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Abstract. Cooperative caching, which allows sharing and coordination of cached data among clients, is a potential technique
to improve the data access performance and availability in mobile ad hoc networks. However, variable data sizes, frequent data
updates, limited client resources, insufficient wireless bandwidth and client’s mobility make cache management a challenge.
In this paper, we propose a utility based cache replacement policy, least utility value (LUV), to improve the data availability
and reduce the local cache miss ratio. LUV considers several factors that affect cache performance, namely access probability,
distance between the requester and data source/cache, coherency and data size. A cooperative cache management strategy,
Zone Cooperative (ZC), is developed that employs LUV as replacement policy. In ZC one-hop neighbors of a client form
a cooperation zone since the cost for communication with them is low both in terms of energy consumption and message
exchange. Simulation experiments have been conducted to evaluate the performance of LUV based ZC caching strategy. The
simulation results show that, LUV replacement policy substantially outperforms the LRU policy.
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1. Introduction

Recent explosive growth in computer and wireless communication technologies has led to the devel-
opment of Mobile Ad hoc NETworks (MANETs) that are constructed only from mobile hosts. The
interest in developing mobile wireless ad hoc networking solutions has been due to their flexibility,
ease of deployment and potential applications such as battlefield, disaster recovery, outdoor assemblies,
etc. Most of the previous researches [1–5] in MANETs focus on the development of dynamic routing

protocols that can improve the connectivity among mobile hosts which are connected to each other by
one-hop/multi-hop links. Although routing is an important issue in ad hoc networks, other issues such
as data access are also very important since the ultimate goal of using such networks is to provide infor-
mation access to mobile hosts [6]. One of the most attractive techniques that improve data availability
is caching. In general caching results in (i) enhanced QoS at the clients – i.e., lower jitter, latency and
packet loss, (ii) reduced network bandwidth consumption, and (iii) reduced data server/source workload.
In addition, reduction in bandwidth consumption infers that a properly implemented caching architecture
for a MANET environment can potentially improve battery life of mobile clients.

Caching has been proved to be an important technique for improving the data retrieval performance
in mobile environments [15–18]. With caching, the data access delay is reduced since data access
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requests can be served from the local cache, thereby obviating the need for data transmission over the
scarce wireless links. However, caching techniques used in one-hop mobile environment (i.e., cellular

networks) may not be applicable to multi-hop mobile environments since the data or request may need
to go through multiple hops. As mobile clients in ad hoc networks may have similar tasks and share
common interest, cooperative caching, which allows the sharing and coordination of cached data among

multiple clients, can be used to reduce the bandwidth and power consumption.
To date there are some works in literature on cooperative caching in ad hoc networks, such as

consistency [6,7], placement [9,11,12], replacement [23,24], discovery [10,24] and proxy caching [13,
19–22]. However, most of the solutions have one or more limitations.

Cache management in mobile ad hoc networks, in general, includes the following issues to be ad-
dressed:

1. The cache discovery algorithm that is used to efficiently discover, select, and deliver the requested

data item(s) from neighboring nodes. In a cooperative architecture, the order of looking for an item
follows local cache to neighboring nodes, and then to the original server.

2. Cache admission control – this is to decide on what data items can be cached to improve the
performance of the caching system.

3. The design of cache replacement algorithm – when the cache space is sufficient for storing one new
item, the client places the item in the cache. Otherwise, the possibility of replacing other cached
item(s) with the new item is considered.

4. The cache consistency algorithm which ensures that updates are propagated to the copies elsewhere,

and no stale data items are present.

In this paper, we investigate the data retrieval challenge of mobile ad hoc networks and propose a novel
scheme, called Zone Cooperative (ZC) for caching that exploits data utility value for cache replacement.

The goal of ZC is to reduce the caching overhead and provide optimal replacement policy. Mobile clients
belonging to the neighborhood (zone) of a given client form a cooperative cache system for this client
since the cost for communication with them is low both in terms of energy consumption and message
exchanges. In ZC caching, each mobile client has a cache to store the frequently accessed data items.

The cache at a client is a nonvolatile memory such as hard disk. The data items in the cache satisfy not
only the client’s own requests but also the data requests passing through it from other clients. For a data
miss in the local cache, the client first searches the data item in its zone before forwarding the request to
the next client that lies on a path towards server. We also develop an analytical model for the ZC caching

system to evaluate its performance. To improve the efficiency of ZC caching, a Least Utility Value (LUV)
based replacement policy has been developed. Simulations prove that ZC caching with LUV achieves
higher performance than ZC based on LRU replacement.

The rest of the paper is organized as follows. Section 2 reviews the related work. The network
model and system environment are presented in Section 3. Section 4 describes the proposed ZC caching
scheme for data retrieval. Section 5 describes the LUV cache replacement policy. Section 6 presents an
analytical model of ZC. Section 7 is devoted to performance evaluation and presents detailed simulation

results. Section 8 concludes the paper and discusses future work.

2. Related work

Caching is an important technique to enhance the performance of both wired and wireless network.
A number of studies have been conducted to improve the caching performance in wireless mobile
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environment [15–18]. Jayaputera and Taniar [25] have proposed to use an invalidation report mechanism

in conjunction with caching of a CORBA (Common Object Request Broker Architecture) object in a

mobile environment. The approach caches CORBA object by value and is capable to keep the object

updated in a client side during disconnection. Client mobility hampers the caching performance in a

mobile environment. It is found that as mobile clients move from one cell to another they experience

increasing delay when accessing data items from their home location caches [26]. Lai et al. [26] have

proposed two techniques to improve the performance of existing cache relocation methods for mobile

networks. The first technique, 2PR, compensates for poor path prediction by temporarily moving data

items to a common parent node prior to a handover. Items are moved to the correct destination once

the client’s new location has been confirmed. The second technique, ROLP, reduces the traffic overhead

associated with cache relocation by ensuring duplicate items are not relocated and relocation of items

are performed only from the nearest node to the destination.

Cooperative caching has been studied in the Web environment, but little work has been done to ef-

ficiently manage the cache in MANETs. Due to mobility and constrained resources (i.e., bandwidth,

battery power and computational capacity) in wireless networks, cooperative cache management tech-

niques designed for wired networks may not be applicable to ad hoc networks.

In the context of ad hoc networks, it is beneficial to cache frequently accessed data not only to reduce the

average query latency but also to save wireless bandwidth. Hara [14] proposed several replica allocation

methods to increase data accessibility and tolerate network partitions in MANETs. In these schemes,

the replicated data are relocated periodically based on access frequency and overall network topology.

Although replication can improve data accessibility, the overhead for relocating replicas periodically is

significantly high. Due to updates at the server, the cost of maintaining the consistent copy of replicas is

quite high. Papadopouli et al. [12] suggested the 7DS architecture, in which a couple of protocols are

defined to share and disseminate information among users. It operates either on a prefetch mode, based

on the information and user’s future needs or on an on-demand mode, which searches for data items in

a one-hop multicast basis. Depending on the collaborative behavior, a peer-to-peer (P2P) and server-

to-client mode are used. Unlike our approach, this strategy focuses on data dissemination, and thus the

cache management including cache admission control and replacement is not well explored. Sailhan and

Issarny [20] proposed a cooperative caching scheme to increase data accessibility by P2P communication

among mobile clients, when they are out of bound of a fixed infrastructure. It is implemented on top of

Zone Routing Protocol (ZRP). The authors proposed a fixed broadcast range based on the underlying

routing protocol. However, the mobile users’ location, data popularity and network density often change

in a real mobile environment, so the fixed broadcast scheme is hard to adapt to real mobile applications.

Lau et al. [13] proposed a cooperative caching architecture for supporting continuous media proxy

caching. They introduced an application manager to transparently perform data location and session

migration of continuous media streams among all proxy caches. Nuggehalli et al. [11] addressed the

problem of optimal cache placement in ad hoc wireless networks and proposed a greedy algorithm,

called POACH, to minimize the weighted sum of energy expenditure and access delay. S. Lim et

al. [22] proposed cache invalidation techniques for Internet based MANETs (IMANETs). However, due

to broadcast nature, the cost of maintaining strong cache consistency is very high in ad hoc networks

as compared to cellular mobile networks. Authors in [2] proposed a cooperative caching scheme for

IMANETs. A broadcast based simple search scheme is proposed to establish cooperation among all

clients in the network to share cached data items. Although the broadcast based data search scheme can

locate the nearest required data item, the energy and bandwidth cost of the flooding search is significantly

high for a mobile ad hoc network. Shen et al. [8] proposed a broadcast based cooperative caching scheme
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for hybrid networks where a client shares the caches of clients lying in its proximity. Bandwidth and

energy consumption to locate a client having cached the requested data is very high due to flooding of
the messages.

Yin and Cao [6,7,23] designed and evaluated three caching algorithms (CacheData, CachePath and

Hybrid) to support data access in ad hoc networks. These algorithms mainly focus on the problem of
choosing data item or data path for caching in the limited cache space of mobile nodes. The problem with

CacheData approach is that it could take a lot of caching space with forwarding clients. The recording
path could become obsolete in CachePath and this scheme could introduce extra processing overhead.

Hybrid cache decides when to use which of the two schemes based on the properties (size and time-to-live
(TTL)) of the passing-by data and requires that the forwarding clients will keep record of which data is

more important. Since the forwarding clients can move to somewhere else in the next second, statistics

collected by the forwarding clients does not help much. In [23], the authors also proposed a cache
replacement policy based on data item size and popularity. But, the policy ignored the important factors

such as TTL and distance of the requester from the cache/source satisfying the request. Zang et al. [9]
talked of security concerns for cooperative caching in ad hoc networks.

Du and Gupta [24] proposed a cooperative caching scheme called COOP for MANETs with the aim

to improve data availability and access efficiency. For cache resolution, COOP uses flooding based
approach. As part of cache management, it uses the inter-category and intra-category rules to minimize

caching duplications between neighboring nodes. Disadvantage of the scheme is that flooding incurs
high discovery overhead and it does not consider factors such as size and consistency during replacement.

3. Network model and system environment

3.1. Network model

This work assumes that an ad hoc network comprises a group of mobile clients communicating through

omni-directional antennas with the same transmission range. The topology of an ad hoc network is thus
represented by an undirected graph G = (V, E), where V is the set of mobile clients MH1, MH2, . . . ,

and E⊆V×V is the set of links between clients. The existence of a link (u, v)∈E also means (v, u)∈E,

and that clients u and v are within the transmission range of each other, in which case u and v are called
one-hop neighbors of each other. The set of one-hop neighbors of a client MH i is denoted by MH1

i and

forms a cooperation zone. The combination of clients and transitive closure of their one-hop neighbors
forms a MANET. Two clients that are not connected but share at least one common one-hop neighbor

are called two-hop neighbors of each other.

As clients can physically move, there is no guarantee that a neighbor at time t will remain in the zone
at later time t + τ . The devices might be turned off or on at any time, so the set of live clients varies with

time and has no fixed size.

3.2. System environment

The system environment is assumed to be an ad hoc network where mobile clients access data items

held as originals by other mobile clients. A mobile client that holds the original value of a data item
is called data server/source/center. A data request initiated by a client is forwarded hop-by-hop along

the routing path until it reaches the data source and then the data source sends back the requested data.
Each mobile client maintains local cache in its hard disk. To reduce the bandwidth consumption and
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query latency, the number of hops between the data source/cache and the requester should be as small

as possible. Most mobile clients, however, do not have sufficient cache storage and hence the caching

strategy is to be devised efficiently. We also make the following assumptions:

– The system has total of M hosts and MHi (1 � i � M) is a unique host identifier. The set of one-hop

neighbors of a host MHi is denoted by MH1
i and forms a zone.

– The set of all data items is denoted by D = {d1, d2, . . . , dN}, where N is the total number of data

items and dj (1 � j � N) is a data identifier. Di denotes the actual data of the item with id di. Size

of data item di is si. The original of each data item is held by a particular data source.

– Each mobile host has a cache space of C bytes.

– Each data item is periodically updated at data source. After a data item is updated, its cached copy

(maintained on one or more hosts) may become invalid.

4. Zone cooperative caching scheme

This section describes our Zone Cooperative (ZC) caching scheme for data retrieval in MANETs. The

design rationale of the ZC caching is that it is advantageous for a client to share cached data with its

neighbors lying in the zone (i.e., mobile clients that are accessible in one hop). Mobile clients belonging

to the zone of a given client then form a cooperative cache system for this client since the cost for

communicating with them is low both in terms of energy consumption and message exchange. Figure 1

shows the behavior of ZC caching strategy for a client request. For each request, one of the following

four cases holds:

Case 1: Local hit. When copy of the requested data item is stored in the cache of the requester. If the

data item is valid, it is retrieved to serve the query and no cooperation is necessary.

Case 2: Zone hit. When the requested data item is stored in the cache of one or more one-hop

neighbors of the requester. Message exchange within the home zone of the requester is required during

the cache discovery.

Case 3: Remote hit. When the data is found with a client belonging to a zone (other than home zone

of the requester) along the routing path to the server.

Case 4: Global hit. Data item is retrieved from the server.

4.1. Cache discovery process

A cache discovery algorithm is needed to determine if and where the requested item is cached when

the requester does not have knowledge of the destination. When a data request is initiated at a client, it

first looks for the data item in its own cache. If there is a local cache miss, the client broadcasts request

packet to check if the data item is cached in other clients within its home zone. When a client receives

the request and has the data item in its local cache (i.e., a zone cache hit), it will send an ack packet to the

requester to acknowledge that it has the data item. In case of a zone cache miss, the request is forwarded

to the neighbor along the routing path. Before forwarding a request, each client along the path searches

the item in its local cache or zone as described above. If the data item is not found on the zones along

the routing path (i.e., a remote cache miss), the request finally reaches the data source. When a client

receives an ack packet, it sends a confirm packet against first ack packet. The ack packets for the same

item received from other clients are discarded without further processing. When a client/server receives

a confirm packet, it responds back with the actual data value to the requester.
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Fig. 1. Service of a client request by ZC caching strategy.

To demonstrate the above idea, we present a cache discovery example in Fig. 2 to determine the data

access path to the client having the requested cached data or to the data source. Let us assume that MH i

sends a request for a data item dx and MHk is located along the path through which the request travels

to the data source MHs, where k∈{a, c, d}. The discovery process is described as follows:

1. When MHi needs dx, it first checks its own cache. If the data item is not available in its local cache

(i.e., a local cache miss), it broadcasts a request packet to the mobile hosts in its zone (i.e., to MH j

and MHa). After MHi broadcasts the request, it waits for an acknowledgement. If it does not get

any acknowledgement within a specified timeout period, it fails to get dx within home zone (i.e.,

zone cache miss). In case of any MH1
i (MHj or MHa) has the data item dx, it sends ack packet to

MHi.

2. When MHk receives a request packet, it broadcasts the packet to MH1
k (i.e., mobile hosts in the

zone of MHk) if it does not have dx in its local cache. When MHk receives an ack packet, it sends

a confirm packet to the ack packet sender. There may be additional ack packets received by MH k

from other hosts in its zone and are discarded as it has already received an ack packet from a host

closer to it.

3. When MH1
i /MH1

k/MHs receives a confirm packet, it sends the reply packet to the requester. The

reply packet containing item id dx, actual data Dx and TTLx, is forwarded hop-by-hop along the

routing path until it reaches the original requester.
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Fig. 2. A request packet from client MHi is forwarded to the data source MHs.

4.2. Cache admission control

When a client receives the requested data, a cache admission control is triggered to decide whether

it should be brought into the cache. Inserting a data item into the cache might not always be favorable

because incorrect decision can lower the probability of cache hits [7]. For example, replacing a data item

that will be accessed soon with an item that will not be accessed in the near future degrades performance.

In ZC, the cache admission control allows a host to cache a data item based on the distance of data source

or other host that has the requested data. If the host or data source is ∆ hops away from the requesting

host, then it does not cache the data; otherwise it caches the data item. For example, if the origin of

the data item resides in the same zone of the requesting client i.e., ∆ = 1, then the item is not cached,

because it is unnecessary to replicate data item in the same zone since cached data can be used by closely

located hosts. In general, same data items are cached at least ∆ hops away.

A tradeoff exists between query latency and data accessibility. With a small ∆, the number of replicas

for each data item is high and access delay for this data item is low. On the other hand, with a larger ∆,

each data item has a small number of replicas, and the access delay can be little longer. Advantage is

that mobile clients can cache more distinct data items and still serve requests when the data source is not

accessible. However, if a network partition exists, many clients might not be able to access this data.

4.3. Cache consistency

Cache consistency issue must be addressed to ensure that clients only access valid states of the data.

Problems related to cache consistency have been studied in many other systems such as multi-processor

architectures, distributed file systems, distributed shared memory, and client-server database systems.

Two widely used cache consistency models are the weak consistency and the strong consistency model.

In the weak consistency model, a stale data might be returned to the client. In the strong consistency

model, after a update completes, no stale copy of the modified data will be returned to the client.
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Recently, we have done some work [15,16] on maintaining strong cache consistency in the one-hop

based mobile environment. However, due to bandwidth and power constraints in ad hoc networks, it is
too expensive to maintain strong consistency, and the weak consistency model is more attractive [6,7,

9]. The ZC caching uses a simple weak consistency model based on the time-to-live (TTL), in which a

client considers a cached copy up-to-date if its TTL has not expired. The client removes the cached data
when the TTL expires. A client refreshes a cached data item and its TTL if a fresh copy of the same data

passes by.

5. Cache replacement policy

A cache replacement policy is required when a client wants to cache a data item, but the cache is full,

and thus it needs to victimize a suitable subset of data items to evict from the cache. Cache replacement
policies have been extensively studied in operating systems, virtual memory management and database

buffer management. However, these algorithms might be unsuitable for ad hoc networks for several

reasons [7]:

– The data item size may not be fixed in ad hoc environment, the used replacement policy must handle
data items of varying sizes.

– The data item’s transfer time might depend on the item’s size and the distance between the requesting

client and the data source (or cache). Consequently, the cache hit ratio might not be the most accurate
measurement of a cache replacement policy’s quality.

– The replacement algorithm should also consider cache consistency, that is, data items that tend to
be inconsistent earlier should be replaced earlier.

5.1. Utility based replacement

We have developed Least Utility Value (LUV) based cache replacement policy, where documents with

the lowest utility are those that are removed from the cache. Four factors are considered while computing
utility value of a data item at a client:

Popularity. The access probability reflects the popularity of a data item for a host. An item with lower
access probability should be chosen for replacement. At a host, the access probability A i for data item

di is given as

Ai = ai

/

N
∑

k=1

ak (1)

Where ai is the mean access rate to data item di. ai can be estimated by employing sliding window

method of last K access times [29]. We keep a sliding window of K most recent access timestamps

(t1i , t
2
i , . . . , t

K
i ) for data item di in the cache. The access rate is updated using the following formula:

ai =
K

tc − tKi
,

where tc is the current time and tKi is the timestamp of oldest access to item di in the sliding window.

When fewer than K samples are available, all the samples are used to estimate a i. To reduce the
computational complexity, the access rates for all cached items are not updated during each replacement,
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rather the access rate for an item is updated only when the item is accessed. K can be as small as two or
three to achieve the best performance [29]. During simulation experiments, we have used K = 2, thus
the spatial overhead to store recent access timestamps is relatively small.

Distance. Distance (δ) is measured as the number of hops between the requesting client and the
responding client (data source or cache). This policy incorporates the distance as an important parameter
in selecting a victim for replacement. The greater the distance, the greater is the utility value of the data
item. This is because caching data items which are further away, saves bandwidth and reduces latency
for subsequent requests.

Coherency. A data item di is valid for a limited lifetime, which is known using the TTLi field. An
item which is valid for shorter period should be preferred for replacement.

Size (s). A data item with larger data size should be chosen for replacement, because the cache can
accommodate more data items and satisfy more access requests.

Based on the above factors, the utilityi function for a data item di is computed using the following
expression:

utilityi =
Ai.δi.TTLi

si

(2)

The idea is to maximize the total utility value for the data items kept in the cache. For a cache of size
C such that the size si of each data item di is very much less than C, the principle of optimality implies
that the mobile client MHx should always retain a set Cx of data items in its cache such that

∑

di∈Cx

utilityi (3)

is maximized subject to
∑

di∈Cx

si ≤ C (4)

The optimization problem defined by the objective functions Eqs (3) and (4) is termed as ad hoc
caching problem.

5.2. NP-Hardness

Here we will prove that ad hoc caching problem is NP-hard.

Definition 1. ADCACHE (ad hoc caching problem)
Instance: Given a set of data items D such that for each item di ∈D, a size si > 0 and utility utilityi > 0.

Also given that cache capacity of each client is C.
Question: Find a cache set Cx ⊂D for client MHx

that maximizes
∑

di∈Cx

utilityi

subject to
∑

di∈Cx

si � C
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Theorem 1. The ADCACHE is NP-hard.

Proof. The proof follows transformation from 0/1 Knapsack problem [28] that is known as NP-

complete problem. The instance and question of 0/1 Knapsack are presented as follows:

Definition 2. KNAPSACK (0/1 Knapsack problem)

Instance: Given a set of items Itemset = {item1, item2, . . . , itemn}, such that each item itemi is

associated with a value vi > 0 and weight wi > 0.

Question: Select a set of items from Itemset (denoted by Selectset)

that maximizes
∑

itemi ∈ Selectset

vi

subject to

∑

itemi ∈ Selectset

wi � W

The KNAPSACK can be transformed into ADCACHE by mapping W to C, Itemset to D, Selectset

to Cx, vi to utilityi and wi to si. By solving ADCACHE, we get
∑

di∈Cx

utilityi and the size of items in

the cache
∑

di∈Cx

si � C . Therefore, the KNAPSACK can be solved by solving ADCACHE. Hence, the

ADCACHE is NP-hard.

5.3. Implementation issues

Maximizing the objective function defined by Eqs (3) and (4) implies a minimization of the response

time per reference. The task of LUV is to make this optimal decision for every replacement. When the

data size is relatively small compared to the cache size [28], we can use heuristics to obtain sub-optimal

solutions. The heuristic we use is: through out the cached data item d i with the minimum utilityi/si

value until the free cache space is sufficient to accommodate the incoming data. A binary min-heap [28]

data structure is used to implement the LUV policy. The key field for the heap is the utility i/si value

for each cached data item di. When the events of cache replacement occur, the root item of the heap

is deleted. This operation is repeated until sufficient space is obtained for the incoming data item.

Let Nc denotes the number of cached items and Nv the victim set size. Every deletion operation has

a complexity of O(logNc). An insertion operation also has a O(logNc) complexity. Thus the time

complexity for every cache replacement operation is O(NvlogNc). In addition, when an item’s utility

value is updated, its position in the heap needs to be adjusted. The time complexity for every adjustment

operation is O(logNc). In most of the cases, the maximum value of Nv is three. Therefore, the overall

time complexity of LUV is O( logNc).

6. Analytical model

To analyze the performance of the proposed ZC caching technique, we develop an analytical model.

The performance is measured with the following metrics:
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Table 1
Symbols used in the analysis

Symbol Definition

S Data source/server
Hi Number of hops between S and MHi

Pij Probability of data item dj cached in MHi

r Transmission range of an MH (meters)
ρ Node density of the network
H Average number of hops between an MH and server S
Lj Number of hops to retrieve data item dj

Lavg Average number of hops to retrieve a data item
Tlocal Average time to retrieve a data item from the local cache
Tzone Average time to retrieve a data item from the zone

Tdiscovery Average overhead for cache discovery
Ts Average time to retrieve a data item from S
Tj Query latency to retrieve data item dj

Tavg Average query latency to retrieve a data item

1. Average number of hops a request is expected to travel before it reaches the data cache/source.
Reducing the hop count can reduce the query latency, bandwidth and the power consumption since
fewer clients are involved in the query process [6]. Reduction in the hop count can also alleviate
the load at data source since some of the requests are satisfied by the cache.

2. Average query latency is the time elapsed between the query is sent and the data is transmitted
back to the requester averaged upon all the successful queries.

Table 1 shows the symbols and notations used in the analysis.

Theorem 2. If P is the probability of cache hit at a client, then the probability of cache hit in a cooperation

zone is 1 − (1 − P )ρπr2
−1.

Proof. Area of a cooperation zone = πr2

Number of nodes in a cooperation zone, Nzone = ρπr2

Number of nodes contributing for zone hit (i.e., number of one-hop neighbors of a node) = ρπr 2 − 1
Probability of cache miss for a node = (1 − P )

Probability of cache miss in a zone = (1 − P )ρπr2
−1

Probability of cache hit in a cooperation zone = 1 − (1 − P )ρπr2
−1

For each client request, four cases (local hit, zone hit, remote hit or global hit) are possible to retrieve
the requested data item as described in Section 4. To compute the number of hops L j and query latency
Tj for retrieving the data item dj by client MHi, the probability of data hit for each case along with
number of hops is shown below:

Case Probability of data hit Number of hops

Local hit Pij 0

Zone hit 1 − (1 − Pij)
ρπr2

−1 1

Remote hit (1 − Pij)
ρπr2k[1 − (1 − Pij)

ρπr2

] k, 1 ≤ k < Hi

Global hit (1 − Pij)
ρπr2HiPij Hi

So, Lj is given as

Lj = Pij .0 + [1 − (1 − Pij)
ρπr2

−1].1 +

Hi−1
∑

k=1

(1 − Pij)
ρπr2k.[1 − (1 − Pij)

ρπr2

].k
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+(1 − Pij)
ρπr2Hi .Pij .Hi (5)

The Eq. (5) above can be explained as follows. When there is a local cache hit, the requested data

item dj can be retrieved locally (0 hops) at client MHi with a probability Pij . In case of zone hit (1 hop

distance from the requester) the access probability is 1 − (1 − Pij)
ρπr2

−1. When there is a remote data

hit, the item is retrieved from a client lying on a zone (other than home zone of the requester) along the

routing path at a distance of k hops from the requester with a probability (1−Pij)
ρπr2k[1−(1−Pij)

ρπr2

].
If none of the clients has cached the requested item dj , it is retrieved from the data server (global hit)

with a probability (1 − Pij)
ρπr2HiPij .

To simplify the model, assume that P is the probability that a data item is cached by an MH. The

average number of hops (Lavg) is given as

Lavg = 1 − (1 − P )ρπr2
−1 +

H−1
∑

k=1

(1 − P )ρπr2k.[1 − (1 − P )ρπr2

].k + (1 − P )ρπr2H .P.H (6)

This equation is an approximation of Lavg since in practice P may differ for different data items.

If there is no cooperation within a zone i.e., a client does not share caches with its one-hop neighbors,

then ρπr2 = 1. The average number of hops becomes

Lavg, CacheData =

H
∑

k=1

(1 − P )k.P.k (7)

The Eq. (7) above is same as developed for CacheData scheme in [6,23].

Query latency is given as follows:

Tj = Pij .Tlocal + [1 − (1 − Pij)
ρπr2

−1].[Tzone + Tdiscovery] +

Hi−1
∑

k=1

(1 − Pij)
ρπr2k.

[1 − (1 − Pij)
ρπr2

].[Tzone + Tdiscovery] + (1 − Pij)
ρπr2Hi .Pij .Ts (8)

Similar to the explanation of Eq. (5) described above, the Eq. (8) can be justified.

Tavg = P.Tlocal + [1 − (1 − P )ρπr2
−1].[Tzone + Tdiscovery] +

H−1
∑

k=1

(1 − P )ρπr2k.

[1 − (1 − P )ρπr2

].[Tzone + Tdiscovery] + (1 − P )ρπr2H .P.Ts (9)

The effect of data popularity, node density and transmission range can be studied by varying the values

of P, ρ and r respectively in Eqs (6) and (9).

7. Performance analysis

In this section, we evaluate the performance of ZC caching through simulation experiments under

LUV and LRU replacements.
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Fig. 3. Division of MANET into grids.

7.1. Simulation model

During the simulation AODV [5] has been used as underlying routing algorithm. The node density is

changed by choosing the number of nodes between 50 and 100 in a fixed area. The wireless bandwidth

is assumed to be 2 Mbps with transmission range of 250 m.

7.2. Client model

The time interval between two consecutive queries generated from each client follows an exponential

distribution with mean Tq. Each client generates a single stream of read-only queries. After a query

is sent out the client does not generate new query until the pending query is served. Each client

generates accesses to the data items following Zipf distribution [27] with a skewness parameter θ. In

Zipf distribution, the access probability of the ith (1 � i � N) data item is represented as follows

Ai =
1

iθ
N
∑

k=1

1
kθ

, 0 � θ � 1

If θ = 0, clients uniformly access the data items. As θ is increasing, the access to the data items

becomes more skewed. Similar to other studies [6,8] we chose θ to be 0.8.

The simulation area is assumed of size 1500 m × 1500 m. The clients move according to the random

waypoint model. Initially, the clients are randomly distributed in the area. Each client selects a random

destination and moves towards the destination with a speed selected randomly from [vmin, vmax]. After

the client reaches its destination it pauses for a period of time and repeats this movement pattern.

The access pattern of mobile clients can be location dependent, that is, clients that are around the same

location tend to access similar data. In order to model this kind of access pattern, the whole network

area is equally divided into 5 × 5 square grids. These grids are named grid 1, 2, . . . , 25 in a column wise

fashion as shown in Fig. 3. The clients in the same grid have the same Zipf data popularity and clients in

different grids have different shift values for the Zipf pattern. For a client in grid i, the id of data access

is shifted by i so that id = (id + i)mod N. This access pattern ensures that clients in neighboring grids

have similar, although not same, access pattern.

7.3. Server model

The data server is placed at center of network area i.e., at location (750 m, 750 m). There are

N data items at the server. Data item sizes vary from smin to smax such that size si of item di is,
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Table 2
Simulation parameters

Parameter Default Value Range

Database size (N) 1000 items
Smin 1 KB
smax 10 KB
Number of clients (M) 70 50∼100
Client cache size (C) 800 KB 200 ∼ 1400 KB
Client speed (vmin ∼vmax) 2 m/s
Bandwidth (b) 2 Mbps
TTL 5000 sec
Pause time 300 sec
Mean query generate time (Tq) 5 sec 2 ∼ 100 sec
Transmission range (r) 250 m
∆ 1 1 ∼ 5
Skewness parameter (θ) 0.8

si = smin +
⌊

random().(smax − smin + 1)
⌋

, i = 1, 2, . . . N , where random( ) is a random function

uniformly distributed between 0 and 1. The data are updated only by the server. The server serves the
requests on FCFS (first-come-first-serve) basis. When the server sends a data item to a client, it sends

the TTL value along with the data. The TTL value is set exponentially with a mean value. After the TTL

expires, the client has to get the new version of the data item either from the server or from other client

(having maintained the data item in its cache) before serving the query.
The system parameters are given in Table 2. During the simulation, the parameters are changed to

study their impacts.

7.4. Simulation metrics

We evaluate two performance parameters here: average query latency (Tavg), and cache hit ratio

including local cache hit (Hlocal), zone cache hit (Hzone) and remote cache hit (Hremote). The average
query latency (Tavg) is the time elapsed between the query is sent and the data is transmitted back to the

requester. Hit ratio is used as a measure of the efficiency of the cache management.

If nlocal, nzone and nremote denotes the number of local hits, zone hits and remote hits respectively out
of total ntotal requests, then

Hlocal = nlocal/ntotal × 100%,Hzone = nzone/ntotal × 100%, and Hremote

= nremote/ntotal × 100%

7.5. Simulation results

Here we examine the impact of different workload parameters such as cache size, query generate
time, node density and ∆ on the performance of proposed ZC caching strategy. To demonstrate the

effectiveness of LUV policy, we compare the ZC scheme under LUV replacement and LRU based

replacement.

7.6. Effects of cache size

Figure 4 shows the effect of cache size on the hit ratio and query latency by varying the cache size
from 200 KB to 1400 KB. The cache hit comprises of local hit, zone hit and remote hit. Figure 4a shows
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Fig. 4. Effect of cache size on cache hit ratio and average query latency.

that the local cache hit increases with the increasing cache size because with large cache size more data
can be shared locally. The local hit ratio for LRU policy is always lower. LUV policy considers the data
size during replacement therefore more items may be cached thus improving the hit ratio. As the cache
size increases, the improvement of LUV over LRU becomes more significant. This implies that LUV
can utilize the cache space more efficiently. Due to sharing of data among one-hop neighbors, the zone
hit and remote hit also improve with the cache size.

From Fig. 4b, we can see that the proposed LUV policy performs much better than LRU policy. As
the cache size increases more data can be found in local + zone cache, thus, the need for accessing the

remote and global cache alleviated. Because the hop count of zone data hit is one and is lower than
the average hop count of remote/global data hit, the query latency decreases. As the cache size is large
enough, the MHs can access most of the required data items from local and zone cache, so it reduces
query latency.

Comparing these two policies, we can see that LUV performs much better than LRU. Because of high
overall hit ratio, LUV achieves the best performance compared to LRU at all cache sizes.

7.7. Effects of query generate time

Figure 5 shows the effect of mean query generate time Tq. At small Tq, more queries are generated and
hence more cache replacements take place. Higher number of cache replacements at lower T q increases
the number of cache misses at a client. This results in low cache hit ratio at small Tq. The LUV based
replacement behaves better than LRU as LUV is more realistic for ad hoc environment. The cache hit
ratio improves with an increase in Tq because of lower number of generated queries and hence number

of replacements decreases. At very large value of Tq, the cache hit ratio is low because query generate
rate is so low that the number of cached data is small and many cached data items are not usable because
their TTL have already expired before queries are generated for them. Figure 5a verifies this trend.

Figure 5b shows the average query latency as a function of the mean generate time T q. At small value
of Tq, the query generate rate is high and system workload is more. This results in high value of average
query latency. When Tq increases, less queries are generated and average query latency drops. If T q

keeps increasing, the average query latency drops slowly or even increases slightly due to decrease in



34 N. Chand et al. / Cooperative caching in mobile ad hoc networks based on data utility

Mean query generate time (sec)

2 5 10 20 50 1002 5 10 20 50 1002 5 10 20 50 100

C
ac
h
e 
h
it
 r
at
io

0.0

0.2

0.4

0.6

0.8

1.0

Remote hit

Zone hit

Local hit

Mean query generate time (sec)

2 5 10 20 50 100

A
v
er
ag
e 
q
u
er
y
 l
at
en
cy
 (
se
c)

0.10

0.15

0.20

0.25

0.30

LRU

LUV

(a)            (b) 

Fig. 5. Effect of mean query generate time on cache hit ratio and average query latency.
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Fig. 6. Effect of node density on cache hit ratio and average query latency.

cache hit ratio. Under extreme high Tq, most of the queries are served by the remote data server and
both the replacement policies perform similarly.

7.8. Effects of node density

We vary the number of mobile nodes from 50 to 100 in network area to study the performance under
different node densities. As shown in Fig. 6a, the LUV based replacement has better local hit ratio than
LRU policy at all the node densities. When the node density is high, the number of MHs in a cooperation
zone increases which leads to an improvement in zone hit ratio and remote hit ratio. LUV also performs
better than LRU in terms of zone and remote hit under different node densities.

Figure 6b shows the average query latency as a function of the node density. As node density increases,
the latency increases because more nodes compete for limited bandwidth. The query latency for LRU
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Fig. 7. Effect of ∆ on cache hit ratio and average query latency.

policy increases much faster than LUV. This can be explained by the fact that LUV considers various

factors to make more intelligent replacement decision.

7.9. Effects of admission control

In this subsection, we evaluate the replacement policies in terms of admission control. We examine the

effect of parameter ∆ that determines which data item can be cached. Although a high ∆ value enables

more data items to be distributed over the entire MANET, so that more distinct items will be cached, the

average query latency will increase. Figure 7b verified this trend.

In Fig. 7a, local cache hit ratio decreases with increase in ∆ because an item will be cached at a client

only if no neighbor of the client at distance lower than ∆ hops have cached it. Due to caching of distinct

items by neighboring clients, there is improvement in zone and remote cache hit with increasing ∆. The

decrease in local cache hit ratio causes higher average query latency with increasing ∆.

8. Conclusions

This paper presents LUV based replacement policy for ZC caching scheme in mobile ad hoc networks.

The ZC scheme enables clients in a zone to share their data which helps alleviate the longer average

query latency and limited data accessibility problems in ad hoc networks. An analytical model of ZC is

also developed. The LUV policy considers several factors such as access probability, distance between

the requester and data source/cache, coherency and data size, and thus is more realistic for cooperative

caching in ad hoc networks. A simulation based performance study was conducted to evaluate the ZC

scheme under LUV and LRU policies. Results show that the ZC caching scheme with LUV policy

performs better in terms of cache hit ratio and average query latency in comparison with LRU policy.

Our future work includes development of a cooperative caching scheme where each client has cache

state information within a zone so that replacement is performed on unified zone cache rather than single

local cache.
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