Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres

Seong Huh, Hung-Ting Chen, Jerzy W. Wiench, Marek Pruski, and Victor S.-Y. Lin Angew. Chem. Int. Ed. 2005, 44, 1826–1830

- with control of the relative concentration and proper spatial arrangements between these functional groups.
- Mesoporous material are porous materials with regularly arranged, uniform mesophores (2 nm to 50 nm in diameter).
- Large specific surface areas because of their numerous pores.
- Mesoporous silica nanosphere materials.

Grafting organosilanes onto a silanol-containing surface

Scheme 2. Three modes of carbonyl activation by coordination: a) single hydrogen bond (e.g. preassociation or hydrogen bonding by a general acid HA), b) double hydrogen bonding, c) Lewis acid (LA) activation.

Scheme 1. Carbonyl activation by organic catalysts capable of double-hydrogen-bonding activation.

ACIEE, 2004, 43, 2062.

Schematic drawings of bifunctional MSNs

a) 2/8 AEP/UDP–MSN, b) 5/5 AEP/UDP–MSN, and c) 8/2 AEP/UDP–MSN. Scale bar: 2.0 mm.

Solid state 13C CP MAS and 29Si MAS NMR.

By field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and nitrogen adsorption and adsorption studies. Total surface concentration of organic groups: a) 1.3, b) 1.0, c) 1.5 mmołg. Concentration ratio of AEP/UDP: a) 2.5/7.5, b) 5.4/4.6, c) 6.7/3.3. Model reactions: a) aldol, b) Henry, c) cyanosilylation

Reaction	MSN catalyst	Τ [°C]	Product	TON
aldol	2/8 AEP/UDP	50	1, 2	22.6
	5/5 AEP/UDP	50	1, 2	11.9
	8/2 AEP/UDP	50	1, 2	8.6
	AEP	50	1, 2	5.4
	physical mixture ^[b]	50	1, 2	6.4
	UDP	50	1, 2	0.0 ^[d]
	pure MSN ^[c]	50	1, 2	0.0 ^[d]
	2/8 AEP/CP	50	1, 2	12.4
	5/5 AEP/CP	50	1, 2	9.3
Henry	2/8 AEP/UDP	90	3	125.0
	5/5 AEP/UDP	90	3	91.1
	8/2 AEP/UDP	90	3	65.8
	AEP	90	3	55.9
	physical mixture ^[b]	90	3	79.2
	UDP	90	3	5.8
	pure MSN ^[c]	90	3	0.0 ^[d]
	2/8 AEP/CP	90	3	78.0
	5/5 AEP/CP	90	3	71.0
cyanosilylation	2/8 AEP/UDP	50	4	276.1
	5/5 AEP/UDP	50	4	170.5
	8/2 AEP/UDP	50	4	109.4
	AEP	50	4	111.4
	physical mixture ^[b]	50	4	126.9
	UDP	50	4	45.9
	pure MSN ^[c]	50	4	43.0 ^[d]

Table 1: TONs for the MSN-catalyzed reactions.^[a]

JACS, 2004, 126, 1010

- Bifunctionalized mesoporous silica nanosphere was demostrated as cooperative catalytic system.
- Various reactions were tested.
- These catalysts can be recycled.
- By fine-tuning the relative concentration and proper spatial arrangement of different functional groups, the multifunctionalized MSMs can serve as new solid-supported reagents.

