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Abstract. In the world of living creatures, “simple minded” animals often co-
operate to achieve common goals with amazing performance. One can consider
this idea in the context of robotics, and suggest models for programming goal-
oriented behavior into the members of a group of simple robots lacking global
supervision. This can be done by controlling the local interactions between the
robot agents, to have them jointly carry out a given mission. As a test case we
analyze the problem of many simple robots cooperating to clean the dirty floor
of a non-convex region in Z?, using the dirt on the floor as the main means of
inter-robot communication.

1 Introduction

In the world of living creatures, “simple minded” animals like ants or birds cooperate
to achieve common goals with surprising performance. It seems that these animals are
“programmed” to interact locally in such a way that the desired global behavior is likely
to emerge even if some individuals of the colony die or fail to carry out their task for
some other reasons. It is suggested to consider a similar approach to coordinate a group
of robots without a central supervisor, by using only local interactions between the
robots. When this decentralized approach is used, much of the communication overhead
(characteristic to centralized systems) is saved, the hardware of the robots can be fairly
simple, and better modularity is achieved. A properly designed system should achieve
reliability through redundancy.

Significant research effort has been invested during the last few years in design
and simulation of multi-agent systems [Brol,Lev1,Senl,Stel,Wag3,Ark1,Wag4]. Such
designs are often inspired by biology (see [Ark2] or [Bro2,Ark3] for behavior based
control models, [Matl,Denl,Drol] for flocking and dispersing models, [Benl,Hay1]
for predator-prey approach), physics (see e.g. [Chel]), or economics application (see
e.g. [Gerl,Goll,Rab1,Smil,Thal,Well,Zlol1]).

Tasks that have been of particular interest to researchers in recent years include
synergetic mission planning [Alal], fault tolerance [Parl], swarm control [Mat2], hu-
man design of mission plans [Macl], role assignment [Stol,Canl,Pagl], multi-robot
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path planning [Svel,Lum1,Ferl,Yam1], formation generation [Frel,Gorl,Aral], traffic
control [Prel], formation keeping [Ball,Wan1], exploration and mapping [Rek1], target
tracking [Par2] and target search [LaV1].

Unfortunately the geometrical theory of such multi-agent systems is far from being
satisfactory, as has been pointed out in [Bnil] and many other papers. A short discus-
sion regarding the conceptual framework of intelligent swarms (or swarm intelligence
systems) and the motivation behind the use of such, appears in section 2.

Our interest is focused on developing the mathematical tools necessary for the de-
sign and analysis of such systems. In a recent report [Wag2] we have shown that a
number of agents can arrange themselves equidistantly in a row via a sequence of linear
adjustments, based on a simple “local” interaction. The convergence of the configura-
tion to the desired one is exponentially fast. A different way of cooperation between
agents is inspired by the behavior of ant-colonies, and is described in [Brul]. There it
was proved that a sequence of ants engaged in deterministic chain pursuit will find the
shortest (i.e. straight) path from the ant-hill to the food source, using only local inter-
actions. In [Bru2] we investigate the behavior of a group of agents on Z2, where each
ant-like agent is pursuing his predecessor, according to a discrete biased-random-walk
model of pursuit on the integer grid. We proved there that the average paths of such a
sequence of a(ge)nts engaged in a chain of probabilistic pursuit converge to the straight
line between the origin and destination, and this happens exponentially fast.

In this paper we investigate a more complicated question concerning the behavior
of many agents cooperating to explore an unknown area (for purposes of cleaning,
painting, etc.), where each robot/agent can only see its near neighborhood, and the
only way of inter-robot communication is by leaving traces on the common ground and
sensing the traces left by other robots.

Similar works can be found at [Poll,Koel,Rek2,Latl,Acal,Butl,Minl,Batl]).

We present an algorithm for cleaning a dirty area that guarantees task completion
(unless all robots die) and prove an upper bound on the time complexity of this algo-
rithm. We also show simulation results of the algorithm on several types of regions.
These simulations indicate that the precise time depends on the number of robots, their
initial locations, and the shape of the region.

In the spirit of [Bra], we consider simple robots with only a bounded amount of
memory (i.e. finite-state-machines). Generalizing an idea from computer graphics (see
[Henl]), we preserve the connectivity of the “dirty” region by allowing an agent to
clean only so called non-critical points, points that do not disconnect the graph of dirty
grid points. This ensures that the robots will stop only upon completing their mission.
An important advantage of this approach, in addition to the simplicity of the agents,
is fault-tolerance — even if almost all the agents cease to work before completion, the
remaining ones will eventually complete the mission. We prove the correctness of the
algorithm as well as an upper bound on its running time, and show how our algorithm
can be extended for regions with obstacles.

The rest of the paper is organized as follows : in Section 3 the formal problem is
defined as well as the aims and assumptions involved. The algorithm is presented in
Section 4, where an analysis of its time-complexity appears in section 5. Section 6 is
devoted to the problem of exploring/cleaning regions with obstacles, and is followed



by several experimental examples (section 7). We conclude the paper with a discussion
and by pointing out several connections to related work, presented in section 8.
This paper is a revised and extended version of the work presented in [Wagl].

2 Swarm Intelligence — Framework and Motivation

2.1 Motivation

The experience gained due to the growing demand for robotics solutions to increas-
ingly complex and varied challenges has dictated that a single robot is no longer the
best solution for many application domains. Instead, teams of robots must coordinate
intelligently for successful task execution.

In [Dial] the authors present a detailed description of multi robots application do-
mains, and demonstrate how multi robots systems can be more effective than a single
robot in many of these domains. However, when designing such systems it should be
noticed that simply increasing the number of robots assigned to a task does not neces-
sarily improve the system’s performance — multiple robots must cooperate intelligently
to avoid disturbing each other’s activity and achieve efficiency.

There are several key advantages to the use of such intelligent swarm robotics. First,
such systems inherently enjoy the benefit of parallelism. In task-decomposable appli-
cation domains, robot teams can accomplish a given task more quickly than a single
robot, by dividing the task into sub-tasks and executing them concurrently. In certain
domains, a single robot may simply be unable to accomplish the task on its own (e.g. to
carry a large and heavy object). Second, decentralized systems tend to be, by their very
nature, much more robust than centralized systems (or systems comprised of a single
complex unit). Generally speaking, a team of robots may provide a more robust solu-
tion by introducing redundancy, and by eliminating any single point of failure. While
considering the alternative of using a single sophisticated robot, we should note that
even the most complex and reliable robot may suffer an unexpected malfunction, which
will prevent it from completing its task. When using a multi agents system, on the other
hand, even if a large number of the agents stop working for some reason, the entire
group will often still be able to complete its task, albeit slower. For example, for ex-
ploring a hazardous region (such as a minefield or the surface of Mars), the benefit of
redundancy and robustness offered by a multi agents system is highly noticeable.

Another advantage of the decentralized swarm approach is the ability of dynam-
ically reallocating sub-tasks between the swarm’s units, thus adapting to unexpected
changes in the environment. Furthermore, since the system is decentralized, it can re-
spond relatively quickly to such changes, due to the benefit of locality, meaning — the
ability to swiftly respond to changes without the need of notifying a hierarchical “chain
of command”. Note that as the swarm becomes larger, this advantage becomes increas-
ingly noticeable.

In addition to the ability of quick response to changes, the decentralized nature of
such systems also increases their scalability. The scalability of multi agents systems
is derived from the low overhead (both in communication and computation) such sys-
tem possess. As the tasks assigned nowadays to multi agents based systems become
increasingly complex, so does the importance of the high scalability of the systems.




Finally, by using heterogeneousness swarms, even more efficient systems could be
designed, thanks to the utilization of “specialists” — agents whose physical properties
enable them to perform much more efficiently in certain well defined tasks.

2.2 Simplicity of the Agents

A key principle in the notion of swarms, or multi agent robotics, is the simplicity of the
agents. The notion of “simplicity” here means that the agents should be significantly
simpler than a “single sophisticated agent”, which can be constructed for the same
purpose. As a result, the resources of such simple agents are assumed to be very limited,
with respect to the following aspects :

— Memory resources — basic agents should be assumed to contain only O(1) mem-
ory resources (i.e. the size of memory is independent of the size of the problem
or the number of agents). This usually imposes many interesting limitations on the
agents. For example, agents can remember only a limited history of their activities
so far. Thus, protocols designed for agents with such limited memory resources are
usually very simple and attempt to solve a given problem by defining some (neces-
sarily local) basic patterns. The task is completed by a repetition of these patterns
by a large number of agents.

— Sensing capabilities — defined according to the specific nature of the problem. For
example, for agents moving along a 100 x 100 grid, a reasonable sensing radius
may be 3 or 4, but certainly not 40.

— Computational resources — although agents are assumed to employ only limited
computational resources, a formal definition of this constraint is hard to define. In
general, most of the time-polynomial algorithms may be used.

Another aspect of swarm algorithms’ simplicity is the extremely sparse use of com-
munication. The issue of communication in multi agents systems has been extensively
studied in recent years. Distinctions between implicit and explicit communication are
usually made, in which implicit communication occurs as a side effect of other actions,
or “through the world” (see, for example [Pag2]), whereas explicit communication is a
specific act intended solely to convey information to other robots on the team.

Explicit communication can be performed in several ways, such as a short range
point to point communication, a global broadcast, or by using some sort of distributed
shared memory. Such memory is often treated to as a pheromone, used to convey
small amounts of information between the agents [Yanl,Wag5,Yan2]. This approach
is inspired from the coordination and communication methods used by many social
insects — studies on ants (e.g. [Adl1,Grd1]) show that the pheromone based search
strategies used by ants in foraging for food in unknown terrains tend to be very effi-
cient.

In the spirit of designing a system which uses as simple agents as possible, we
aspire that the agents will have as little communication capabilities as possible. With
respect to the taxonomy of multi-agents discussed in [Dud1], we would be interested in
using agents of the types COM-NONE or if necessary of type COM-NEAR with respect



to their communication distances, and of types BAND-MOTION, BAND-LOW or even
BAND-NONE (if possible) with respect to their communication bandwidth.

Therefore, although a certain amount of implicit communication can hardly be
avoided (due to the simple fact that by changing the environment, the agents are con-
stantly generating some kind of implicit information), explicit communication should
be strongly limited or avoided altogether, in order to fit our paradigm (note that in
many works in this field, this is not the case, and communication, as well as memory,
resources, are often being used in order to create complex cooperative systems).

3 The Cooperative Cleaners Problem

3.1 Problem’s Definition

We shall assume that the time is discrete. Let G denote a two dimensional integer grid
Z?, whose vertices have a binary property called ‘dirtiness’. Let dirt,(v) state the dirt-
iness state of the vertex v at time ¢, taking either the value “on” or “off”. Let I} be the
dirty sub-graph of G at time ¢, i.e. F; = {v € G | dirt,(v) = on}. We assume that
Fy is a single connected component. Our algorithm will preserve this property along its
evolution.

Let a group of k agents that can move across the grid G (moving from a vertex to
its neighbor in one time step) be placed at time ¢y on Fj.

Each agent is equipped with a sensor capable of telling the dirtiness status of all tiles
in the digital sphere of diameter 5, which surrounds the agent. An agent is also aware
of other agents which are located in these tiles, and all the agents agree on a common
direction. Each tile may contain any number of agents simultaneously.

When an agent moves to a tile v, it has the possibility of cleaning this tile (i.e. caus-
ing dirt(v) to become off). The agents do not have any prior knowledge of the shape or
size of the sub-graph Fj except that it is a single and simply connected component.

The agents’ goal is to clean G by eliminating the dirtiness entirely, meaning that the
agents must ensure that :

Ftsuccess 5.t }7tsuccCSS =0

In addition, it is desired that this time span sy ccess Will be minimal.

In this work we impose the restriction of no central control and full ‘de-centralization’,
i.e. all agents are identical and no explicit communication between the agents is al-
lowed. An important advantage of this approach, in addition to the simplicity of the
agents, is fault-tolerance — even if almost all the agents cease to work before comple-
tion, the remaining ones will eventually complete the mission, if possible.

3.2 Related Work

As mentioned in previous sections, the cooperative cleaners problem has significant
similarity to other types of multi-agents problems, such as cooperative coverage, or
cooperative de-mining problems. In recent years, much work have done, designing sys-
tems and algorithms for handling these tasks. In this process, various models and as-
sumptions concerning the agents and their capabilities were used.



In general, most of the techniques used for the task of a distributed coverage use
some sort of cellular decomposition. For example, in [Rek?2] the area to be covered is
divided between the agents based on their relative locations. In [Butl] a different de-
composition method is being used, which is analytically shown to guarantee a complete
coverage of the area. Another interesting work is presented in [Acal], discussing two
methods for cooperative coverage — a probabilistic one, and a complete one (using yet
again an exact cellular decomposition). All of the works mentioned above, however,
rely on the assumption that the cellular decomposition of the area is possible. This in
turn, require the use of memory resources, used for storing the dynamic map generated,
the boundaries of the cells, etc’. As the initial size and geometric features of the area
are generally not assumed to be known in advance, agents with a constant amount of
memory will most likely not be able to use such algorithms. In this work, we are inter-
ested in a multi-agents system which could perform such a cooperative coverage with
a use of minimal amount of memory, defined in advance, and unrelated to the size and
geometry of the covered (or cleaned) area (this requirement is presented in Section 3.1).
Such a system is presented in the later part of this work, and its ability to guarantee a
completion of the task is shown.

Surprisingly, while many existing works concerning distributed (and decentralized)
coverage present analytic proofs for the completion of the task (e.g. [Acal,Butl,Batl]),
unfortunately, most of them lack analytic bounds for the completion time (although in
many cases an extensive amount of empirical of this nature is available). Although a
proof for the coverage completion is an essential key in the design of a multi-agents
system, analytic indicators for its efficiency should also be sought for. In this work,
such results, bounding the cleaning time of the agents, are presented in Section 5. An
interesting work to mention in this scope is this of [Svnl,Koe2], where a swarm of ant-
like robots is used for repeatedly covering an unknown area, using a real time search
method called node counting. By using this method, the robots are shown to be able
to be able to efficiently perform such a coverage mission, and analytic bound for the
coverage time are discussed.

As most coverage problems focus on achieving a complete coverage (and some-
times — in the minimal time possible), it is worth mentioning in this scope the work
of [Conl], in which an interesting additional constraint is added. As this work was de-
sign for an autonomous painting system, the uniformity of the coverage was demanded
(in order to maintain the same thickness of the paint layer). In addition, this work ex-
amined the problem of 3-D coverage, in contrary to most search cover systems, usually
discussing the 2-D version. However, the main focus of this work was the use of an
efficient single agent for this mission, instead of a cooperative multi-agents one.

4 The Cleaning Protocol

In order to solve the Cooperative Cleaners problem we propose a cleaning protocol,
called CLEAN. Generalizing an idea from computer graphics (presented in [Henl]),
this protocol preserves the connectivity of the dirty region by preventing the agents
from cleaning critical points — points which when cleaned disconnect the dirty region
(see section 5.1). This ensures that the agents stop only upon completing their mission.



At each time step, each agent cleans its current location (assuming it is not a critical
point), and moves according to a local movement rule, creating the effect of a clockwise
traversal along the boundary of the dirty shape. As a result, the agents “peel” layers
from the shape, while preserving its connectivity, until the shape is cleaned entirely. An
example of the protocol can be seen in Figure 1.

To the basic description of the protocol given above, there are several exceptions.
As the agents are equipped with a very limited sensing and storage capabilities, the
basic structure of the protocol is enhanced with a set of local rules, designed for pro-
ducing a pseudo-synchronization between the agents. Those rules generate resting and
waiting commands for the agents, capable of delaying their actions, either within the
time step (until other specific agents complete their cleaning process for this time step),
or causing some agents to pause for a single time step, resuming their operation at the
next time step only. A detailed description concerning the need for these additions ap-
pears in Sections 4.6 and 4.7. Note however that the rules in charge of the resting and
waiting still obey the basic paradigm of this work, namely — they are local, use no
prior knowledge of the problem, and do not require explicit communication between
the agents, and can be implemented using a constant amount of memory resources. A
schematic flowchart of the protocol is presented in Figure 3.

Fig. 1. An example of two agents using the CLEAN protocol, at time step 40. All the tiles pre-
sented were dirty at time 0. The black dot denotes the starting point of the agents. The X’s mark
the critical points which are not cleaned. The black tiles are the tiles cleaned by the first agent.
The second layer of marked tiles represent the tiles cleaned by the second agent.

4.1 Cleaning Protocol — Definitions and Requirements

Let r(t) = (71(t), 72(¢), ..., 7%(t)) denote the locations of the k agents at time ¢. For
a tile v, let Neighborhood(v) denote the dirtiness states of v and its 8 Neighbors. Let
M; denote some finite amount of memory contained in agent ¢, storing information
needed for the protocol (e.g. the last move of agent 7). The requested cleaning protocol
is therefore a rule f such that for every agent 7 :

f(n (t), Neighborhood(7;(t)), ./\/ll(t)) eD



where D = {‘left’, ‘right’, ‘up’, ‘down’}.
Let OF denote the boundary of F. A tile is on the boundary if and only if at least
one of its 8 Neighbors is not in F', meaning :

OF ={v|v € F A 8Neighbors(v) N (G \ F) # 0}
The requested rule f should meet the following goals :

Successful Termination : (tyccess 5.1 Fy,,..... = 0).

Agreement on Completion : within a finite time after completing the mission, all
the agents must halt.

Efficiency : the cleaning process should be efficient at time and in agents’ memory
resources.

Fault Tolerance : if one or several stop working (“die”) the rest of the agents will
continue the cleaning process as efficiently as their number allows them.

4.2 The CLEAN Cleaning Protocol

The protocol is being used by each agent a;, which at time ¢ is located at 7;(¢) =
(x,y). Follow are the definitions of several terms we use while discussing the CLEAN
protocol. The term ‘rightmost’ means :

Starting from 7;(t — 1) = (z,y) (which is the previous boundary tile that agent
a; had been in) scan the neighbors of (x,y) in a clockwise order until you find
another boundary tile. In case t = 0 select the tile as instructed in Figure 2.

The additional information needed for the protocol and its sub-routines is contained
in M, and Neighborhood(x,y).

A schematic flowchart of the protocol, describing its major components and pro-
cedures is presented in Figure 3. The complete pseudo-code of the protocol and its
sub-routines appears in Figures 4 and 5. Upon initialization of the system, the System
Initialization procedure is called (defined in Figure 4). This procedure sets various ini-
tial values of the agents, and call the protocol’s main procedure — CLEAN (defined in
Figure 5). This procedure in turn, uses various sub-routines and functions, all defined
in Figure 4.

4.3 Pivot Point

This initial location of the agents (denoted py) is artificially set to be critical during the
execution, hence it is also guaranteed to be the last point cleaned. Completion of the
mission can therefore be concluded from the fact that all (working) agents are back at
po with no dirty neighbors to go to, thereby reporting on completion of their individual
missions. Note that this point (also called pivot point) is not necessary for the algorithm
to work well — it just makes life easier for the user since one then knows where to find
the agents after cleaning has been completed. If the agents are not placed on the pivot
point at ¢ = 0 and the pivot pg is not forced to be critical, then the location of the agents
upon completion will generally not be known in advance.
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Fig. 2. When ¢ = 0 the first movement of an agent located in (z, y) should be decided according
to initial dirtiness status of the neighbors of (x, y), as appears in these charts — the agent’s initial
location is marked with a filled circle while the destination is marked with an empty one. All
configurations that do not appear in these charts can be obtained by using rotations and mirroring.

START Calculate
r* Task completed ? Near completion ? i
destination
.- - Notime |
i i
1
_ Mustwait ___ | Is there still !
, 1| enough time ? !
1
i L _Mustrest _ |
1 1 :
Calculate waiting Calculate resting | Signal
dependencies dependencics ! destination
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: v
To clean . Move to .| Wait until current
current tile 7 destination time step ends
I

Fig.3. A schematic flow chart of the CLEAN protocol. The smooth lines represent the basic
flow of the protocol while the dashed lines represent cases in which the flow is interrupted. Such
interruptions occur when an agent calculates that it must not move until other agents do so (either
as aresult of waiting or resting dependencies — see sections 5 and 6 of CLEAN for more details).
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— System Initialization — initializing the system at the beginning of the agents operation.
1. Arbitrarily choose the initial pivot point po from all the points of O Fp.
2. Artificially mark po as a critical point.

3. Place all the agents on po.
4. For (i =1;i < k;i+4)do
(a) Call Agent Reset for agent i.
(b) Call CLEAN for agent i.
(c) Wait two time steps.
5. End System Initialization.
Agent Reset — resetting counters and flags.
1. resting «— false.
2. destination < null.
3. cleaned in last tour «— false.
4. waiting < 0.
5. End Agent Reset.

Priority.

1. Assume the agent moved from tile (o, yo) to tile (z1,y1) then
(a) priority — 2(z1 — 20) + (y1 — y0).
2. End Priority.
Check Completion of Mission.
1. If ((z,y) = po) and (x, y) has no dirty neighbors then
(a) If (z,vy) is dirty then
i. Clean (z,y).
(b) STOP.
2. End Check Completion of Mission.
— Check “Near Completion” of Mission — identify scenarios in which there are too many
agents, which are blocking each other, preventing the cleaning of the last few dirty tiles.
1. If (this is the first time this function is called for this agent) then
(a) Jump to 3.
2. If ((z,y) = po) and (this is the end of a tour) then
(a) If (cleaned in last tour = false) then
i. resting < true.
ii. STOP.
(b) Else
i. cleaned in last tour < false.
3. End Check “Near Completion” of Mission.

Fig. 4. The first part of the CLEAN cleaning protocol. The terms OF and 7; = (z, y) are defined
in sections 4.1 and 4.2.
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— CLEAN Protocol — controls agent number 7 actions after Agent Reset and until the mis-
sion is completed.

1
2
3

8.
9.
10.

Check Completion of Mission.

Check “Near Completion” of Mission.

Calculate destination of movement.

(a) destination «— rightmost neighbor of (x,y).

Signaling the desired destination.

(a) destination signal bits < destination.

Calculate resting dependencies — solves the agents clustering problem.

(a) Letall agents in (x,y) except agent ¢ be divided into the following four groups :

e A, : Agents signaling towards any direction different than destination.
e A, : Agents signaling towards destination which entered (z,y) before agent
2.
e Aj: Agents signaling towards destination which entered (z, y) after agent i.
e A, : Agents signaling towards destination which entered (x,y) in the same
time step as agent 1.
(b) Let group A4 be divided into the following two groups :
o Ay, : Agents with lower priority than this of agent 4.
o Ay : Agents with higher priority than this of agent i.
(¢c) resting «— false.
(d) If (A # 0) or (Agp # () then
i. resting < true.
ii. If (current time step did not end yet) then jump to 3 else jump to 9.

Calculate waiting dependencies — takes care of agents synchronization.

(a) waiting < 0.

(b) If (z—1,y) € F; and contains a non-resting agent which didn’t move in the current
time step yet then waiting < waiting U {left}.

(c) If (x,y—1) € F and contains a non-resting agent which didn’t move in the current
time step yet then waiting < waiting U {down}.

(d) If (z — 1,y — 1) € F; and contains a non-resting agent which didn’t move in the
current time step yet then waiting < waiting U {left-down}.

(e) If (x 4+ 1,y — 1) € F; and contains a non-resting agent which didn’t move in the
current time step yet then waiting < waiting U {right-down}.

(f) If destination = right and tile (x+1, y) contains an agent j, and destination; # left,
and there are no other agents delayed by the operating agent (i.e. tile (z—1, y) does
not contain an agent [ where destination; =right and tile (z, y+1) does not contain
any agents and tile (z + 1, y) does not contain an agent n where destination, =
left), then (waiting « waiting U {right}) and (waiting; < waiting; \ {left}).

(g) If destination = up and tile (x, y+ 1) contains an agent j, and destination; # down,
and there are no other agents delayed by the operating agent (i.e. tile (z, y—1) does
not contain an agent | where destination; =up and tile (z + 1, y) does not contain
any agents and tile (z,y + 1) does not contain an agent n where destination,, =
down), then (waiting < waiting U {up}) and (waiting; < waiting; \ {down}).

(h) If (waiting # () then

i. If (current time step did not end yet) then jump to 3 else jump to 9.

Decide whether to clean (z,y) (meaning — whether or not the tile is a critical point).

(a) If (z,y) has two dirty tiles in its 4Neighbors which are not connected via a se-
quence of dirty tiles from its 8 Neighbors then

i. (x,y) is a critical point and should not be cleaned.

(b) Else

i. If (z,y) still has other agents in it then
A. Do not be cleaned (z, y).

ii. Else
A. Clean (z,y).
B. cleaned in last tour < true.

Move to destination.

Wait until the current time step ends.

Return to 1.

Fig. 5. The CLEAN cleaning protocol. The term rightmost neighbor is defined in section 4.2.
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4.4 Signaling

Since each agent’s sensors can detect tiles the status of all tiles which are contained
within a digital sphere of radius four placed around the current location of the agent,
each agent can artificially calculate the desired destination of all the agents which are
located in one of its 4 Neighbors tiles. Thus, the signaling action of each agent can be
simulated by the other agents near him, and hence an explicit signaling by the agents
is not actually required. However, the signaling action is kept in the description and
flowchart of the protocol for the sakes of simplicity and understandability.

4.5 Connectivity Preservation

The connectivity of the region yet to be cleaned, F', is preserved by allowing an agent to
clean only non-critical points. This guarantees both successful termination and agree-
ment of completion (since having no dirty neighbors implies that F' = (). Also, should
several agents malfunction and halt, as long as there are still functioning agents, the
mission will still be carried out, albeit slower.

Note that a tile which was originally clean, or which was cleaned by the agents,
is guaranteed to remain clean. As a tile can be cleaned by the agents only when it is
in OF), it is easy to see that the simple connectivity of I is maintained throughout the
cleaning process (as the creation of “holes” — clean tiles which are surrounded by tiles
of F'— is impossible).

Note that when several agents are located in the same tile, only the last one who
exits cleans it (see section 7(b)iA in CLEAN), in order to prevent agents from being
‘thrown’ out of the dirty region (meaning, cleaning a tile in which another agent is
located and thus preventing this agent from being able to continue the execution of the
cleaning protocol). An alternative method for ensuring the agents are always capable
of executing the cleaning protocol would have been the implementation of a “dirtiness
seeking mechanism” (i.e. by applying methods such as suggested in [Bael]). Such a
mechanism would have allowed an agent to clean its current location, even if other
agents had also been present there. That solution, however, would have been far less
elegant and would have added additional difficulties to the analysis process.

4.6 Agents Synchronization

Note that agents operating in the described environment must have some mean of syn-
chronization, which is mandatory in order to prevent agents from operating in the same
time, which may damage the dirty region’s connectivity, as shown in Figure 6.

To ensure such scenarios will not occur, an order between the operating agents must
be implemented. Note — throughout the next paragraphs agents who are signalling
a resting status (see Section 4.7 for more details) are disregarded while calculating the
dependencies of the agents’ movements. The following suggested order is implemented
in section 6 of CLEAN :

For agent i, let P; C {up, down, left, right} be a set of directions of tiles, in which
there are currently agents, which agent ¢ is delayed by (meaning, agent ¢ will not start
moving until the agents in these tiles move). Unless stated otherwise, P; = ().
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Fig. 6. When the agents do not possess a synchronization mechanism, they may, among others,
damage the region’s connectivity. In this example, two agents clean their current locations, and
move according to the CLEAN protocol. Since they are not synchronized, the tiles which they
are located in are not treated as critical at the time of cleaning, but the region’s connectivity is not
preserved. Should one agent had waited for the other agent to complete its actions, it would not
have cleaned its current tile, and the region’s connectivity would have been maintained.

For agent ¢ which is located in tile (z,y), if (x — 1,y) is a tile in F', which contains
an agent, then P; — P; U {left}.if (z,y — 1) is a tile in F, which contains an agent,
then P, — P; U {down}.

Let dest; € {up, down, left, right} be the destination agent 7 is interested in mov-
ing to, after cleaning its current location.

Let each agent be equipped with a two bits flag (implemented by two small light-
bulbs, for example). This flag will state the desired destination of the agent. Alterna-
tively, each tile can be treated as a physical tile, in which the agent can move. Thus, the
agent can move towards the top side of the tile, which will be equivalent for using the
flag in order to signal that it intends to move up.

Let each time step be divided into two phases. In phase 1, every agent “signals” the
destination it intends to move towards, either by moving to the appropriate side of the
tile, or by using the destination flag.

As we defined an artificial rule which states the superiority of le ft and down over
right and up, there are several specific scenarios in which this asymmetry should be
reversed in order to ensure a proper operation of the agents. Following is such a a
“dependencies switching” rule: For agent ¢, which is located in (x, y), if dest; = right
and tile (x + 1, y) contains an agent j, and dest; # left, and there are no other agents
which are delayed by agent ¢ (i.e. tile (z — 1,y) does not contain an agent [ where
dest; = right and tile (x,y + 1) does not contain any agent and tile (x + 1, y) does not
contain an agent n where dest,, = left), then P; < P,U{right} and P; < P;\{left}.
Also, if dest; = up and tile (z, y+1) contains an agent k, and desty, # down, and there
are no other agents which are delayed by agent 7 (i.e. tile (x,y — 1) does not contain
an agent m where dest,, = up and tile (z + 1,y) does not contain any agent and tile
(x,y+ 1) does not contain an agent ¢ where dest, = down), then P; «— P; U{up} and
P, — P\ {down}.

At phase 2 of the time step, the agents start to operate in turns, according to order
implied by P;. This guarantees that the connectivity of the region is kept, as a simulta-
neous movement of two neighboring agents is prevented.

Notice that deadlocks are impossible — since the basic rule is that every agent is
delayed by the agents in its le ft and down neighbor tile, at any given time among the
agents who had not moved yet in the current time step, there is always the agent with
the minimal = and y coordinates, which is able to move. After this agent moves, all
the agents which are delayed by it, can now move, and so on. As to the “dependencies
switching rule” — let agent 4 located in tile (z,y) have the minimal z and y values
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among the agents who had not moved yet, and let dest; = up, and let tile (z,y + 1)
contain an agent j such that dest; # down. Then although agent ¢ is located below
agent j, it will be delayed by it (i.e. (up € P;) and # (down € P;)) as long as agent i is
not delaying any other agents (as this is the requirement of the “dependencies switching
rule”). In this case, we should show that there can not be a circle of dependencies, which
starts at agent j, ends at agent ¢, and is closed by the dependency of agent ¢ on agent j.
Such a circle can not exist since for it to end in agent ¢, it means that agent ¢ is delaying
another agent k. However, this is impossible since agent ¢ not delaying any other agents
(specifically agent k) was a strict requirement of the “dependencies switching rule”
which allowed agent 7 to delay agent j. Thus, a dependencies circle is prevented and no
deadlock are possible.

Note that while phase 2 is in process, F; may change due to the cleaning of the
agents. As a result, the desired destinations of the agents as well as their dependen-
cies forest, must also be dynamic. This is achieved through the constant recalculation
of these values, for every waiting agent. For example, assume agent ¢ to be located
in (z,y), and dest; = down without loss of generality, and let agent j located in tile
(z,y — 1) moves out of this tile and cleans it. Then, dest; naturally change (as the tile
(z,y) does no longer belong to F}, and thus is not a legitimate destination for agent ),
and thus, P; may also change. In this case, agent i should change its “destination signal”
and act according to its new dest; and P;. This is implemented in CLEAN by calcu-
lating the waiting agents’ destinations and dependencies lists repeatedly, until either all
agents have moved or until the time step has ended (meaning that some agents had to
change their status to resting, and pause until the next time step — see section 4.7 for
more details). Note that every waiting agent is guaranteed either to complete its move-
ment in the current time step, or to be forced to wait for the next time step, by switching
its status to resting.

Notice that the “dependencies switching rule” is not required in order to ensure a
proper completion of the mission, but rather to improve the agents’ performance, by
preventing a bug demonstrated in Figure 7.

$
1 = # = H
t
i ¢
S = =
5 | 5

Fig. 7. The upper charts demonstrate a performance bug which may be caused due to the local
dependencies. The agents are advancing according to the CLEAN protocol, but their cleaning
performance is decreased. The lower charts demonstrates the cleaning operation after adding the
dependencies switching mechanism.
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4.7 Clustering Problem

Since we are interested in preventing the agents from moving together and functioning
as a single agent (due to a resulting decrease in the system’s performance), we would
like to impose a “resting policy” which will ensure that the agents do not group into
clusters which move together. This is done by artificially delaying agents in their cur-
rent locations, should several agents placed in the same tile wish to move to the same
destination. However, we would like the resting time of the agents to be minimal, for
performance and analysis reasons.

The following resting policy is implemented by section 5 of CLEAN. Using its
sensors, an agent intending to move into tile v is aware of other agents which intend
to move into v as well. Thus, when an agent enters a tile which already contains other
agents, it knows whether these agents entered this tile at the same time step it did, or
whether they had occupied this tile before the current time step.

Note that in phase 1 of each time step all the agents are signaling their desired
destinations. Thus, an agent can identify which ones of the agents which are located
in its current tile intend to move to the same destination as its. Only those agents may
cause this agent to delay its actions and rest.

From the agents which intend to move to the same direction as agent 4, the agent can
distinguish between three groups of agents — the agents which entered this tile before
the time step agent ¢ did (group As), those which entered the tile in the same time step
as i (group Ay), and those who entered it after agent ¢ did (group Aj3). If Ay # 0,
agent ¢ waits, change its status to resting agent, signals this status to the other agents
in its vicinity, and does not move. As this rule is kept by every other agent, agent i is
guaranteed that the agents of group Ajs in their turn will wait for agent i moves before
being free to do so as well.

Regarding the agents in A4, the problem is solved by induction over the time steps,
using the assumption that two agents can not leave the same tile towards the same
direction in the same time step. This of course holds for the first time steps, as the agents
are released manually by the CLEAN protocol’s initialization procedure. Later, as we
are assured that all the agents of group A, arrived to v from different tiles (which are
also different than the tile agent ¢ had entered v from), then since all the agents in group
Ay know the previous locations of each other, a consensus over a local ordering of Ay
is established (note that no explicit communication is needed to form this ordering). An
example for such an order is the priority function of the CLEAN protocol. As a result,
the agents are able to exit the tile they are currently located in in an orderly fashion,
according to a well defined order. Thus, the following invariant holds : “at any given
time t, for any two tiles v, u, there can only be a single agent which moves from v to u
at time step t”. Thus, the clustering problem is solved.

4.8 Mission Termination

When k > 1 there may evolve scenarios in which k will be greater then | F} |, the number
of dirty tiles. In such a case, the agents may also be arranged in such a way that at any
given time there is at least one agent in each tile. From such a scenario, agents may
switch places without being able to clean a single tile, since only an agent which is
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the last to exit a tile may clean it. The result of this situation would have been a group
of agents running around infinitely without ever completing their cleaning mission. In
order to prevent this scenario, the CLEAN protocol instructs any agent who reaches
the pivot point and had not cleaned even a single tile in its last traversal of F’, to halt
(see near completion of mission procedure of CLEAN). When an agent did not clean
any tile in its last traversal of the shape, it means that either the shape is a “skeleton”
comprising of only critical points (see the proof of Theorem 2 in section 5.3) or that
k' > |Fy| (k' denoting the currently active agents). In either case, halting this agent
does not slow the completion of the cleaning task. It is easy to see that if the number of
active agents outside pg is always kept smaller than |F}| then the size of the shape will
always be decreased until the shape is entirely cleaned.

S Analysis

The introduction of the notion of critical points makes time-complexity analysis of the
CLEAN protocol significantly harder since a critical point may be visited several times
before its cleaning. We conjecture that the algorithm proposed is efficient, and addi-
tional agents will speed up the cleaning process only up to a limit. In order to give this
argument a rigorous form, some definitions are required.

5.1 Definitions

Let s; denote the size of the dirty region £ at time ¢, namely the number of grid points
(or tiles) in F}. Actually, F' defines a dichotomy of Z? into F and F' = Z* \ F.
The boundary of the dirty region F' is denoted as 0F' and defined as :

OF = {(z,y) | (x,y) € F A (z,y) has an 8Neighbor in (G \ F)}

(as also defined in a previous section).

A path in F is defined to be a sequence (v, v1, . .., v, ) of tiles in F' such that every
two consecutive tiles are 4 connected (the Manhattan distance between them is 1). The
length of a path is defined to be the number of tiles in it.

Let tile v be called a critical point if there exist vy, va € 4Neighbors(v) for which
all paths connecting v; and vo, included in 8 Neighbors(v), necessarily pass through v
(where v, v1, v2 and all said paths are from F').

We shall denote by c; the circumference of F' at time ¢, defined as follows: let vg
and v,, be two 4 connected tiles in 0Fy, and let C; = (v, v1,...,v,) be the shortest
path connecting vy and v,,, which contains all the tiles of OF; and only such tiles. If
there are several different shortest paths then let C; be a one of them. Notice that C;
may contain several instances of the same tile, if this tile is a critical point(meaning
that C; is an ordering of the tiles of OF}, in which multiple instances of tiles that are
critical points are allowed). ¢; will be defined as the length of C;. An example appears
in Figure 8.

For some v € F; let Strings;(v) denote the set of all paths in F; that begin in v
and end at any non-critical point in Fy, and let w(F}, v) denote the depth of v — the
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Fig. 8. The line in the left upper chart goes through the tiles of C; where the 3 arrows denote
tiles that are included twice. The circles in the right upper chart denote the tiles of O F;. Note that
while OF; contains 11 tiles, C; contains 14. In the lower chart, there are no critical points in OF}
and therefore ¢, = |0F;| = |Cy| = 36.

length of the shortest path in Strings;(v) (unless v is a critical point in which case its
depth is defined to be zero).
Let W (F}) denote the width of F, defined as the maximal depth of all the tiles in
Fi,ie.:
W (F;) = max{w(F;,v) | v € F}}

An example appears in Figure 9.

Let F} denote the region one could get, having one agent traverse F; once, using the
CLEAN protocol (i.e. when k = 1, F/ = F;,,). For the sake of simplicity, F}’ will be
used instead of (F})’, and so on.

The longest in-region distance between p, and any other point in F} will be referred
to as [(F}), the length of F}:

Z(Ft) = {Jré%%( {dFt (p()v ’U)}

where dF, (z,y) is the distance (shortest path within F}) between x and y.

5.2 Correctness

Lemma 1. If s; > 0 then W(F}) > 1, that is: any finite simple region has at least two
non-critical points on its boundary.

Proof. The boundary OF} is a connected graph, hence it has a spanning tree. In such
a tree there are at least two vertices with degree 1. these vertices are necessarily not
critical in F3, since any boundary point which is critical in F; is also critical in OF;.

(End of Lemma 1)
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Fig.9. The chart contains three shapes. The black circles denote the deepest tiles within the
shapes. Notice that while in the left shape there are two tiles whose depth is the maximal, in the
other shapes there is only one tile of maximal depth. The widths of the shapes equal the depth of
the deepest tiles, and are (from left to right) 2, 3, and 4.

Lemma 2. During the course of the cleaning process, if all the agents are using the
CLEAN protocol the agents are never going outside the dirty region. Namely, the only
time an agent is located on a clean tile is when F = ().

Proof. The only movements allowed by the CLEAN protocol are towards a dirty tile.
The only times an agent is allowed to clean a tile are when it is the last agent leaving
this tile, or when this is the only dirty tile left. In addition, the various preemption which
are in charge of agents synchronization prevent an agent to move to a dirty tile, which
is getting cleaned during its movement. As a result, an agent is guaranteed to be located
in dirty tiles throughout the entire cleaning process.

(End of Lemma 2)

Theorem 1. A group of agents executing the CLEAN protocol will eventually clean a
simply connected region and stop together at the pivot point pg.

Proof. While F; has not yet been cleaned, s; > 0 and hence, by Lemma 1 there is a
non-critical point on OF}. Since the agents obey the CLEAN protocol, while F; # 0,
there is at least a single agent still traversing F;. As this agent does not change the
direction of its traversal, it is guaranteed to arrive to (and clean) a non-critical point
at least once during the course of its traversal (thus decreasing s; by at least 1). As
¢y < 4s, (since during a traversal around F} any tile can be entered to from each one
of its 4 neighbors at most once), the maximal length of this traversal is 4s;. As agents
may indeed delay one another, it is shown in Lemma 5 that the actual time required
for an agent to complete its traversal around F} is at most four times the length of this
traversal, namely — 16s;. As V¢, s; < s, it can be seen that after no more than 1653
time steps we shall have s; = 0. The fact that all agents will meet at the same point is
implied by the following two rules that are implemented in the CLEAN algorithm:

— rule 1: F} is always being kept connected. (We never clean a tile that has no clean
neighbor and never clean a critical tile either).
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— rule 2: The pivot py is cleaned only when no other dirty points are left in F;.

(End of Theorem 1)

5.3 Detailed Analysis

In this section, we shall discuss an upper bound for the cleaning time of £ agents em-
ploying the CLEAN cleaning protocol, for some dirty shape Fy. From an upper bound
for the cleaning time of a swarm comprising k£ agents, an upper bound for the number
of agents needed to ensure a successful cleaning of a given shape in a given number of
time-steps can be derived.

The following Lemma states the change in the cardinality of a shape’s circumfer-
ence after being traversed by an agent using the CLEAN protocol.

Lemma 3. The cardinality of the region’s circumference always decreases after being
traversed by an agent applying the CLEAN protocol, namely :

OF'| < |0F| — 8

Proof. Note that a traversal around F is a closed, simple, rectilinear polygon. OF’ was
obtained after deleting all the non-critical points of OF'. Traversing such a polygon, an
agent either goes straight, makes an internal turn (“left” turn, if we assume a clockwise
movement), or makes an external turn (“right” turn). Suppose w.l.o.g that an agent is
moving up and making an internal turn left. Assume that there are no critical points.
The path around this turn, along the newly created boundary tiles is now longer by two,
as it contains an additional movement up, and another one towards the left. Similarly,
an external turn, creates a new path which is shorter by two tile (as a single horizontal
movement and a single vertical movement are no longer necessary). Since JF is a
simple rectilinear polygon, it always has four “right” turns more than “left” ones*. When
critical points are met, they are not being cleaned, which means that they exist in both
OF and OF’. Re-visiting these points, however, does not change the overall size of the
set of tiles (see an example in Figure 10).

(End of Lemma 3)

While producing a bound for the cleaning time of the agents we shall demonstrate
that while being traversed by the agents using the CLEAN protocol, the width of the ini-
tial shape Fy decreases monotonically. The main component of this proof is presented
in the following Lemma.

Lemma 4. Every time a region is traversed by an agent using the CLEAN protocol, its
width is decreased by at least one, namely :

W(F{) < W(F) -1
3 This is a simple consequence of the “rotation index” Theorem (see e.g. [DoC1] pp. 396) : If

a: [0,1] — R?is a plane, regular, simple, closed curve, then fol k(s)ds = 2w, where k(s) is
the curvature of «(s) and the curve is traversed in the positive direction.
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Fig. 10. An example of Lemma 3 and of the CLEAN protocol. The black dot denotes the starting
point of the agents cleaning F' (which is the entire shape presented). The X’s mark the critical
points which are not cleaned. The black tiles are some of the tile of OF, cleaned by the first agent.
The second layer of marked tiles represent some of the tiles of OF", cleaned by the second agent.
The effect of corners on the traversal cardinality is either an increase (marked by the left circle)
or a decrease (marked by the right circle).

A corollary is that the number of tours around a region F’ that k£ agents must accom-

plish before F' = () is at most (@ +1).

Proof. By the definition of the depth of a tile, it is the shortest path to a non-critical
tile in OF. According to the CLEAN protocol, after an agent had traversed F’, all of
the non-critical points in OF were cleaned. This is true as the agent is instructed to
clean all the non-critical points it is going through. The only exception are tiles which
an agent does not clean upon exit, as there are other agents currently located in it.
However, in this case, this tile will be cleaned by the last agent leaving it. The resting
mechanism (discussed in Section 4.7) prevents situations in which a certain agent is
never leaving the tile it is located in. Therefore, the only time in which a tile might
constantly contain agents, is when the number of agents is greater than the number of
tiles. The termination mechanism (discussed in Section 4.8) is in charge of detecting
such scenarios and stopping the operation of agents, until the number of active agents
decreases.

Therefore, after an agent traverses the region, the depth of every internal tile was
decreased by (at least) one, meaning that the total width of the shape was decreased by
(at least) one. As a result, as all agents are identical, when k agents complete a traversal
of F, the width of F' is decreased by at least k.

(End of Lemma 4)

When examining the cleaning time of the agents, one must remember that merely
calculating the length of the paths the agents must move along is not enough. Since
in various scenarios the CLEAN protocol may direct an agent to stop and wait (for
example, when several agents are located in the same tile), a way to bound the actual
time it takes an agent to move along a specific path must be found. The following
Lemma establishes the relation between the length of a path and the maximal time it
takes an agent using the CLEAN protocol to move along it.
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Lemma 5. The time it takes an agent which uses the CLEAN protocol to move along a
path of length c; (including delays caused by other agents located in the same tiles) is
at most 4 - ¢;.

Proof. According to the problem’s specifications, each agent moves along the dirty
region F' at a pace of one tile per time step. The only exception may occur when several
agents are delayed after entering the same tile.

According to the CLEAN protocol, although several agents can enter the same tile
at the same time step, agents located in the same tile can leave it at the same time step
only if they do so towards different directions. As a result, there arises the question
whether more and more agents can enter a certain tile without leaving it, causing a
decrease in the swarm’s performance.

Let v be an empty tile. Let us assume w.l.o.g that at some time step ¢, 4 agents enter
v (this is of course the maximal number of agents which can enter v at the same time
step, due to the invariant stating that no two agents can exit u to v at the same time
step, for u, some neighbor of v, and since v has at most 4 neighbors). Thus, in time
step t — 1 v had exactly 4 neighbors in OF. Let us assume that in time step ¢t + 1 v
still has 4 neighbors in OF'. Thus, all the 4 agents which entered v intends to move to 4
different directions (since according to the CLEAN protocol, each of them has different
rightmost neighbor). Thus, none of them will be delayed. Alternatively, let us assume
that at time step ¢ + 1 v has less than 4 neighbors in OF'. Let o denote the number of
neighbors of v in JF. Then, since the 4 agents which entered v in time ¢ did so from
different directions, according to the CLEAN protocol, a of them will be able to leave
v towards the « neighbors of v, and (4 — «) will stay in v. However, in this time step,
only o new agents can enter v, since v has only « neighbors in OF. Thus, in time step
t 4 2 there are at most 4 agents in v. This is true of course for each time steps 1" > ¢+ 2.
Since the number of agents in each tile is at most 4, and since each tile with agents in
it has at least one neighbor of JF' (since the agents had to enter it from a neighbor in
OF, then there are at least % agents which are able to move. Thus, even if the agents
collide with each other continuously, the time it takes k agents to traverse a region of
circumference c; is at most 4- k-c; (and the average traversal time of an agent, amortized
for the entire group of agents, is at most 4 times its minimal traversal time). In reality,
the agents’ traversal time is only slightly more than c¢;, although an analytic proof is yet
to be found).

(End of Lemma 5)

When an agent using the CLEAN protocol is traversing F} it does so by moving
along a path which contains all the tiles of OF;. Since by doing that, the agent may pass
in the same tile more than once, the length of this path may be larger than the number
of tiles in OF;. A bound for the ratio between the two is described in the following
Lemma.

Lemma 6. c;, the length of the circumference of Fy never exceeds twice its cardinality,
namely :
Ct§2-|8Ft|—2

Proof. OF} is a connected graph and thus it has spanning trees. A protocol for construct-
ing a spanning tree for OF} and a Depth First Search (DFS) scan of it was constructed,
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such that the path generated by using the DFS algorithm contains a traversal around
F; (meaning that the DFS scan generates a path which after having several of its tiles
removed, equals a path which traverses F}). An example appears in Figure 12.

The protocol receives p;, a non-critical tile as its starting point and an empty list of
tiles, L.* The protocol constructs a spanning tree of OF} as well as a DFS scan for this
tree, by adding tiles to the list. The protocol also marks the tiles in L which should be
deleted. After the deletion of these tiles the remaining tiles form a path which traverses
F}. An example of the above appears in Figure 12.

A DFS scan of a tree can go through each edge at most twice. A tree of |V/| vertices
contains exactly (|V'| — 1) edges. Thus, a DFS scan of a spanning tree of OF} contains
at most 2 - (|OF;| — 1) transitions of edges. Since there exists such a spanning tree that
contains a ‘tour’ around F} then : ¢; < 2 - |0F;| — 2.

(End of Lemma 6)

Protocol SPAN-DFS(z, y) :
Add (z,y) to L and mark it as OLD;
If the rightmost neighbor of (z,y) is ps then
Delete all the marked tiles from L and STOP;
If (the rightmost neighbor of (z,y) is marked as OLD) and (no
circle was formed) then
/* The traversal repeats this tile as well */
Call SPAN-DFS for the rightmost neighbor of
(z,y) and STOP upon return;
If (the rightmost neighbor of (z,y) is marked as OLD) and (a
circle was formed) then
/* Continue, and clean the redundant tiles */
Add to L the sequence of tiles from L, starting
with (z,y) and backwards to (z,y)’s rightmost
neighbor;
Mark these tiles (expect (x, y)) to be deleted;
Call SPAN-DFS for the rightmost neighbor of
(z,y) and STOP upon return;
/* The rightmost neighbor was not OLD */
Call SPAN-DFS for the rightmost neighbor of (x, y) and STOP
upon return;
End SPAN-DFS;

Fig. 11. The recursive spanning tree construction protocol. The term rightmost has the same
meaning as in the CLEAN protocol. By checking L we can find out whether continuing to
an OLD neighbor is a “clean return” (e.g. (A,B,C,B)) or whether it completes a circle (e.g.
(A,B,C,A)).

* The existence of a non-critical point is guaranteed since OF} is a connected graph and thus has
a spanning tree, in which at least two tiles has a degree of 1, which makes them non-critical
tiles.
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Fig.12. An example of the spanning tree protocol. The left chart represents the dirty region F;.
The middle chart shows the DFS scan of OF; according to the SPAN-DFS protocol, when the
big X marks ps, the non-critical starting point. The right chart shows the traversal path which is
contained in this DFS scan. The drawing on the bottom shows the spanning tree that is created by
the protocol and is searched by the DFS algorithm.

Let Wrenmov ep(t) denote the decrease in the width of F' due to the agents’ activ-
ities until time ¢.

Lemma 7. .

WremovEeD(t+1) 2 {Z i J

4. ¢
i=1 v

Proof. WrEmovED(t) can be defined as the number of completed traversals around
the dirty region, multiplied by the number of the agents k. Note that at time step ¢, each
agent completes é of the circumference. Since we know the value of ¢; for every ¢, and
since we know that the time it takes an agent to move along a path is at most 4 times
the length of this path, then the decrease in the original width of the shapes caused by
the cleaning process of the agents is bounded as described.

(End of Lemma 7)
A bound over the cleaning time of a given shape Fj can then be produced as fol-
lows :

Theorem 2. Assume that k agents start cleaning a simple connected region Fy at
some boundary point py and work according to the CLEAN algorithm, and denote
by tsuccess (k) the time needed for this group to clean Fy. Then it holds that:

(|0Fy) — 1) - (W (Fy) + k)

2k
A +

max {2k, [*2] 20(Fo) } < tauceens(F) < °

Proof. The lower bound is quite obvious — the left term 2k is the time needed to release
the k agents from the pivot point, 3¢ is a lower bound on the time necessary to cover
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the region if the agents were optimally located at the beginning. The right term, 2{(Fp),
comes from the observation that at least one agent should visit (and return from) any
point of Fy, including the one farthest from pg, to which the distance is {(Fp).

Considering the upper bound, in order for Fj to be cleaned, there should exist a
time %4yccess 1N Which the width of the shape will be 0. Note that once the dirty region
was reduced to a ‘skeleton’ comprises only of tiles of depth zero, an additional traversal
must be done in order to clean it entirely.

By combining Lemma 3 and 6 we know that for ¢;(¢) and 0F} () be the length and
cardinality respectively of the ¢-th traversal of agent j :

¢j(i) <2(10F; ()] = 1) < 2(|0Fo| — 1)

Using Lemma 7 we see that :

t

WremovED(t) > {Z4kch = {8(8?; I)J ey

i=1

Thus, we are interested in :

\‘k : tsuccess(k)

8(|3FQ—1)J > W(FO) +k (2)

adding the “+k” for the additional traversal needed for cleaning the dirty ‘skeleton’.
Since releasing the agents requires an additional 2k time steps, the final bound for
this case is :
8(0F| — 1) - (W(Fy) + k)
k

tsuccess(k) > + 2k

(End of Theorem 2)
Using the above theorem we can bound the efficiency ratio, defined as touceess (k)
which expresses the benefit of using & agents for a cleaning mission :

Corollary 1.

ma [ 26 L 2UE0) ) tsuecens(k) _ 8(0F| 1) - (W(F0) +k) | 2k
so k S0 S0 k- so S0

3)

An interesting result of Corollary 1 is that when W (Fp) < k < s, i.e. the number
of agents is large relative to the width but small compared to the area, then the efficiency
ratio is bounded below by twice the ratio of the length and area, and bounded above by
8%. Note here the similarity to the ratio \%T)’ known as the shape-factor.

Another conclusion is that when we scale up the region by a factor of n, the area
increases as n? but the width, length and circumference all increase as n so we get the
following:

Corollary 2.

asn — oo, LW<M<UOO

< g =<
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where 1 OF - W _|0Fy|- W(F)

=, U =8 =800

k’ * k-S k- so

and S = son?,0F = |0Fy|n, W = W (Fy)n are the scaled area, circumference cardi-
nality and width, respectively.

Loo =

5.4 Robustness

The issue of an algorithm’s robustness and fault-tolerance is a major aspect of robotics
systems, as the environments in which the they operate may often include unpredicted
changed from the original specification of the system, such as various kinds of noises,
robots’ malfunctions, etc’.

As discussed in Section 4.1, one of the requirements of the CLEAN protocol is a
complete fault-tolerance to malfunctions in the agents, meaning — even if one or sev-
eral agents stop working (“die”) the rest of the agents will continue the cleaning process
as efficiently as their number allows them, and as long as there exist at least one agent
who functions properly, the cleaning completion is guaranteed. The fulfillment of this
requirement is immediately derived from the completeness of the algorithm for a group
of agents at any size (and specifically, for a single agent), shown in Theorem 1. The
basic idea enabling this robustness is the complete independence between the agents,
due to the full decentralized nature of the system (as the agents do not share the clean-
ing mission between them, nor do they rely on one another in the performance of their
cleaning process).

A different aspect of the algorithm’s robustness is the performance of the agents
in noisy environments. In general, noise can take place in various aspects of the sys-
tem — while sensing whether a tile should be cleaned, while sensing for presence of
other agents in an agent’s vicinity, noises in the agent’s movement system, etc’. As in
almost any system, it is easy to see that an exaggerated noise level may significantly de-
crease the algorithm’s efficiency, and may even prevent the agents from completion the
mission altogether. For example, difficulties in sensing whether a tile should be cleaned
or not, may cause an agent to clean a critical point, thus separating the region into sev-
eral connected components. In the event that one of these components do not have any
agent located on its tiles, it will remain dirty, even after the agents stop and report a suc-
cessful termination of their mission. In addition, noises in the agents’ movement system
may cause the agents to detach from the dirty region, thus delaying, or even preventing
the completion of the cleaning process. Whereas a situation in which the noise level is
kept at a reasonable rate (i.e. correct identification of clean and dirty tiles, and move-
ment noises), it is the authors’ estimation that the completion of the algorithm can still
be guaranteed, although the cleaning time may be longer. This may happen when the
agent suffers difficulties in the sensors in charge of detecting other agents in its vicinity,
and interpreting their signaling (see relevant sections for more details about signaling
and synchronization). When this happens, several problematic scenarios, which these
mechanisms were designed to avoid, may occur. However, simulations show that in
such cases, only the cleaning time is affected, and not the completion of the cleaning
itself. Nevertheless, as this issue was not fully investigated yet, a zero noise level is still
one of the algorithm’s requirements.
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One example for the above is described in Figure 6, in which a failure in the sensing
mechanism may damage the simple-connectivity of the dirty region. Note that in such
scenarios, there is least a single agent in each of the new dirty components. Therefore,
each component is an instance of the cooperative cleaners problem, whose complete
cleaning is guaranteed. However, the completion of the cleaning for all of those com-
ponents may require longer time than would have required for the original problem.

Another example is demonstrated in Figure 7, where a bug in the waiting mecha-
nism (see Section 4.6 for more details) may prevent some of the agents from cleaning
dirty tiles. In this example as well, the existence of at least a single fully functioning
agent is guaranteed, and as a result, also the successfully completion of the cleaning
mission. The same holds for possible bugs in the resting mechanism (see Section 4.7
for more details) which may cause several agents to move together, acting as a single
cleaning agent.

It is also interesting to examine the scenario in which all the robots are picked up,
and re-placed on some arbitrary positions onboard the dirty region. Thanks to the def-
inition of the CLEAN protocol, the robots will navigate to the boundary of the region,
and resume their cleaning. Naturally, the overall cleaning time might be affected, how-
ever — the completion of the cleaning is still guaranteed.

5.5 Comparison to Existing Work

Looking at the existing work that has been done with respect to multi robotic systems
designed for a cooperative cleaning / coverage / etc’, several analytic results concerning
the completion time of the mission can be found.

An interesting result is presented in [Svnl]. In this work, a group of simple robots
is used for periodically covering an unknown area, using the nodes counting method.
Based on a more general result for undirected domains shown in [Koe3], the following
bound is given :

The cover time of teams of ant robots (of a given size) that use node counting
on strongly connected undirected graphs can be exponential in the square root
of the number of vertices.

Namely :
f(k) =0(2v™) @

denoting the covering time of k robots by f (k).
Recalling Theorem 2 in which :

8(|0Fp| — 1) - (W(Fo) + k)

2
A + 2k

tsuccess (k) <

as |0Fy| = O(Sy) and as W (Fy) = O(1/Sp) we see that :

1
tsuccess(k) =0 (ksés + SO + k‘)
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As for practical reasons we assume that k£ < Sy we can see that :

1
tsuccess(k') =0 (ksé5 + So)

and when the number of robots is independent in the size of the region, the time com-
plexity can be reduced to :
tsuccess (k) =0 (555)

Comparing this to the bound of equation 4, we see that the time complexity of the
CLEAN protocol is much smaller than this of the nodes counting technique.

It should be mentioned though, that in [Svn1] the authors clearly state that it is their
belief that the coverage time of robots using nodes counting in grids is much smaller.
This estimation is also demonstrated experimentally. However, it should also be pointed
out that the methods described in [Svn1] require the robots to have some sort of marking
capability (namely, leaving trails along the region’s tiles). Such a requirement is not
necessary for the CLEAN protocol.

6 Regions With Obstacles

So far we have only dealt with simply connected regions, i.e. — regions with no “holes”.
In the case of a (connected) region with obstacles (i.e. holes) the simple CLEANing al-
gorithm will not work, due to the following “cycle” problem : eventually, each obstacle
will be surrounded by critical points, and there will be a time when all boundary points
of F' will be critical (we shall call such a situation useless, as opposed to the useful state
when some points are cleaned during a tour). As a cure to this problem, we suggest
to add an “odoring” feature to our cleaners, that is — an agent will be able to label
each tile it is going through by a small amount of “perfume” (this action may remind
one of the pheromones left by ants during their walks). These labels will designate the
directions according to which agents traveled through the labeled tiles. Upon getting to
the useless state (detected by each agent due to no cleaning between two consecutive
visits from the same entrance to the pivot point) an agent will continue to traverse the
boundary, but will now look for a point which has a single label — that is, one that has
odor pointing only on one direction of movement. If this tile does not have a neighbor
which is entirely unlabeled, the agent will clean this point (despite its “criticality”, as it
is not really critical since it is necessarily part of a cycle around an obstacle) and then
continue as in a useful state (see Figure 13 for an example). This will open one cycle,
hence, if there are m obstacles, we will need % such tours before the region is com-
pletely clean. On the other hand, Lemma 3 no longer holds (see Figure 15) since the
boundary area can increase with time. However the boundary is always bounded above
by the area. We now make the following conjecture :

Conjecture 1. Assume that k agents start at some boundary point of a non-simple con-
nected region F{, with s obstacles in it, and work according to the CLEAN-WITH-
OBSTACLES algorithm, and denote by ¢y ccess (k) the time needed for this group to
clean Fj. Then it holds that :

max {Zk, {%O-‘ 725(F0)} < tsuecess(k) <8-5¢ (W(FO) + {S-D +2k  (5)

k k
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where s0,l(Fp) and W (Fp) denote the free area, length and width of Fy, respectively,
and s is the number of obstacles in Fj.
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Fig.13. An example of agents’ odoring used in section 6 for cleaning regions with obstacles.
The figure demonstrates the labels on the region’s tiles after an agent reached the useless state, in
which it did not clean any tile in its last tour. Note that any of the tiles labeled with one direction
only, can be cleaned while still preserving the region’s connectivity. Note that from those tiles,
only tiles with a neighbor which is not labeled with any direction can not be cleaned, since it is
indeed a critical point. Such a point is marked in the figure by a black circle.

Notice though, that the completion of the cleaning process is still guaranteed.

7 Experimental Results

A computer simulation, implementing the CLEAN protocol, was constructed. The al-
gorithm was ran on several shapes of regions and for numbers of agents varying from
1 to 20. See Figure 14 - 15 for some examples of the evolution of the layout with time.
The gray level of each pixel designates the index of the agent that actually cleaned this
point. The right side of Figure 14 shows the same region and number of agents as in
the left side of this Figure, but with randomly chosen initial locations at the corners. It
can be seen that the dirty region is cleaned in a similar way. It should be said here that
all the theory we developed in the previous sections (up to a small additive constant)
applies to the case where the agents are initially located in randomly selected points
on the boundary of Fj (rather than starting from pg). Figure 15 shows the evolution of
the CLEAN-WITH-OBSTACLES algorithm for the same shapes with four additional
obstacles in each, with 2 agents (left) and 10 agents (right).

Figure 16 depicts the timing results (as produced by computer simulations) describ-
ing the cleaning time as a function of the number of agents, compared to the theoretical
bounds presented in previous sections (the cleaning time is normalized by the initial
area of the dirty region). In Figure 17 we show the results for the same figures with
additional obstacles, together with the conjectured theoretical bounds. All the figures
include their appropriate statistical values.

Additional result are presented in Figure 18, comparing the various efficiency ratios
obtained for initial dirty regions of various sizes. This is examined even further by Fig-

ure 19, which shows the behavior of Louccess (50)

e ) namely, the ratio between the cleaning
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time of 50 agents and the cleaning time required for a single agent. The change in this
ratio can be seen, hinting the fact that as the initial region is larger, the addition of more
agents can more efficiently decrease the cleaning time of the agents.

8 Discussion and Conclusion

Our cooperative CLEANing algorithm can be considered as a case of social behavior
in the sense of [Shol], where one induces multi-agent cooperation by forcing the agents
to obey some simple “social” guidelines. This raises the question what happens if one
agent malfunctions. We have shown that if less than k agents stop, the others will take
over their responsibilities. But what if some agents start to cheat ? Such adversaries
will have catastrophic consequences, since a crazy agent may clean a critical point and
disconnect the dirty region.

Another question of interest is the resolution of collisions between agents. In the
CLEAN protocol we resolve such a problem by giving each agent a priority measure
depending on his previous location. However, it is an interesting open question whether
a coin flipping might be better here.

The cleaning problem discussed is related to the geometric problem of pocket-
machining, see [Hell] for details. An interesting problem of cleaning and maintenance
of a system of pipes by an autonomous agent is discussed in [Neul]. The importance of
cleaning hazardous waste by agents is described in [Hed1].

Our approach is that cleaning is always done at the boundary. It is possible that a
better efficiency will be achieved using other approaches:

1. Given that several neighbors are dirty, visit the non-critical ones first (even if not
on the boundary). This approach is quite efficient for one agent, but can be a mess
for several agents.

2. Once entering a large “room* (that is - upon passing from a critical area to a non-
critical one) - designate the entrance by a special type of token, so that other agents
will enter only in case there is no other work to do. This approach guarantees that
the agents will be distributed between the large rooms of the F'-configuration. This
is attractive if the region has such rooms of quite similar areas.

3. Quite a different idea is to divide the work into two phases - the first one of “dis-
tribution” - the agents locate themselves uniformly around the area. Then, in the
second phase, each agent cleans around his “center”. If the distribution is appropri-
ate, there will be minimum of interactions between agents in the second phase.

We use the dirt on the floor as a means of inter-agent communication, but other
ways for communication between agents have been suggested. One is to use heat trails
for this end, as was reported in [Rus1]. In [Stel], self-organization is achieved among a
group of lunar robots that have to explore an unknown region, and bring special rock-
samples back to the mother-spaceship, by programming each robot to drop a crumb at
each point he visits and walk around at random with a bias toward the negative gradient
of crumb concentration.

Another question of interest is how to guarantee covering, at least with high prob-
ability, without using any external signs, using only the inter-agent collisions as an
indicator for a good direction to proceed.
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It is of interest to notice here that an off-line version of the problem, that is : find-
ing the shortest path that visits all grid points in F', where F' is completely known in
advance, is NP-hard even for a single agent. It is a corollary of the fact that Hamilton
path in a non-simple grid-graph is NP-complete [Ital].

In summary, we would like to cite a statement made by a scientist after watching an
ant making his laborious way across a wind-and-wave-molded beach[Sim1]:

An ant, viewed as a behaving system, is quite simple. The apparent complexity
of its behavior over time is largely a reflection of the environment in which it
finds itself.

Such a point of view, as well as the results of our simulations and analysis, make us
believe that even simple, ant-like creatures, yield very interesting, adaptive and quite
efficient goal oriented behavior.
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Cooperative Cleaners, shape #3, on a 40 x 40 matrix

Num of Robots = 10; Total area = 1510; Cleaned area = 1510
Stopping times = [ 289 289 289 289 289 289 289 289 289 289 ;
Theoretical bounds: lower = 198, upper = 1344

Cooperative Cleaners, shape #3, on a 40 x 40 matrix

Num of Robots = 10; Total area = 1510; Cleaned area = 1510
Stopping times = [ 363 363 363 363 363 363 363 363 363 363 |;
Theoretical bounds: lower = 151, upper = 1344

Fig. 14. Cooperative cleaners: maze, 10 agents (left), and 10 agents with random initial locations
on the boundary (right).
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Cooperative Cleaners, shape #5, on a 60 x 60 matrix

Num of Robots = 2; Total area = 969; Cleaned area = 969
Stopping times = [ 3773 3773 ];
Theoretical bounds: lower = 484, upper = 6840

With obstacles;
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Cooperative Cleaners, shape #5, on a 60 x 60 matrix

Num of Robots = 10; Total area = 969; Cleaned area = 969

Stopping times = [ 1731 1731 1731 1731 1731 1731 1731 1731 1731 1731 ];
Theoretical bounds: lower = 362, upper = 2280

With obstacles;

Fig. 15. Cooperative cleaners: 2 agents, 6 rooms with obstacles (left), 10 agents, 6 rooms with
obstacles (right).
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Fig. 16. Various shapes tested in CLEAN simulations and their normalized cleaning time ¢(k) =
tsuccess() 44 4 function of the number of agents, k, for each region, together with the lower
and upper bounds according to Theorem 2. For a confidence level of 95%, based on at least 10

simulation instances per each dirty region, the appropriate confidence interval is less than +6%.
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Fig. 17. Various shapes tested in CLEAN-WITH-OBSTACLES simulations and their normal-
ized cleaning time ¢t(k) = w as a function of the number of agents, k, for each region,
together with the lower and upper bounds according to Theorem 2. For a confidence level of
95%, based on at least 10 simulation instances per each dirty region, the appropriate confidence
interval is less than +10%.
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Fig. 18. Cooperative cleaners: from 1 to 50 agents, dirty regions of sizes 600 to 1500 tiles, 10
simulations per region’s size, cleaning time normalized by the cleaning time of a single agent.
Note that as the initial dirty area is larger, the ratio between tsyccess (k) and tsyccess (1) increases.
In fact, comparing the time ratios of regions of sizes 600 and 1500 tiles, the difference reaches
30%. For a confidence level of 95% the confidence interval is less than +15%.
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Fig. 19. Cooperative cleaners: graph demonstrates the behavior of % for dirty regions

of sizes 100 to 10000 tiles. 10 simulations were done per region’s size. Note how as the initial
dirty area gets larger tauccess(30) gocreages. The minimal value possible is of course 5—10 = 0.02.
For a confidence level of 90% the confidence interval is less than +£10%.
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