiently long execution epochs to include multiple sub-phases, whose aggregate

behavior is stable enough for cache partitioning. Figure 5.7 shows the phase behaviors of benchmarksart

andgcc under different epoch sizes (5M, 10M, 20M, and 40M cycles). The benchmarks are allocated

with either 256KB or 2.56M to demonstrate the caching behaviors under both small and large capacities.

For epoch size of 5M-cycle, both benchmarks experiences irregular phase changes especially using small

capacity. Because cache partitioning schemes’ predictionof future execution relies on stable phases, such

irregularity can lead to sub-optimal partitioning decisions. However, as the epoch size increases, irregular

phase changes gradually disappear (especially beyond 20M-cycle). Based on these data, we set our epoch

size to be 20M cycles5.

5Notice 20M-cycle is already the length of normal operating system scheduling interval on a 2GHz machine. Due to large epoch
sizes, current cache partitioning schemes cannot adapt to frequent thread-scheduling changes. Software/hardware cooperation is
thus needed to support environments with frequent scheduling changes, which we leave as future work.
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5.3 Multiple Time-Sharing Partitions (MTP)

Prior CMP cache partitioning policies use a single spatial partition to achieve their optimization goals.

However, it is an intrinsically hard problem to satisfy multiple goals (e.g., throughput, fairness and QoS)

with a single partition when conflicts arise between competing threads. In this section we add a time-sharing

aspect on top of multiple spatial partitions, which uses Multiple Time-sharing Partitions (MTP) to resolve

such conflicts over the long term. Below we detail the development of MTP as we add support for different

cache management functionalities.

5.3.1 Thrashing Avoidance

We first discuss when cache partitioning is needed by examining when destructive interference occurs.

Starting with the equal-share allocation baseline, if thisconfiguration can satisfy the caching requirements

of every co-scheduled thread, then cache partitioning is not needed because little inter-thread interference

exists. Cache partitioning is needed only if some threads experience thrashing with their current capacity

allocations. These threads will attempt to acquire extra cache resources from each other and from other

threads, which leads to performance, fairness and QoS problems.

Thrashing is a classic virtual memory management problem [35], and can be avoided by reducing the

multiprogramming level: when the number of competing programs is reduced to a point that their working

sets can be cached simultaneously, they can all run much faster. In the context of CMP caching, the number

of co-scheduled threads is determined by the operating system, but cache partitioning can intentionally

manage capacity contention by unfairly shrinking the capacities of some thrashing threads to expand the

capacities of other thrashing threads.

Consider partitioning a 4MB 16-way L2 cache between 4 co-scheduled copies ofart. With the equal-

share allocation of a 1MB L2 cache,art has a low IPC of 0.066 due to thrashing (over 50 off-chip misses

per thousand instructions) as previously shown in Figure 5.6. As more cache resources are allocated, its



103

throughput increases quickly and reaches a saturating point of 0.215 IPC with 1.75MB capacity. At this

point, thrashing can be avoided for 2 threads by unfairly expand each of their capacity allocate to 1.75MB,

and shrink the capacities of the other threads to 256KB each (0.05 IPC). This partition doubles the total

throughput (0.215 ∗ 2+0.05 ∗ 2=0.52, which is two times of0.066 ∗ 4=0.264), but is unfair to the shrinking

threads.

5.3.2 Fairness Improvement

Cache partitioning between 4 copies ofart is an example of the throughput-fairness dilemma. When

the available cache capacity can not simultaneously satisfy the working set requirements of multiple large

threads, compromise has to be made within a single spatial partition. In this example, fair partitions cause

thrashing for all threads, while thrashing avoidance requires unfair partitioning. Existing cache partitioning

schemes all face this dilemma, but differ in the way they trade off between throughput and fairness.

We resolve this dilemma by learning from a similar example ingame theory [44]. Consider two office-

mates who commute to their workplace, performance is doubled when they carpool but it is unfair because

the driver invests more effort and money. Not carpooling is afair strategy, but is also inefficient. In real

life, such games are played daily by the same players who often improve both performance and fairness by

“taking turns” to drive when they carpool. We adopt the same cooperative policy to simultaneously improve

throughput and fairness with multiple time-sharing partitions (MTP). Instead of using a single partition that

is either low-throughput or unfair, multiple unfair but high-throughput partitions are used in a time-sharing

manner to also improve fairness.

Specifically, individual threads are coordinated to shrinkand expand their cache allocations in different

cache partitions. Within a partition, the spare capacity collected from shrinking threads is used by expanding

threads, and different threads are expanded in different partitions. As a thrashing thread goes through

shrinking and expanding partitions, its average throughput can be much better than its baseline throughput.
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(A) SSP-based fair scheme (B) SSP-based fast scheme (C) MTP-based scheme
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Figure 5.8: Cache Partitioning Options for a Co-schedule of4 Copies ofart

This is because a thrashing thread’s baseline performance is already low by definition, and shrinking its

capacity usually only causes insignificant slowdown. However, it can achieve dramatic speedup in one

expanding partition (when the allocated cache can hold its working set) and, on average, the speedup in one

expanding partition is often more than what is needed to compensate the slowdowns in multiple shrinking

partitions. Overall, the multiprogrammed workload’s fairspeedup measurement is improved because all

expandable threads get a fair chance to speedup.

Figure 5.8 compares three cache partitioning schemes for 4 copies ofart. Single spatial partition based

schemes A and B provide the most fair and fast partitions, respectively. Based on MTP, scheme C can both



105

maintain the same level of fairness as scheme A (by equalizing per-thread speedups) and achieve the same

high throughput (IPC=0.52) and weighted speedup (WS=2.42)of scheme B. Such improvement is reflected

by its high FS result (97% and 61% higher than scheme A and B, respectively), but can be overlooked by

only comparing IPC or WS results.

5.3.3 Priority Support

MTP extends the option of cache partitioning from the singledimension of space-sharing into two-dimensional

time-sharing between spatial partitions. The time-sharing optimization can be applied to any proportional-

sharing resource partition baseline, thus supporting priority if the priority levels of co-scheduled threads are

reflected in the baseline.

Priority can also be supported through time-sharing. Instead of giving different threads equal oppor-

tunity to speedup, different time-sharing priorities can be assigned to different unfair partitions to deliver

differentiated levels of performance. Because time-sharing based priority support has been well understood

and implemented by operating systems [62,153], MTP can serve as the cache management primitive to the

high-level software by focusing on the determination and enforcement of multiple unfair partitions.

As priority specification and interpretation are usually conducted by end-users and operating systems, we

leave the development and evaluation of priority algorithms for future work and assume the co-scheduled

threads have the same priority for the rest of the dissertation.

5.3.4 QoS Guarantee

QoS can be guaranteed either in a real-time manner or over thelong term to meet different application’s

timing requirements. Real-time QoS is needed only by certain applications (e.g., real-time video playback

or transaction processing systems), and is not needed for many other programs. For example, users of SPEC

benchmarks, batching systems and scientific applications are mostly concerned about total execution time,
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and thus long-term QoS, often measured over hundreds of millions of cycles.

To guarantee real-time QoS, fast and fair partitioning [156] reserves for each thread aguaranteed par-

tition , which is the minimum amount of cache space required to achieve the same level of performance as

using the equal-share cache allocation. Further speedup can be obtained by intelligently partitioning the

remaining space. However, because only supplier benchmarks (defined in Section 5.2.2) can have their

guaranteed partitions smaller than the equal-share capacity, the cache partitioning algorithm is often left

with limited amount of space to optimize, which results in low performance cache partitions compared with

schemes under no QoS constraints.

Single spatial partition (SSP) based cache partitioning schemes experience the same problem even for

threads that require only long-term QoS. Because the same cache partition is used repeatedly throughout a

stable program phase, these schemes have to guarantee long-term QoS by guaranteeing QoS within every

cache partition. In contrast, MTP’s cooperative shrink/expand model can be used to guarantee long-term

QoS with little loss of performance. To meet the QoS requirement, the MTP partitioning algorithm now

uses multiple partitions to maximize FS, under the constraint that each thread’s average throughput across

multiple partitions is no worse than the equal-share baseline throughput.

To demonstrate MTP’s advantage in guaranteeing long-term QoS, Figure 5.9 and Figure 5.10 compare

SSP vs. MTP based cache partitioning schemes that optimize FS under different types of QoS require-

ments: no QoS (SSPnoQoS and MTPnoQoS), real-time QoS (SSPQoS and MTPrtQoS), and long-term QoS

(MTPltQoS). These results are obtained from offline analysis (described in Section 5.2.3) to demonstrate the

performance potential of MTPltQoS implementation. In Sections 5.4 and 5.5, we will develop andevaluate

its practical implementation.

For each scheme, we plot the percentage of workloads that canachieve various metric values. These

curves are essentially Cumulative Distribution Functions(CDF) being transposed, so that a higher curve

indicates a better performing scheme. For example in Figure5.9, each point (X%, Y) on the MTPltQoS



107

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(A) Percentage of Workloads Achieving Various Fair Speedup Values

F
ai

r 
S

pe
ed

up

 

 

Under MTP
ltQoS

, 10% of the workloads

can achieve a fair speedup of at least 1.48.

Under MTP
ltQoS

, 10% of the workloads

can achieve a fair speedup of at least 1.48.

MTP
noQoS

MTP
ltQoS

SP
noQoS

MTP
rtQoS

SP
QoS
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curve indicates that, X% of workloads have FS measurements equal to or large than (≥) value Y. Notice

that for the same type of QoS guarantee, the ideal SSP scheme can never outperform the ideal MTP because

single spatial partitioning is a special case in the MTP model, which is also empirically shown in the figure.

Figure 5.9 shows 4 distinct curves for 5 schemes because MTPltQoS and MTPnoQoS have almost the

same FS results. Similarly, the curves of the QoS guaranteeing schemes overlap in Figure 5.10. The two

figures together show that (1) SSPnoQoS and MTPnoQoS can not bound per-thread slowdown within the

user-specified threshold (-5% here); (2) SSPQoS and MTPrtQoS are the worst performing policies (their

curves overlap for workloads with smaller FS values), indicating that real-time QoS guarantee can restrict

performance optimization; and (3) MTPltQoS can maintain long-term QoS while achieving almost the same

performance as the best performing scheme MTPnoQoS.

For its performance and QoS benefits, we now use MTPltQoS as the representative MTP policy, and

denote it directly as MTP. MTP can be extended to support real-time QoS by reserving guaranteed partitions

for real-time applications and optimizing the rest of programs with the remaining capacity.



108

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(B) Percentage of Workloads Achieving Various QoS Values

Q
oS

 

 

QoS threshold

MTP
noQoS

MTP
ltQoS

SP
noQoS

MTP
rtQoS

SP
QoS

Figure 5.10: QoS Comparison of Various SSP and MTP Based Schemes

5.3.5 Summary

MTP is a high-level cache partitioning policy that extends existing proposals with time-sharing multiple

cache partitions. MTP addresses four cache partitioning requirements: (1) thrashing is avoided with unfair

allocation within a partition; (2) fairness is improved with fair time-sharing between unfair partitions that

each favors a different subset of co-scheduled threads; (3)priority can be supported with unfair time-sharing;

and (4) different types of QoS can be guaranteed by bounding per-program slowdown within each partition

or across multiple partitions.

MTP can be implemented in various ways. A hardware-only solution is transparent to software but

less flexible, especially considering priority support. Cooperation between hardware and software allows

hardware to collect measurement and enforce partitioning decisions, and software to schedule partitions

based on high-level requirements.

Our offline analysis results show that MTP can significantly outperform the best SSP based cache

partitioning scheme while maintaining long-term QoS. However, in order to realize MTP’s benefits, we still
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need to answer two challenges. First, with both spatial partitioning and time-sharing of spatial partitions,

the number of possible MTP partitions is many times more thanSSP based partitions. We need to come up

with an MTP partitioning algorithm that can quickly prune the large partition space and is simple enough

for hardware implementation. Second, same as other cache partitioning schemes, MTP is only needed for

some workloads, and not needed for workloads without destructive interference. We need to combine the

strength of MTP with LRU-based sharing and dynamically choose the best policy for a given workload. In

the next section, these issues are addressed by the other aspect of our proposal—integration of MTP with

CC’s LRU-based policies.

5.4 Integrating MTP with CMP Cooperative Caching

This section addresses another limitation of existing cache partitioning proposals—inadequacy for work-

loads that are well supported by LRU-based latency-reducing caching schemes, where cache partitioning

can hurt. We propose a new hybrid scheme, Cooperative Cache Partitioning (CCP), that combines the

advantages of MTP and CC’s latency optimizations. Below, wemotivate the need for the integration by

showing the complementary advantages of MTP and CC on different workloads. We then develop a simple

online heuristic to select MTP partitions based on the different characteristics of MTP and CC, and extend

the CC design to implement the hybrid scheme.

5.4.1 Motivation

Figure 5.11 compares the fair speedup and QoS results of MTP with two LRU-based caching schemes: CC

and shared cache, using the same aggregate cache size and associativity. We use scatter plots to reveal the

correlation between the best performing schemes and workload characteristics. To show the advantages of

MTP and CC over shared cache, we normalize performance results (FS) against the better results provided

by MTP and CC (i.e.,Max[FS(MTP), FS(CC)]). To compare between MTP and CC, we cluster the 210
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combinations of benchmarks into two groups according to whether MTP outperforms CC (i.e., whether

FS(MTP) > FS(CC)).

Several observations can be made from Figure 5.11. First, Figure 5.11 (A) shows that only a small

number of dots (10%) are over 1 and fewer (3%) are over 1.1, indicating that a shared cache only outperforms

both MTP and CC infrequently and insignificantly. Second, MTP only provides better performance than

CC for 32% of the workloads (67 out of 210 workloads), indicating the limited effectiveness of cache

partitioning over CC for many workloads. Third, for workloads that benefit less from MTP, CC is almost
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always the best performing scheme (Figure 5.11 (A)) and can guarantee QoS (Figure 5.11 (B)), showing the

complementary strengths of MTP and CC.

These observations imply that we can choose the best performing scheme (in both FS and QoS) for a

given workload according to whetherFS(MTP) > FS(CC): if MTP provides better FS result than CC, then

MTP is almost always the best scheme; otherwise, CC is the best choice. Therefore, a hybrid scheme that

integrates MTP and CC can potentially provide the best performance for all workloads by simply choosing

the better scheme for any given workload. Below we analyze the reasons for CC and MTP’s performance

advantages, in order to achieve such an integration.

Advantages of CC

Two major reasons contribute to CC’s performance advantageover MTP: (1) latency optimization over

shared cache and (2) LRU-based fine-grained cache sharing. The first reason is unique to CC—it is the

only proposed private cache based CMP caching optimizationthat approximates global LRU replacement

for multiprogrammed workloads; the second is supported by both CC and a shared cache.

CC reduces average cache access latency by keeping a program’s data set locally in the processor’s

private L2 cache. Due to on-chip wire delay, local cache access latencies are much lower than remote access

latencies. Comparing with a shared cache where data are distributed evenly across all banks and a large

fraction of L2 accesses are to remote banks, CC has the advantage of servicing most L2 accesses locally.

For threads whose working sets can be mostly satisfied by a private cache, such reduced L2 cache latencies

often translate into higher performance.

Similar to a shared cache, CC supports LRU-based capacity sharing by (1) allowing a local cache’s

victim block to be placed in a randomly picked peer cache (i.e., spill), and (2) approximating global

LRU replacement for multiprogrammed workloads via the combination of local LRU and global spill/reuse

history. CC differs from a shared cache in that it allocates capacity according to the local thread’s L2
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reference stream and the remote threads’ L2 miss streams, which are first filtered by their local L2 caches.

As discussed in Section 5.1.1, an LRU-based policy allocates cache resources in both spatially and

temporally fine-grained manner, and can often outperform coarse-grained cache partitioning schemes. Pro-

grams with highly non-uniform demands across different cache sets [124] can also benefit from fine-grained

sharing. For example, althoughammp has a working set size of 1.5MB (or 6 cache ways), it can further

speed up by 2X when the associativity requirements of certain hot sets are satisfied by a 16-way allocation.

Heuristics for MTP to Outperform CC

We now try to discover the characteristics of the workloads that can achieve better performance with MTP

than with CC. Such characteristics will be used to develop a simple heuristic to integrate MTP with CC.

For brevity, we use expanding and shrinking partitions to denote spatial partitions in which a given

thread’s capacity is above and below its equal-share allocation, respectively. To simplify discussion, we

assume that within one group of MTP partitions, a thread always uses the same capacityCexpand in all of

its expanding partitions and the same capacityCshrink in all shrinking partitions, thus achieving the same

speedupSp and slowdownSd repeatedly. Offline analysis results show that this assumption has almost

no performance impact on MTP. We further filter out supplier benchmarks by allocating their guaranteed

partitions to them, and allocate the remaining space between other threads.

To guarantee QoS and improve performance using MTP, each thread’s total speedup has to exceed its total

slowdown, and at least one thread should have a much larger total speedup. This can be achieved in two

ways. The first way is to have a thrashing benchmark whose dramaticSp can compensate the total slowdown

in multiple shrinking partitions. The other way for a threadto achieve speedup using MTP, without a large

Sp, is to have a modestSp, but a steep speedup curve and a gradual slowdown curve, so that the speedups

accumulated in multiple expanding partitions exceed the slowdown in one shrinking partition. However,

achieving a modestSp along with a steep speedup curve requires only a small amountof extra capacity, in



113

which case CC is likely to achieve the same effect because theLRU policy is better at fine-turning cache

allocation to achieve speedups (example shown in Figure 5.2).

The above analysis suggests that the common case for MTP to outperform CC is to have at least one

thrashing benchmark, determined by whether its speedupSp in one expanding partition is larger than the

total slowdown accumulated in shrinking partitions. Here theSp andSd values are dependent on both the

thread’s IPC curve and the available capacity (which further depends on capacity allocated to co-scheduled

threads). The test of a thrashing benchmark will be used as the partitioning heuristic for MTP.

The common case also explains why CC can guarantee QoS when itachieves better fair speedup than

MTP (Figure 5.11 (B)). A QoS violation occurs in CC only when athread’s private cache is overly used by

blocks replaced from other threads (i.e., spilled blocks).Because CC’s private cache has the same capacity

as the equal-share baseline used to define thrashing, the aggressive spilling implies the existence of high

miss rate, and thus thrashing benchmarks. Therefore, for workloads that prefer CC, the spilling should not

be too invasive to affect QoS, otherwise thrashing will occur, causing MTP to be preferred.

5.4.2 Cooperative Cache Partitioning (CCP)

We now develop cooperative cache partitioning (CCP), a heuristic-based hybrid cache allocation scheme that

integrates MTP with CC. CCP consists of three components: (1) a heuristic-based partitioning algorithm to

determine MTP partitions; (2) a weight-based integration policy to decide when to use MTP or CC’s LRU-

based capacity sharing policy (1-Fwd, discussed in Section4.2.2); and (3) modifications to the baseline CC

design to enforce fine-grained cache partitioning decisions.

CCP Partitioning and Weighting Heuristics

Before MTP partitioning, CCP first gathers each thread’s L2 cache miss rates under candidate cache allo-

cations, and uses them to estimate the IPC curve. Miss rates are collected in our simulator in dedicated,
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online sampling epochs where each thread takes turns to use the maximum amount of cache. We use

LRU stack hit counters to estimate miss rates under all possible cache associativities to reduce sampling

overhead. Although such overhead can be avoided with the recently proposed UMON online sampling

mechanism [123], we include it in our evaluation results.

Using IPC estimations, each thread’s guaranteed partition(for real-time QoS guarantee) can be calcu-

lated. CCP also initializes each thread’sCexpand to the minimum capacity needed to achieve the highest

speedup, andCshrink to the minimum capacity that can ensure long-term QoS when cooperating with

Cexpand. A thread is a supplier benchmark if itsCshrink is the same as its guaranteed partition.

The CCP partitioning algorithm (shown in Table 5.3) then returns a set of MTP partitions that are likely

to outperform CC, using the test of a thrashing benchmark as asimple heuristic. This algorithm has the

following three steps: (1) filtering out supplier benchmarks which will not benefit from any partitioning

schemes; (2) determine MTP partitions that each favors one thrashing benchmark by starving other thrashing

benchmarks with theirCshrink capacity; (3) for MTP partitions where one expanding threadcan not use all

the remaining space, expand other threads to further increase speedup. We will describe steps (2) and (3) in

detail because step (1) is rather straightforward.

Step (2) determines the set of thrashing benchmarks by removing threads whose speedups are not large

enough to guarantee long-term QoS. Each candidate thread istested by the functionthrashing_test to see

whether its speedup in one expanding partition can compensate for the total slowdown accumulated in other

(shrinking) partitions. The threads that fail thethrashing_testare assigned with their guaranteed partitions

and removed from the candidate set, which will reduce the number of candidate partitions, the amount of

remaining capacity and possibly remaining candidates’Cexpand and speedups. Such tests are repeated until

one of the two termination conditions is satisfied: (1) the candidate set is empty, or (2) all candidate threads

pass the test. This step is guaranteed to terminate because each round of tests either reduces the candidate

set size which leads to condition (1) in a finite number of steps, or satisfies condition (2).
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Inputs: capacity C, thread set TS, sample results (IPC[i][c], guaranteed partitions g[i]);
Outputs: expanded[i], MTP partitions MTP[p][i]; /*Thread i’s capacity in partition p */
/* Step 1: Filter out supplier benchmarks*/
Identify supplier benchmarks SupplierTS, subtract their g[i] from C;

/* Step 2: Determine the set of thrashing benchmarks ThrashTS*/
/* init stable = false; ThrashTS=TS-SupplierTS; */
while (ThrashTS is non-empty and !stable)

stable=true;
foreach thread i∈ThrashTS

Cexpand[i]=i’s capacity usage when other threads use theirCshrink[j];
stable &= thrashing_test(i, size(ThrashTS),Cexpand[i], Cshrink[i]);

/* Step 3: Merge multiple expanding threads*/
/* init p = 0; expanded[i] = false; MTP[p][j]=Cshrink[j]; */
foreach thread i∈ThrashTS, p++

foreach thread j, start from i, in circular order
MTP[p][j] += minimal remaining capacity for j to achieve itsbest speedup;
if (MTP[p][j]≥Cexpand[j]) expanded[j]=true; /*Expanded in MTP */

thrashing_test(i, nump, expand, shrink) /*Key heuristic */
if (IPC[i][expand]-IPC[i][base])>(nump-1)*(IPC[i][base]-IPC[i][shrink])

return true; /* large speedup */
Cshrink[i]=g[i]; C=C-g[i]; remove i from ThrashTS;
return false;

Table 5.3: CCP Partitioning Algorithm

After step (2), it is possible that in an MTP partition, the expanding thread does not need all the spare

space provided by other shrinking threads. Step (3) merges multiple expandable threads in such a partition

to further increase speedup. To be fair, the algorithm attempts to expand different sets of threads in different

partitions.

This algorithm also returns a vectorexpanded. A threadi benefits from MTP if it is allocated with

Cexpand capacity in at least one partition (expanded[i] is true), otherwise it is likely to benefit from CC.

This observation leads to the CCP integration heuristic: the execution time is broken into epochs managed

by either MTP or CC’s LRU-based capacity sharing policy (1-Fwd), weighted by how many threads can

benefit from them respectively. ForN concurrently running threads, ifM of them can be expanded by MTP

partitions, then CCP will use MTP for everyM out ofN epochs and use CC for other epochs. A special case
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is when no thread is expanded because step (2) cannot find any MTP partitions, in which case CC should be

used throughout the execution.

Extending CC to Enforce Capacity Quota

CCP uses the quota-based throttling to enforce MTP partitions. Compared with way partitioning, CC’s

fine-grained cache-level quota enforcement can support threads with non-uniform capacity demands across

different cache sets. For MTP partitions based on way partitioning miss rates, such threads only use part

of its capacity quota in their expanding partitions while still achieving large speedups. CCP detects such

cases and triggers the partitioning algorithm with newly collected capacity usage, which often leads to better

results.

5.5 Evaluation and Results

We evaluate the effectiveness of different cache allocation schemes using the same Simics-based full system

simulator as described in Chapter 4. Here the same set of cache/memory/interconnect configuration param-

eters as in the default setup, but execution is driven by a single-issue, in-order processor model. The simpler

processor model allows us to simulate all 210 multiprogrammed workloads in a manageable time frame.

We choose this methodology because, under the same simulation time, simulating a wide range of workload

combinations allows us to recognize the limitations of different approaches on different workloads, which

could have been missed by simulating a few combinations witha more aggressive processor model.

The same total 4MB L2 cache capacity and 16-way associativity are used for shared cache (both with and

without way partitioning) and CC. Except forartwhich uses the train input, we use the reference input sets

for other selected SPEC benchmarks6. All benchmarks are fast forwarded by 800M instructions to bypass

program initialization, and simulated for 700M cycles.

6Art with reference input is a streaming (thus supplier) benchmark. We do not include streaming benchmarks because cache
partitioning for them is very simple: their IPCs don’t change with L2 cache allocations, so we can simply allocate the minimal
capacity (e.g., 1 cache way) to them.
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We compare the online simulation results of realistic CCP implementation with offline analysis results of

ideal cache partitioning policies (e.g., MTP). Because theideal MTP implementation results were shown to

be the performance upper bound of existing cache partitioning schemes in Section 5.3, we do not compare

CCP with realistic implementations of prior cache partitioning proposals.

We first compare CCP with its two baseline schemes CC and MTP interms of fair speedup, followed

by comparison between CCP with idealized offline analysis results on two other metrics—throughput and

weighted speedup. We then evaluate the robustness of CCP by halving the total cache size. Lastly, we

compare the results of using in-order vs. out-of-order processor models with a subset of workloads.

5.5.1 Effectiveness of CCP

In Section 5.4, MTP was shown to be better than CC for only a subset of workloads. Since the ideal MTP

implementation represents the best cache partitioning results, we now refer to workloads that prefer CC over

MTP as workloads where cache partitioning could hurt performance, and the other workloads as workloads

that need the help of cache partitioning. Figure 5.12 compares the performance of CCP (realistic) with MTP

(ideal) and CC (realistic) on both classes of workloads. Only FS results are reported because both CCP and

MTP can guarantee QoS. Same as in Figure 5.9, we use transposed CDF curves to show the percentage of

workloads that can achieve various levels of performance. Here, a higher curve indicates a better scheme

because it achieves better FS measurements across different fractions of the workloads, and the gaps between

curves correspond to their performance differences.

Figure 5.12 (A) shows that when cache partitioning is needed, CCP achieves comparable performance

as MTP (the gap between CCP and MTP curves is small), and much better FS values than CC (the gap

between CCP and CC is relatively large). The performance difference between CCP and MTP reflects the

difference between our practical partitioning heuristic and a less realistic, offline, exhaustive search of MTP

partitions. For workloads where cache partitioning hurts,Figure 5.12 (B) shows that CCP performs almost
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Figure 5.12: Comparing MTP, CC and CCP’s FS Results

the same as CC and significantly better than MTP. Together they demonstrate that CCP effectively combines

the strengths of both MTP and CC.

5.5.2 Results of Different Metrics

Besides FS, CMP caching performance can also be evaluated using other metrics. We use transposed CDF

plots to compare CCP (realistic) and MTP (ideal) against twosingle spatial partition (SSP) based schemes

IPCopt and WSopt, which optimize offline for throughput and weighted speedup, respectively. Focusing on

workloads that need cache partitioning, Figure 5.13 compares IPCopt, WSopt, MTP and CCP over 4 different

metrics: (A) fair speedup, (B) QoS, (C) throughput, and (D) weighted speedup.

For the first two metrics (fair speedup and QoS), MTP and CCP are both significantly better than IPCopt
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and WSopt. This is because the SSP based schemes, when their goals conflict with fairness and QoS

requirements, often optimize by favoring only a subset of threads while sacrificing the performance of other

threads. For IPC and WS metrics, both IPCopt and WSopt are better, although the gap between different

schemes are much smaller than in Figure 5.13 (A) and (B). As illustrated in the metrics comparison examples

(Section 5.2.1), this is because schemes optimizing for WS,IPC and FS have different tradeoffs between

performance vs. fairness.
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Figure 5.13: Results for Workloads that Need Cache Partitioning (4MB cache, 32% of total workloads)

Figure 5.14 summarizes the average improvement of WSopt, IPCopt, shared cache, CC and CCP over the

equal-share baseline for different metrics.



121

Par LRU All
1

1.05

1.1

1.15

1.2

1.25

1.3

(A) Fair Speedup

F
S

Par LRU All
1

1.1

1.2

1.3

1.4

(C) Throughput

IP
C

Par LRU All
1

1.1

1.2

1.3

1.4

(D) Weighted Speedup

W
S

 

 

WSopt IPCopt shared CC CCP

Par LRU All

−0.2

−0.15

−0.1

−0.05

0

(B) QoS
Q

oS

Figure 5.14: Average Improvement for 4MB L2 cache

The average improvements are calculated as geometric meansof per-workload improvements7. The

7QoS results are summarized using the arithmetic mean because the QoS measurements of many workloads are zero, which
causes the average results to be the same (zero) when using geometric mean.
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results are summarized over three groups of workloads: “Par” represents workloads that prefer cache

partitioning, “LRU” groups other workloads, while “All” covers all workload combinations. This figure

shows that for workloads preferring cache partitioning (Par), CCP performs much better than a shared cache

and CC, while achieving similar or much better results than the two cache partitioning schemes. Considering

workloads that prefer LRU-based sharing (LRU) and all workloads (All), CCP provides the best average

results on all reported metrics.

5.5.3 Results for a 2MB L2 Cache

Now we evaluate the robustness of CCP when the total L2 cache capacity is reduced to 2MB. The reduction

of cache size not only increases capacity contention between threads, but also causes some benchmarks to

switch their categories (e.g., from supplier benchmarks tosensitive benchmarks, or from sensitive bench-

marks to thrashing benchmarks) so the performance of CCP canbe tested under new scenarios.

Figure 5.15 uses transposed CDF plots to compare 4 cache partitioning schemes (IPCopt, WSopt, MTP

and CCP) on workloads that need cache partitioning. CCP again achieves comparable FS and QoS results

as the ideal MTP implementation and outperforms the two SSP-based partitioning schemes. This shows the

robustness of CCP’s heuristic-based partitioning algorithm. In terms of fairness and throughput tradeoff, the

weighted speedup results of MTP and CCP are similar to IPCopt and WSopt, while their throughput results

are 10% lower. Again, QoS constraint and fair speedup optimization are the two reasons that cause MTP

and CCP’s lower throughput, while IPCopt and WSopt can achieve better throughput without satisfying such

constraints.
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Figure 5.15: Results for Workloads that Need Cache Partitioning (2MB cache, 40% of total workloads)
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Figure 5.16: Average Improvement for 2MB L2 Cache
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Figure 5.16 compares the average improvements of various schemes over the equal-share baseline.

Because smaller cache size causes more capacity contention, more workloads now prefer cache partitioning

(increased from 32% to 40%). As partitioning becomes more preferable, the performance of the shared

cache also drops significantly and comes close to the equal-share baseline performance. In contrast, CCP

still consistently outperforms other schemes for workloads where cache partitioning can hurt. However,

the gap between cache partitioning schemes and CCP (as well as CC) is reduced because, due to capacity

pressure, latency optimizations contribute less to the overall speedup. Averaged over all 210 workloads,

CCP achieves the best results on almost all metrics (except for throughput, where CCP is 1% lower than

IPCopt).

5.5.4 Out-of-order Processor Results

The robustness of CCP can also be evaluated using a more aggressive processor model. Here we use the

same out-of-order processor modeled in Chapter 4, but only evaluate a representative subset of workloads

to shorten the simulation time. The workloads for the out-of-order processor are selected as follows. First

we choose three benchmarks to represent each of the three benchmark categories discussed in Section 5.2.2:

gcc for supplier benchmarks,vpr for sensitive benchmarks, andart for thrashing benchmarks. A total

of 15 workloads can be generated by all 4-thread combinations of these benchmarks, and we only report

results for these 15 workloads.
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Figure 5.17: Comparison of FS Results with In-order vs. Out-of-order Processor Models

Figure 5.17 compares the FS results achieved by CC, MTP and CCP when simulated using (A) in-order

vs. (B) out-of-order processor models. The key point shown in Figure 5.17 is that, across all workloads, the

relative ordering of different schemes for in-order and out-of-order processors are the same. Specifically,

CCP performs the best for all workloads with both processor models.

The two sets of results differ mainly in the performance gapsamong different schemes. Comparing with

in-order processor results, using the out-of-order processor model increases the performance advantage of

CC and CCP over the shared cache (thus MTP). The reason for improved benefits is because, for the three

selected SPEC benchmarks, the out-of-order processor can tolerate some of the local L2 hit latency (15-

cycles) but not the local L2 miss latencies (more than 30 cycles). Because CC can significantly increase

the number of local L2 hits than a shared cache, its performance advantage is magnified when using the
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out-of-order processor model.
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Figure 5.18: Average Improvement with Out-of-order Processor Models

Generally speaking, depending on a benchmark’s cache latency tolerance capabilities under different
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processor models, switching from the in-order to the out-of-order processor can either increase or decrease

the benefits of CC and CCP over a shared cache. But as shown in Figure 5.17, switching to a different

processor model does not change the advantage of CCP over itstwo baseline schemes (CC and MTP) for

our evaluated workloads.

Figure 5.18 summarizes the average improvements of variousschemes over the equal-share baseline

when using the out-of-order processor model. Same as using the in-order processor, CCP achieves the best

FS and QoS results for both PAR and LRU workloads. Different from previous results, CCP even achieves

the best WS and IPC results, due to the increase performance benefits of CC and CCP with the out-of-order

processor. For our evaluated workloads, CCP provides the best results in all evaluation metrics.

5.6 Conclusion

Current cache partitioning schemes have limited functionality and applicability because they can only

support a subset of CMP caching requirements, and they can not compete with LRU-based latency-reducing

caching schemes (e.g., CC) for many workloads. To answer these challenges, we introduce Multiple Time-

sharing Partitions (MTP) to simultaneously improve throughput and fairness while guaranteeing long-term

QoS. MTP is further integrated with CMP cooperative caching(CC) to exploit its latency optimizations.

The resulted CCP scheme is evaluated and shown to provide thebest overall performance over 210

combinations of 7 representative SPEC2000 benchmarks under two different cache sizes. For a 4-core

CMP with 4MB L2 cache, CCP not only maintains QoS, but also improves performance (measured by fair

speedup) by 12% and throughput by 4.5% over the best static partitioning schemes optimizing fair speedup

and throughput, respectively.

CCP takes a first step in balancing partitioning-based capacity optimizations and LRU-based latency

optimizations for multiprogrammed workloads. Future research is needed to extend CCP to better adapt

to phase/scheduling changes, as well as to support large-scale CMPs and CMPs with SMT cores. For



129

applications with real-time or response time requirements, future research can extend CCP to guarantee the

minimum performance needed for such workloads while exploiting the benefits of MTP and CC for the

remaining, best-effort, applications. For environments that prefer higher throughput over execution time

reduction, fairness, and QoS guarantee, CCP can also be modified to use a single spatial partition that only

optimizes throughput, which is left as future work.
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CHAPTER 6

CONCLUSION

As CMPs become the mainstream processors, designs of on-chip cache hierarchy will play an important

role to provide fast and fair data accesses for multiple, competing processor cores. To offset the negative

impact of limited off-chip bandwidth, on-chip wire delay, and hardware/software design complexity, this

dissertation contributes to two important goals of CMP caching—latency reduction and shared resource

management—with a unified supporting framework and two setsof cooperation policies.

6.1 Key Contributions

The first contribution of the dissertation is a unified Cooperative Caching (CC) framework for efficient

organization and use of the aggregate on-chip cache resources. This framework includes the following three

key components.

• Private cache based design.CC uses private cache organization to reduce remote on-chipmisses and

cross-chip communication requirements (thus active powerassociated with remote cache accesses).

The reduction of cache associativity, network bandwidth, and coherence traffic also leads to poten-

tially simpler designs. To enable resource sharing, CC enhances the base private design with two

features: (1) non-inclusion between multiple levels of caches to enable flexible data placement and

(2) support of cache-to-cache transfers of clean data to avoid unnecessary off-chip misses. Among

many CMP caching proposals [13, 15, 23, 27, 59, 68, 96, 138, 156, 159], CC is the only proposed

design that exploits the advantages of private cache based design to optimize for both multhreaded

and multiprogrammed workloads.
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• Cooperation and throttling mechanisms.By viewing a CMP’s use of the aggregate cache resources

as a shared resource management problem, we have identified two sets of commonly used mech-

anisms to support a wide range of resource sharing behaviors. Explicit resource sharing between

peer caches is carried out via placement and replacement based cooperation mechanisms, which

together determine what data are kept on-chip, and specifically in which cache. To control the amount

of sharing, probability based throttling can cover the whole spectrum between the baseline design

and unconstrained resource sharing. By controlling which cache can use the capacity of peer on-

chip caches, quota-based throttling can enforce policy-specific capacity allocations for all individual

cores. The combination of private cache organization, resource sharing mechanisms and throttling

mechanisms thus provides a vast space of sharing behaviors for the cooperation policies to explore.

• Decoupling of policies, mechanisms and implementations.With a set of commonly used mecha-

nisms, the CC framework is extensible on both policy and implementation sides. At the implementa-

tion level, CC’s cooperation and throttling mechanisms areindependent of specific cache algorithms

or coherence protocols, and can be adopted by various existing implementations. In contrast, most

current CMP caching proposals assume or rely on particular implementations (e.g., NUCA caches [15,

68, 156], snooping protocols [27, 138], or tile-based distributed directory protocols [159]). With

CC’s basic mechanisms, researchers can focus on the high-level tasks of understanding caching

requirements and devising innovative caching policies.

The dissertation also proposes and evaluates cache sharingpolicies for reducing off-chip accesses and

mitigating destructive inter-thread interference.

• Capacity improving policies. To achieve robust performance, the disadvantage of privatecache

designs—high off-chip miss rate—is mitigated using cooperation policies. These policies reduce off-

chip accesses by mimicking the behavior of a shared cache. Beside cache-to-cache transferring of

clean data, two policies are introduced to control replication and allow an LRU-like global sharing of
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cache space. The two policies improve capacity utilizationof multithreaded and multiprogrammed

workloads respectively, making CC more versatile than CMP caching designs that only optimize

for one class of workloads [13, 15, 138, 156]. Our evaluationshows that the combination of private

cache design and such cooperative resource sharing leads torobust performance for a wide range of

processor, cache/memory and system configurations.

• Cache partitioning policies. We use Multiple Time-sharing Partitions (MTP) to achieve a broader

sense of performance isolation in a multiprogramming environment. Compared with single spatial

partitioning (SSP) based policies, MTP introduces a time-sharing aspect to spatial cache partition-

ing and has the advantage of simultaneously satisfying multiple conflicting requirements. Each

MTP partition is an unfair partition that intentionally “starves” a subset of concurrent threads to

avoid thrashing; throughput and fairness can be simultaneously improved by executing multiple

MTP partitions in a round-robin manner, giving different threads fair opportunities to speedup; and

QoS is guaranteed by orchestrating capacity shrinking/growing in different MTP partitions so that

every thread’s average slowdown is bounded. The time-sharing behavior introduced by MTP is a

familiar concept to operating system schedulers, and can lead to simple implementations of priority

scheduling.

• Policy integration. Motivated by the complementary benefits of the two sets of policies on two

different problems, CC integrates these policies with a high-level adaptation policy. The integrated

scheme—Cooperative Cache Partitioning (CCP)—divides thetotal execution time into epochs man-

aged by either CC’s LRU-based policies or the MTP cache partitioning policy, proportionally to the

number of threads that can benefit from each of them respectively. Using CC’s LRU-based sharing as

the default policy simplifies MTP partitioning and allows heuristic-based, practical implementations.

Our evaluation of CCP implementation shows that it effectively combines the benefits of MTP and

CC: it can significantly improve the performance of workloads that need cache partitioning while
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maintaining fairness and QoS, and it achieves the same benefits of LRU-based latency optimizations

for workloads that do not need cache partitioning.

6.2 Future Directions

We have demonstrated the effectiveness of the CC framework with two important CMP caching applications,

and we believe the cooperative sharing mechanisms and the philosophy of using cooperation for conflict

resolution can be applied to other problems. Below we discuss some of the directions in extending the CC

framework and its applications.

6.2.1 Better Latency Reduction and Cache Partitioning

One promising direction for latency reduction is to integrate with caching algorithms that can adapt between

a recency-based replacement policy (e.g., LRU) and a frequency-based policy (e.g., LFU). Such algorithms

have already been used by software caches to dynamically discriminate data streams with weak locality.

Extending CC with an adaptive policy for the processor cachecan narrow the performance gap between

LRU and ideal cache algorithms.

New ways of characterizing and adapting to the caching requirements of individual threads are also

needed to further improve cooperative cache partitioning.Currently we use epoch-based sampling to

estimate such requirements, which may not adapt to phase/scheduling changes swiftly. Future research can

attack this problem with program phase tracking techniques[38,131], on-line sampling mechanisms [122],

and analytical models. We believe that a timely and better understanding of program requirements (in terms

of capacity, associativity [124], locality [56, 150], etc.) will lead to better assignment of cache resources

among co-scheduled threads, and thus more efficient use of these resources. Such techniques can be applied

to optimize not only performance, but also power, thermal and other metrics.

CC can be further extended to adaptively choose between latency reduction policies and cache partition-
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ing policies, not only for multiprogrammed workloads as demonstrated by CCP, but also for multithreaded

workloads and their multiprogramming combinations. The key for this policy selection is to determine

whether a group of co-scheduled threads shares data, which should trigger the replication control policy.

Such information can be provided either by the scheduler software, or a hardware monitor of data sharing

messages.

6.2.2 Heterogeneous Processor and Cache Designs

Because private caches are interfaced in CC only via the coherence protocol, their internal organizations are

encapsulated and thus can be different. This property can beexploited to support statically or dynamically

created heterogeneous private caches, with different number of sets, associativities, threshold voltages, cell

sizes, or even replacement and write-back policies.

One application of heterogeneous caches is to provide matching cache resources for heterogeneous

processor designs without global synchronization. The challenge is to define fairness and QoS for such

heterogeneous architectures with core-specific cache configurations. Future research should explore the

benefits of heterogeneous cache designs and understand its implication to parallel applications, operating

systems, and end-users [10].

6.2.3 Power and Reliability Optimizations

CC can be extended to support other cache optimizations, such as leakage power reduction and reliability

improvement. At the architectural level, better power efficiency and reliability can be achieved by making

some cache resources slow or sacrificing some capacity. For example, power can be saved by ”turning off”

selected portions of the aggregate on-chip cache, or using higher threshold voltage [20] (leading to slower

accesses), while reliability can be improved via spatial redundancy (e.g., ECC, which can slow down tag

accesses), or using larger transistors or higher thresholdvoltage [33].
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However, to maintain high performance, not all L2 caches canbe made slow [6] or turned off, and cache

management policies are needed to trade off between performance and power/reliability enhancements.

CC can be extended to manage a set of cache resources with different capacity and speed characteris-

tics (thus different power and reliability parameters), and match them with threads having heterogeneous

power/reliability/performance requirements. Similar toexisting cooperative policies, CC will need to iden-

tify what portion of the cache (e.g., at cache blocks, cache subarrays, or private cache level) is not used

efficiently and can thus be turned off or made slow, and for howlong, and how to manage the remaining

cache resources to minimize the consequent performance loss. To eliminate the over-provisioning ineffi-

ciency based on worse-case power/reliability requirements [127], chip-level management policies can be

explored to share available power budget or reliable banks and react to over-quota emergencies. CC can also

exploit data criticality information (e.g., dirty blocks or blocks touched by kernel code) to place important

data into caches with matching characteristics [107].

6.2.4 Software/Hardware Cooperative Caching

Cooperation can be beneficial not only between private caches, but also between software and hardware

cache management schemes. CC can be easily augmented with cache bypassing [80] or prioritized evic-

tion [154], and use compiler generated hints to control the placement and replacement of cache blocks.

Future work can also consider software controlled cache partitioning, where MTPs, instead of thread-mixes,

are explicitly scheduled to satisfy specific software requirements (e.g., throughput, fairness, or priority).

For embedded [69] or streaming applications [53], compilercan partition the computation into spe-

cialized components executed on dedicated cores, and orchestrate data communication among producer-

consumer cores. Compared with conventional private and shared cache organization, CC provides better

support for such orchestrated data usage and movement, because (1) its private cache organization can keep a

computation task’s data set close to it, and (2) its prioritized replacement and spill mechanisms together can
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streamline producer-consumer communications. Similarly, virtual machine monitors that migrate threads

around can also benefit from CC when collocating computationwith data.
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