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1 Introduction
With the continuous and rapid proliferation of various intelligent
devices and advanced mobile application services, wireless
networks have been suffering an unprecedented data traffic
pressure in recent years. Ever-increasing mobile data traffic brings
tremendous load on capacity-limited fronthaul links, especially at
peak traffic moments. As a promising architecture, fog radio access
networks (F-RANs) can effectively offload the traffic in fronthaul
links by placing popular content at fog access points (F-APs),
which are equipped with limited caching resources [1]. [As has
been pointed out by Peng et al.[1], the fibre is generally used as the
backhaul link, and F-APs are generally interfaced to the baseband
unit pool in the cloud computing layer through the fronthaul links,
which may well be wireless links due to costs. Furthermore, even if
the fronthaul bandwidth is sufficiently large and the requested file
is fetched from the cloud server, the file security and the user
privacy cannot be fundamentally guaranteed. The reason is that the
requested file stored in the cloud server is more vulnerable to
network attacks and thefts than in the F-APs.] Due to storage
constraints and fluctuant spatio-temporal traffic demands,
cooperative caching is an effective way to increase the offloaded
traffic.

Recently, there have been a lot of works on cooperative
caching. In [2], a cooperative caching and delivery policy was
proposed to minimise the latency, where each base station (BS) and
user equipment (UE) cached files according to the request
probability independently. However, the caching decision of one
BS was influenced by that of the neighbouring cooperative BSs,
and different BSs should cache diverse files in a cooperative
manner [3, 4]. In [5–7], the cooperative content placement strategy
for the given cache nodes cluster was studied. In [5], a cooperative
content placement strategy was proposed to maximise the service
probability, where the storage space of each BS in the given cluster
was divided into a proportion for caching the same files and a rest

proportion for caching different files. In [6], a cooperative caching
algorithm for multiple operators was proposed to maximise the
delay savings, where all the cache nodes in the given cluster firstly
cached the globally popular files together and then cached the
locally popular files independently. In [7], a cooperative content
placement method was proposed to minimise the latency for multi-
cell cooperative networks, where a heuristic greedy algorithm with
limited performance guarantee was developed. In [8–10], the
cooperative content placement strategy for unknown cache nodes
cluster was studied. In [8], the uncoded and coded cooperative
content assignment strategies were proposed to minimise the
expected downloading time, where the connectivity graph between
UE and BSs was used to reflect the cooperation relationship among
neighbouring BSs. By optimising relay clustering and content
placement in a joint manner, a cooperative caching strategy was
developed to minimise the outage probability in [9], where
identical files were cached among the relays in each cluster for
simplicity. Based on the similarities among users requesting similar
contents, a user clustering and cooperative caching algorithm to
improve the cache hit rate was proposed in [10]. In [11], a cluster-
based cooperative caching approach with mobility prediction was
proposed to construct reliable and stable communications among
vehicles, which can group vehicles via the similar characteristics of
vehicle mobility. Based on the content diversity and piecewise
interest similarity, a clustering scheme of sectionalised cooperative
caching is proposed to minimise the total transmission delay in
[12]. In [13], a user-centric open-loop cooperative transmission and
interference-aware dual-mode caching scheme was proposed to
maximise the approximate average successful transmission
probability, and a low complexity algorithm which combines
enumeration and submodular maximisation was designed.
Recently, the emerging mobile edge caching (MEC) strategy based
on reinforcement learning has also been studied extensively. In
[14], a multi-agent reinforcement learning-based cooperative
content caching policy for the MEC architecture was proposed to
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maximise the total expected caching reward when the preference of
users is unknown and only the historical demand information can
be obtained. In [15], a Q-learning algorithm-based wireless
cooperative caching framework was designed to maximise the sum
mean opinion score of users in the network, which can be both
used online with extension performances and trained offline with
historical information.

However, the prior works on cooperative content placement
tend to exploit global content popularity rather than the local
content popularity, which might not even replicate the global
content popularity. The local content popularity indeed reflects user
interest at the coverage of each cache node and might be different
from each other [16, 17]. It was investigated in [18, 19] that the
cooperative content placement algorithms based on the local
content popularity could obtain lower delay or higher cache hit rate
than that based on the global content popularity.

Motivated by the aforementioned discussions, the main
contributions of this study are summarised below.

• We propose a new idea for solving the challenging cooperative
caching optimisation problem based on the local content
popularity. Analysing the relationship between clustering and
cooperation and utilising the solutions of the knapsack problems,
we transform the cooperative caching optimisation problem into a
clustering subproblem and a content placement subproblem.
• We propose a graph-based clustering approach. Constructing a
node graph and a weighted graph, we transform the clustering
subproblem into an equivalent 0–1 integer programming problem.
Furthermore, we propose an effective greedy algorithm to search
for the objective cluster sets.
• We propose a graph-based content placement approach.
Constructing a redundancy graph based on the obtained cluster
sets, we determine the duplicate files that will indeed cause cache
redundancy at each edge and further enhance the caching decisions
for each file. Correspondingly, all the possible cache redundancy
can be eliminated by caching each duplicate popular file only once.

The rest of this paper is organised as follows. In Section 2, the
system model and problem formulation are briefly described. In
Section 3, the problem transformation is presented. The proposed
graph-based cooperative caching scheme including clustering and
content placement is presented in Section 4. Simulation results are
shown in Section 5. Final conclusions are drawn in Section 6.

2 System model and problem formulation
Consider a cooperative caching scenario in F-RANs as illustrated
in Fig. 1, which consists of a cloud server, M F-APs, and a certain
number of users. The cloud server can be accessed by the F-APs
via fronthaul links. Let ℳ = 1, 2, …, m, …, M  denote the F-AP
set. Assume that neighbouring F-APs can share files and cooperate
with each other [20]. Whether two F-APs can cooperate or not
depend on how well they satisfy some certain rules. According to
[21], F-APs with appropriate distance and load difference from
each other are more likely to cooperate. Let Sm denote the set of all
the co-operators of F-AP m. Without loss of generality, assume that
all the files have the same size of L bits, each F-AP has the same

storage space and can store up to K files from the content library
ℱ = 1, 2, …, f , …, F  located in the cloud server. Let pm f  denote
the request probability of file f  at F-AP m (referred to as the local
content popularity). Assume that the request probability at each F-
AP is stationary during the given time period. Let λm denote the
aggregate request arrival rate at F-AP m, and wm = λm/∑m′ ∈ ℳ λm′

denote the ratio of the traffic load at F-AP m to the sum load of the
M F-APs.

Let xm f ∈ 1, 0  denote the caching decision of file f at F-AP m,
where xm f = 1 if file f is cached at F-AP m and xm f = 0 otherwise.
Let xm f

l ∈ 1, 0  denote the local state of file f at F-AP m and its
co-operators, where xm f

l = 1 if file f is successfully cached locally;
xm f

l = 0 if file f is not cached locally and must be fetched from the
cloud server. Then, xm f

l  can be expressed as follows:

xm f
l = xm f + 1 − xm f 1 − ∏

m′ ∈ Sm

1 − xm′ f . (1)

Once the requested file is cached locally, the traffic in the
fronthaul links can be offloaded. Let T denote the offloaded traffic
for all the considered M F-APs. Then, it can be expressed as
follows:

T = ∑
m ∈ ℳ

∑
f ∈ ℱ

λmpm f xm f
l

L . (2)

Note that the offloaded traffic increases with the number of
locally cached files, and decreases with duplicate cached files at
the requested F-APs and their co-operators. The caching decisions
should be determined cooperatively by the neighbouring F-APs for
a larger number of unduplicated cached files.

To maximise the offloaded traffic, the co-operators should be
neighbouring F-APs with closer distance and greater load
difference. [As for the communication interface and protocol
among F-APs during the traffic offload, the corresponding analysis
in [17] can be adopted where the partition-based content placement
method was employed. In [17], two learning-based edge caching
architectures have been proposed where both the signalling
overhead among clustered F-APs and the computational burden
undertaken by the F-APs can be greatly reduced. We also remark
here that the signalling overhead can be further reduced by setting
a cluster head for the clustered F-APs.] The selected F-APs can
efficiently offload traffic among each other and are more likely to
cooperative with each other [21]. Let dm denote the geographical
coordinate of F-AP m in the Euclidean space, Dmm′ = ∥ dm − dm′ ∥2

denote the distance between F-AP m and F-AP m′, and
Lmm′ = ∥ λm − λm′ ∥2 denote the load difference between F-AP m
and F-AP m′. Then, the cooperative caching optimisation problem
can be formulated as follows:

max
xm f

T (3)

s.t. Dmm′ ≤ γd, ∀ m ∈ ℳ, ∀ m′ ∈ Sm, (3a)

Lmm′ ≥ γl, ∀ m ∈ ℳ, ∀ m′ ∈ Sm, (3b)

xm f ∈ 1, 0 , ∀ m ∈ ℳ, ∀ f ∈ ℱ, (3c)

∑
f ∈ ℱ

xm f ≤ K, ∀ m ∈ ℳ, (3d)

where γd and γl denote the distance threshold and the load
threshold, respectively.

The objective of this study is to find the optimal caching
decisions xm f m ∈ ℳ, f ∈ ℱ  by maximising the offloaded
traffic using cooperative caching in F-RANs.

Fig. 1  Illustration of the cooperative caching scenario in F-RANs
 



3 Problem transformation
The optimisation problem in (3) is a 0–1 integer programming
problem, which is non-deterministic polynomial-hard [2, 6]. A
dynamic programming approach is generally required for obtaining
a globally optimal solution [22]. However, such an approach has an
exponential complexity with respect to (w.r.t.) the number of F-
APs and the size of the content library, and it is computationally
impracticable even for a small size network. In the previous works
[8, 22], by reformulating the original problem into a matroid
constrained monotone submodular optimisation problem, the
approximate solutions with limited performance can be obtained.
However, by using the above approach, it incurs a long running
time to evaluate the marginal value of the objective function.

In fact, by utilising the relationship between clustering and
cooperation, the co-operators of an F-AP can be divided into intra-
cluster co-operators, inter-cluster co-operators, and non-clustered
co-operators. Certainly there exist differences among these three
types of co-operators. If the requested file has already been cached
at the serving F-AP or the intra-cluster co-operators, it will be
transmitted directly to the requesting user. Else if the requested file
has been cached at the inter-cluster co-operators, it will be
forwarded from the inter-cluster co-operators to the serving F-AP.
Otherwise, if the requested file has been cached at the non-cluster
co-operators, it cannot be forwarded to the serving F-AP and must
be fetched from the cloud server.

According to the above discussions, the objective function of
the cooperative caching optimisation problem in (3) can be
decomposed into three items. All three items indicate that the
offloaded traffic is affected by the clustering strategy. In addition,
the first item indicates that the offloaded traffic is also affected by
the cached files at the requested F-APs and their intra-cluster co-
operators. The second item indicates that the offloaded traffic is
also affected by the cached files at the non-clustered co-operators
and the inter-cluster co-operators of the requested F-APs. The third
item indicates that the offloaded traffic is also affected by the
duplicate cached files between the requested F-APs (or their intra-
cluster co-operators) and their inter-cluster co-operators. In
summary, all three items indicate that the solution of the original
optimisation problem requires to determine clusters and content
placement. Therefore, in this study, we propose to transform the
challenging cooperative caching optimisation problem into a
clustering subproblem and a content placement subproblem.

3.1 Clustering and cooperation

Cooperative F-APs can form a cluster to make the storage space in
a cluster be seen as an entirety [23]. Correspondingly, clustering
can increase content diversity. Any two F-APs in a cluster can
cooperate with each other. However, two F-APs that can cooperate
may not necessarily be members of the same cluster.

Assume that the considered M F-APs can constitute N [note that
the number of disjoint clusters N can be determined by our
proposed graph-based clustering approach presented in the
following section] disjoint clustered sets denoted by ℳn

c for
n ∈ N = {1, 2, …, N} and one non-clustered set denoted by ℳn,
and the set size of ℳn

c is denoted by Sn. Disjoint clustering makes
one F-AP only be a member of one cluster, which ensures
exclusive and sufficient usage of its storage space to all the users in
the cluster. Correspondingly, the following relationship can be
readily established:

ℳ = ⋃
n ∈ N

ℳn
c ∪ ℳn, (4)

ℳn
c ∩ ℳn′

c = ∅, ∀ n, n′ ∈ N, n ≠ n′ . (5)

Without loss of generality, let Sm
1 , Sm

2 , and Sm
3  denote the set of

intra-cluster co-operators, inter-cluster co-operators, and non-
clustered co-operators of F-AP m, respectively. Define

Sm = Sm
1 ∪ Sm

2 ∪ Sm
3 . (6)

Then, the following relationship can be readily established:

Sm
i ∩ Sm

j = ∅, ∀ i, j ∈ 1, 2, 3 , i ≠ j, (7)

m ∪ Sm
1 = ℳn

c, m ∈ ℳn
c, (8)

Sm
1 = Sm

3 = ∅, m ∈ ℳn . (9)

Let pn f  denote the request probability of file f  in cluster n.
Then, according to [24], we have

pn f = ∑
m ∈ ℳn

c

pm f

wm

∑m′ ∈ ℳn
c wm′

. (10)

Introducing pn f , we can conveniently calculate the offloaded traffic
through fetching files that are cached at the requested F-APs and
their intra-cluster co-operators.

Assume that cluster n can cache Kn = SnK different files.
Generally, SnK ≪ F. Let xn f ∈ 1, 0  denote the caching decision
of file f in cluster n, where xn f = 1 if file f is cached at any F-AP in
cluster n and xn f = 0 otherwise. Then, we have

xn f = 1 − ∏
m ∈ ℳn

c

1 − xm f , (11)

= 1 − 1 − xm f ∏
m′ ∈ Sm

1

1 − xm′ f , m ∈ ℳn
c, (12)

∑
f ∈ ℱ

xn f ≤ Kn, n ∈ N . (13)

3.2 Objective function decomposition

Substituting (6) into (1), the local state xm f
l  of the requested file f at

F-AP m ∈ ℳ and its co-operators can be expressed in an
equivalent form in (14)

xm f
l = xm f + 1 − xm f 1 − ∏

m′ ∈ Sm
1

1 − xm′ f

+ 1 − xm f ∏
m′ ∈ Sm

1

1 − xm′ f 1 − ∏
m′ ∈ Sm

2 ∪ Sm
3

1 − xm′ f .

(14)

When m ∈ ℳn, according to (9) and (14), xm f
l  can be further

expressed as follows:

xm f
l = xm f + 1 − xm f 1 − ∏

m′ ∈ Sm
2

1 − xm′ f , m ∈ ℳn . (15)

When m ∈ ℳn
c, according to (12) and (14), xm f

l  can be further
expressed as follows:

xm f
l = xn f + 1 − xn f 1 − ∏

m′ ∈ Sm
2 ∪ Sm

3

1 − xm′ f , m ∈ ℳn
c, n

∈ N .

(16)

In the following, for description convenience, define

xm f
2 = 1 − ∏

m′ ∈ Sm
2

(1 − xm′ f ), (17)

xm f
23 = 1 − ∏

m′ ∈ Sm
2 ∪ Sm

3

(1 − xm′ f ) . (18)



Substitute (4), (15), and (16) into (2). Then, the objective
function of the original optimisation problem in (3) can be
expressed in an equivalent form in (19)

T = ∑
n ∈ N

∑
m ∈ ℳn

c

∑
f ∈ ℱ

λmpm f xn f + 1 − xn f xm f
23

L

+ ∑
m ∈ ℳn

∑
f ∈ ℱ

λmpm f xm f + 1 − xm f xm f
2

L .
(19)

For all the considered M F-APs, let Tc denote the offloaded traffic
through fetching files that are cached at the requested F-APs and
their intra-cluster co-operators, T

n denote the offloaded traffic
through fetching files that are cached at the non-clustered co-
operators and the inter-cluster co-operators of the requested F-APs,
and Td denote the offloaded traffic through fetching duplicate files
that are cached between the requested F-APs (or their intra-cluster
co-operators) and their inter-cluster co-operators, respectively.
Then, (19) can be decomposed into three items as follows:

T = T
c + T

n − T
d, (20)

where

T
c = ∑

n ∈ N
∑

m ∈ ℳn
c

∑
f ∈ ℱ

λmpm f xn f L + ∑
m ∈ ℳn

∑
f ∈ ℱ

λmpm f xm f L, (21)

and Tn and Td are expressed in (22) and (23), respectively.

T
n = ∑

n ∈ N
∑

m ∈ ℳn
c

∑
f ∈ ℱ

λmpm f xm f
23

L + ∑
m ∈ ℳn

∑
f ∈ ℱ

λmpm f xm f
2

L .(22)

T
d = ∑

n ∈ N
∑

m ∈ ℳn
c

∑
f ∈ ℱ

λmpm f xn f xm f
23

L

+ ∑
m ∈ ℳn

∑
f ∈ ℱ

λmpm f xm f xm f
2

L .
(23)

It can be readily seen from (21) that Tc can be maximised if the
cluster sets are determined, the most popular Kn files in each
cluster and the most popular K files at each non-clustered F-AP are
cached, respectively. It can be readily seen from (22) that Tn can be
maximised if the cluster sets are determined, the most popular K
files at the inter-cluster co-operators and the non-clustered co-
operators of a clustered F-AP are cached at the clustered F-AP, and
the most popular K files at the inter-cluster co-operators of a non-
clustered F-AP are cached at the non-clustered F-AP. It can be
readily seen from (23) that Td can be minimised if the cluster sets
are determined, different files are cached between a clustered F-AP
and its inter-cluster co-operators (or its non-clustered co-operators),
different files are cached between a non-clustered F-AP and its
inter-cluster co-operators.

According to the above presentation, firstly, if a clustered F-AP
does not have inter-cluster co-operators and non-clustered co-
operators, or a non-clustered F-AP does not have inter-cluster co-
operators, the cache files at this F-AP cannot be determined
through maximising Tn whereas they must be determined through
maximising T

c. Secondly, for the problem of maximising T
n, the

number of most popular files at the inter-cluster co-operators (or
the non-clustered co-operators) of a clustered F-AP that should be
cached at the clustered F-AP, and the number of popular files at the
inter-cluster co-operators of a non-clustered F-AP that should be
cached at the non-clustered F-AP cannot be determined. It is hardly
possible to solve the problem of maximising T

n. Thirdly, for the
clustered F-APs which have inter-cluster co-operators or non-
clustered co-operators, and the non-clustered F-APs which have
inter-cluster co-operators, both maximising Tc and maximising Tn

require them to cache the most popular files. The difference
between maximising T

c and maximising T
n lies in the caching

locations of these files between each pair of a clustered F-AP and

its inter-cluster co-operator (or non-clustered co-operator), and
between each pair of a non-clustered F-AP and its inter-cluster co-
operator. There exists an exchange relationship between the
caching locations of the above F-AP pairs. Finally, once the
popular files at the clustered and non-clustered F-APs are
determined, the duplicate cache files between a clustered F-AP and
its inter-cluster co-operators (or non-cluster co-operators), and the
duplicate cache files between a non-clustered F-AP and its inter-
cluster co-operators can be determined. By reducing the number of
duplicate cached files, caching a duplicate popular file at one F-AP
and replacing it by a new popular file at the other F-AP, T

d can
then be minimised. Based on the above analysis, we propose to
solve the cooperation caching optimisation problem by firstly
maximising Tc and further minimising Td.

3.3 Optimisation problem reformulation

From (21), we can see that Tc is affected by the clustering strategy
and the caching decisions xn f , xm f f ∈ ℱ, n ∈ N, m ∈ ℳn . If
the cluster sets are determined, T

c can be maximised through
solving the N + ℳn  independent knapsack problems for each
n ∈ N and each m ∈ ℳn [2]. Sort pm f  and pn f  in descending order.
Let pm f

o  and pn f
o  denote the request probability of the f th most

popular file at F-AP m and in cluster n, respectively. According to
the solutions of the knapsack problems [2], and the caching storage
constraints in (3c), (3d), and (13), we have

T
c = ∑

n ∈ N
∑

m ∈ ℳn
c

∑
f = 1

Kn

λmpn f
o L + ∑

m ∈ ℳ
∑
f = 1

K

λmpm f
o L . (24)

Define

Tm = ∑
f = 1

K

λmpm f
o L, (25)

Tn
i = ∑

m ∈ ℳn
c

λm ∑
f = 1

Kn

pn f
o − ∑

f = 1

K

pm f
o L, (26)

T
i = ∑

n ∈ N

Tn
i , 8 (27)

where Tm denotes the offloaded traffic at F-AP m through fetching
files that are cached in its own storage space, Tn

i  denotes the
incremental offloaded traffic of cluster n, and T

i denotes the
incremental offloaded traffic of all the N clusters. Then, (24) can be
further expressed in an equivalent form as follows [25]:

T
c = T

i + ∑
m ∈ ℳ

Tm . (28)

It can be readily seen that the second item in the right-hand side of
(28) is unaffected by the clustering strategy, and that maximising
T

c under the constraints in (3a)–(3d) is equivalent to maximising T i

under the constraints in (3a)–(3b). Therefore, we can reformulate
the clustering subproblem to maximise Tc as follows:

max
ℳn

c
n ∈ N, ℳn

T
i

(29)

s.t. (3a), (3b) . (29a)

Solving the above optimisation problem, we can obtain the
clustered and non-clustered F-AP sets. Let ℱn

c and ℱm
n  denote the

set of Kn most popular files in cluster n and the set of K most
popular files at F-AP m ∈ ℳn, respectively. Then, they can be
expressed as follows:



ℱn
c = f pn1

o ≥ pn2
o ≥ ⋯ ≥ pn f

o ≥ ⋯ ≥ pnKn

o , n ∈ N, (30)

ℱm
n = f pm1

o ≥ pm2
o ≥ ⋯ ≥ pm f

o ≥ ⋯ ≥ pmK
o , m ∈ ℳn . (31)

Correspondingly, the caching decisions xn f , xm f f ∈ ℱ,

n ∈ N, m ∈ ℳn  through maximising T
c can be expressed as

follows:

xn f =
1, f ∈ ℱn

c,

0, f ∈ ℱ∖ℱn
c,

(32)

xm f =
1, f ∈ ℱm

n ,

0, f ∈ ℱ∖ℱm
n .

(33)

Substitute (32) and (33) into (23). Then, Td can be expressed in
an equivalent form as

T
d = ∑

n ∈ N
∑

m ∈ ℳn
c

∑
f ∈ ℱn

c

λmpm f xm f
23

L + ∑
m ∈ ℳn

∑
f ∈ ℱm

n

λmpm f xm f
2

L .(34)

Therefore, we can reformulate the content placement subproblem
to minimise Td as follows:

min
xm f

T
d (35)

s.t. (3a), (3b), (3c), (3d) . (35a)

For convenience, a summary of major notations is presented in
Table 1. 

4 Proposed graph-based cooperative caching
scheme
In the previous section, we have transformed the challenging
cooperative caching optimisation problem into a clustering
subproblem and a content placement subproblem. The clustering
subproblem in (29) and the content placement subproblem in (35)
fall into the scope of combinatorial programming [21, 25]. A brute
force approach is generally required to obtain the globally optimal
solution of each subproblem. However, such an approach has an
exponential complexity w.r.t. the number of F-APs and the number
of disjoint cluster sets or the sizes of popular file sets ℱn

c and ℱm
n .

Although its computational complexity is indeed reduced
compared to the original dynamic programming approach, it is still
computationally impracticable even for a small size network. By
mapping each F-AP as one vertex in a graph, the candidate cluster
can be represented by its subgraph [26]. By mapping each obtained
subgraph as the vertex in a new graph, the disjoint cluster sets can
be represented by an independent subset of the vertex set of this
new graph. According to the graph theory [27], all the subgraphs of
a graph and the independent subset of the vertex set of a graph can
be obtained in polynomial time complexity. Correspondingly, the
clustering subproblem can be solved in polynomial time
complexity. Furthermore, by mapping each pair of cooperative F-
APs which are not in the same cluster as two vertices that are
connected by one edge in a graph, all the edges can be traversed to
control the cached files at the corresponding paired F-APs and the
duplicate cached files can then be eliminated. According to the
graph theory [27], all the edges in a graph can be found in
polynomial time complexity. Correspondingly, the content
placement subproblem can also be solved in polynomial time
complexity. Therefore, we commit to an effective graph-based
approach to solve the clustering subproblem and the content
placement subproblem, respectively.

4.1 Proposed graph-based clustering approach

4.1.1 Description of the proposed approach: In our proposed
graph-based clustering approach, firstly, all the considered M F-
APs are checked to determine which pair satisfies the constraints in
(29a). It is already known that F-APs with appropriate distance and
load differences from each other are more likely to cooperate
together [21]. Then, according to the checking results, the node
graph denoted by Gn = (ℳ, ℰ) is constructed, whose vertex set
denoted by ℳ is the F-AP set and whose edge set denoted by ℰ
reflects the distance and load difference among the F-APs. In Gn,
two vertices are connected through an edge if their representing F-
APs can cooperate with each other. Note that one subgraph of Gn,
any vertex of which can connect through an edge with a certain
vertex in the same subgraph, represents one cluster which consists
of a certain number of cooperative F-APs, and one complete
subgraph of Gn, any two vertices of which can connect through an
edge, essentially represents one candidate cluster of the
optimisation problem in (29) whose cluster members can
cooperative with each other. We point out here that there may exist
a certain vertex not belonging to any subgraph of Gn, which means
that its representing F-AP is non-clustered. For illustration, a node
graph with 13 vertices as shown in Fig. 2 is taken for example. 
According to the above descriptions, seeking candidate clusters is
equivalent to searching for complete subgraphs in Gn. The
algorithm of searching for complete subgraphs will be presented in
detail in Section 4.1.2.

Let ℋ = {h1, h2, …, hn, …, hN′} denote the complete subgraph
set that has been obtained through the above searching algorithm,
where N′ denotes the number of complete subgraphs so obtained. It
is clear that ℳn

c
n = 1

N
⊆ ℋ. Then, a weighted graph denoted by

number of the considered F-APs, set of the M F-APs,
index of F-AP, set of all the co-operators of F-AP m, set of
intra-cluster co-operators of F-AP m, set of inter-cluster
co-operators of F-AP m, set of non-clustered co-operators
of F-AP m

n, ℳn
c,

ℳn, Sn

index of clusters, set of F-APs in cluster n, set of non-
clustered F-APs, set size of ℳn

c

f, ℱ, F index of files, content library, library size
K, Kn storage size of each F-AP, storage size of cluster n
λm, wm aggregate request arrival rate at F-AP m, ratio of the

traffic load at F-AP m to the sum load of the M F-APs
pm f , pn f ,
pm f

o , pn f
o

request probability of file f at F-AP m, request probability
of file f in cluster n, request probability of the f th most
popular file at F-AP m, request probability of the f th most
popular file in cluster n

xm f , xn f ,
xm f

l

caching decision of file f at F-AP m, caching decision of
file f in cluster n, local state of file f at F-AP m and its co-
operators

T, Tc, Tn,
T

d

whole offloaded traffic for all the M F-APs, offloaded traffic
for all the M F-APs through fetching files that are cached
at the requested F-APs and their intra-cluster co-
operators, offloaded traffic for all the M F-APs through
fetching files that are cached at the non-clustered co-
operators and the inter-cluster co-operators of the
requested F-APs, offloaded traffic for all the M F-APs
through fetching duplicate files that are cached between
the requested F-APs (or their intra-cluster co-operators)
and their inter-cluster co-operators

Tm, T i offloaded traffic at F-AP m through fetching files that are
cached in its own storage space, incremental offloaded
traffic of the N clusters

dm, Dmm′,
Lmm′, γd, γl

geographical coordinate of F-AP m in the Euclidean
space, distance between F-AP m and F-AP m′, load
difference between F-AP m and F-AP m′, distance
threshold, load threshold

Table 1 Summary of major notations
M, ℳ, m,
Sm, Sm

1 ,
Sm

2 , Sm
3



Gw = (ℋ, ℬ, w) can be constructed, where ℋ denotes the vertex
set, ℬ denotes the edge set, and w denotes the weight vector
corresponding to the vertices of Gw whose elements are set to be
the incremental offloaded traffic of their corresponding complete
subgraphs, i.e. w n = Tn

i . In Gw, two vertices are connected
through an edge if their representing complete subgraphs have a
certain identical vertex. It is known from the graph theory that an
independent or stable set is a set of vertices in a graph, no two of
which are adjacent [27]. Then, the independent subset of ℋ
certainly satisfies the constraint in (5). Correspondingly, the
objective cluster sets of the optimisation problem in (29) can be
readily obtained by searching for the equivalent max-weight
independent subset of ℋ of the corresponding weighted graph Gw.
The max-weight independent subset of ℋ can be obtained by
solving a 0–1 integer programming problem, which will be
presented in detail in Section 4.1.3.

Remark here that we map one cluster to one complete subgraph,
which guarantees proper-sized clusters and avoids unnecessary
intra-cluster signalling overhead, instead of one connected
subgraph as in [26], which tends not to constrain the cluster size.

4.1.2 Searching for complete subgraphs: We propose to search
for maximal complete subgraphs to find all the possible complete
subgraphs. It is known from [27] that any complete subgraph must
belong to a maximal complete subgraph and it is more difficult to
find complete subgraphs through direct searching than through
indirect searching for maximal complete subgraphs. We propose to
exploit the adjacency table of each vertex in the node graph Gn to
search for maximal complete subgraphs. For m ∈ ℳ, let
Tm = m ∪ m′ m′ ∈ ℳ, m′ > m, m′, m ∈ ℰ  denote the
adjacency table of vertex m of Gn, and Lm denotes the table size of

Tm. If Lm = 1 or Tm ⊆ Tm′ for m, m′ ∈ ℳ and m′ < m, it is
unnecessary to search for a maximal complete subgraph in Tm.
Remove all the unnecessary or redundant adjacency tables and sort
the remaining in descending order denoted by Tm

o  according to
their table sizes. Let T denote the set of the reordered adjacency
tables of Gn. Remove any vertex that does not connect with all the
other vertices in Tm

o . Then, the remaining vertices in Tm
o  form a

maximal complete subgraph. Let Gm denote the set of maximal
complete subgraphs. The detailed description of our proposed
algorithm of searching for maximal complete subgraphs is
presented in Algorithm 1 (see Fig. 3). After maximal complete
subgraphs are found, all the possible complete subgraphs can be
readily obtained. 

4.1.3 Searching for max-weight independent
subset: According to the construction of the weighted graph Gw,
two vertices in ℋ are adjacent and there exists an edge between
them if their representing candidate cluster sets have some identical
elements. Let x denote the binary indicating vector for the vertices
in ℋ with [x]n = 1 if the candidate cluster set represented by the
vertex hn belongs to the objective disjoint cluster sets of the
original optimisation problem in (29) and [x]n = 0 otherwise. If the
vertices hn and hn′ can be connected through an edge hn, hn′ ∈ ℬ,
the relationship [x]n[x]n′ = 0 should be satisfied.

According to the above description, the original optimisation
problem in (29) can be transformed into the following 0–1 integer
programming problem:

max
x

w
T

x (36)

s.t. [x]n ∈ {0, 1}, ∀hn ∈ ℋ, (36a)

[x]n[x]n′ = 0, ∀ hn, hn′ ∈ ℬ . (36b)

The above optimisation problem can be solved by linear
programming only if its linear relaxation is tight and has a unique
integral solution. However, the above two conditions are hard to be
satisfied [28]. Actually, the optimisation problem in (36) is a
classical problem that maximises a submodular set function and
can often be solved by greedy algorithms [29]. Considering that
traditional greedy algorithms cannot take full advantage of the
specific constraints in (36a) and (36b), we then propose a more
effective greedy algorithm. Let Gn denote the independent subset
of ℋ and wn denote the sum weight of all the vertices in Gn. Each
time move one vertex with the largest weight from ℋ to Gn and
remove its adjacent vertices from ℋ. Repeat the above step until
ℋ is empty. The independent subset Gn so obtained with the
maximum sum weight wn is just the max-weight independent
subset denoted by Go that we are searching for. The detailed
description of our proposed greedy algorithm of searching for the
max-weight independent subset is presented in Algorithm 2 (see
Fig. 4). 

In traditional greedy algorithms [30, 31], the vertex with the
largest weight is generally chosen as the initial vertex to search for
the max-weight independent subset. In contrast, we set N′ outer
loops in Algorithm 2 (Fig. 4). Correspondingly, each vertex in ℋ
has a chance to be the initial vertex to constitute an independent
subset. Therefore, the N′ outer loops in Algorithm 2 (Fig. 4)
guarantee to find the max-weight independent subset of the vertex
set of the weighted graph.

To further illustrate the above issue, take a weighted graph with
nine vertices as shown in Fig. 5 for example. In the weighted
graph, the vertices are divided into three groups according to their
weights, the weight of each vertex in the first group is larger than
that in the second and third groups, and the weight of each vertex
in the second group is larger than that in the third group. Assume
vertex 1 has the largest weight among the nine vertices. In
traditional greedy algorithms, vertex 1 will be chosen as the initial
vertex. Then, the output max-weight independent subset will be

Fig. 2  Illustration of a node graph including 13 vertices

Fig. 3  Algorithm 1: searching for maximal complete subgraphs
 



{1, 2, 3}. However, in Algorithm 2 (Fig. 4), vertex 4 is also allowed
to be the initial vertex. Then, the output max-weight independent
subset will be 4, 5, 6, 7, 8  if its sum weight is larger than that of
{1, 2, 3}. It can be readily seen that the sum weight of all the
vertices in the obtained independent subset will not be the
maximum if the initial vertex is not selected properly. Therefore,
the N′ outer loops in Algorithm 2 (Fig. 4) can indeed guarantee to
find the max-weight independent subset.

After the max-weight independent subset Go is found, the
clustered sets and non-clustered set can be determined. Then, the
set of popular files ℱn

c for n ∈ N in cluster n and the set of popular
files ℱm

n  for m ∈ ℳn at the non-clustered F-AP m can be
determined according to (30) and (31), respectively.

4.2 Proposed graph-based content placement approach

4.2.1 Description of the proposed approach: In our proposed
graph-based content placement approach, firstly, we find the
complete subgraphs corresponding to the elements in the obtained
max-weight independent subset Go, and remove the edges in these
complete subgraphs. Utilising the vertices and the remaining edges
in the node graph Gn, we propose to construct a redundancy graph
denoted by Gr = ℳ, ℰr , where ℳ denotes its vertex set and ℰr

denotes its edge set reflecting the cache redundancy among
cooperative F-APs. Let e = m, m′ ∈ ℰr denote the edge that
connects vertex m and vertex m′, and ℱe

d denote the set of duplicate
popular files in the obtained popular file set of the cooperative F-
APs corresponding to the vertices connected by edge e. If edge e
connects m ∈ ℳn

c and m′ ∈ ℳn, then we have: ℱe
d = ℱn

c ∩ ℱm
n . If

edge e connects m ∈ ℳn
c and m′ ∈ ℳn′

c , then we have
ℱe

d = ℱn
c ∩ ℱn′

c , whose size may exceed K, i.e. the storage size of
each F-AP. Correspondingly, only a portion of the duplicate
popular files in ℱe

d will indeed cause cache redundancy.

Furthermore, when edge e connects m ∈ ℳn
c and edge e′ connects

m′ ∈ ℳn
c with e′ ≠ e and m′ ≠ m, ℱe

d and ℱe′
d  may contain

duplicate files. Correspondingly, only a portion of the duplicate
popular files in ℱe

d and ℱe′
d  will indeed cause cache redundancy.

Therefore, we propose to separate ℱe
d to determine the duplicate

files that will indeed cause cache redundancy at edge e. The
process of separating ℱe

d will be presented in detail in Section
4.2.2.

Then, we propose to enhance the caching decisions to control
the caching locations of the duplicate popular files and ensure that
each duplicate popular file is cached only once between each pair
of cooperative F-APs. After determining the caching locations for
all the duplicate popular files, the remaining storage space of each
F-AP is filled by the rest files according to their request
probability. The process of caching-decision enhancement will be
presented in detail in Section 4.2.3.

4.2.2 Separate the set of duplicate popular files: Let Tm

denote the adjacency table of vertex m of Gr. Sort all the adjacency
tables in descending order according to their table sizes. Let T

denote the set of the reordered adjacency tables of Gr, and Tm
o

denote the mth adjacency table in T. Let Km denote the size of the
remaining storage space of the F-AP corresponding to vertex m.
Initialise Km = K. Let ℱm

i  denote the intersection of the sets of
duplicate popular files at all the edges that connect vertex m and its
adjacency vertices in Tm

o . Then, it can be expressed as follows:

ℱm
i = ⋂

e = {m, m′}, m′ ≠ m, m′ ∈ Tm
o

ℱe
d, m ∈ ℳ . (37)

Let ℱe
r  denote the set of files that will indeed cause cache

redundancy at edge e after separating ℱe
d. If ℱm

i ≥ Km, ℱe
r  will be

constituted by the random Km files in ℱm
i . Otherwise, ℱe

r  will be
constituted by the random (Km − ℱm

i )/( Tm
o − 1) files in ℱe

d∖ℱm
i

and all the files in ℱm
i . Once ℱe

r  is determined, update
Km′ = Km′ − ℱe

r  for vertex m′ ∈ Tm
o  and update ℱe′

d = ℱe′
d ∖ℱe

r  if
edge e′ ∈ ℰr connects vertex m′.

4.2.3 Enhance the caching decisions: Let Δxm f ∈ −1, 0, 1
denote the indicator of the caching-decision enhancement for file
f ∈ ℱ at vertex m ∈ ℳ, where Δxm f = 1 indicates that the F-AP
corresponding to vertex m is chosen as the caching location for file
f, Δxm f = − 1 indicates that the F-AP corresponding to vertex m is
not allowed to cache file f so as to eliminate redundancy, and
Δxm f = 0 indicates that the caching location for file f has not been
determined yet. Initialise Δxm f = 0 and set Km = K.

Firstly, calculate the indicators of the caching-decision
enhancements for file f ∈ ℱe

r . For each Tm
o ∈ T and each

m′ ∈ Tm
o  with m′ ≠ m, find the files whose caching locations are at

the F-AP corresponding to vertex m, and forbid these files to be
cached at the F-AP corresponding to vertex m′. Then, the indicators
of the corresponding caching-decision enhancements are set as
follows:

Δxm′ f = − 1, f ∈ f Δxm f = 1 ∩ ℱe
r . (38)

Update ℱe
r  by removing these files. Furthermore, find the files

whose caching locations are not allowed to be at the F-AP
corresponding to vertex m, and choose the F-AP corresponding to
vertex m′ as the caching locations for these files. Then, the
indicators of the corresponding caching-decision enhancements are
set as follows:

Δxm′ f = 1, f ∈ f Δxm f = − 1 ∩ ℱe
r . (39)

Fig. 4  Algorithm 2: searching for max-weight independent subset
 

Fig. 5  Illustration of a weighted graph with nine vertices
 



Update Km′ and ℱe
r  by removing these files. If F-AP m′ ∈ ℳn

c,
update ℱn

c by removing these files. Let Tem
p  denote the possible

offloaded traffic due to caching the remaining files in ℱe
r  at the F-

AP corresponding to vertex m. Then, it can be expressed as
follows:

Tem
p = ∑

m′ ∈ m ∪ Sm

∑
f ∈ ℱe

r

λm′pm′ f L . (40)

Suppose Tem
p ≥ Tem′

p . Then, set the indicators of the corresponding
caching-decision enhancements as follows:

Δxm f = 1, Δxm′ f = − 1, f ∈ ℱe
r . (41)

Update Km = Km − ℱe
r . If F-AP m ∈ ℳn

c, update ℱn
c by removing

these files.
Secondly, calculate the indicators of the corresponding caching-

decision enhancements for the remaining files in ℱn
c. For each

m ∈ ℳn
c, find the files whose caching locations can be at the F-AP

corresponding to vertex m. Then, set the indicators of the
corresponding caching-decision enhancements as follows:

Δxm f = 1, f ∈ f Δxm f = 0 ∩ ℱn
c . (42)

Update Km and ℱn
c by removing these files. For each m ∈ ℳn

c,
which satisfies Km > 0, randomly select Km files from ℱn

c, and set
the indicators of the corresponding caching-decision enhancements
as follows:

Δxm f = 1, f ∈ ℱn
c . (43)

Update Km and ℱn
c by removing these files.

Thirdly, calculate the indicators of the corresponding caching-
decision enhancements at the vertices corresponding to non-
clustered F-APs. For each m ∈ ℳn which satisfies Km > 0, select
Km most popular files from the uncached files at the F-AP
corresponding to vertex m and its co-operators according to their
request probability, and set Δxm f  as follows:

Δxm f = 1, f ∈ ℱ∖ f Δxm′ f = 1, m′ ∈ m ∪ Sm . (44)

Finally, enhance the caching-decision for each m ∈ ℳ as
follows:

xm f =
1, Δxm f = 1,

0, Δxm f ≠ 1.
(45)

The detailed description of our proposed graph-based content
placement algorithm is presented in Algorithm 3 (see Fig. 6). 

4.3 Complexity analysis

Let L̄ denote the average size of the adjacency tables of all the
vertices in the node graph Gn. Then, the computational complexity
of searching for maximal complete subgraphs in Algorithm 1 (Fig.
3) is O(ML̄). Furthermore, the computational complexity of
obtaining all the complete subgraphs is O(PV̄), where P denotes
the number of maximal complete subgraphs that have been found,
and V̄  denotes the average vertex number of all the complete
subgraphs. Besides, the computational complexity of searching for
the max-weight independent subset in Algorithm 2 (Fig. 4) is
O(N′N). Therefore, the computational complexity of the proposed
graph-based clustering approach is O(ML̄ + PV̄ + N′N).

Let δ denote the maximum degree of the redundancy graph. The
computation complexity of the proposed graph-based content
placement algorithm is O(Mδ + 2M). In summary, the
computational complexity of the proposed graph-based cooperative
caching scheme is O(ML̄ + PV̄ + N′N + Mδ + 2M). By
considering L̄ < M, V̄ < M, N < M, and δ < M, the computation
complexity of the proposed graph-based cooperative caching
scheme is O(M2 + PM + N′M) for the worst case. It is obviously
lower than that of O(M3

KF
2) in [8] and O(M4

K + MKF) in [22] by
taking M ≪ F, P < F, and N′ < F into account.

5 Simulation results
In this section, the performance of the proposed graph-based
cooperative caching scheme is evaluated via simulations. In the
simulations, the locations of the considered F-APs are randomly
distributed, and the request probability at each F-AP is generated
from the global request probability which follows Zipf distribution
with the skewness parameter z. [Let p f  denote the global request
probability of file f. Assume that the global request probability and
the request probability at the considered M F-APs have the
following relationship: p f = ∑m ∈ ℳ wmpm f  [24].] Unless otherwise
stated, the system parameters are set as follows: z = 0.6, M = 10,
F = 5000, K = 250, L = 2 Gb. We choose the random caching
(RC) scheme [32], the globally popular caching (GPC) scheme
[20], the exclusive most popular caching (ExMPC) scheme [33],
and the locally popular caching (LPC) scheme [20], as four
baselines. For the RC scheme, all files are picked from the content
library randomly to cache into the F-APs, and neighbouring F-APs
cannot cooperate with each other. For the GPC scheme, the K most
popular files are cached at each F-AP based on the global request
probability, and neighbouring F-APs cannot cooperative with each
other. For the ExMPC scheme, the K most popular files are stored
at each F-AP based on local content popularity, and the cloud
server stores the F files based on global popularity, excluding the K
most popular files which have been cached at each F-AP, and
neighbouring F-APs cannot cooperate with each other. For the LPC
scheme, the K most popular files are cached at each F-AP based on
the local request probability, and neighbouring F-APs can
cooperate with each other.

In Fig. 7, we show the offloaded traffic T of our proposed
scheme and the two baselines versus the storage size K of each F-
AP with different distance threshold γd. It can be observed that the
offloaded traffic of all the three schemes increases with the storage
size. It can also be observed that the performance of the proposed
scheme is superior to that of the baselines. [Clearly, a centralised
approach has been assumed in this study. This would certainly

Fig. 6  Algorithm 3: graph-based content placement algorithm
 



incur the necessary signalling overhead, and the impact of such
overhead will be an interesting issue for future research.] The
reason is that the proposed scheme improves clustering and reduces
the repetitive and redundant storage of files. Correspondingly,
more user requests can be satisfied locally compared with the
baselines. Furthermore, the offloaded traffic of the proposed and
LPC schemes increases with distance threshold γd, and γd has a
greater influence on the performance of the proposed scheme. The
reason is that as γd becomes larger, the constraints of the clustering
subproblem in our proposed scheme will be relaxed, the cluster

size will become larger, more F-APs can cooperate with each other,
and more files can then be successfully cached locally.

In Fig. 8, we show the offloaded traffic T of our proposed
scheme and the four baselines versus the skewness parameter z of
Zipf distribution with γd = 20 and K = 1000. It can be observed
that the offloaded traffic of all the four schemes except the RC
scheme increases with z. The reason is that as z becomes larger, the
most popular files will concentrate on fewer files and more traffic
can then be offloaded. It can also be observed that the performance
of the proposed scheme is superior to that of the baselines for all z.

In Fig. 9, we show the offloaded traffic T of our proposed
scheme and the four baselines versus the content library size F with
γd = 15 and z = 0.4. It can be observed that the offloaded traffic of
all the five schemes decreases with F. The reason is that as F
becomes larger, the requested files will become more diverse and
the number of requested files that are not cached locally will
increase. It can also be observed that the performance of the
proposed scheme is superior to that of the baselines for all F.

6 Conclusions
In this study, we have proposed a graph-based cooperative caching
scheme including clustering and content placement in F-RANs. By
constructing the relevant node graph and weighted graph, the
objective cluster sets have been obtained by searching for the max-
weight independent subset of the vertex set of the weighted graph.
By constructing the redundancy graph, the final caching decisions
have been obtained by calculating the indicators of the caching-
decision enhancements. Both significant computational complexity
reduction and remarkable offloaded traffic have been achieved by
using our proposed graph-based cooperative caching scheme.
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