
Cooperative Caching for Efficient Data
Access in Disruption Tolerant Networks

Wei Gao, Member, IEEE, Guohong Cao, Fellow, IEEE,

Arun Iyengar, Fellow, IEEE, and Mudhakar Srivatsa, Member, IEEE

Abstract—Disruption tolerant networks (DTNs) are characterized by low node density, unpredictable node mobility, and lack of global

network information. Most of current research efforts in DTNs focus on data forwarding, but only limited work has been done on

providing efficient data access to mobile users. In this paper, we propose a novel approach to support cooperative caching in DTNs,

which enables the sharing and coordination of cached data among multiple nodes and reduces data access delay. Our basic idea is to

intentionally cache data at a set of network central locations (NCLs), which can be easily accessed by other nodes in the network. We

propose an efficient scheme that ensures appropriate NCL selection based on a probabilistic selection metric and coordinates multiple

caching nodes to optimize the tradeoff between data accessibility and caching overhead. Extensive trace-driven simulations show that

our approach significantly improves data access performance compared to existing schemes.

Index Terms—Cooperative caching, disruption tolerant networks, data access, network central locations, cache replacement

Ç

1 INTRODUCTION

DISRUPTION tolerant networks (DTNs) [14] consist of
mobile devices that contact each other opportunisti-

cally. Due to the low node density and unpredictable node
mobility, only intermittent network connectivity exists in
DTNs, and the subsequent difficulty of maintaining end-to-
end communication links makes it necessary to use “carry-
and-forward” methods for data transmission. Examples of
such networks include groups of individuals moving in
disaster recovery areas, military battlefields, or urban
sensing applications [11]. In such networks, node mobility
is exploited to let mobile nodes carry data as relays and
forward data opportunistically when contacting others. The
key problem is, therefore, how to determine the appropriate
relay selection strategy.

Although forwarding schemes have been proposed in
DTNs [4], [1], [13], there is limited research on providing
efficientdataaccess tomobileusers, despite the importanceof
data accessibility in many mobile applications. For example,
it is desirable that smartphone users can find interesting
digital content from their nearby peers. In vehicular ad-hoc
networks (VANETs), the availability of live traffic informa-
tion will be beneficial for vehicles to avoid traffic delays.

In these applications, data are only requested by mobile
users whenever needed, and requesters do not know data

locations in advance. The destination of data is, hence,
unknown when data are generated. This communication
paradigm differs from publish/subscribe systems [36], [25]
in which data are forwarded by broker nodes to users
according to their data subscriptions. Appropriate network
design is needed to ensure that data can be promptly
accessed by requesters in such cases.

A common technique used to improve data access
performance is caching, i.e., to cache data at appropriate
network locations based on query history, so that queries in
the future can be responded with less delay. Although
cooperative caching has been studied for both web-based
applications [15] and wireless ad hoc networks [35], [33],
[16], [38] to allow sharing and coordination among multiple
caching nodes, it is difficult to be realized in DTNs due to
the lack of persistent network connectivity. First, the
opportunistic network connectivity complicates the estima-
tion of data transmission delay, and furthermore makes it
difficult to determine appropriate caching locations for
reducing data access delay. This difficulty is also raised by
the incomplete information at individual nodes about query
history. Second, due to the uncertainty of data transmission,
multiple data copies need to be cached at different locations
to ensure data accessibility. The difficulty in coordinating
multiple caching nodes makes it hard to optimize the
tradeoff between data accessibility and caching overhead.

In this paper, we propose a novel scheme to address the
aforementioned challenges and to efficiently support co-
operative caching in DTNs. Our basic idea is to intention-
ally cache data at a set of network central locations (NCLs),
each of which corresponds to a group of mobile nodes being
easily accessed by other nodes in the network. Each NCL is
represented by a central node, which has high popularity in
the network and is prioritized for caching data. Due to the
limited caching buffer of central nodes, multiple nodes near
a central node may be involved for caching, and we ensure
that popular data are always cached nearer to the central

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014 611

. W. Gao is with the Department of Electrical Engineering and Computer
Science, University of Tennessee at Knoxville, 302 Min Kao, 1520 Middle
Drive, Knoxville, TN 37996. E-mail: weigao@utk.edu.

. G. Cao is with the Department of Computer Science and Engineering,
Pennsylvania State University, 354G Information Science and Technology
Building, University Park, PA 16802. E-mail: gcao@cse.psu.edu.

. A. Iyengar and M. Srivatsa are with the IBM T.J. Watson Research Center,
19 Skyline Dr, Hawthorne, NY 10532.
E-mail: {aruni, msrivats}@us.ibm.com.

Manuscript received 18 July 2011; revised 29 May 2012; accepted 18 Jan.
2013; published online 7 Mar. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-07-0399.
Digital Object Identifier no. 10.1109/TMC.2013.33.

1536-1233/14/$31.00 � 2014 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

nodes via dynamic cache replacement based on query
history. Our detailed contributions are listed as follows:

. We develop an efficient approach to NCL selection
in DTNs based on a probabilistic selection metric.
The selected NCLs achieve high chances for prompt
response to user queries with low overhead in
network storage and transmission.

. We propose a data access scheme to probabilistically
coordinate multiple caching nodes for responding to
user queries. We furthermore optimize the tradeoff
between data accessibility and caching overhead, to
minimize the average number of cached data copies
in the network.

. Wepropose a utility-based cache replacement scheme
to dynamically adjust cache locations based on query
history, and our scheme achieves good tradeoff
between the data accessibility and access delay.

The rest of this paper is organized as follows: In Section 2,
we briefly review existing work. Section 3 provides an
overview of our approach and highlights our motivation of
intentional caching in DTNs. Section 4 describes how to
appropriately select NCLs in DTNs. Section 5 describes the
details of our proposed caching scheme, and Section 6
proposes load balancing techniques among NCLs. The
results of trace-driven performance evaluations are shown
in Section 7, and Section 8 concludes the paper.

2 RELATED WORK

Research on data forwarding in DTNs originates from
Epidemic routing [34], which floods the entire network.
Some later studies focus on proposing efficient relay
selection metrics to approach the performance of Epidemic
routing with lower forwarding cost, based on prediction of
node contacts in the future. Some schemes do such
prediction based on their mobility patterns, which are
characterized by Kalman filter [8] or semi-Markov chains
[37]. In some other schemes, node contact pattern is
exploited as abstraction of node mobility pattern for better
prediction accuracy [4], [24], based on the experimental [7]
and theoretical [5] analysis of the node contact character-
istics. The social network properties of node contact
patterns, such as the centrality and community structures,
have also been also exploited for relay selection in recent
social-based data forwarding schemes [9], [22], [20].

The aforementioned metrics for relay selection can be
applied to various forwarding strategies, which differ in the
number of data copies created in the network. While the
most conservative strategy [32] always keeps a single data
copy and Spray-and-Wait [31] holds a fixed number of data
copies, most schemes dynamically determine the number of
data copies. In Compare-and-Forward [12], a relay forwards
data to another node whose metric value is higher than
itself. Delegation forwarding [13] reduces forwarding cost
by only forwarding data to nodes with the highest metric.

Data access in DTNs, on the other hand, can be provided
in various ways [28]. Data can be disseminated to appro-
priate users based on their interest profiles [18]. Publish/
subscribe systems [36], [25] were used for data dissemina-
tion, where social community structures are usually

exploited to determine broker nodes. In other schemes
[24], [2] without brokers, data items are grouped into
predefined channels, and are disseminated based on users’
subscriptions to these channels.

Caching is another way to provide data access.
Cooperative caching in wireless ad hoc networks was
studied in [35], in which each node caches pass-by data
based on data popularity, so that queries in the future can
be responded with less delay. Caching locations are selected
incidentally among all the network nodes. Some research
efforts [27], [21] have been made for caching in DTNs, but
they only improve data accessibility from infrastructure
network such as WiFi access points (APs) [21] or Internet
[27]. Peer-to-peer data sharing and access among mobile
users are generally neglected.

Distributed determination of caching policies for mini-
mizing data access delay has been studied in DTNs [29],
[23], assuming simplified network conditions. In [29], it is
assumed that all the nodes contact each other with the same
rate. In [23], users are artificially partitioned into several
classes such that users in the same class are identical. In [19],
data are intentionally cached at appropriate network
locations with generic data and query models, but these
caching locations are determined based on global network
knowledge. Comparatively, in this paper, we propose to
support cooperative caching in a fully distributed manner
in DTNs, with heterogeneous node contact patterns
and behaviors.

3 OVERVIEW

3.1 Motivation

A requester queries the network for data access, and the
data source or caching nodes reply to the requester with
data after having received the query. The key difference
between caching strategies in wireless ad hoc networks and
DTNs is illustrated in Fig. 1. Note that each node has limited
space for caching. Otherwise, data can be cached every-
where, and it is trivial to design different caching strategies.

The design of caching strategy in wireless ad hoc
networks benefits from the assumption of existing end-to-
end paths among mobile nodes, and the path from a
requester to the data source remains unchanged during
data access in most cases. Such assumption enables any
intermediate node on the path to cache the pass-by data. For
example, in Fig. 1a, C forwards all the three queries to data
sources A and B, and also forwards data d1 and d2 to the
requesters. In case of limited cache space, C caches the more
popular data d1 based on query history, and similarly data
d2 are cached at node K. In general, any node could cache
the pass-by data incidentally.

However, the effectiveness of such an incidental caching
strategy is seriously impaired in DTNs, which do not
assume any persistent network connectivity. Since data are
forwarded via opportunistic contacts, the query and
replied data may take different routes, and it is difficult
for nodes to collect the information about query history
and make caching decision. For example, in Fig. 1b, after
having forwarded query q2 to A, node C loses its
connection to G, and cannot cache data d1 replied to

612 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

requester E. Node H which forwards the replied data to E
does not cache the pass-by data d1 either because it did not
record query q2 and considers d1 less popular. In this case,
d1 will be cached at node G, and hence needs longer time to
be replied to the requester.

Our basic solution to improve caching performance in
DTNs is to restrain the scope of nodes being involved for
caching. Instead of being incidentally cached “anywhere,”
data are intentionally cached only at specific nodes. These
nodes are carefully selected to ensure data accessibility, and
constraining the scope of caching locations reduces the
complexity of maintaining query history and making
caching decision.

3.2 Network Model

Opportunistic contacts in DTNs are described by a network
contact graph GðV ;EÞ, where the stochastic contact process
between a node pair i; j 2 V is modeled as an edge eij 2 E.
We assume that node contacts are symmetric; i.e., node j
contacts i whenever i contacts j, and the network contact
graph is, therefore, undirected. The characteristics of an
edge eij 2 E are determined by the properties of inter-
contact time among nodes. Similar to previous work [1],
[39], we consider the pairwise node intercontact time as
exponentially distributed. Contacts between nodes i and j
then form a Poisson process with contact rate �ij, which is
calculated in real time from the cumulative contacts
between nodes i and j because the network starts. In the
rest of this paper, we call the node set fj j �ij > 0g � V as
the contacted neighbors of i.

3.3 The Big Picture

We consider a general caching scenario, in which each node
may generate data with a globally unique identifier1 and
finite lifetime, and may also request other data by sending
queries with a finite time constraint. In practice, such
scenario could correspond to various types of disaster
environments, which contain mobile users being rescued
after hurricane, fire accidents, or earthquake. In these
scenarios, the cellular 3G infrastructure may usually be
unavailable, or provide too limited bandwidth to transmit
data traffic. Instead, mobile users rely on their opportunistic
contacts for accessing data, which can be live weather report,

traffic condition, or government rescue plan. Similarly, a
platoon of soldiers in the military battlefield may lose the
satellite connection due to enemy attacks, and have to
distribute battle reports via their opportunistic contacts.

In these scenarios, either a data item or a query is
described by a set of keywords over a keyword space [18],
so that caching nodes can determine the appropriate data
that a user is interested in. In these scenarios, data
requesters are randomly distributed in the network. We
focus on efficiently utilizing the available node buffer to
optimize the overall caching performance, which is mea-
sured by the successful ratio and delay for mobile users to
access different data items.

Our basic idea is to intentionally cache data only at a
specific set of NCLs, which can be easily accessed by other
nodes in the network. Queries are forwarded to NCLs for
data access.2 The big picture of our proposed scheme is
illustrated in Fig. 2. Each NCL is represented by a central
node, which corresponds to a star in Fig. 2. The push and
pull caching strategies conjoin at the NCLs. The data
source S actively pushes its generated data toward the
NCLs, and the central nodes C1 and C2 of NCLs are
prioritized for caching data. If the buffer of a central node
C1 is full, data are cached at another node A near C1.
Multiple nodes at a NCL may be involved for caching, and
a NCL, hence, corresponds to a connected subgraph of the
network contact graph G, as the dashed circles illustrated
in Fig. 2. Note that NCLs may be overlapping with each
other, and a node being involved for caching may belong
to multiple NCLs simultaneously. A requester R pulls data
by querying NCLs, and data copies from multiple NCLs
are returned to ensure prompt data access. Particularly,
some NCL such as C2 may be too far from R to receive the
query on time, and does not respond with data. In this
case, data accessibility is determined by both node contact
frequency and data lifetime.

Nodes in DTNs are well motivated to contribute their
local resources for caching data because the cached data
provide prompt data access to the caching nodes them-
selves. As illustrated by Fig. 2, since the central nodes
representing NCLs are prioritized for caching data, the
closer a requester is to a central node, the sooner its queries
are responded by the corresponding NCL. The delay for
responding to queries generated from central nodes is,
obviously, the shortest.

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 613

Fig. 1. Caching strategies in different network environments. Data d1 generated by node A are requested by nodes D and E, and d2 generated by
node B are requested by node F . A solid line in (a) between nodes indicates a wireless link, and a dotted line in (b) indicates that two nodes
opportunistically contact each other.

1. We assign the identifier of each data item as combination of data
source’s ID and an nondecreasing sequence number, which is maintained
by data source and increases whenever a new data item is generated by
the source.

2. Note that our scheme is different from publish/subscribe system, in
which published data are forwarded to subscribers instead of being cached
by brokers.

4 NETWORK CENTRAL LOCATIONS

In this section, we describe how to select NCLs based on a
probabilistic metric evaluating the data transmission delay
among nodes in DTNs; we validate the applicability of such
metric in practice based on the heterogeneity of node
contact pattern in realistic DTN traces. Furthermore, we
propose detailed methods for selecting NCLs in practice
based on different availability of network information.

4.1 NCL Selection Metric

We first define the multihop opportunistic connection on
network contact graph G ¼ ðV ;EÞ.

Definition 1 (Opportunistic path). A r-hop opportunistic
path PAB ¼ ðVP ; EP Þ between nodes A and B consists of a
node set VP ¼ fA;N1; N2; . . . ; Nr�1; Bg � V and an edge set
EP ¼ fe1; e2; . . . ; erg � E with edge weights f�1; �2; ::; �rg.
Path weight pABðT Þ is the probability that data are
opportunistically transmitted from A to B along PAB within
time T .

An opportunistic path is illustrated in Fig. 3. As
described in Section 3.2, the intercontact time Xk between
nodes Nk and Nkþ1 on PAB follows exponential distribution
with probability density function (PDF) pXk

ðxÞ ¼ �ke
��kx.

Hence, the time needed to transmit data from A to B is
Y ¼

Pr
k¼1 Xk following a hypoexponential distribution [30],

such that

pY ðxÞ ¼
X

r

k¼1

C
ðrÞ
k pXk

ðxÞ; ð1Þ

where the coefficients C
ðrÞ
k ¼

Qr
s¼1;s6¼k

�s

�s��k
.

From (1), the path weight is written as

pABðT Þ ¼

Z T

0

pY ðxÞdx ¼
X

r

k¼1

C
ðrÞ
k � ð1� e��kT Þ; ð2Þ

and the data transmission delay between two nodes A and
B, indicated by the random variable Y , is measured by the
weight of the shortest opportunistic path between the two
nodes. In practice, mobile nodes maintain the information
about shortest opportunistic paths between each other in a
distance-vector manner when they come into contact.

The metric Ci for a node i to be selected as a central node
to represent a NCL is then defined as follows:

Ci ¼
1

jV j
�
X

j2V

pijðT Þ; ð3Þ

where we define that piiðT Þ ¼ 0. This metric indicates the
average probability that data can be transmitted from a
random node to node i within time T . From (3), it is
obvious that the value of Ci decreases exponentially when
T decreases.

4.2 Trace-Based Validation

The practical applicability of the aforementioned NCL
selection metric is based on the heterogeneity of node
contact patterns, such that nodes in DTNs differ in their
popularity and few nodes contact many others frequently.
In this section, we validate this applicability using realistic
DTN traces.

These traces record contacts among users carrying
mobile devices in conference sites and university cam-
puses. The mobile devices, including Mica2 sensors or
smartphones, are distributed to users being participated
into the experiment. Devices equipped with Bluetooth
interface periodically detect their peers nearby, and a
contact is recorded when two devices move close to each
other. Devices equipped with WiFi interface search for
nearby WiFi APs and associate themselves to APs with
the best signal strength. A contact is recorded when two
devices are associated with the same AP. The detected
contacts are recorded in the local storage of mobile
devices. After the experiment ends, these devices are
called back so that the recorded contacts are processed
and analyzed. The traces are summarized in Table 1.

We calculate pairwise node contact rates based on their
cumulative contacts during the entire trace. According to
(2), inappropriate values of T make Ci close to 0 or 1.
Instead, values of T are adaptively determined in different
traces to ensure the differentiation of NCL selection metric
values of nodes. T is set as 1 hour for the two Infocom
traces, one week for the MIT Reality trace, and three days
for the UCSD trace.

The results in Fig. 4 show that the distributions of NCL
selection metric values are skewed in all traces, and the
metric values of few nodes are much higher than that of
others. This difference can be up to 10fold, and suggests
that our proposed NCL selection metric efficiently indicates
the heterogeneity of node contact pattern. Hence, this
metric ensures the selected NCLs can be easily accessed
by other nodes.

614 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 2. The big picture of intentional caching.

Fig. 3. Opportunistic path.

TABLE 1
Trace Summary

4.3 Practical NCL Selection

In this section, we propose methods for selecting the
required K NCLs in practice based on the NCL selection
metric proposed in Section 4.1. We consider K as a
predefined parameter determined by the network perfor-
mance requirements, which will be discussed later in
Section 5.5 in more detail.

In general, network information about the pairwise node
contact rates and shortest opportunistic paths among
mobile nodes are required to calculate the metric values
of mobile nodes according to (3). However, the maintenance
of such network information is expensive in DTNs due to
the lack of persistent end-to-end network connectivity. As a
result, we will first focus on selecting NCLs with the
assumption of complete network information from the
global perspective. Afterwards, we propose distributed
NCL selection methods that efficiently approximate global
selection results and can operate on individual nodes in an
autonomous manner.

4.3.1 Global Selection

When global network knowledge about the pairwise node
contact rates and shortest opportunistic paths among
mobile nodes are available, central nodes representing
NCLs can be selected sequentially by the network admin-
istrator before data access. Let INC denote the set of selected
central nodes; every time the node in V n INC with the
highest metric value is selected as the next central node,
until the required K central nodes are selected. In
particular, we exclude the set INC of existing central nodes
from calculating Ci in (3), i.e.,

Ci ¼
1

jV n INC j
�
X

j2V nINC

pijðT Þ: ð4Þ

By doing so, we ensure that the selected central nodes
will not be clustered on the network contact graph. The
parameter T used in (4) is determined by the average node
contact frequency. This parameter is generally trace
dependent and was discussed in Section 4.2 for different
DTN traces.

A network warm-up period is reserved for nodes to
collect information and calculate their pairwise contact rates
as described in Section 3.2, and central nodes are selected
after the warm-up period ends. Data are unable to be
intentionally cached at the NCLs during the warm-up
period. Instead, data are incidentally cached by nodes in the

network, as described in Section 3.1, for data access. In
particular, every requester sends queries directly to the data
source, and caches the received data locally for responding
other pass-by queries in the future.

After the central nodes representing NCLs are selected,
the network administrator is responsible for notifying each
node in the network about the information of NCLs via
cellular or satellite links. Since each node is only notified
about the identifiers of central nodes, this notification is cost-
effective without producing noticeable communication
overhead, even in cases where the central nodes frequently
change. Note that the central nodes are selected due to their
popularity in the network, rather than their computation or
storage capabilities. Therefore, in general, we assume that
the central nodes have similar capabilities in computation,
data transmission, and storage with other nodes in DTNs.
Later in Section 6, we will furthermore study load balancing
among central nodeswhen their local resources are depleted.

4.3.2 Distributed Selection

When global network knowledge is unavailable, a node
maintains information about pairwise contact rates and
shortest opportunistic paths to other nodes via opportunis-
tic contacts. According to Definition 1 of the opportunistic
path, Lemma 1 formally shows that the distributed
maintenance of opportunistic paths in DTNs cannot be
done in an iterative manner.

Lemma 1. There does not exist a function fð�; T Þ, such that for
any opportunistic path PAB ¼ ðA;N1; . . . ; Nr�1; BÞ with edge
weights f�1; �2; . . . ; �rg,

pABðT Þ ¼ pANr�1
ðT Þ � fð�r; T Þ;

where � can be any arbitrary arithmetic operation.

Proof. The difficulty of calculating pABðT Þ in an iterative
manner mainly comes from the properties of the coeffi-
cients C

ðrÞ
k in (2). When a new edge ðNr�1; BÞ with weight

�r is added into a path ANr�1, such coefficients are
modified as

C
ðrÞ
k ¼

C
ðr�1Þ
k �

�k

�r � �k
; k 6¼ r;

Qr�1
s¼1

�s

�s � �r
; k ¼ r:

8

>

<

>

:

ð5Þ

We have two observations from (5). First, each

coefficient C
ðrÞ
k (k 6¼ r) is updated by multiplying a

distinct value �k

�rþ1��k
. Second, calculation of CðrÞ

r

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 615

Fig. 4. Values of NCL selection metric on realistic DTN traces.

involves all the edge weights �1; . . . ; �r�1. Both of them
make it impossible to calculate pABðT Þ solely from

pANr�1
ðT Þ and �r. tu

Instead, a node i needs to maintain the complete
opportunistic paths to other nodes in the network. Initially,
each node only has the information about its contacted
neighbors. When a node A contacts another node B, they
exchange and update their opportunistic path tables. More
specifically, for a record of node C in B’s table, if C has not
been recorded at A, A adds this record into its own table.
Otherwise, if the path to C recorded by B has larger weight
than that recorded by A, A updates its local record about C.

Being similar with global NCL selection, a network
warm-up period is reserved for nodes to exchange and
maintain necessary information about opportunistic paths
to others. However, a longer warm-up period is needed for
distributed NCL selection because multihop opportunistic
data transmission is required for distributed maintenance of
such information.

Afterwards, each node in the network autonomously
calculates the value of its NCL selection metric according to
(3) and broadcasts this value to the network. After a
predefined broadcasting period, a node having received
these values then selects the nodes with the K highest
metric values as the central nodes representing NCLs.

However, due to the uncertainty of opportunistic data
transmission in DTNs, the broadcasting range of a
particular node may not cover the entire network. Such
broadcasting range in DTNs can be formally bounded by
the following lemma.

Lemma 2. Suppose that node A broadcast its metric value at
time t0 and SSAðt0; tÞ denotes the set of nodes which have
received A’s information by time t0 þ t. We have

IPðjSSAðt0; tÞj � nÞ � ð1� e�hGtÞn�1; ð6Þ

where

hG ¼ min
U�V

P

i2U;j2V nU �ij

minðjU j; jV n U jÞ
ð7Þ

is an invariant only depending on the characteristics of the
network contact graph.

Proof. Letting Tk be the time by which at least k nodes in the
network have received the information of node A, i.e.,
Tk ¼ infft; s:t:jSSAðt0; tÞj � kg, we can easily have

IPðTk � Tk�1 � tÞ ¼ 1� e��t;

which means that the random variable Tk � Tk�1 is ex-

ponentiallydistributedwithparameter� ¼
P

i2S;j2V nS �ij,

and S ¼ SSAðt0; Tk�1Þ. According to definition of hG in (7),

� � hG �minðjSj; jV n SjÞ � ðk� 1ÞhG;

and, hence, we have

IPðjSSAðt0; tÞj � kÞ � 1� IP
X

k�1

j¼1

Xj � t

 !

; ð8Þ

where Xj is exponentially distributed with parameter
jhG. This lemma is then proved via induction over
k based on (8). tu

From Lemma 2, we can see that the metric value of a
particular node can only be broadcasted to the entire
network after a sufficiently long period of time. In this case,
the distributed NCL selections made at individual nodes
may be inconsistent. Such inconsistency is illustrated in
Fig. 5, where the numbers in brackets indicate the values of
nodes’ NCL selection metric. Due to the limited time for
broadcasting, node A is unaware of C4 which has a high
metric value of 0.75, and hence selects C3 with a lower
metric value as the central node when K ¼ 3. This
suboptimal selection A made then becomes inconsistent
with B’s selections.

Based on Lemma 2, we have the following theorem
which evaluates the occurrence probability of such
inconsistency.

Theorem 1. After a broadcasting period T , the probability that
the NCL selections made by two arbitrary nodes A and B in
the network are inconsistent is no larger than 1� ð1 �
2pð1� pÞÞK , where K is the predefined number of NCLs, and

p ¼
X

N

n¼1

ð1� e�hGT Þn�1 �
�

1�
n

N

�

: ð9Þ

Proof. Suppose that N1; . . . ; NK are the central nodes being
selected with global network information. For each Ni, if
the information of its metric value has been received by
n nodes after the broadcasting period T , node A has the
probability 1� n=N for not having received such
information. Therefore, p in (9) indicates the probability
that the information of Ni has not been received by
node A, according to Lemma 2.

It is easy to see that the same probability p also applies
to node B. As a result, 1� 2pð1� pÞ provides an upper
bound on the probability that the NCL selections made
by nodes A and B are inconsistent on any Ni for
1 � i � K, and this theorem is therefore proved. tu

The inconsistency illustrated in Fig. 5 can generally be
solved by two methods. The first and more straightforward
method is to extend the broadcasting period, so that each
node is aware of the metric values of all the other nodes in
the network. However, this method may be impractical in
some mobile applications with strict requirements of time-
liness. Another alternative is to opportunistically correct
suboptimal NCL selections when nodes contact each other.

616 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 5. Inconsistency in distributed NCL selection when K ¼ 3.

More specifically, each node maintains the list of its selected

central nodes and their metric values. They exchange such

information whenever they contact other and replace the

selected central nodes if better ones are found. For example

in Fig. 5, node A is able to find out that C4 is a better choice

as a central node when it contacts node B.
At last, we evaluate the performance of distributed NCL

selection using realistic DTN traces. Due to the aforemen-

tioned inconsistency, central nodes selected by individual

nodes may be suboptimal, and we evaluate this suboptim-

ality at a node i as 1
K

PK
j¼1 jIj � jj, where the jth central node

selected by node i has the Ijth largest metric value in the

network.3 The average suboptimality over all the nodes in

the network with different broadcasting periods T is shown

in Fig. 6. In general, Fig. 6 shows that the performance of

distributed NCL selection is closely related with the length

of T . The selected central nodes are far from optimal when

T is small, but will be quickly improved when T increases.

When T is sufficiently large, the performance of distributed

NCL selection closely approximates that of global selection.
Fig. 6 shows that the suboptimality of selected central

nodes generally increases with the value of K, which is

consistent with our theoretical expectation in Theorem 1.

However, by comparing Fig. 6 with Fig. 4, we notice that

this suboptimality may also be diminished if the value of K

is appropriately selected to reflect the heterogeneity of

network contact pattern. For example, Fig. 4b shows that

the metric values of five nodes are much higher than those

of other nodes in the Infocom06 trace. Correspondingly, the

suboptimality of distributed NCL selection can be reduced

as shown in Fig. 6b when the value of K is changed from 3

to 5. Similar cases are also found in all the other traces.

5 CACHING SCHEME

In this section, we present our cooperative caching scheme.

Our basic idea is to intentionally cache data at a set of

NCLs, which can be promptly accessed by other nodes. Our

scheme consists of the following three components:

1. When a data source generates data, it pushes data to
central nodes of NCLs, which are prioritized to
cache data. One copy of data is cached at each NCL.
If the caching buffer of a central node is full, another
node near the central node will cache the data. Such

decisions are automatically made based on buffer
conditions of nodes involved in the pushing process.

2. A requester multicasts a query to central nodes of
NCLs to pull data, and a central node forwards the
query to the caching nodes. Multiple data copies are
returned to the requester, and we optimize the
tradeoff between data accessibility and transmission
overhead by controlling the number of returned
data copies.

3. Utility-based cache replacement is conducted when-
ever two caching nodes contact and ensures that
popular data are cached nearer to central nodes. We
generally cache more copies of popular data to
optimize the cumulative data access delay. We also
probabilistically cache less popular data to ensure
the overall data accessibility.

5.1 Caching Location

Whenever a node S generates new data, S pushes the data
to NCLs by sending a data copy to each central node
representing a NCL. We use the opportunistic path weight
to the central node as relay selection metric for such data
forwarding, and a relay forwards data to another node with
a higher metric than itself. This “Compare-and-Forward”
strategy has been widely used in the literature [10], [9] for
efficient data forwarding. According to Definition 1 on
opportunistic path, this strategy probabilistically ensures
that each forwarding reduces the remaining delay for data
to be delivered to the central node.

For newly generated data, the initial caching locations are
automatically determined during the forwarding process
based on node buffer conditions. The caching locations are
then dynamically adjusted by cache replacement described
in Section 5.4 according to query history. In general, data are
forwarded to and cached at central nodes. This forwarding
process only stops when the caching buffer of the next relay
is full,4 and data are cached at the current relay in such
cases. In other words, during the data forwarding process
toward central nodes, relays carrying data are considered as
temporal caching locations of the data.

Such determination of caching location is illustrated in
Fig. 7, where the solid lines indicate opportunistic contacts
used to forward data, and the dashed lines indicate data
forwarding stopped by node buffer constraint. Central node
C1 is able to cache data, but data copies to C2 and C3 are

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 617

3. We have Ij ¼ j for 8j if the optimal central nodes are selected.
4. Since the data are newly generated and has not been requested yet, no

cache replacement is necessary at the relay.

Fig. 6. Suboptimality of distributed NCL selection on realistic DTN traces.

stopped and cached at relays R2
4 and R3

3, respectively,
because neither C2 nor R3

4 has enough buffer to cache data.
Note that the caching location at a NCL may not be the
contacted neighbor of a central node, like the case of
nodes R3

3 in Fig. 7.
From this strategy, it is easy to see that the set of caching

nodes at each NCL forms a connected subgraph of the
network contact graph at any time during data access. This
property essentially facilitates the delivery of user queries
to the caching nodes, which is described in Section 5.2.

5.2 Queries

We assume that any node may request data, and hence,
data requesters are randomly distributed in the network. A
requester multicasts a query with a finite time constraint to
all the central nodes to pull data, and existing multicast
schemes in DTNs [20] can be exploited for this purpose.

After having received the query, a central node
immediately replies to the requester with data if it is
cached locally.5 Otherwise, it broadcasts the query to the
nodes nearby. This process is illustrated in Fig. 8. While
the central node C1 is able to return the cached data to R
immediately, the caching nodes A and B only reply to R
after they receive the query from central nodes C2 and C3,
respectively. The query broadcast finishes when query
expires. Each caching node at NCLs maintains up-to-date
information about query history, which is used in
Section 5.4 for cache replacement.

5.3 Probabilistic Response

As shown in Fig. 8, multiple data copies are replied to the
requester from NCLs to ensure that the requester receives
data before query expires. However, only the first data copy
received by the requester is useful, and all the others are
essentially useless and waste network resources. The major
challenge for solving this problem arises from the inter-
mittent network connectivity in DTNs. First, it is difficult
for caching nodes to promptly communicate with each
other, and hence, the optimal number of data copies
returned to the requester cannot be determined in advance.
Second, a relay carrying a data copy does not know the
locations of other data copies being returned, and therefore
cannot determine whether the requester has received data.

In this section, we propose a probabilistic scheme to
address these challenges and optimize the tradeoff between
data accessibility and transmission overhead. Our basic idea

is that, having received the query, a caching node probabil-
istically decides whether to return the cached data to the
requester. Different strategies are used for this decision,
according to the availability of network contact information.

We assume that a query is generated with a time
constraint Tq, and it takes t0 < Tq for it to be forwarded
from requester R to caching node C. If C knows the
information about the shortest opportunistic paths to all the
nodes in the network, C can determine whether to reply
data to Rwith the probability pCRðTq � t0Þ. According to (2),
pCRðTq � t0Þ indicates the probability that data can be
transmitted from C to R within the remaining time Tq � t0
for responding to the query.

Otherwise, C only maintains information about shortest
opportunistic paths to central nodes, and it is difficult for C
to estimate the data transmission delay to R. Instead, the
probability for deciding data response is calculated only
based on the remaining time Tq � t0. This probability
should be proportional to Tq � t0, and we calculate this
probability as a Sigmoid function pRðtÞ, where pRðTqÞ ¼
pmax 2 ð0; 1	 and pRð0Þ ¼ pmin 2 ðpmax=2; pmaxÞ. This function
is written as

pRðtÞ ¼
k1

1þ e�k2�t
; ð10Þ

where k1 ¼ 2pmin, k2 ¼ 1
Tq
� lnð pmax

2pmin�pmax
Þ. The quantities pmax

and pmin in (10) are user-specified parameters of the

maximum and minimum response probabilities. As an

example, the sigmoid function with pmin ¼ 0:45, pmax ¼ 0:8,

and Tq ¼ 10 hours is shown in Fig. 9.

5.4 Cache Replacement

For each data item in the network, the locations where it is
cached are dynamically adjusted via cache replacement.
This replacement is based on data popularity, and generally

618 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 7. Determining caching location at NCLs. Fig. 8. Pulling data from the NCLs.

5. Particularly, if a caching node is selected as the relay during
multicasting of a query, it directly sends the cached data to the requester,
without forwarding the query to the central node. Fig. 9. Probability for deciding data response.

places popular data nearer to the central nodes of NCLs.
Traditional cache replacement strategies such as LRU, which
removes the least-recently-used data from cache when new
data are available, are ineffective due to its oversimplistic
consideration of data popularity. Greedy-Dual-Size [6]
calculates data utility by considering data popularity and
size simultaneously, but cannot ensure optimal selection of
cached data. We improve previous work by proposing a
probabilistic cache replacement strategy, which appropri-
ately selects the data to be cached and heuristically balances
between the cumulative data accessibility and access delay.

5.4.1 Data Popularity

The popularity of a data item is probabilistically estimated
based on the past k requests to this data during time
period ½t1; tk	. We assume that such occurrences of data
requests follow a Poisson distribution with the parameter
�d ¼ k=ðtk � t1Þ, and data popularity is defined as the
probability that this data will be requested again in the
future before data expires. If data di expire at time te, its
popularity is wi ¼ 1� e��d�ðte�tkÞ. To calculate wi, a node
only needs to recursively maintain two time values about
the past occurrences of data requests, and therefore will
only incur negligible space overhead.

5.4.2 Basic Strategy

Cache replacement opportunistically occurs whenever two
caching nodes A and B contact. The two nodes exchange
their cached data to optimize the cumulative data access
delay.6 We collect the cached data at both nodes into a
selection pool SS ¼ fd1; . . . ; dng, and formulate cache repla-
cement as follows:

max
X

n

i¼1

xiui þ
X

n

j¼1

yjvj

s:t:
X

n

i¼1

xisi � SA;
X

n

j¼1

yjsj � SB

xi þ yi � 1; for 8i 2 ½1; n	;

ð11Þ

where xi; yi 2 ½0; 1	 indicate whether data di are cached at
node A and B after replacement, respectively. si indicates
size of data di, and SA and SB are the buffer sizes ofA andB.
ui ¼ wi � pA and vi ¼ wi � pB indicate the utility of data di atA
and B to cumulative caching performance, where wi is
popularity of data di; pA and pB are theweights of the shortest
opportunistic path to the corresponding central node.

This formulation places popular data to caching nodes
near the central nodes. It is NP-hard because the standard 0-
1 knapsack problem can reduce to this problem. We propose
a heuristic to approximate the solution of this problem.

Without loss of generality, we assume that pA > pB, and
node A is prioritized to select its data to cache from SS by
solving the following problem extracted from (11):

max
X

n

i¼1

xiui

s:t:
X

n

i¼1

xisi � SA:

ð12Þ

Afterwards, node B selects data to cache from the
remaining part of SS by solving a similar problem to (12).
Since SA and si in (12) are usually integers in numbers of
bytes, this problem can be solved in pseudopolynomial time
Oðn � SAÞ using a dynamic programming approach [26].

This replacement process is illustrated in Fig. 10, where
initially node A caches data d1, d2, and d3, and node B
caches data d4, d5, d6, and d7. The two nodes exchange and
replace their cached data upon contact, based on the data
utility values listed as uA and uB. As shown in Fig. 10a,
since pA > pB, node A generally caches the popular data
d4; d5, and d7, and leaves data d2 and d3 with lower
popularity to node B.

In cases of limited cache space, some cached data with
lower popularity may be removed from caching buffer. In
Fig. 10b, when the sizes of caching buffer of nodes A and B
decrease, A does not have enough buffer to cache data d7,
which is instead cached at node B. Data d6 with the lowest
popularity will then be removed from cache because neither
node A nor B has enough space to cache it.

5.4.3 Probabilistic Data Selection

The aforementioned removal of cached data essentially
prioritizes popular data during cache replacement, but
may impair the cumulative data accessibility. The major
reason is that according to our network modeling in
Section 3.2, the data accessibility does not increase linearly
with the number of cached data copies in the network.
More specifically, the data accessibility will increase
considerably if the number of cached data copies increases
from 1 to 2, but the benefit will be much smaller if
the number increases from 10 to 11. In such cases, for the
example shown in Fig. 10b, caching d1 at node A may be
ineffective because the popular d1 may already be cached
at many other places in the network. In contrast, removing
d6 out from the cache of node B may greatly impair the
accessibility of d6 because there may be only few cached
copies of d6 due to its lower popularity.

In other words, the basic strategy of cache replacement
only optimizes the cumulative data access delay within the

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 619

6. Since nodes only exchange data when they contact, it is unnecessary
for a caching node to actively remove obsolete data from its local cache.

Fig. 10. Cache replacement.

local scope of the two caching nodes in contact. Such
optimization at the global scope is challenging in DTNs due
to the difficulty of maintaining knowledge about the current
number of cached data copies in the network, and we
instead propose a probabilistic strategy to heuristically
control the number of cached data copies at the global scope.

The basic idea is to probabilistically select data to cache
when the problem in (12) is solved by a dynamic
programming approach. More specifically, if data di are
selected by the dynamic programming algorithm, it has
probability ui to be cached at node A. This algorithm is
described in detail in Algorithm 1, where GetMaxðSS; SAÞ
calculates the maximal possible value of the items in the
knapsack via dynamic programming, and SelectDataðdimax

Þ
determines whether to select data dimax

to cache at node A by
conducting a Bernoulli experiment with probability uimax

.
Such probabilistic selection may be iteratively conducted
multiple times to ensure that the caching buffer is fully
utilized. By proposing this probabilistic strategy, we still
prioritize the popular data with higher utility during the
caching decision, but also enable the data with less
popularity to have nonnegligible chance to be cached.

Algorithm 1. Probabilistic Data Selection at node A among

the data set SS:

1. imin ¼ argminifsi j di 2 SS; xi ¼¼ 0g
2. while SS 6¼ ; & & SA > simin

do

3. Vmax ¼ GetMax(SS, SA)

4. SS0 ¼ SS

5. while SS0 6¼ ; && Vmax > 0 do

6. imax ¼ argmaxifui j di 2 SS0g
7. if SelectData (dimax

)¼¼ true && Vmax � simax
then

8. ximax
¼ 1

9. SS ¼ SS n dimax

10. SA ¼ SA � simax
, Vmax ¼ Vmax � simax

11. SS0 ¼ SS0 n dimax

12. imin ¼ argminifsi j di 2 SS; xi ¼¼ 0g

5.5 Discussions

In summary, data access delay of our scheme consists of
three parts: 1) the time for query to be transmitted from
requester to central nodes; 2) the time for central nodes to
broadcast query to caching nodes; 3) the time for the cached
data to be returned to requester.

Data access delay is closely related to the number (K) of
NCLs. When K is small, the average distance from a node
to the NCLs is longer, which makes the first and third parts
of the delay bigger. Meanwhile, since the total amount of
data being cached in the network is small, data are more
likely to be cached near to the central nodes, and the second
part of the delay can be short. In contrast, if K is large, the
metric values of some central nodes may not be high, and
hence caching at the corresponding NCLs may be less
efficient. Moreover, when the node buffer constraint is
tight, a caching node may be shared by multiple NCLs. The
NCLs with lower caching effectiveness may disturb the
caching decision of other NCLs and furthermore impair
the caching performance.

It is clear that the number (K) of NCLs is vital to the
performance of our caching scheme. In Section 7.4, we will

experimentally investigate the impact of different values of
K on the caching performance in more details.

6 NCL LOAD BALANCING

From the caching scheme proposed in Section 5, we can see
that the central nodes play vital roles in cooperative caching
in DTNs. First, the central nodes cache the most popular
data in the network and respond to the frequent queries for
these data. Second, the central nodes are also responsible
for broadcasting all the queries they receive to other caching
nodes nearby. However, such functionality may quickly
consume the local resources of central nodes that include
their battery life and local memory. In addition, we would
like our caching schemes to be resilient to failures of central
nodes. In this section, we focus on addressing this
challenge, and propose methods that efficiently migrate
the functionality of central nodes to other nodes in cases of
failures or resource depletion. In general, the methods we
present in this section can be used to adjust the deployment
of central nodes at runtime, such as adding or removing
central nodes according to up-to-date requirements on
caching performance.

6.1 Selecting the New Central Node

When a central node fails or its local resources are depleted,
another node is selected as a new central node. Intuitively,
the new central node should be the onewith the highest NCL
selection metric value among the current noncentral nodes
in the network. However, such selection may degrade the
caching performance as illustrated in Fig. 11. When the local
resources of central node C1 are depleted, its functionality is
taken over by C3. Since C3 may be far away from C1, the
queries broadcasted from C3 may take a long time to reach
the caching nodes A, and hence reduce the probability that
the requesterR receives data fromA on time. From Fig. 11, it
is easy to see that such performance degradation is caused
by the existing data being cached at nodes near C1.

In this case, the distance between the newcentral node and
C1 should also be taken into account. More specifically, with
respect to the original central node j, we define the metric Cj

i

for a node i to be selected as the new central node as

Cj
i ¼ Ci � pijðT Þ; ð13Þ

where Ci is the original NCL selection metric defined in
Section 4 and pijðT Þ is the weight of the shortest
opportunistic path between node i and j defined in (2).

In practice, an existing central node j is responsible for
selecting the new central node i when its local resources are

620 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 11. NCL load balancing.

depleted according to the metric defined in (13); node j also
broadcasts a notification to the entire network indicating the
new central node. If node j is unable to do so due to sudden
failure, another node in contact with j will be responsible
for such selection and notification. To realize this, node j
designates one of its contacted neighbors with the max-
imum battery life as its “backup,” and synchronizes this
backup node with all the information that j has regarding
the contact capabilities of other nodes. As a result, when
node j suddenly fails due to resource depletion, this backup
node will be responsible for selecting the new central node.

6.2 Adjustment of Caching Locations

After a new central node is selected, the data cached at the
NCL represented by the original central node needs to be
adjusted correspondingly, so as to optimize the caching
performance. For example in Fig. 11, after the functionality
of central node C1 has been migrated to C3, the nodes A, B,
and C near C1 are not considered as good locations for
caching data anymore. Instead, the data cached at these
nodes needs to be moved to other nodes near C3.

This movement is achieved via cache replacement when
caching nodes opportunistically contact each other. Each
caching node at the original NCL recalculates the utilities of
its cached data items with respect to the newly selected
central node. In general, these data utilities will be reduced
due to the changes of central nodes, and this reduction
moves the cached data to the appropriate caching locations
that are nearer to the newly selected central node.

Changes in central nodes and subsequent adjustment of
caching locations inevitably affect caching performance as
shown in Fig. 11. However, this performance degradation
will be gradually eliminated over time by the opportunistic
cache replacement. In Section 7, we will furthermore
evaluate such impact, in practice, on realistic DTN traces.

7 PERFORMANCE EVALUATION

We evaluate the performance of our proposed caching
scheme by comparing it with the following schemes:

. No Cache, where caching is not used for data access
and each query is only responded by data source.

. Random Cache, in which every requester caches the
received data to facilitate data access in the future.

. CacheData [35], which is proposed for cooperative
caching in wireless ad hoc networks, and lets each
relay in DTNs cache the pass-by data based on
their popularity.

. Bundle Cache [27], which packs network data as
bundles and makes caching decision on pass-by data
by considering the node contact pattern in DTNs, so
as to minimize the average data access delay.

Cache replacement algorithms are proposed in Cache-
Data and Bundle Cache, and will also be used in our
evaluations. For Random Cache, LRU is used for cache
replacement. The following metrics are used for evaluations.
Each simulation is repeated multiple times with randomly
generated data and queries for statistical convergence:

. Successful ratio, the ratio of queries being satisfied
with the requested data. This ratio evaluates the

coverage of data access provided by our proposed
caching schemes.

. Data access delay, the average delay for getting
responses to queries.

. Caching overhead, the average number of data copies
being cached in the network.7

7.1 Experiment Setup

Our performance evaluations are performed on the In-
focom06 and MIT Reality traces. In all the experiments,
central nodes representing NCLs are globally selected before
data and queries are generated. The first half of the trace is
used as warm-up period for the accumulation of network
information and subsequent NCL selection, and all the data
and queries are generated during the second half of trace.

7.1.1 Data Generation

Each node periodically checks whether it has generated
data which has not expired yet. If not, the node determines
whether to generate new data with probability pG. Each
generated data have finite lifetime uniformly distributed in
range ½0:5T; 1:5T 	, and the period for data generation
decision is also set as T . In our evaluations, we fix
pG ¼ 0:2, and the amount of data in the network is, hence,
controlled by T , as illustrated in Fig. 12a for the MIT Reality
trace. Similarly, data size is uniformly distributed in range
½0:5savg; 1:5savg	, and caching buffers of nodes are uniformly
distributed in range ½200; 600 Mb	. savg is adjusted to
simulate different node buffer conditions.

Note that in this section, we compare the performance of
our proposed schemes with the existing work. When T is
large, indicating long intercontact time among mobile nodes
in the network, our experimental setup increases the data
lifetime accordingly. In this way, we ensure nonnegligible
caching performance in the network and furthermore
comprehensive performance comparisons. We could rea-
sonably infer that the comparison results we have in this
section will still hold, when the average intercontact time in
the network is reduced and enables efficient access on data
with shorter lifetime.

7.1.2 Query Pattern

Queries are randomly generated at all nodes, and each query
has a finite time constraint T=2. In particular, every time T=2,

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 621

7. We consider the overhead of maintaining node contact information as
negligible because only the pairwise contact rates are maintained for
calculating NCL selection metric, as described in Section 4.1.

Fig. 12. Experiment setup.

each node independently determines whether to generate a
query for data j with probability Pj. We assume that query
pattern follows a Zipf distribution that has been proved to
describe the query pattern of web data access [3]. As a result,
letting M be the number of data items in the network,
we have Pj ¼

1
js =ð

PM
i¼1

1
isÞ, where s is an exponent parameter.

Values of Pj with different s are shown in Fig. 12b.

7.2 Caching Performance

Caching performance of our scheme is evaluated using
MIT Reality trace. The number (K) of NCLs is set to 8
and query pattern follows a Zipf distribution with s ¼ 1.
By default, T ¼ 1 week and savg ¼ 100 Mb. These two
parameters are then adjusted for different performance
evaluation purposes.

The simulation results with different values of T are
shown in Fig. 13. The successful ratio of data access is
mainly restrained by T itself. When T increases from 12
hours to three months, the successful ratio of all schemes is
significantly improved because data have more time to be
delivered to requesters before expiration. Since the selected
NCLs are efficient in communicating with other nodes, our
proposed intentional caching scheme achieves much better
successful ratio and delay of data access. As shown in
Figs. 13a and 13b, the performance of our scheme is 200
percent better than that of NoCache, and also exhibits 50
percent improvement over BundleCache, where nodes also
incidentally cache pass-by data. Comparatively, Random-
Cache is ineffective due to the random distribution of
requesters in the network, and CacheData is also inap-
propriate for DTNs due to the difficulty of maintaining
query history.

Meanwhile, Fig. 13c shows that our scheme only
requires moderate cache size, which is much lower than
that required by RandomCache and BundleCache, espe-
cially when T is large. RandomCache consumes the
largest caching buffer, such that each data have five
cached copies when T increases to three months. The
major reason is that each requester blindly caches any
received data until its buffer is filled up. CacheData
consumes 30 percent less buffer than our scheme, but also
leaves a lot of data uncached that impairs data access
performance. We notice that caching overhead in our
scheme also includes the transmission and storage cost
when queries and data are transmitted between reques-
ters and caching nodes, and realize that such cost is
proportional to data access delay during which data are
carried by relays. Hence, the cost-effectiveness of our
scheme is also supported by Fig. 13b.

We also evaluated data access performance with
different node buffer conditions by adjusting savg, and the
results are shown in Fig. 14. When data size becomes
larger, less data can be cached as shown in Fig. 14c, and
data access performance is hence reduced. In Figs. 14a and
14b, when savg increases from 20 to 200 Mb, the successful
ratio of our scheme decreases from 60 to 45 percent, and
data access delay increases from 18 to 25 hours. However,
the performances of other schemes even decrease much
faster, and the advantage of our scheme becomes even
larger when node buffer constraint is tight. This is mainly
due to the intelligent cache replacement strategy used in
our scheme, which ensures that the most appropriate data
are cached.

622 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 13. Performance of data access with different data lifetime.

Fig. 14. Performance of data access with different node buffer conditions.

7.3 Effectiveness of Cache Replacement

Our proposed cache replacement strategy in Section 5.4 is
compared with the traditional replacement strategies
including FIFO and LRU. It is also compared with
Greedy-Dual-Size, which is widely used in web caching.

We use MIT Reality trace for such evaluation, and set T
as one week. The results are shown in Fig. 15. FIFO and
LRU leads to poor data access performance due to
improper consideration of data popularity. In Fig. 15a,
when data size is small and node buffer constraint is not
tight, cache replacement will not be frequently conducted.
Hence, the successful ratio of traditional strategies is only
10-20 percent lower than that of our scheme. However,
when data size becomes larger, these strategies do not
always select the most appropriate data to cache, and the
advantage of our scheme rises to over 100 percent when
savg ¼ 200 Mb. Data access delay of FIFO and LRU also
becomes much longer when savg increases as shown in
Fig. 15b. Greedy-Dual-Size performs better than FIFO and
LRU due to consideration of data popularity and size, but it
is unable to ensure optimal cache replacement decision.

In Fig. 15c, we also compared the overhead of those
strategies, which is the amount of data exchanged for cache
replacement. Since cache replacement is only conducted
locally between mobile nodes in contact, there are only
slight differences of this overhead among different strate-
gies. Greedy-Dual-Size makes the caching nodes exchange a
bit more data, but this difference is generally negligible.

7.4 Number of NCLs

In this section, we investigate the impact of different
numbers (K) of NCLs on data access performance using

Infocom06 trace. We set T ¼ 3 hours and all the other
parameters remain the same as in Section 7.2.

The simulation results are shown in Fig. 16. When K is
small, it takes longer to forward queries and data between
requesters and caching nodes, and hence data access
performance is reduced. This reduction is particularly
significant when K < 3. As shown in Figs. 16a and 16b,
when K is reduced from 2 to 1, the delivery ratio decreases
by 25 percent, and the data access delay increases by
30 percent. In contrast, when K is large, further increase of
K will not improve data access performance because the
newly selected central nodes are essentially not good at
communicating with other nodes in the network. Mean-
while, as shown in Fig. 16c, when K is small, increasing
K will consume considerably more buffer space for caching.
However, this increase is negligible whenK is large or node
buffer constraint is tight.

In summary, when node buffer constraint is tight,
smaller K is helpful to provide acceptable caching
performance with lower overhead. However, too large K
will not provide any extra benefit, and may even impair
the performance. From Fig. 16, we conclude that K ¼ 5 is
the best choice for Infocom06 trace, which is consistent
with the result of trace-based validation shown in Fig. 4b.

7.5 Impact of NCL Load Balancing

In this section, we evaluate the impact of NCL load
balancing scheme proposed in Section 6 on caching
performance. According to the evaluation results in
Section 7.4, we set K ¼ 8 for the MIT Reality trace and
savg ¼ 100 Mb.

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 623

Fig. 15. Performance of data access with different cache replacement strategies.

Fig. 16. Performance of data access with different number of NCLs.

Each central node periodically determines whether to

migrate its functionality to another node with a fixed

probability p. We set the period of making such decision to

be 10 percent of the trace length, and the evaluation results

with different values of p on theMIT Reality trace are shown

in Fig. 17. In general, when the central nodes change, the

existing caching locations become inappropriate, and hence,

the successful ratio of data access is reduced. As shown in

Fig. 17a, such reduction can be up to 40 percent when the

data lifetime is short, but will diminish significantly to

10 percent when there is longer time for the queries to be

forwarded to the caching nodes. Fig. 17b also shows that

the data access delay increases accordingly. Moreover, since

the cached data copies are opportunistically moved to more

appropriate network locations after the change of central

nodes, the caching overhead only slightly increases by less

than 10 percent, as shown in Fig. 17c.
The impact of NCL load balancing is also determined by

the frequency of the changes of central nodes. As shown in

Fig. 17, the reduction of successful ratio of data access is

sensitive to the value of p. Especially, when the data lifetime
is short, larger value of p significantly magnify the impact

on the caching performance. In general, the impact of NCL

load balancing on the caching performance is largely

determined by the specific network condition and data

access pattern.

8 CONCLUSIONS

In this paper, we propose a novel scheme to support

cooperative caching in DTNs. Our basic idea is to

intentionally cache data at a set of NCLs, which can be
easily accessed by other nodes. We ensure appropriate NCL

selection based on a probabilistic metric; our approach

coordinates caching nodes to optimize the tradeoff between

data accessibility and caching overhead. Extensive simula-

tions show that our scheme greatly improves the ratio of
queries satisfied and reduces data access delay, when being

compared with existing schemes.

ACKNOWLEDGMENTS

This work was supported in part by Network Science CTA

under grant W911NF-09-2-0053.

REFERENCES

[1] A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN
Routing as a Resource Allocation Problem,” Proc. ACM
SIGCOMM Conf. Applications, Technologies, Architectures, and
Protocols for Computer Comm., pp. 373-384, 2007.

[2] C. Boldrini, M. Conti, and A. Passarella, “ContentPlace: Social-
Aware Data Dissemination in Opportunistic Networks,” Proc. 11th
Int’l Symp. Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), pp. 203-210, 2008.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications.”
Proc. IEEE INFOCOM, vol. 1, 1999.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks,” Proc.
IEEE INFOCOM, 2006.

[5] H. Cai and D.Y. Eun, “Crossing over the Bounded Domain: From
Exponential to Power-Law Inter-Meeting Time in MANET,” Proc.
ACM MobiCom, pp. 159-170, 2007.

[6] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” Proc. USENIX Symp. Internet Technologies and
Systems, 1997.

[7] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of Human Mobility on Opportunistic Forwarding
Algorithms,” IEEE Trans. Mobile Computing, vol. 6, no. 6,
pp. 606-620, June 2007.

[8] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially Aware
Routing for Publish-Subscribe in Delay-Tolerant Mobile Ad Hoc
Networks,” IEEE J. Selected Areas in Comm., vol. 26, no. 5, pp. 748-
760, June 2008.

[9] E. Daly and M. Haahr, “Social Network Analysis for Routing in
Disconnected Delay-Tolerant MANETs,” Proc. ACM MobiHoc,
2007.

[10] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, “Age
Matters: Efficient Route Discovery in Mobile Ad Hoc Networks
Using Encounter Ages,” Proc. ACM MobiHoc, pp. 257-266, 2003.

[11] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H.
Balakrishnan, “The Pothole Patrol: Using a Mobile Sensor
Network for Road Surface Monitoring,” Proc. ACM Sixth Ann.
Int’l Conf. Mobile Systems, Applications and Services (MobiSys), 2008.

[12] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, “Diversity of
Forwarding Paths in Pocket Switched Networks,” Proc. Seventh
ACM SIGCOMM Conf. Internet Measurement (IMC), pp. 161-174,
2007.

[13] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, “Delegation
Forwarding,” Proc. ACM MobiHoc, 2008.

[14] K. Fall, “A Delay-Tolerant Network Architecture for Challenged
Internets,” Proc. ACM SIGCOMM Conf. Applications, Technologies,
Architectures, and Protocols for Computer Comm., pp. 27-34, 2003.

[15] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

[16] M. Fiore, F. Mininni, C. Casetti, and C.F. Chiasserini, “To Cache or
Not to Cache?” Proc. IEEE INFOCOM, pp. 235-243, 2009.

[17] W. Gao and G. Cao, “On Exploiting Transient Contact Patterns for
Data Forwarding in Delay Tolerant Networks,” Proc. IEEE Int’l
Conf. Network Protocols (ICNP), pp. 193-202, 2010.

624 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 17. Impact of NCL load balancing on the caching performance.

[18] W. Gao and G. Cao, “User-Centric Data Dissemination in
Disruption Tolerant Networks,” Proc. IEEE INFOCOM, 2011.

[19] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Supporting
Cooperative Caching in Disruption Tolerant Networks,” Proc.
Int’l Conf. Distributed Computing Systems (ICDCS), 2011.

[20] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in Delay
Tolerant Networks: A Social Network Perspective,” Proc. ACM
MobiHoc, pp. 299-308, 2009.

[21] Y. Huang, Y. Gao, K. Nahrstedt, and W. He, “Optimizing File
Retrieval in Delay-Tolerant Content Distribution Community,”
Proc. IEEE Int’l Conf. Distributed Computing Systems (ICDCS),
pp. 308-316, 2009.

[22] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble Rap: Social-Based
Forwarding in Delay Tolerant Networks,” Proc. ACM MobiHoc,
2008.

[23] S. Ioannidis, L. Massoulie, and A. Chaintreau, “Distributed
Caching over Heterogeneous Mobile Networks,” Proc. ACM
SIGMETRICS Int’l Conf. Measurement and Modeling of Computer
Systems, pp. 311-322, 2010.

[24] V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc
Podcasting,” Proc. IEEE Fourth Ann. Comm. Soc. Conf. Sensor, Mesh
and Ad Hoc Comm. and Networks (SECON), pp. 273-283, 2007.

[25] F. Li and J. Wu, “MOPS: Providing Content-Based Service in
Disruption-Tolerant Networks,” Proc. Int’l Conf. Distributed Com-
puting Systems (ICDCS), pp. 526-533, 2009.

[26] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, 1990.

[27] M.J. Pitkanen and J. Ott, “Redundancy and Distributed Caching in
Mobile DTNs,” Proc. ACM/IEEE Second Workshop Mobility in the
Evolving Internet Architecture (MobiArch), 2007.

[28] I. Psaras, L. Wood, and R. Tafazolli, “Delay-/Disruption-Tolerant
Networking: State of the Art and Future Challenges,” technical
report, Univ. of Surrey, 2010.

[29] J. Reich and A. Chaintreau, “The Age of Impatience: Optimal
Replication Schemes for Opportunistic Networks,” Proc. ACM
Fifth Int’l Conf. Emerging Networking Experiments and Technologies
(CoNEXT), pp. 85-96, 2009.

[30] S.M. Ross, Introduction to Probability Models. Academic, 2006.
[31] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and

Wait: An Efficient Routing Scheme for Intermittently Connected
Mobile Networks,” Proc. ACM SIGCOMMWorkshop Delay-Tolerant
Networking, pp. 252-259, 2005.

[32] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Efficient
Routing in Intermittently Connected Mobile Networks: The
Single-Copy Case,” IEEE/ACM Trans. Networking, vol. 16, no. 1,
pp. 63-76, Feb. 2008.

[33] B. Tang, H. Gupta, and S.R. Das, “Benefit-Based Data Caching in
Ad Hoc Networks,” IEEE Trans. Mobile Computing, vol. 7, no. 3,
pp. 289-304, Mar. 2008.

[34] A. Vahdat and D. Becker, “Epidemic Routing for Partially
Connected AdHoc Networks,” Technical Report CS-200006, Duke
Univ., 2000.

[35] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc
Networks,” IEEE Trans. Mobile Computing, vol. 5, no. 1, pp. 77-89,
Jan. 2006.

[36] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A Socio-Aware
Overlay for Publish/Subscribe Communication in Delay Tolerant
Networks,” Proc. 10th ACM Symp. Modeling, Analysis, and
Simulation of Wireless and Mobile Systems (MSWiM), pp. 225-234,
2007.

[37] Q. Yuan, I. Cardei, and J. Wu, “Predict and Relay: An Efficient
Routing in Disruption-Tolerant Networks,” Proc. ACM MobiHoc,
pp. 95-104, 2009.

[38] J. Zhao, P. Zhang, G. Cao, and C. Das, “Cooperative Caching in
Wireless P2P Networks: Design, Implementation, and Evalua-
tion,” IEEE Trans. Parallel & Distributed Systems, vol. 21, no. 2,
pp. 229-241, Feb. 2010.

[39] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L.M. Ni,
“Recognizing Exponential Inter-Contact Time in VANETs,”
Proc. IEEE INFOCOM, 2010.

Wei Gao received the BE degree in electrical
engineering from the University of Science and
Technology of China in 2005 and the PhD
degree in computer science from Pennsylvania
State University in 2012. He is currently an
assistant professor in the Department of
Electrical Engineering and Computer Science
at the University of Tennessee, Knoxville. His
research interests include wireless and mobile
network systems, mobile social networks,

cyber-physical systems, and pervasive and mobile computing. He is
a member of the IEEE.

Guohong Cao received the BS degree in
computer science from Xian Jiaotong University
and the PhD degree in computer science from
the Ohio State University in 1999. Since then, he
has been with the Department of Computer
Science and Engineering at Pennsylvania State
University, where he is currently a professor. He
has published more than 150 papers in the
areas of wireless networks, wireless security,
vehicular networks, wireless sensor networks,

cache management, and distributed fault-tolerant computing. He has
served on the editorial board of the IEEE Transactions on Mobile
Computing, the IEEE Transactions on Wireless Communications, and
the IEEE Transactions on Vehicular Technology, and has served on the
organizing and technical program committees of many conferences,
including TPC chair/cochair of IEEE SRDS 2009, MASS 2010, and
INFOCOM 2013. He received the US National Science Foundation
CAREER Award in 2001. He is a fellow of the IEEE.

Arun Iyengar received the PhD degree in
computer science from the Massachusetts
Institute of Technology (MIT). He does research
and development in distributed computing, high
availability, and web performance at IBM’s T.J.
Watson Research Center in Yorktown Heights,
New York. His techniques for caching, load
balancing, and serving dynamic content are
widely used for web and distributed applications.
He is the founding co-editor-in-chief of the ACM

Transactions on the Web, the chair of IFIP Working Group 6.4 on
Internet Applications Engineering, and an IBM Master Inventor. He is a
fellow of the IEEE.

Mudhakar Srivatsa received the PhD degree in
computer science from Georgia Tech. He is a
research staff member in the Network Technol-
ogies Department at the Thomas J. Watson
Research Center. His research interests primar-
ily include network analytics and secure informa-
tion flow. He serves as a technical area leader
for secure hybrid networks research in the
International Technology Alliance in Network
and Information Sciences and as a principal

investigator for information network research in the Network Science
Collaborative Technology Alliance. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAO ET AL.: COOPERATIVE CACHING FOR EFFICIENT DATA ACCESS IN DISRUPTION TOLERANT NETWORKS 625

