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Abstract—Some recent studies have shown that cooperative cache can improve the system performance in wireless P2P networks

such as ad hoc networks and mesh networks. However, all these studies are at a very high level, leaving many design and

implementation issues unanswered. In this paper, we present our design and implementation of cooperative cache in wireless P2P

networks, and propose solutions to find the best place to cache the data. We propose a novel asymmetric cooperative cache approach,

where the data requests are transmitted to the cache layer on every node, but the data replies are only transmitted to the cache layer at

the intermediate nodes that need to cache the data. This solution not only reduces the overhead of copying data between the user

space and the kernel space, it also allows data pipelines to reduce the end-to-end delay. We also study the effects of different MAC

layers, such as 802.11-based ad hoc networks and multi-interface-multichannel-based mesh networks, on the performance of

cooperative cache. Our results show that the asymmetric approach outperforms the symmetric approach in traditional 802.11-based

ad hoc networks by removing most of the processing overhead. In mesh networks, the asymmetric approach can significantly reduce

the data access delay compared to the symmetric approach due to data pipelines.

Index Terms—Wireless networks, P2P networks, cooperative cache.
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1 INTRODUCTION

WIRELESS P2P networks, such as ad hoc network, mesh
networks, and sensor networks, have received con-

siderable attention due to their potential applications in
civilian and military environments. For example, in a
battlefield, a wireless P2P network may consist of several
commanding officers and a group of soldiers. Each officer
has a relatively powerful data center, and the soldiers need
to access the data centers to get various data such as the
detailed geographic information, enemy information, and
new commands. The neighboring soldiers tend to have
similar missions and thus share common interests. If one
soldier has accessed a data item from the data center, it is
quite possible that nearby soldiers access the same data
some time later. It will save a large amount of battery
power, bandwidth, and time if later accesses to the same
data are served by the nearby soldier who has the data
instead of the far away data center. As another example,
people in the same residential area may access the Internet
through a wireless P2P network, e.g., the Roofnet [3]. After

one node downloads a MP3 audio or video file, other
people can get the file from this node instead of the far
away Web server.

Through these examples, we can see that if nodes are
able to collaborate with each other, bandwidth and power
can be saved, and delay can be reduced. Actually,
cooperative caching [5], [16], [23], [24], which allows the
sharing and coordination of cached data among multiple
nodes, has been applied to improve the system performance
in wireless P2P networks. However, these techniques [5],
[16], [23], [24] are only evaluated by simulations and
studied at a very high level, leaving many design and
implementation issues unanswered.

There have been several implementations of wireless ad
hoc routing protocols. In [22], Royer and Perkins suggested
modifications to the existing kernel code to implement
AODV. By extending ARP, Desilva and Das [7] presented
another kernel implementation of AODV. Dynamic Source
Routing (DSR) [12] has been implemented by the Monarch
project in FreeBSD. This implementation was entirely in
kernel and made extensive modifications in the kernel IP
stack. In [2], Barr et al. addressed issues on system-level
support for ad hoc routing protocols. In [13], the authors
explored several system issues regarding the design and
implementation of routing protocols for ad hoc networks.
They found that the current operating system was insuffi-
cient for supporting on-demand or reactive routing proto-
cols, and presented a generic API to augment the current
routing architecture. However, none of them has looked
into cooperative caching in wireless P2P networks.

Although cooperative cache has been implemented by
many researchers [6], [9], these implementations are in the
Web environment, and all these implementations are at the
system level.As a result, none of themdealswith themultiple
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hop routing problem and cannot address the on-demand
nature of the ad hoc routing protocols. To realize the benefit
of cooperative cache, intermediate nodes along the routing
path need to check every passing-by packet to see if the
cached data match the data request. This certainly cannot be
satisfied by the existing ad hoc routing protocols.

In this paper, we present our design and implementation
of cooperative cache in wireless P2P networks. Through real
implementations, we identify important design issues and
propose an asymmetric approach to reduce the overhead of
copying data between the user space and the kernel space,
and hence to reduce the data processing delay.

Another major contribution of this paper is to identify
and address the effects of data pipeline and MAC layer
interference on the performance of caching. Although some
researchers have addressed the effects of MAC layer
interference on the performance of TCP [10] and network
capacity [17], this is the first work to study this problem in
the context of cache management. We study the effects of
different MAC layers, such as 802.11-based ad hoc networks
and multi-interface-multichannel-based mesh networks, on
the performance of caching. We also propose solutions for
our asymmetric approach to identify the best nodes to cache
the data. The proposed algorithm well considers the
caching overhead and adapts the cache node selection
strategy to maximize the caching benefit on different MAC
layers. Our results show that the asymmetric approach
outperforms the symmetric approach in traditional 802.11-
based ad hoc networks by removing most of the processing
overhead. In mesh networks, the asymmetric approach can
significantly reduce the data access delay compared to the
symmetric approach due to data pipelines.

The rest of the paper is organized as follows: Section 2
presents our design and implementation of cooperative
cache for wireless P2P networks. In Section 3, we present
our prototype and experimental results. Section 4 extends
our cooperative cache design to a large-scale network and
presents extensive simulation results based on various
MAC layers. Section 5 concludes the paper.

2 DESIGN AND IMPLEMENTATION

OF COOPERATIVE CACHING

In this section, we first present the basic ideas of the three
cooperative caching schemes proposed in [24]: CachePath,
CacheData, and HybridCache. Then, we discuss some
design issues and present our design and implementation
of cooperative cache in wireless P2P networks.

2.1 Cooperative Caching Schemes

Fig. 1 illustrates the CachePath concept. Suppose node N1

requests a data item di from N0. When N3 forwards di to
N1; N3 knows that N1 has a copy of the data. Later, if N2

requests di; N3 knows that the data source N0 is three hops
away whereas N1 is only one hop away. Thus, N3 forwards
the request to N1 instead of N4. Many routing algorithms
(such as AODV [20] and DSR [12]) provide the hop count
information between the source and destination. Caching
the data path for each data item reduces bandwidth and
power consumption because nodes can obtain the data
using fewer hops. However, mapping data items and
caching nodes increase routing overhead, and the following
techniques are used to improve CachePath’s performance.

In CachePath, a node need not record the path informa-
tion of all passing data. Rather, it only records the data path
when it is closer to the caching node than the data source.
For example, when N0 forwards di to the destination node
N1 along the path N5 �N4 �N3; N4 and N5 won’t cache di
path information because they are closer to the data source
than the caching node N1. In general, a node caches the data
path only when the caching node is very close. The
closeness can be defined as a function of the node’s distance
to the data source, its distance to the caching node, route
stability, and the data update rate. Intuitively, if the network
is relatively stable, the data update rate is low, and its
distance to the caching node is much shorter than its
distance to the data source, then the routing node should
cache the data path.

In CacheData, the intermediate node caches the data
instead of the path when it finds that the data item is
frequently accessed. For example, in Fig. 1, if both N6 and
N7 request di through N5; N5 may think that di is popular
and cache it locally. N5 can then serve N4’s future requests
directly. Because the CacheData approach needs extra space
to save the data, it should be used prudently. Suppose N3

forwards several requests for di to N0. The nodes along the
path N3; N4, and N5 may want to cache di as a frequently
accessed item. However, they will waste a large amount of
cache space if they all cache di. To avoid this, CacheData
enforces another rule: A node does not cache the data if all
requests for the data are from the same node.

In this example, all the requests N5 received are from N4,
and these requests in turn come from N3. With the new rule,
N4 and N5 won’t cache di. If N3 receives requests from
different nodes, for example, N1 and N2, it caches the data.
Certainly, if N5 later receives requests for di from N6 and
N7, it can also cache the data.

CachePath and CacheData can significantly improve
system performance. Analytical results [24] show that
CachePath performs better when the cache is small or the
data update rate is low, while CacheData performs better in
other situations. To further improve performance, we can
use HybridCache, a hybrid scheme that exploits the
strengths of CacheData and CachePath while avoiding
their weaknesses. Specifically, when a node forwards a data
item, it caches the data or path based on several criteria
discussed in [24].

2.2 Design Issues on Implementing
Cooperative Cache

In this paper, we focus on design and implementation of the
CacheData scheme discussed in the above section. To
realize the benefit of cooperative cache, intermediate nodes
along the routing path need to check every passing-by
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packet to see if the cached data match the data request. This
certainly cannot be satisfied by the existing ad hoc routing
protocols. Next, we look at two design options.

2.2.1 Integrated Design

In this option, the cooperative cache functions are inte-
grated into the network layer so that the intermediate node
can check each passing-by packet to see if the requested
data can be served. Although this design sounds straight-
forward, several major drawbacks make it impossible in
real implementation.

The network layer is usually implemented in kernel, and
hence, the integrated design implies a kernel implementa-
tion of cooperative cache. However, it is well known that
kernel implementation is difficult to customize and then it
is difficult for handling different application requirements.
Second, kernel implementation will significantly increase
the memory demand due to the use of CacheData. Finally,
there is no de facto routing protocol for wireless P2P
networks currently. Implementing cooperative cache at the
network layer requires these cache and routing modules to
be tightly coupled, and the routing module has to be
modified to add caching functionality. However, to
integrate cooperative cache with different routing protocols
will involve tremendous amount of work.

2.2.2 Layered Design

The above discussions suggest that a feasible design should
have a dedicated cooperative cache layer resided in the user
space; i.e., cooperative cache is designed as a middleware
lying right below the application layer and on top of the
network layer (including the transport layer).

There are two options for the layered design. One naive
solution uses cross-layer information, where the application
passes data request (search key) to the routing layer, which
can be used to match the local cached data. However, this
solution not only violates the layered design, but also adds
significant complexity to the routing protocol which now
needs to maintain a local cache table. Further, if an
intermediate node needs to cache the data based on the
cooperative cache protocol, it has to deal with fragmentation
issues since some fragments of the data may not go through
this node. Thus, this naive solution does not work in practice.

Another solution is to strictly follow the layered
approach, where the cooperative cache layer is on top of
the network layer (TCP/IP). Fig. 2 shows the message flow
(dashed line) in the layered design. In the figure, N5 sends a
request to N0. Based on the routing protocol, N5 knows that
the next hop isN4 and sends the request toN4 encapsulating
the original request message. AfterN4 receives the request, it
passes the message to the cache layer, which can check if the
request can be served locally. This process continues until
the request is served or reaches N0. After N0 receives the
request, it forwards the data item back to N5 hop by hop,
which is the reverse of the data request, as shown in Fig. 2b.
Note that the data has to go up to the cache layer in case
some intermediate nodes need to cache the data.

Although this solution can solve the problems of the naive
solution, it has significant overhead. For example, to avoid
caching corrupted data, reliable protocols such as TCP are
needed. However, this will significantly increase the over-
head, since the data packets have to move to the TCP layer at
each hop. Note that the data packets only need to go to the

routing layer if cooperative cache is not used. Further, this
solution has a very high context switching overhead. At each
intermediate node, the packets have to be copied from the
kernel to the user space for cache operations, and then
reinjected back to kernel to be routed to the next hop.

The pipeline effect. Another problem of the layered
design is the lack of data pipeline. Normally, the transport
layer can fragment a large data item into many small data
packets, which are sent one by one to the next hop. If there
are multihops between the sender and the receiver, these
small packets can be pipelined and the end-to-end delay
can be reduced.

In cooperative cache, the caching granularity is at the data
item level. Although a large data item is still fragmented by
the transport layer, there is no pipeline due to the layered
design. This is because the cache layer is on top of the
transport layer, which will reassemble the fragmented
packets. Since all packets have to go up to the cache layer
hop by hop, the network runs like “stop and wait” instead of
“sliding window.” This will significantly increase the end-
to-end delay, especially for data with large size.

2.3 The Asymmetric Cooperative Cache Approach

To address the problem of the layered design, we propose
an asymmetric approach. We first give the basic idea and
then present the details of the scheme.

2.3.1 The Basic Idea

In our solution, data requests and data replies are treated
differently. The request message still follows the path
shown in Fig. 2a; however, the reply message follows a
different path. If no intermediate node needs to cache the
data, N0 sends the data directly to N5 without going up to
the cache layer. Suppose N3 needs to cache the data based
on the cooperative cache protocol, as shown in Fig. 3. After
N3 receives the request message, it modifies the message
and notifies N0 that the data should be sent to N3. As a
result, the data are sent from N0 to N3 through the cache
layer, and then sent to N5. Note that the data will not go to
the cache layer in intermediate nodes such as N1; N2, and
N4 in this example. In this way, the data only reach the
routing layer for most intermediate nodes, and go up to the
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cache layer only when the intermediate node needs to cache
the data. Although the request message always needs to go
up to the cache layer, it has a small size, and the added
overhead is limited.

If the requested data item is large, this asymmetric
approach allows data pipeline between two caching nodes,
and hence reduces the end-to-end delay. The cache layer
processing overhead, especially data copying between
kernel and user spaces, is also minimized because the data
item is not delivered to the cache layer at the nodes that are
unlikely to cache the data. Next, we discuss the details of
our asymmetric approach.

2.3.2 The Asymmetric Approach

Our asymmetric caching approach has three phases:
Phase 1: Forwarding the request message. After a

request message is generated by the application, it is passed
down to the cache layer. To send the request message to the
next hop, the cache layer wraps the original request
message with a new destination address, which is the next
hop to reach the data server (real destination). Here, we
assume that the cache layer can access the routing table and
find out the next hop to reach the data center. This can be
easily accomplished if the routing protocol is based on DSR
or AODV. In this way, the packet is received and processed
hop by hop by all nodes on the path from the requester to
the data server.

For example, in Fig. 2a, when N5 requests di from N0, it
adds a new header where the destination of the data request
becomes N4, although the real destination should be N0.
After N4 receives and processes the packet, it changes the
destination to be N3, and so on, until the request packet
arrives at N0.

When an intermediate node receives the request message
and delivers to the cache layer, the cache manager performs
two tasks: First, it checks if it has the requested data in its
local cache; if not, it adds its local information to the request
packet. The local information includes the access frequency
(number of access requests per time unit) of the requested
data, channel used, and throughput of the link where the
request is received. Its node id will also be added to
Path List, which is a linked list encapsulated in the cache
layer header. When the request message reaches the node
who has the data, Path List in the message will include all
the intermediate nodes along the forwarding path.

Phase 2: Determining the caching nodes. When a
request message reaches the data server (the real data
center or the intermediate node that has cached the
requested data), the cache manager decides the caching
nodes on the forwarding path, which will be presented in

Section 2.3.3. Then, the ids of these caching nodes are added
to a list called Cache List, which is encapsulated in the
cache layer header.

Phase 3: Forwarding the data reply. Unlike the data
request, the data reply only needs to be processed by those
nodes that need to cache the data. To deliver the data only
to those that will cache the data, tunneling techniques [8]
are used. The data reply is encapsulated by the cache
manager and tunneled only to those nodes appearing in
Cache List. As shown in Fig. 3, suppose the intermediate
node N3 needs to cache data di. Then, N3 and N5 are the
nodes to process the data at the cache layer. N0 includes N3

and N5 in the cache header of the data item di, and first sets
the destination address of di to beN3. When N3 receives any
fragmented packet of di, the routing layer of N3 will deliver
the packet upward to the transport layer and then to the
cache layer. After the whole data item di has been received
by N3, it caches the data item, sets the next destination
using the next entry in Cache List, which is N5, and then
passes the data down to the routing layer. After N5 receives
the data, it delivers the data to the application layer.

2.3.3 Determining the Caching Nodes

When a request reaches the data server, the cache manager
examines the Path List and determines which nodes in the
Path List to cache the data. One advantage of letting the
data server make the decision is because the data server can
use global information to achieve better performance.

The data server needs to measure the benefit of caching a
data item on an intermediate node and use it to decide
whether to cache the data. After an intermediate node (Ni)
caches a data item, Ni can serve later requests using the
cached data, instead of forwarding the requests to the data
server, saving the communication overhead betweenNi and
the data center. However, caching data at Ni increases the
delay of returning the data to the current requester, because
it adds extra processing delay at Ni, and the data
reassembly at Ni may affect possible pipelines.

Suppose the data server (N0) receives a request from a
client (Nn). The forwarding path (N0; N1; . . . ; Nn�1; Nn)
consists of n� 1 intermediate nodes, whereNi is the ith node
fromN0 on the path. To compute the benefit of caching a data
item, the data server needs the following parameters:

. Excluded data access frequency (fi): the number of
access requests for a given data item received by Ni

per time unit, but excluding the requests forwarded
from other nodes on the forwarding path. To
compute fi, a node can first count the total requests
it receives for the given data item, including the
requests generated by itself, and those forwarded
from its neighbors, then divide by the amount of
time since the node starts to participate caching. This
computes the total data request frequency (ai). The
node can attach the value of ai to the forwarding
request. When the data server receives the data
request and gets the value of ai for each node along
the forwarding path, it can compute fi as

fi ¼
ai � aiþ1; if 1 � i � n� 1;
an; if i ¼ n:

�
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. Tunneling delay (di;jðSÞ): the delay to forward a data
item with size S from the cache layer of Ni to the
cache layer of Nj, without handing the data up to the
cache layer of any intermediate nodes. di;jðSÞ is hard
to measure because it is affected by many factors,
such as transmission interference, channel diversi-
ties, node mobility, etc. We assume di;jðSÞ is known
at this point to introduce our optimal placement
model. We will present heuristics to calculate it later.

Optimal cache placement. We first define a new term
called aggregate delay, which includes the time to serve the
current client request and the delay to serve future data
requests coming from the same path. We can also assign
different weights to these two parts of the delay based on
the optimization objective, e.g., giving less weight to the
future access delay if the current request has strict delay
requirement. For simplicity, we assign equal weight for the
current and future access delay in this paper. Below, we
formally define the optimal cache placement problem.

Definition. Given a n-hop forwarding path N0; N1; . . .Nn,
where N0 is the data server and Nn is the client, the problem of
optimal cache placement is to find a cache node set
P ¼ fNc1 ; . . . ; Ncm j0 < c1 < c2 < � � � < cm < ng, which has
the minimum aggregate delay for a given period of time �t.

In this definition, ci refers to the subscript of the node Nci

on the forwarding path, which implies that node Nci is ci
hops away from the data server. For instance, if only N2 and
N4 are selected as cache node in a forwarding path
N0; N1; . . . ; Nn�1; Nn; c1 ¼ 2 and c2 ¼ 4.

Given a cache placement P ¼ fNc1 ; Nc2 ; . . . ; Ncmg, the
aggregate delay is computed by considering both the
latency to return the current reply (Lc) and the latency to
reply future data requests (Lf ). We have

Lc ¼
X

m

i¼1

hðSDÞ þ d0;c1ðSDÞ þ
X

m�1

i¼1

dci;ciþ1
ðSDÞ þ dcm;nðSDÞ;

ð1Þ

where SD is the data size and hðSDÞ is the data processing
delay. Since the data are cached at m intermediate nodes,
Pm

i¼1
hðSDÞ considers the cache processing delay at these

nodes. As the data are reassembled at m nodes, the
forwarding path is cut into mþ 1 pieces. The rest part of
(1) considers the total forwarding delay as the summation
of the tunneling delays on each piece.

Lf ¼
X

c1�1

j¼1

fjðd0;jðSRÞ þ d0;jðSDÞÞ�t

þ
X

m�1

i¼1

X

ciþ1�1

j¼ci

fjðdci;jðSRÞ þ dci;jðSDÞÞ�t

þ
X

n�1

j¼cm

fjðdcm;jðSRÞ þ dcm;jðSDÞÞ�t;

ð2Þ

where fj is the excluded data access frequency at node j; SR

and SD are the size of the request message for the data
request and the data itself, respectively. Equation (2)
computes the future delay by assuming that any future
request going through the node on the current forwarding

path will be replied by the first caching node met by the
request. The replied data will be sent to the client without
handing up to the cache layer of the intermediate node.
Thus, the cache placement set P is optimal if it can minimize
the weighted aggregate delay L, which is given by

minimize L ¼ Lc þ Lf : ð3Þ

Heuristics to calculate di;jðSÞ. We first calculate the
throughput between two caching nodes Ni and Nj, denoted
as Ti;j. Each node passively estimates its link throughput to
its one-hop neighbors. Ni can estimate the throughput to
Niþ1 (i.e., Ti;iþ1) by using the request message size divided
by the link transmission delay. The multihop throughput is
computed recursively by considering the node interference
and channel diversity on the forwarding path. Let li denote
the channel used between Ni and Niþ1, and assume that the
interference range is p hops. Ti;jþ1 (j > i) is computed as

Ti;jþ1 ¼
minfTi;j; Tj;jþ1g; if lj 6¼ lj�1; lj�2; . . . ; lj�p;
1=
�

1

Ti;j
þ 1

Tj;jþ1

�

; otherwise:

�

ð4Þ

In (4), if the channel used by link lj is different from the
links (lj�1; . . . ; lj�p) within its interference range, link lj can
transmit the packet concurrently with any of those links. So
after adding link lj, the end-to-end throughput can be better
sustained, which is given by the link throughput of lj or the
already obtained throughput, whichever is lower. Other-
wise, link lj interferes with the previous added links and
reduces the throughput.

Given Ti;j computed by (4) and B as the size of MTU,
di;jðSÞ can be computed as

di;jðSÞ ¼
ðdSBe � 1Þ �B

Ti;j
þ
X

j�1

k¼i

B

Tk;kþ1

: ð5Þ

Equation (5) considers that a data item may be fragmented
into multiple packets, with the maximum packet size of B.
In the formula, the first term of the summation approxi-
mately computes the waiting time for the last packet to be
sent, which is after all the previous packets being injected to
the forwarding path. The second term estimates the delay to
transmit the last packet from the data server to the client.

When a forwarding node Ni receives a request message
from the link, it can attach the link throughput Ti;iþ1 and the
channel used on this link li to the request packet header and
keeps forwarding. So given a data item of size S, based on
the link channel and throughput information, the data
server can compute di;jðSÞ (0 � i; j � n) by using (4) and (5).

A greedy cache placement algorithm. To get the optimal
cache placement, the data server needs to compute the
aggregate delay for every possible cache placement set. Since
there are 2n (n is the length of the forwarding path) possible
ways to choose cache placement set, it takes �ð2nÞ, which is
too expensive. Therefore, we propose a greedy heuristic to
efficiently compute the optimal cache placement.

Let P �ðkÞ be the optimal cache placement for a forward-
ing path when only the nearest k hops from the data server
are considered as possible cache nodes. With the same
condition, let L�ðkÞ be the aggregate delay of the optimal
placement P �ðkÞ, and p�ðkÞ be the hop distance of the
farthest cache node from the data server in P �ðkÞ.
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When k ¼ 0, no cache node is between the data server

and the client, and then the data server N0 transmits the

data directly to the client Nn without reassembling at any

intermediate node. All future requests from Ni need to get

data from the data server. Therefore, P �ð0Þ ¼ ;; p�ðkÞ ¼ 0,

and

L�ð0Þ ¼ d0;nðSDÞ þ
X

n�1

i¼1

fi � ðd0;iðSDÞ þ d0;iðSRÞÞ ��t:

Given L�ðkÞ; P �ðkÞ, and p�ðkÞ, we check whether to select

the intermediate node Nkþ1 as a cache node. If Nkþ1 is

selected, we have

Lðkþ 1Þ ¼ L�ðkÞ þ hðSDÞ þ ðdp�ðkÞ;kþ1ðSDÞ þ dkþ1;nðSDÞ

� dp�ðkÞ;nðSDÞÞ �
X

n�1

i¼kþ1

ðdp�ðkÞ;iðSDÞ þ dp�ðkÞ;iðSRÞ

� dkþ1;iðSDÞ � dkþ1;iðSRÞÞfi�t:

If Lðkþ 1Þ is smaller than L�ðkÞ; Nkþ1 is selected as the
cache node since it reduces the aggregate delay. The
optimality is updated: L�ðkþ 1Þ ¼ Lðkþ 1Þ; P �ðkþ 1Þ ¼
P �ðkÞ [Nkþ1, and p�ðkþ 1Þ ¼ Nkþ1; otherwise, P �ðkþ 1Þ;
L�ðkþ 1Þ, and p�ðkþ 1Þ keep unchanged from P �ðkÞ; L�ðkÞ,
and p�ðkÞ. Fig. 4 shows the detail of the algorithm. The
algorithm has complexity of �ðn2Þ, which is much more
efficient than the optimal algorithm.

2.4 System Implementation

2.4.1 Architecture Overview

Fig. 5 shows the architecture of our cooperative cache
middleware, which consists of three parts: Cooperative
Cache Supporting Library (CCSL), Cooperative Cache
Daemon (CCD), and Cooperative Cache Agent (CCA).

CCSL is the core component to provide primitive
operations of the cooperative cache, e.g., checking passing-
by packets, recording data access history, and cache read/
write/replacement primitives. A data cache buffer is
maintained at every node to store the cached data items.
There is an interface between CCSL and the routing daemon,
from which CCSL obtains the routing distance to a certain
node. All these primitive cache operations are enclosed as
CCSL API to provide a uniform interface to the upper layer.

CCD is the component that implements different coopera-
tive cache mechanisms, namely, CacheData, CachePath, and
HybirdCache. There is one cache daemon for each coopera-
tive cache scheme. It extends the basic CCSL API to
accomplish the characteristic of each scheme.

CCA is the module that maps application protocol
messages to corresponding cooperative cache layer mes-
sages. It is a connector between CCD and user applications.
There is one CCA for each user application.

2.4.2 The Cooperative Cache Supporting

Library (CCSL)

CCSL is implemented as a user-space library. It implements
common functions that cooperative cache schemes need and
provides APIs to the Cooperative Cache Daemon (CCD).

Fig. 6 illustrates the software architecture of CCSL. As
shown in the figure, the Cache table is used to record data
access. It is a hash table keyed by data id. Data items are
cached in the data cache. Besides these two components, a
list of recently received requests is maintained to detect
duplicate data requests. If the data request is not a
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Fig. 4. The greedy algorithm to determine the cache placement.

Fig. 5. System architecture.
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duplicate, it will be passed to the Cooperative Cache
Daemon (CCD). An interface is provided between CCSL
and the routing daemon. It enables CCSL to get the routing
information which is used for transmitting cooperative
cache layer packets.

CCSL encapsulates the complex mechanisms of the
cooperative cache to provide simple interfaces to CCD. For
example, when a data request is issued, CCD constructs a
data request packet and calls send packetðÞ to send it.
send packetðÞ reads the destination address of this packet,
consults routing daemon for the next hop address, and sends
a packet containing the received data request to the next hop.
Another example is cache dataðÞ. When cache dataðÞ is
called by CCD, it checks the data cache for some space and
then saves the data item. If there is not enough space, cache
replacement is used to find enough space.

3 THE PROTOTYPE AND EXPERIMENTAL RESULTS

To evaluate the performance of the cooperative cache
implementation, we set up an ad hoc network as shown
in Fig. 7. Five nodes are Dell Pentium laptops with 1.6 GHz
CPU and 512 MB memory. Each Laptop has a Dell

TrueMobile 802.11 wireless cards configured in ad hoc
mode. The dashed circle around each node indicates the
transmission range. Any two nodes connected with a solid
line are direct neighbors. The routing protocol is based on
AODV [20]. The implementation is based on Linux kernel
version 2.4.21.

3.1 A Map Quest Application

We wrote a simple map quest application to demo our
cooperative cache functions. This map quest application can
be divided into two parts: map center and map client. All
maps are originally saved in the map center. Once the map
center receives a map query request, the requested map is
retrieved and sent back to the requester.

Fig. 8a shows the graphic user interface (GUI) of a map
client. After the user clicks the map request, the request
message is sent to a specially designed Cooperative
Caching Java Agent (CCJA) at this node. As a protocol
translator, the CCJA translates the received map request
message to the format used in Cooperative Cache
Daemon (CCD). If the requested map is returned back
to the CCD of the requesting node, the CCD forwards the
received reply message together with the replied map to
the corresponding CCJA. Then, the CCJA constructs a
map reply message and sends it to the map client. Fig. 8b
shows a map displayed by a client.

Fig. 8c shows the message flows at intermediate nodes.
For each message that the CCD receives, the message
monitor displays information such as source and destina-
tion address, message type, map name, CCD’s processing
result, and the address of the actual node from which the
requested map is received.

3.2 Experimental Results

In this section, we compare the performance of the
symmetric and asymmetric cooperative cache approaches.
In the symmetric approach, both data request and data
reply go up to the cache layer. As shown in Fig. 7, N1 is the
data center which stores 100 test files of sizes 0.9 KB, 1.3 KB,
1.9 KB, 3.2 KB, and 6.4 KB. N4 and N5 randomly choose files
and initiate data requests.

Data from Table 1 shows that the Asymmetric approach
reduces the data access latency by 20-23 percent compared to
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Fig. 6. CCSL design.

Fig. 7. Topology of the testbed.

Fig. 8. A map quest application demo. (a) Map client, (b) map displayed

by N4, and (c) message monitor.
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noncooperative cache (SimpleCache), and the symmetric
approach reduces the data access latency by 12-18 percent
compared to SimpleCache. This is because cooperative cache
helps the requester to get data from nearby nodes when the
data are not locally cached by the requester. For these two
cooperative cache approaches, the asymmetric approach
experiences on average 10 percent less data access delay
compared to the symmetric approach. This delay reduction is
achievedbyreducing thenumberof times that thedata item is
passed from the network layer to the cooperative cache layer.
In the symmetric approach, for any intermediate node, the
received data item has to be passed to the cooperative cache
layerwhich is in theuser space. If this intermediate nodedoes
notneed to cache thedata, this context switch isnotnecessary.
The asymmetric approach reduces the access delay by
removing these unnecessary context switches.

The small-scale prototype has several limitations which
make in-depth performance evaluation hard to perform.
First, due to the small scale, the distance between the source
and the destination is short, and hence, the advantage of
cooperative caching is not as much as that shown in [24].
Second,N4 andN5 are the only two requesters in the network,
and N3 is the only node selected by the algorithm to do
cooperative caching. A data itemwill be put into the cache of
N3 after it is accessed by eitherN4 orN5 (let’s sayN4), and the
cached data can only helpN5 once. Later bothN4 andN5 can
access this data from their local caches. All the cached data at
N3 can at most serve one request, thus the utilization of the
cooperative cache is very low in this prototype. Fig. 9 shows
the cache hit ratio in our experiment, which confirms the
above findings. Third, since each node only has one wireless
interface, due to interference, it is difficult to test the pipeline
effect identified in Section 2.2.2. This also explains why the
difference between symmetric and asymmetric approaches is
relatively small, as the asymmetric approach only saves the
processing delay atN3.

Although our prototype has some limitations, it can be
used to verify our simulation testbed, which will be
shown in the next section. Further, it verifies one

important delay factor: the data processing delay. To
better evaluate the system performance such as the
pipeline effect, we collect real data from the prototype
and use the data to tune the simulation testbed to better
simulate the real system performance.

In order to accurately evaluate the processing delay at
the cache layer, we use results from our prototype, which
are shown in Table 2. The cache layer processing delay of
our simulator is strictly tuned to follow these values. The
data processing delay is generally not considered in most
network simulators, but it is a very important factor in our
system design.

4 PERFORMANCE EVALUATIONS

To evaluate our design and implementation in a large-scale
network, and to evaluate how different factors affect the
system performance, we perform extensive simulations. We
also compare our approach with various design options.

4.1 Simulation Model

The simulation is based on ns-2 [18]. The implementation of
the cooperative cache layer is ported from the real system
implementation, but simplified to fit the simulator.

At the transport layer, we set the MTU (Maximum
Transmission Unit) to be 500 bytes. When the data packet
received from the upper layer exceeds the size of MTU, it
breaks the packet into fragments and passes the fragments
to the routing layer. For the packets passed from the
routing layer, the transport layer needs to reassemble the
IP fragments.

The MAC layer. We simulate several MAC and physical
layer options, and compare the performance of various
cache designs. Table 3 shows the complete list of MAC and
physical layer options. The basic wireless interface follows
802.11b standard. The radio transmission range is 250 m
and the interference range is 550 m. We use the existing
802.11 MAC implementation included in the original ns-2
package as our single-interface single-channel MAC layer.

For the multi-interface multichannel MAC protocol, we
assume each node is equipped with multiple 802.11b
compatible interfaces. These interfaces can be tuned to
multiple orthogonal channels [14], [15], [19], [21]. In thisway,
it is possible for a single node simultaneously sending and
receiving packets using two independent radios, whereas
neighboring nodes can also simultaneously transmit packets
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TABLE 1
Data Access Delay (in Milliseconds)

Fig. 9. Cache hit ratio of the three approaches at different data sizes.

TABLE 2
Packet Processing Time at the Cache Layer

TABLE 3
Wireless Interface Setup
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at other noninterfering channels. Since the standard ns-2
does not support multichannel, we add the multi-interface
and multichannel functionality based on the techniques
provided in [1].

The client query model. The client query model is
similar to what has been used in previous studies [24]. Each
node generates a single stream of read-only queries. The
query generate time follows exponential distribution with
mean value Tquery. After a query is sent out, the node does
not generate new query until the query is served. The access
pattern is based on Zipf � like distribution, which has been
frequently used [4] to model nonuniform distribution. In
the Zipf-like distribution, the access probability of the ith
(1 � i � n) data item is represented as follows:

Pai ¼
1

i�
Pn

k¼1

1

k�

;

where 0 � � � 1. When � ¼ 1, it follows the strict Zipf
distribution. When � ¼ 0, it follows the uniform distribution.
Larger � results in more “skewed” access distribution. We
choose � to be 0.8 according to studies on real Web traces [4].

The access pattern of the wireless nodes can be location
dependent; that is, nodes that are around the same
location tend to access similar data, such as local points
of interests. To simulate this kind of access pattern, a
“biased” Zipf-like access pattern is used in our simulation.
In this pattern, the whole simulation area is divided into
10 (x-axis) by 2 (y-axis) grids. These grids are named grid
0; 1; 2; . . . 19 in a columnwise fashion. Clients in the same
grid follow the same Zipf pattern, while nodes in different
grids have different offset values. For example, if the
generated query should access data id according to the
original Zipf-like access pattern, then in grid i, the new id
would be ðidþ n mod iÞ mod n, where n is the database
size. This access pattern can make sure that nodes in
neighboring grids have similar, although not the same,
access pattern.

The server model. Two data servers, server0 and
server1, are placed at the opposite corners of the rectangle
area. There are n data items at the server side and each
server maintains half of the data. Data items with even ids
are saved at server0 and the rests are at server1. The data
size has a range between smin and smax. The data are
updated only by the server. The servers serve the requests
on FCFS (first-come-first-service) basis.

Most system parameters are listed in Table 4. For each
workload parameter (e.g., the data size), the mean value
of the measured data is obtained by collecting a large

number of samples such that the confidence interval is
reasonably small. In most cases, the 95 percent confidence
interval for the measured data is less than 10 percent of
the sample mean.

We first verify our simulation testbed by configuring it
with our five-node experimental topology. As shown in
Table 5, the simulation results match that in the prototype
experiment. Next, we increase the scale of our network
using parameters listed in Table 4 to collect more results.

4.2 Simulation Results

In this section, we compare the performance of the
SimpleCache approach, the Symmetric Cooperative Cache
(SCC) approach, and the Asymmetric Cooperative
Cache (ACC) approach in various network environments.
Simple Cache is the traditional cache scheme that only
caches the received data at the query node. We also
compare these schemes to an Ideal Cooperative Cache
(ICC) approach, which does not have processing delay at
the cache layer. Further, upon receiving each packet, the
cache manager makes a copy of the packet and buffers it,
and then forwards the original one immediately. Thus, an
intermediate node can immediately forward the packet
without waiting until the whole data item is received,
which can maximize the pipeline effect. It is easy to see that
ICC sets up a performance upper bound that a cooperative
cache scheme may achieve.

4.2.1 Comparisons in Traditional 802.11 Networks

Fig. 10a shows the average data access delay of different
designs in transitional 802.11 ad hoc networks. The benefit
of cooperative caching is easy to see when the channel
bandwidth is low (2 Mbps) regardless of the cache design
options. Cooperative cache increases the chance of getting
data with less number of hops, and hence can reduce the
access delay compared to the SimpleCache approach no
matter how they are designed.

Fig. 11 provides a closer view to compare the perfor-
mance of these three cooperative cache schemes (SCC, ACC,
and ICC). As shown in the figure, the ACC approach is
quite close to the performance of the ICC approach. The
advantage of ACC and ICC over SCC is about 10-25 percent.
Based on the results of Section 3, most of this performance
gain comes from the processing delay but not from the
pipeline effect. This is because the spatial channel reuse of
802.11 is extremely limited. Since a node can only receive or
send packets at one time with one interface, it is impossible
to have a perfect pipeline. The best we can achieve is to
have a partial pipeline as the two-hop neighbor of the
sending node can also send. However, this is not exactly
true when considering the 802.11 DCF mechanism [11].

As shown in Fig. 12, a chain of nodes are positioned with
250 meters between neighboring nodes. Based on the
802.11b configuration in ns-2, the transmission range is
250 m, and the interference range is 550 m. Even with only
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TABLE 4
Simulation Parameters

TABLE 5
Simulated Data Access Delay Using the Five-Node Topology
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one data flow going through N1 to N9, when node N5 is
transmitting a packet to N6, the nearest possible concurrent
transmission is between N1 and N2 because N5’s inter-
ference range covers nodes N3; N4, and N7. Although N2 is
outside of the interference range of N5, node N3 is an
exposed terminal of the on-going transmission N5 ! N6, so
it cannot response to the RTS message from node N2. Also
node N8 is a hidden terminal since it cannot decode N6’s
CTS, and it cannot sense N5’s data transmission since N5 is
out of N8’s 550 m carrier sensing range. Thus, when node
N8 transmits to N9, it will disrupt the on-going transmission
from N5 to N6. Therefore, even with a perfect scheduling
mechanism which can evenly spread out the packets along
the path to maximize the packets pipeline, the maximum
spatial reuse can be achieved is just 1/4 of the chain length.
In a real network where nodes are not perfectly positioned,
other factors such as interference between concurrent flows,
ACK packet in the reverse path when using TCP, and the
actual spatial reuse with 802.11 are even worse. Similar
problems have been identified in [10], [17], although in
different context.

From Fig. 10a, we can also see that the average data access
delay increases linearly to the data size. The data access
delay of the SimpleCache approach significantly increases
when the data size is larger than 3.5 KB. This is due to
network congestion. In the SimpleCache approach, each data
request needs to travel more hops to be served compared to
that in the cooperative cache schemes. As a result, each data
request uses more network bandwidth, and the chance of
network congestion is higher. In case of network congestion,
the data access delay significantly increases.

By increasing the transmission rate to 5Mbps, as shown in
Fig. 10b, the network capacity increases, and there is no
network congestion in SimpleCache even when the data size
increases to 7 KB. From Fig. 10b, we can also see that the SCC
approach does not have too much advantage over the
SimpleCache approach. There are two reasons: First, as the
data transmission rate increases, the processing overhead of
the SCC approach becomes significant. Second, as the data
transmission rate increases, it starts to have some pipelines,
but the SCC approach does not allow anypipelines. TheACC
approach does not have these disadvantages and hence still
has much better performance compared to the SimpleCache
approach.

The Ideal Cooperative Cache (ICC) approach allows
pipeline and has no processing overhead. Hence, it has the
lowest data access delay. The delay of the ACC approach is
quite close to optimal, which verifies that the asymmetric
approach is quite effective on mitigating the cache layer
overhead. It has almost the same delay as the ideal
cooperative cache approach when the data size is not much
larger thanMTU, and there are normally not enough packets
to fill in the “pipe” along the forwardingpath.As thedata size
increases, the ACC approach has a little bit longer delay than
the ICC approach, since the caching nodes stop the pipeline.
But it is still much better than the SCC approach.

Fig. 13 further explains why the cooperative cache
schemes can reduce the data access delay. To get this figure,
we set the average data size to be 5 KB and change the cache
size. We use a similar cache replacement algorithm as that in
[24]. As cache size increases, the remote data hit ratio of the
cooperative cache scheme (ACC, ICC, or SCC) increases.
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Fig. 10. Comparison of the data access delay in 802.11 networks. (a) 2 M bandwidth and (b) 5 M bandwidth.

Fig. 11. A close view of query latency for different cooperative cache

schemes in single-interface-single-channel 802.11 2 M ad hoc networks. Fig. 12. 802.11 MAC layer interference in a chain topology.
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Although the local data hit ratio is similar between

SimpleCache and ACC, ACC can get data through remote
data hit and, hence, save some hops of transmission delay.

When pipeline is not very effective, especially in Fig. 10a, the
cooperative cache approach can significantly reduce the

delay. The comparison between Fig. 13 and Fig. 9 (see
Section 3.2) also explains why the delay reduction using

cooperative cache in the simulation is much higher than that
in our prototype. As the network size increases, the
possibility of accessing data from the cache of other nodes

greatly increases for ACC. Also, the local cache hit ratio
decreases when the data set becomes larger.

4.2.2 Comparisons in Wireless Mesh Networks

Multi-interface multichannel wireless mesh network is
designed to increase the bandwidth utilization and allow

neighbor nodes communicate concurrently. As a result, it is
easier for the nodes to take advantage of the pipeline effect.

When a large data item is transmitted in network, it is
fragmented into small packets. These packets can be
pipelined along the forwarding path to maximize the

throughput and reduce the data access delay. As shown
in Fig. 14, due to data pipeline, the SimpleCache approach

may outperform the SCC approach. This is because, as
discussed in the last section, the SCC approach has high

processing overhead and it is lack of pipeline.

In Fig. 14a, when the data size is larger than 6 KB, the
SimpleCache approach still runs into severe congestion due
to excessive packets injected to the network. As shown in
Fig. 14b, the performance improvement of ACC over ICC
drops as the data size increases. This can be explained as
follows. The major benefit of cooperative caching is to
reduce the hop distance of data access. This will be
translated into the reduction of data access delay in
802.11-based network. However, this is not exactly true in
high-bandwidth multichannel mesh networks. In such
networks, as long as the data item is large enough for a
full pipeline, the hop distance becomes less important to the
data access delay. Although caching in the intermediate
node can reduce the hop distance for future data access, this
delay reduction is less important. Further, it is at the cost of
shortening the pipeline due to caching in the intermediate
node. Even considering these constraints, the ACC ap-
proach outperforms the SimpleCache approach and is very
close to the ideal cooperative cache approach.

From Fig. 14b, we can see that the delay advantage of the
cooperative cache approaches is not that significant in high-
bandwidth multichannel mesh networks. This is because
the network has enough bandwidth to support all the
nodes. However, as the nodes increase the query rate or
access data of larger size, the delay of the SimpleCache
becomes much higher. Similar results have been shown in
Fig. 14a. Although the pipeline can reduce the delay, the
SimpleCache approach still generates more traffic, which
may result in a network congestion and longer delay. As
shown in Fig. 15, the cooperative cache schemes (ICC, SCC,
ACC) generate 30-50 percent less data traffic than the
SimpleCache approach because cooperative cache can
reduce the number of hops to get the data.

4.2.3 The Effect of Cache Placement

In this section, we evaluate the greedy cache node selection
algorithm proposed in Section 2.3.3. In ACC, the data server
uses this algorithm to determine which node should cache
the data on the forwarding path. We compare our algorithm
with the existing caching node selection algorithm in [24],
which relies on the intermediate forwarding nodes to make
the caching decision independently. More specifically, the
existing algorithm in [24] is solely based on a node’s local
information, and it relies on a benefit threshold to decide
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Fig. 13. Comparison of cache hit ratio between SimpleCache and ACC

(in 802.11 2 M ad hoc networks).

Fig. 14. Comparison of the data access delay in wireless mesh networks. (a) 2 M bandwidth and (b) 5 M bandwidth.
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whether to cache the data. Two versions of such algorithm
are chosen for the purpose of comparison: 1) Local
Aggressive: the benefit threshold is set low so that
forwarding nodes are more likely to cache the data; and
2) Local Lazy: the benefit threshold is set high so that the
forwarding nodes are less likely to cache the data. We
compare their performance in both 802.11 networks and
multi-interface multichannel mesh networks with 5 M
bandwidth. The results are based on the data size of 4 KB.

Figs. 16 and 17 show the average data access hop
distance and data access delay, respectively. In both 802.11
and mesh networks, Local Aggressive generates more cache
copies for data, so the average data access hop distance is
the smallest among the three. In contrast to Local
Aggressive, much less nodes are qualified to cache data
with Local Lazy algorithm. So, Local Lazy has the longest
hop distance. Intuitively, data access should have shorter
delay when data are cached by more nodes, and Local
Aggressive should be more favorable. This is only true in
802.11 networks (as shown in Fig. 17). However, in mesh
networks, overly caching data may cause adverse effects
since it can increase the cache processing delay and
eliminate the pipeline effect, as we have discussed pre-
viously. Local Lazy only picks a small amount of nodes
which receive request messages most frequently to cache
the data. In this way, it reduces the caching overhead and
obtains less delay than Local Aggressive in mesh networks.

Our algorithm considers the trade-off between reducing
hop distance and the caching overhead in different network
structures. In 802.11 networks, it tries more aggressively to
cache data because the gain of caching is more than the

overhead of caching. Thus, the average data access hop
distance of ACC is much less than that of the Local Lazy
algorithm (in Fig. 16), and its delay is similar to Local
Aggressive (in Fig. 17). In mesh networks, caching overhead
becomes more significant, so data caching should be used
more prudently. ACC adapts its caching strategy to select
less number of caching nodes. Its data access hop distance
increases, and it achieves similar data access delay as Local
Lazy, which is much less than Local Aggressive.

Although Local Aggressive and Local Lazy algorithms
can achieve good performance in the simulated 802.11 and
mesh networks, respectively, they are unable to determine a
proper strategy (e.g., calculate a proper benefit threshold)
by themselves. Particularly in a practical network where
different degrees of channel interference exist, it is im-
possible to have a threshold only based on local information
and still obtain good performance. ACC considers the
network condition of the whole data forwarding path, and
therefore can select proper nodes to cache data and achieve
better performance.

5 CONCLUSIONS

In thispaper,wepresentedourdesignand implementationof
cooperative cache in wireless P2P networks, and proposed
solutions to find the best place to cache the data. In our
asymmetric approach,data requestpackets are transmitted to
thecache layeroneverynode;however, thedata replypackets
are only transmitted to the cache layer on the intermediate
nodes which need to cache the data. This solution not only
reduces the overhead of copying data between the user space
and the kernel space, but also allows data pipeline to reduce
the end-to-end delay. We have developed a prototype to
demonstrate the advantage of the asymmetric approach.
Since our prototype is at a small scale,we evaluate our design
fora large-scalenetworkthroughsimulations.Oursimulation
results show that the asymmetric approach outperforms the
symmetric approach in traditional 802.11-based ad hoc
networks by removing most of the processing overhead. In
mesh networks, the asymmetric approach can significantly
reduce the data access delay compared to the symmetric
approach due to data pipelines.

To the best of our knowledge, this is the first work on
implementing cooperative cache in wireless P2P networks,
and the first work on identifying and addressing the effects
of data pipeline and MAC layer interference on cache
management. We believe many of these findings will be
valuable for making design choices.
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Fig. 15. Comparison of the data traffic generated in 5 M mesh networks.

Fig. 16. The effect of cache node selection algorithms on the data
access hops.

Fig. 17. The effect of cache node selection algorithms on the data
access delay.
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